
Block Bidiagonal Decomposition and Least
Squares Problems
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The Bidiagonal Decomposition

In 1965 Golub and Kahan gave two algorithms for computing a
bidiagonal decomposition (BD)

A = U
(

L
0

)
V T ∈ Rm×n,

where B is lower bidiagonal,

B =


α1
β2 α2

β3
. . .
. . . αn

βn+1

 ∈ R(n+1)×n,

and U and V are square orthogonal matrices. Given
u1 = Q1e1, the decomposition is uniquely determined if
αkβk+1 6= 0, k = 1 : n,



The Bidiagonal Decomposition

The Householder Algorithm

For given Householder matrix Q1, set A0 = Q1A, and apply
Householder transformations alternately from right and left:

Ak = Qk+1(Ak−1Pk ), k = 1, 2, . . . .

Pk zeros n − k elements in k th row;
Qk+1 zeros m − k − 1 elements in the k th column.
If Q1 is chosen so that Q1b = β1e1, then

UT (
b AV

)
=

(
β1e1 B

0 0

)
,

where B is lower bidiagonal and

U = Q1Q2 · · ·Qn+1, V = P1P2 · · ·Pn−1.



The Bidiagonal Decomposition

Lanczos algorithm

In the Lanczos process, successive columns of

U = (u1, u2, . . . , un+1), V = (v1, v2, . . . , vn),

with β1u1 = b, β1 = ‖b‖2, are generated recursively.
Equating columns in

AT U = VBT and AV = UB,

gives the coupled two-term recurrence relations (v0 ≡ 0):

αkvk = AT uk − βkvk−1,

βk+1uk+1 = Avk − αkuk , k = 1 : n.

Here αk and βk+1 are determined by the condition
‖vk‖2 = ‖uk‖2 = 1.



The Bidiagonal Decomposition

Since the BD is unique, both algorithms generate the same
decomposition in exact arithmetic.

From the Lanczos recurrences it follows that

Uk = (u1, . . . , uk ) and Vk = (v1, . . . , vk ),

form orthonormal bases for the left and right
Krylov subspaces

Kk (AAT , u1) = span
[
b, AAT b, . . . , (AAT )k−1b

]
,

Kk (AT A, v1) = span
[
AT b, . . . , (AT A)k−1AT b

]
.

If either αk = 0 or βk+1 = 0, the process terminates. Then the
maximal dimensioned Krylov space has been reached.



Least Squares and LSQR

The LSQR algorithm (Paige and Saunders 1982) is a Krylov
subspace method for the LS problem

min
x
‖b − Ax‖2.

After k steps, one seeks an approximate solution

xk = Vkyk ∈ Kk (ATA, AT b).

From the recurrence formulas it follows that AVk = Uk+1Bk .
Thus

b − AVkyk = Uk+1(β1e1 − Bkyk ),

where Bk is lower bidiagonal. By the orthogonality of Uk+1 the
optimal yk is obtained by solving a bidiagonal subproblem

min
y
‖β1e1 − Bky‖2,



Least Squares and LSQR

This is solved using Givens rotations to transform Bk into upper
bidiagonal form

G(β1e1 | Bk ) =

(
fk Rk

φ̄k+1 0

)
.

giving
xk = VR−1

k fk , ‖b − Axk‖2 = |φ̄k+1|.

Then xk , k = 1, 2, 3, . . . gives approximations on a nested
sequence of Krylov subspaces. Often superior to truncated
SVD.

LSQR uses the Lanczos recursion and interleaves the solution
of the LS subproblems. A Householder implementation could
be used for dense A.



Least Squares and LSQR

Bidiagonalization can also be used for total least squares (TLS)
problems. Here the error function to be minimized is

‖b − Axk‖2
2

‖xk‖2
2 + 1

=
‖β1e1 − Bkyk‖2

2

‖yk‖2
2 + 1

.

The solution of the lower bidiagonal TLS subproblems are
obtained from the SVD of matrix(

β1e1 Bk
)
, k = 1, 2, 3 . . . .

Partial least squares (PLS) is widely used in data analysis and
statistics. PLS is mathematically equivalent to LSQR but
differently implemented. The predictive variables tend to be
many and are often highly correlated.
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Block Bidiagonalization Methods

Let Q1 be a given m ×m orthogonal matrix and set

U1 = Q1

(
Ip
0

)
∈ Rm×p.

Next form QT
1 A and compute the LQ factorization of its first p

rows
(Ip 0)(QT

1 A)P1 = (L1 0),

where L1 is lower triangular.

Proceed by alternately performing QR factorizations of blocks
of p columns and LQ factorizations of blocks of p rows.



Block Bidiagonalization Methods

After k steps we have computed a block bidiagonal matrix

Tk =


L1
R2 L2

. . . . . .
Rk Lk

Rk+1

 ∈ R(k+1)p×kp,

and two block matrices with orthogonal columns

(U1, U2, . . . , Uk+1) = Qk+1 · · ·Q2Q1

(
I(k+1)p

0

)
,

(V1, V2, . . . , Vk ) = Pk · · ·P2P1

(
Ikp
0

)
.

The matrix Tk is a banded lower triangular matrix with (p + 1)
nonzero diagonals.



Block Bidiagonalization Methods

The Householder algorithm gives a constructive proof of the
existence of such a block bidiagonal decomposition.

If the LQ and QR factorizations have full rank then the
decomposition is uniquely determined by U1.

To derive a block Lanczos algorithm we use the identities

A(V1 V2 · · · Vn) = (U1 U2 · · · Un+1)Tn

AT (U1 U2 · · · Un+1) = (V1 V2 · · · Vn)T T
n .

Start by forming Z1 = AT U1 and compute its thin QR
factorization

Z1 = V1LT
1 .



Block Bidiagonalization Methods

For k = 1 : n, we then do: Compute the residuals

Wk = AVk − UkLk ∈ Rm×p,

and compute the QR factorization Wk = Uk+1Rk+1.
Compute the residuals

Zk+1 = AT Uk+1 − VkRT
k+1 ∈ Rn×p,

and compute the QR factorization Zk+1 = Vk+1LT
k+1;

Householder QR factorizations can be used to guarantee
orthogonality within each block Uk and Vk .



Block Bidiagonalization Methods

The block Lanczos bidiagonalization was given by Golub, Luk,
and Overton in 1981.
From the Lanczos recurrence relations it follows by induction
that for k = 1, 2, 3, . . ., the block algorithm generates
orthogonal bases for the Krylov spaces

span(U1, . . . , Uk ) = Kk (AAT , U1),

span(V1, . . . , Vk ) = Kk (AT A, AT U1),

The process can be continued as long as the residual matrices
have full column rank. Rank deficiency will be considered later.



Outline

Bidiagonal Decomposition and LSQR

Block Bidiagonalization Methods

Multiple Right-Hand Sides in LS and TLS

Rank Deficient Blocks and Deflation

Summary



Multiple Right-Hand Sides in LS and TLS

In many applications one needs to solve least squares
problems with multiple right-hand sides B = (b1, . . . , bp).

B = (b1, . . . , bd), d ≥ 2.

There are two possible approaches;

• Select a seed right-hand side and use the Krylov subspace
generated to start up the solution of the second, etc.

• Use a block Krylov solver where all right-hand sides are
treated simultaneously.

Block Krylov methods:

• use a much larger search space from the start
• introduce matrix–matrix multiplies into the algorithm.



Multiple Right-Hand Sides in LS and TLS

A natural generalization of LSQR is to compute a sequence of
approximate solutions of the form

Xk = VkYk , k = 1, 2, 3, . . . ,

are determined. That is, Xk is restricted to lie in a Krylov
subspace Kk (ATA, AT B). It follows that

B − AXk = B − AVkYk = Uk+1(R1E1 − TkYk ).

Using the orthogonality of the columns of Uk+1 gives

‖B − AXk‖F = ‖R1E1 − TkYk‖F .



Block LSQR

Hence ‖B − AXk‖F is minimized for Xk ∈ R(Vk ) by taking
Xk = VkYk , where Yk solves

min
Yk

‖R1E1 − TkYk‖F .

The approximations Xk are the optimal solutions on the nested
sequence of block Krylov subspaces.

Kk (AT A, AT B), k = 1, 2, 3, . . . ..

The block bidiagonal LS subproblems are solved by using
orthogonal transformations to bring the lower triangular banded
matrix Tk into upper triangular banded form.



Multiple Right-Hand Sides in LS and TLS

As in LSQR the solution can be interleaved with the block
bidiagonalization. For example, (p = 2)



× × × ∗ ∗
∗ × ⊗ × ∗ ∗
∗ ∗ ⊗ ⊗ × ∗ ∗
∗ ∗ ⊗ ⊗ × ∗ ∗
∗ ∗ ⊗ ⊗ × ∗
∗ ∗ ⊗ × ×

× × × ×
× × × ×
× × × ×
× × × ×


=

(
C1 RX S1
C2 0 S2

)
.

At this step the approximate solution to min ‖AX − B‖F , is

X = Vk (R−1
X C1), ‖B − AX‖F = ‖C2‖f .

Residual norms are available at each step.



Multiple Right-Hand Sides in LS and TLS

The block algorithm can be used also for TLS problems with
multiple right-hand sides which is

min
E , F

‖
(
F E

)
‖F , (A + E)X = B + F ,

This cannot, as the LS problem, be reduced to p separate
problems.
Using the orthogonal invariance, the error function to be
minimized is

‖B − AX‖2
F

‖X‖2
F + 1

=
‖R1E1 − TY‖2

F

‖Y‖2
F + 1

.



Multiple Right-Hand Sides in LS and TLS

The TLS solution can be expressed in terms of the SVD

(
B A

)
=

(
U1 U2

) (
Σ1

Σ2

) (
V T

1
V T

2

)
,

where Σ1 = diag(σ1, . . . , σn).

The solution of the lower triangular block bidiagonal TLS
problem can be constructed from the SVD of the block
bidiagonal matrix.
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Rank Deficient Blocks and Deflation

When rank deficient blocks occur the bidiagonalization must be
modified. For example (p = 1), at a particular step

Q3Q2Q1(b, AP1P2) =



β1 α1
β2 α2

β3 × ⊗ ⊗
× × ×
⊗ × ×
⊗ × ×
⊗ × ×


,

If α3 = 0 or β4 = 0, the reduced matrix has into block diagonal
form. Then the LS problem decomposes and the
bidiagonalization can be terminated.



Rank Deficient Blocks and Deflation

If αk = 0, then

UT
k (b, AVk ) =

(
β1e1 Tk 0

0 0 Ak

)
and the problem is reduced to

min
y
‖β1e1 − Tky‖2.

Then the right Krylov vectors

AT b, (AT A)AT b, . . . , (AT A)k−1AT b

are linearly dependent.



Rank Deficient Blocks and Deflation

If βk+1 = 0, then

UT
k+1(b, AVk ) =

(
β1e1 T̃k 0

0 0 Ak

)
where T̃k = (Tk αkek ) is square. Then the original system is
consistent and the solution satisfies

T̃ky = β1e1.

Then the left Krylov vectors

b, (AAT )b, . . . , (AAT )kb

are linearly dependent.



Rank Deficient Blocks and Deflation

From well known properties of tridiagonal matrices it follows:
• The matrix Tk has full column rank and its singular values are
simple.

• The right-hand side βe1 has nonzero components along each
left singular vector of Tk .

Paige and Strakoš call this a core subproblem and shows that it
is minimally dimensioned.

If we scale b := γb, then only β1 changes. Thus, we have a
core subproblem for any weighted TLS problem.

min ‖(γr , E)‖F s.t. (A + E)x = b + r .



Rank Deficient Blocks and Deflation

How do we proceed in the block algorithm if a rank deficient
block occurs in an LQ or QR factorization?
The triangular factor then typically has the form (p = 4 and
r = rank(Rk ) = 3):

Rk =


× × × ×

0 × ×
0 ×

0

 ∈ Rr×p.

(Recall that the factorizations are performed without pivoting).

All following elements in this diagonal of Tk will be zero.
The bandwidth and block size are reduced by one.



Rank Deficient Blocks and Deflation

Example p = 2: Assume that the first element in the diagonal of
the block R2 becomes zero.



× × ×
× × ×

× × ×
⊗ × ×

⊗ × ⊗
⊗ × × × ×

× × × ×
× × × ×
× × × ×
× × × ×


.

If a diagonal element (say in L3) becomes zero the problem
decomposes.

In general, the reduction can be terminated when the
bandwidth has been reduced p times.



Rank Deficient Blocks and Deflation

Deflation is related to linear dependencies in the associated
Krylov subspaces:

If (AAT )kbj is linearly dependent on previous vectors, then all
left and right Krylov vectors of the form

(AAT )pbj , (AT A)pAT bj , p ≥ k ,

should be removed.

If (AT A)kAT bj is linearly dependent on previous vectors, then
all vectors of the form

(AT A)pAT bj , (AAT )p+1bj , p ≥ k ,

should be removed.

When the reduction terminates when both left and right Krylov
subspaces have reached their maximal dimensions.



Rank Deficient Blocks and Deflation

The block Lanczos algorithm is modified similarly when a rank
deficient block occurs. Recall the block Lanczos recurrence:
For k = 1 : n,

VkLT
k = AT Uk − Vk−1RT

k ,

Uk+1Rk+1 = AVk − UkLk .

Suppose the first rank deficient block is

Lk ∈ Rp×r , r < p.

Then Vk is n × r , i.e. only r < p vectors are determined. In the
next step

AVk − UkLk ∈ Rm×r .

Recurrence still works! Block size has been reduced to r .
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• We have emphasized the similarity and (mathematical)
equivalence of the Householder and Lanczos algorithms for
block bidiagonalization.

For dense problems in data analysis and statistics the
Householder algorithm should be used because of its backward
stability. Today quite large dense problems can be handled in
seconds on a desktop computer!

The relationship of block LSQR to multivariate PLS needs
further investigation.
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