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Abstract

For an integer i, a graph is called an Li-graph if, for each triple of vertices u, v, w with
d(u, v) = 2 and w ∈ N(u) ∩N(v), d(u) + d(v) ≥ |N(u) ∪N(v) ∪N(w)| − i. Asratian and
Khachatrian proved that connected L0-graphs of order at least 3 are hamiltonian, thus
improving Ore’s Theorem. All K1,3-free graphs are L1-graphs, whence recognizing hamil-
tonian L1-graphs is an NP-complete problem. The following results about L1-graphs,
unifying known results of Ore-type and known results on K1,3-free graphs, are obtained.
Set K = {G | Kp,p+1 ⊆ G ⊆ Kp ∨ Kp+1 for some p ≥ 2 } (∨ denotes join ). If G is a
2-connected L1-graph, then G is 1-tough unless G ∈ K. Furthermore, if G is a connected
L1-graph of order at least 3 such that |N(u) ∩ N(v)| ≥ 2 for every pair of vertices u, v

with d(u, v) = 2, then G is hamiltonian unless G ∈ K, and every pair of vertices x, y with
d(x, y) ≥ 3 is connected by a Hamilton path. This result implies that of Asratian and
Khachatrian. Finally, if G is a connected L1-graph of even order, then G has a perfect
matching.
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1 Introduction

We use Bondy & Murty [6] for terminology and notation not defined here and consider
finite simple graphs only.

A classical result on hamiltonian graphs is the following.

Theorem 1 (Ore [11] )
If G is a graph of order n ≥ 3 such that d(u) + d(v) ≥ n for each pair of nonadjacent

vertices u, v, then G is hamiltonian.

In Asratian1 & Khachatrian [7], Theorem 1 was improved to a result of local nature,
Theorem 2 below. For an integer i, we call a graph an Li-graph ( L for local ) if, for each
triple of vertices u, v, w with d(u, v) = 2 and w ∈ N(u) ∩N(v),

d(u) + d(v) ≥ |N(u) ∪N(v) ∪N(w)| − i,

or, equivalently ( see [7] ),

|N(u) ∩N(v)| ≥ |N(w) \ (N(u) ∪N(v))| − i.

Theorem 2 ( [7] )
If G is a connected L0-graph of order at least 3, then G is hamiltonian.

Clearly, Theorem 2 implies Theorem 1.
Almost all of the many existing generalizations of Theorem 1 only apply to graphs G

with large edge density ( |E(G)| ≥ constant · |V (G)|2 ) and small diameter ( o(|V (G)|) ). An
attractive feature of Theorem 2 is that it applies to infinite classes of graphs G with small
edge density ( ∆(G) ≤ constant ) and large diameter ( ≥ constant · |V (G)| ) as well. One
such class is provided in [7]. For future reference also, we here present a similar class. For

positive integers p, q, define the graph Gp,q of order p q as follows: its vertex set is
q⋃

i=1
Vi, where

V1, . . . , Vq are pairwise disjoint sets of cardinality p; two vertices of Gp,q are adjacent if and
only if they both belong to Vi ∪Vi+1 for some i ∈ { 1, . . . , q− 1 }, or to V1 ∪Vq. Considering a
fixed integer p ≥ 2, we observe that Gp,q, being an L2−p-graph, is hamiltonian by Theorem 2
unless p = 2 and q = 1; furthermore, Gp,q has maximum degree 3 p−1 for q ≥ 3, and diameter
b q

2 c = b 1
2p |V (Gp,q)| c for q ≥ 2.

We define the family K of graphs by

K = {G | Kp,p+1 ⊆ G ⊆ Kp ∨Kp+1 for some p ≥ 2 },

where ∨ is the join operation. The class of extremal graphs for Theorem 1, i.e., nonhamiltonian
graphs G such that d(u) + d(v) ≥ |V (G)| − 1 ≥ 2 for each pair of nonadjacent vertices u, v, is
K ∪ {K1 ∨ (Kr + Ks) | r, s ≥ 1 } ( see, e.g. Skupień [13] ). We point out here that the class
of extremal graphs for Theorem 2, i.e., nonhamiltonian L1-graphs of order at least 3, is far
less restricted. If G and H are graphs, then G is called H-free if G has no induced subgraph
isomorphic to H. The following observation was first made in Asratian & Khachatrian [2].

1In [7] the last name of the first author was transcribed as Hasratian.

2



Proposition 3 ( [2] )
Every K1,3-free graph is an L1-graph.

Proof Let u, v, w be vertices of a K1,3-free graph G such that d(u, v) = 2 and w ∈ N(u) ∩
N(v). Then |N(w) \ (N(u) ∪ N(v))| ≤ 2 and |N(u) ∩ N(v)| ≥ 1, implying that G is an
L1-graph.

In Bertossi [4] it was shown that recognizing hamiltonian line graphs, and hence recognizing
hamiltonian K1,3-free graphs is an NP-complete problem. Hence the same is true for recog-
nizing hamiltonian L1-graphs, and there is little hope for a polynomial characterization of
the extremal graphs for Theorem 2.

The study of L1-graphs in subsequent sections was motivated by the interesting fact
that the class of L1-graphs contains all K1,3-free graphs as well as all graphs satisfying the
hypothesis of Theorem 1 ( even with n replaced by n − 1 ). The nature of the investigated
properties of L1-graphs is reflected by the titles of Sections 2, 3 and 4. The proofs of the
obtained results are postponed to Section 5.

2 Toughness of L1-graphs

Let ω(G) denote the number of components of a graph G. A graph G is t-tough if |S| ≥
t ·ω(G−S) for every subset S of V (G) with ω(G−S) > 1. Clearly, every hamiltonian graph
is 1-tough. Hence the following result implies Theorem 1 ( for n ≥ 11 ).

Theorem 4 (Jung [8] )
If G is a 1-tough graph of order n ≥ 11 such that d(u) + d(v) ≥ n − 4 for each pair of

nonadjacent vertices u, v, then G is hamiltonian.

By analogy, one might expect that Theorem 2 could be strengthened to the assertion that
1-tough L4-graphs of sufficiently large order are hamiltonian. However, our first result shows
that the problem of recognizing hamiltonian graphs remains NP-complete even within the
class of 1-tough L1-graphs. ( Recall that the problem is NP-complete for L1-graphs, and
hence for 2-connected L1-graphs. )

Theorem 5
If G is a 2-connected L1-graph, then either G is 1-tough or G ∈ K.

By Proposition 3, Theorem 5 extends the case k = 2 of the following result.

Theorem 6 (Matthews & Sumner [10] )
Every k-connected K1,3-free graph is k

2 -tough.

In view of Theorem 6 we note that there exist 1-tough L1-graphs of arbitrary connectivity
that are not (1+ ε)-tough for any ε > 0. For example, consider the graphs Kp,p and Kp∨Kp,
and the graphs obtained from Kp,p and Kp ∨Kp by deleting a perfect matching ( p ≥ 3 ).
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3 Hamiltonian properties of L1-graphs

If u, v, w are vertices of an L0-graph such that d(u, v) = 2 and w ∈ N(u) ∩ N(v), then
N(w)\ (N(u)∪N(v)) ⊇ {u, v}, and hence |N(u)∩N(v)| ≥ |N(w)\ (N(u)∪N(v))| ≥ 2. Thus
our next result implies Theorem 2.

Theorem 7
Let G be a connected L1-graph of order at least 3 such that |N(u)∩N(v)| ≥ 2 for every pair

of vertices u, v with d(u, v) = 2. Then each of the following holds.

(a) Either G is hamiltonian or G ∈ K.

(b) Every pair of vertices x, y with d(x, y) ≥ 3 is connected by a Hamilton path of G.

An immediate consequence of Theorem 7 (a) is the following.

Corollary 8 (Asratian, Ambartsumian & Sarkisian [1] )
Let G be a connected L1-graph such that |N(u) ∩ N(v)| ≥ 2 for every pair of vertices u, v

with d(u, v) = 2. Then G contains a Hamilton path.

The lower bound 3 on d(x, y) in Theorem 7 (b) cannot be relaxed. For example, consider for
p ≥ 2 the graphs Kp,p and Kp∨Kp, and for p ≥ 4 the graphs obtained from Kp,p and Kp∨Kp

by deleting a perfect matching. Each of these graphs satisfies the hypothesis of Theorem 7,
but contains pairs of vertices at distance 1 or 2 that are not connected by a Hamilton path.

By Proposition 3, Theorem 7 (a) has the following consequence also.

Corollary 9 ( see, e.g., Shi Ronghua [12] )
Let G be a connected K1,3-free graph of order at least 3 such that |N(u)∩N(v)| ≥ 2 for every

pair of vertices u, v with d(u, v) = 2. Then G is hamiltonian.

An example of a graph that is hamiltonian by Theorem 7, but not by Theorem 2 or Corollary 9,
is the graph obtained from G3,q ( q ≥ 3 ) by deleting the edges of a cycle of length q, containing
exactly one vertex of Vi for i = 1, . . . , q.

Although Theorem 7 implies Theorem 2, in Section 5 we also present a direct proof of The-
orem 2 as a simpler alternative for the algorithmic proof in Asratian & Khachatrian [7].

4 Perfect matchings of L1-graphs

Our last result is the following.

Theorem 10
If G is a connected L1-graph of even order, then G has a perfect matching.

The graph Kp,p+2 ( p ≥ 1 ) is a connected L2-graph of even order without a perfect matching.
Thus Theorem 10 is, in a sense, best possible.
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Corollary 11 (Las Vergnas [9], Sumner [14] )
If G is a connected K1,3-free graph of even order, then G has a perfect matching.

Corollary 12 ( see, e.g., Bondy & Chvátal [5] )
If G is a graph of even order n ≥ 2 such that d(u)+ d(v) ≥ n− 1 for each pair of nonadjacent

vertices u, v, then G has a perfect matching.

5 Proofs

We successively present proofs of Theorems 5, 7, 2 and 10, but first introduce some additional
notation.

Let G be a graph. For S ⊆ V (G), NG(S), or just N(S) if no confusion can arise, denotes
the set of all vertices adjacent to at least one vertex of S. For v ∈ V (G), we write NG(v)
instead of NG({v}).

Let C be a cycle of G. We denote by
→
C the cycle C with a given orientation, and by

←
C

the cycle C with the reverse orientation. If u, v ∈ V (C), then u
→
Cv denotes the consecutive

vertices of C from u to v in the direction specified by
→
C. The same vertices, in reverse

order, are given by v
←
Cu. We use u+ to denote the successor of u on

→
C and u− to denote its

predecessor.
Analogous notation is used with respect to paths instead of cycles.
In the proofs of Theorems 5 and 7 we will frequently use the following key lemma.

Lemma 13
Let G be an L1-graph, v a vertex of G and W = {w1, . . . , wk } a subset of N(v) of cardinal-

ity k. Assume G contains an independent set U = {u1, . . . , uk } of cardinality k such that

U ∩ (N(v) ∪ {v}) = ∅ and, for i = 1, . . . , k, uiwi ∈ E(G) and N(ui) ∩ (N(v) \W ) = ∅. Then

N(wi) \ (N(v) ∪ {v}) ⊆ N(ui) ∪ U ( i = 1, . . . , k ).

Proof Under the hypothesis of the lemma, we have

N(ui) ∩N(v) = N(ui) ∩W ( i = 1, . . . , k ),(1)

and since U is an independent set,

N(wi) \ (N(ui) ∪N(v)) ⊇ (N(wi) ∩ U) ∪ {v} ( i = 1, . . . , k ).(2)

Since G is an L1-graph, it follows that

0 ≤
k∑

i=1
(|N(ui) ∩N(v)| − |N(wi) \ (N(ui) ∪N(v))|+ 1)

=
k∑

i=1
|N(ui) ∩N(v)| −

k∑
i=1

(|N(wi) \ (N(ui) ∪N(v))| − 1)

≤
k∑

i=1
|N(ui) ∩W | −

k∑
i=1
|N(wi) ∩ U | = 0.

(3)
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( Note that both
k∑

i=1
|N(ui)∩W | and

k∑
i=1
|N(wi)∩U | represent the number of edges with one

end in U and the other in W . ) We conclude that equality holds throughout (2) and (3). In
particular, (2) holds with equality, implying that

N(wi) \ (N(ui) ∪N(v) ∪ {v}) = N(wi) ∩ U ⊆ U,

and hence

N(wi) \ (N(v) ∪ {v}) ⊆ N(ui) ∪ U ( i = 1, . . . , k ).

Proof of Theorem 5 Let G be a 2-connected L1-graph and assume G is not 1-tough.
Let X be a subset of V (G) of minimum cardinality for which ω(G − X) > |X|. Since G

is 2-connected, |X| ≥ 2. Set l = |X| and m = ω(G − X) − 1, so that m ≥ l ≥ 2. Let
H0,H1, . . . ,Hm be the components of G−X.

In order to prove that G ∈ K, we first show that

(4) for every nonempty proper subset S of X, |{ i | N(S) ∩ V (Hi) 6= ∅ }| ≥ |S|+ 2.

Suppose S ⊆ X, ∅ 6= S 6= X and |{ i | N(S) ∩ V (Hi) 6= ∅ }| ≤ |S|+ 1. Set T = X \ S. Then
ω(G − T ) ≥ m + 1 − |S| ≥ l + 1 − |S| = |T | + 1. This contradiction with the choice of X

proves (4).
We next show that

(5) if v /∈ X and N(v) ∩X 6= ∅, then N(v) ⊇ X.

Suppose v /∈ X and N(v) ∩X 6= ∅, but N(v) 6⊇ X. Set W = N(v) ∩X and k = |W |. Then
1 ≤ k < l. Let w1, . . . , wk be the vertices of W . By (4) and Hall’s Theorem ( see Bondy &

Murty [6, page 72] ), N(W ) \ X contains a subset U = {u1, . . . , uk } of cardinality k such
that no two vertices of U ∪ {v} are in the same component of G −X and u1w1, . . . , ukwk ∈
E(G). By Lemma 13, we have N(wi) \ (N(v) ∪ {v}) ⊆ N(ui) ∪ U ( i = 1, . . . , k ). But then
|{ i | N(W ) ∩ V (Hi) 6= ∅ }| ≤ k + 1 = |W |+ 1. This contradiction with (4) proves (5).

Let x be a vertex in X and yi a vertex of Hi with N(yi) ∩X 6= ∅ ( i = 0, 1, . . . ,m ). Set
Y = { y0, y1, . . . , ym }. By (5), N(yi) ⊇ X for all i, implying that N(x) ⊇ Y . Since G is an
L1-graph, we obtain

(6)

0 ≤ |N(yi) ∩N(yj)| − |N(x) \ (N(yi) ∪N(yj))|+ 1

= |X| − |N(x) \ (N(yi) ∪N(yj))|+ 1

≤ |X| − |Y |+ 1 = l −m ≤ 0 ( i 6= j ).

Thus equality holds throughout (6). Hence m = l and N(x) \ (N(yi)∪N(yj)) = Y whenever
i 6= j. Consider a vertex yh in Y . We have |X| ≥ 2 and hence |Y | ≥ 3, so there exist distinct
vertices yi, yj with yh 6= yi, yj . Since N(x) \ (N(yi)∪N(yj)) = Y , we obtain N(x)∩V (Hh) =
{yh}. Since G is 2-connected, it follows that V (Hi) = {yi} for all i, whence G ∈ K.

Proof of Theorem 7 Let G satisfy the hypothesis of the theorem. Since |N(u)∩N(v)| ≥ 2
whenever d(u, v) = 2,
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(7) G is 2-connected.

(a) Assuming G is nonhamiltonian, let
→
C be a longest cycle of G and v a vertex in V (G) \

V (C) with N(v) ∩ V (C) 6= ∅. Set W = N(v) ∩ V (C) and k = |W |. Let w1, . . . , wk be the
vertices of W , occurring on

→
C in the order of their indices. Set ui = w+

i ( i = 1, . . . , k ) and
U = {u1, . . . , uk }.

The choice of C implies that U ∩ (N(v) ∪ {v}) = ∅, U is an independent set, and

N(ui) ∩ (N(v) \W ) = N(ui) ∩N(v) ∩ (V (G) \ V (C)) = ∅ ( i = 1, . . . , k ).(8)

Hence by Lemma 13,

N(wi) \ (N(v) ∪ {v}) ⊆ N(ui) ∪ U ( i = 1, . . . , k ).(9)

Noting that k ≥ 2 by (8) and the fact that |N(u1)∩N(v)| ≥ 2, we now prove by contradiction
that

ui = w−
i+1 ( i = 1, . . . , k; indices mod k ).(10)

Assume without loss of generality that u1 6= w−
2 , whence w−

2 /∈ U . Then by (9), w−
2 ∈ N(u2).

Since C is a longest cycle, w−
2 w−

3 /∈ E(G). Hence u2 6= w−
3 . Repetition of this argument shows

that ui 6= w−
i+1 and uiw

−
i ∈ E(G) for all i ∈ { 1, . . . , k }. By assumption, N(u1)∩N(v) contains

a vertex x 6= w1. By (8), x ∈ V (C), say that x = wi. But then the cycle w1vwiu1
→
Cw−

i ui
→
Cw1

is longer than C. This contradiction proves (10).
Since C is a longest cycle, there exists no path joining two vertices of U ∪ {v} with all

internal vertices in V (G) \ V (C). Hence by (10), ω(G −W ) > |W |. By (7) and Theorem 5,
it follows that G ∈ K.

(b) Let x and y be vertices of G with d(x, y) ≥ 3 and let
→
P be a longest (x, y)-path.

Assuming P is not a Hamilton path, let v be a vertex in V (G) \V (P ) with N(v)∩V (P ) 6= ∅.
Set W = N(v) ∩ V (P ) and k = |W |. As in the proof of (a), we have k ≥ 2. Let w1, . . . , wk

be the vertices of W , occurring on
→
P in the order of their indices. Since d(x, y) ≥ 3, w1 6= x

or wk 6= y. Assume without loss of generality that wk 6= y. Set ui = w+
i ( i = 1, . . . , k ) and

U = {u1, . . . , uk }.
Since P is a longest (x, y)-path, Lemma 13 can be applied to obtain

N(wi) \ (N(v) ∪ {v}) ⊆ N(ui) ∪ U ( i = 1, . . . , k ).(11)

We now establish the following claims.

(12) If i < j and ujw
−
j ∈ E(G), then uiwj /∈ E(G).

Assuming the contrary, the path x
→
Pwivwjui

→
Pw−

j uj
→
Py contradicts the choice of P .

w1 = x.(13)
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Assuming w1 6= x, we have u1w
−
1 ∈ E(G) by (11). As in the proof of (10), we obtain uiw

−
i ∈

E(G) for all i ∈ { 1, . . . , k } and uiwj ∈ E(G) for some j ∈ { 2, . . . , k }, contradicting (12).

ui = w−
i+1 ( i = 1, . . . , k − 1 ).(14)

Assuming the contrary, set r = min{ i | ui 6= w−
i+1 }. As in the proof of (10), we obtain uiw

−
i ∈

E(G) for all i ∈ { r+1, . . . , k }. Hence by (12), uiwj /∈ E(G) whenever i ≤ r and j ≥ r+1. By
Lemma 13, it follows that N(wi)\ (N(v)∪{v}) ⊆ N(ui)∪{u1, . . . , ur } ( i = 1, . . . , r ). Hence
ur+1wi /∈ E(G) for i ≤ r, implying that ∅ 6= (N(ur+1) ∩ N(v)) \ {wr+1} ⊆ {wr+2, . . . , wk },
contradicting (12).

(15) For every longest (x, y)-path Q, V (G) \ V (Q) is an independent set.

It suffices to show that N(v) ⊆ V (P ). Suppose v has a neighbor v1 ∈ V (G) \ V (P ). The
choice of P implies N(v1) ∩ (U ∪W ) = ∅ = N(v1) ∩ N(w1) ∩ (V (G) \ (V (P ) ∪ {v})). In
particular, d(v1, w1) = 2 and hence |N(v1) ∩ N(w1)| ≥ 2. Using (14) and the assumption
d(x, y) ≥ 3, we conclude that v1 and w1 have a common neighbor z on u+

k

→
Py−−. By (11),

u1z ∈ E(G). Repeating the above arguments with P and v1 instead of P and v, we obtain
v1y ∈ E(G) ( since v1x /∈ E(G) ), and v1z

++ ∈ E(G). Now the path xu1z
←
Pw2vv1z

++→Py

contradicts the choice of P .

N(ui) ⊆ V (P ) ( i = 1, . . . , k − 1 ).(16)

Assuming N(ui) 6⊆ V (P ) for some i ∈ { 1, . . . , k−1 }, the path x
→
Pwivwi+1

→
Py contradicts (15).

The above observations justify the following conclusions.

(17) If some longest (x, y)-path does not contain the vertex z, then either zx ∈ E(G) or
zy ∈ E(G).

(18) If
→
Q is any longest (x, y)-path, z 6∈ V (Q), q ∈ V (Q) and zq ∈ E(G), then the vertices of

x
→
Qq (if zx ∈ E(G)) or q

→
Qy (if zy ∈ E(G)) are alternately neighbors and nonneighbors

of z.

Henceforth additionally assume P and v are chosen in such a way that

(19) d(v) is as large as possible.

If uix ∈ E(G) for all i ∈ {1, . . . , k − 1}, then, considering the path x
→
Pwivwi+1

→
Py, (18)

and (19) imply ui has no neighbor on uk
→
Py (i = 1, . . . , k−1). Together with (16) this implies

ω(G −W ) > |W |. By (7) and Theorem 5 we conclude that G ∈ K, contradicting the fact
that G has diameter at least 3. Hence, for some i ∈ {2, . . . , k − 1}, ui is not adjacent to x.
By (17), we obtain

(20) uiy ∈ E(G) for some i ∈ {2, . . . , k − 1}.

Let r = min{i ∈ {2, . . . , k − 1} | uiy ∈ E(G)} and s = max{i ∈ {1, . . . , k − 1} | uix ∈ E(G)}.
We first show
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(21) r > s.

Assuming the contrary, consider the vertex ws. Clearly, (18) implies uswj ∈ E(G) for all j ∈
{1, . . . , s}. If j ∈ {1, . . . , s} and ujx ∈ E(G), then, considering the path x

→
Pwjus

←
Pwj+1vws+1

→
Py

and using (18) again, we obtain ujws ∈ E(G). Hence N(x)∩U ⊆ N(ws). Clearly, (18) implies
N(y) ∩ {ur, . . . , us−1} ⊆ N(ws) and urwj ∈ E(G) for all j ∈ {r + 1, . . . , k}. If j ∈ {s, . . . , k}
and ujy ∈ E(G), then, considering the path x

→
Pwrvwj

←
Puru

+
j

→
Py and using (18) again, we

obtain ujwr+1 ∈ E(G) and hence ujws ∈ E(G). Hence N(y)∩U ⊆ N(ws). We conclude that
U ⊆ N(ws). Hence |N(ws) \ (N(ur) ∪ N(v))| ≥ k + 1, while |N(ur) ∩ N(v)| ≤ k − 1. This
contradiction with the fact that G is an L1-graph completes the proof of (21).

Let j ∈ {r, . . . , k}. By (17) and (21), ujy ∈ E(G) and by (18), ujwk ∈ E(G). Suppose
ujwr 6∈ E(G). Then, by (18), ujwi 6∈ E(G) for all i ∈ {1, . . . , r}. Hence |N(uj)∩N(v)| ≤ k−r,
while |N(wk) \ (N(uj) ∪N(v))| ≥ k − r + 2, a contradiction. Thus

(22) ujwr ∈ E(G) for all j ∈ {r, . . . , k}.

Now consider the path x
→
Pwrvwr+1

→
Py, and let p = min{i ∈ {2, . . . , r} | urwi ∈ E(G)},

j ∈ {p − 1, . . . , r − 1}. By (17) and (21), ujx ∈ E(G) and by (18), ujwp ∈ E(G). Suppose
ujwr 6∈ E(G). Then, by (18), ujwi 6∈ E(G) for all i ∈ {r, . . . , k}. Hence |N(uj) ∩ N(ur)| ≤
r − p, while |N(wp) \ (N(uj) ∪N(ur))| ≥ r − p + 3, a contradiction. Thus

(23) ujwr ∈ E(G) for all j ∈ {p− 1, . . . , r − 1}.

By (22) and (23), |N(wr) \ (N(ur) ∪N(v))| ≥ k − p + 3, while |N(ur) ∩N(v)| ≤ k − p + 1,
our final contradiction.

An independent algorithmic proof of Theorem 7 (a), similar to the proof of Theorem 2 given
in Asratian & Khachatrian [7], will appear in Asratian & Sarkisian [3].

We now use the arguments in the proof of Theorem 7 (a) to obtain a short direct proof of
Theorem 2, as announced in Section 3.

Proof of Theorem 2 Let G be a connected L0-graph with |V (G)| ≥ 3. Assuming G is
nonhamiltonian, define

→
C, v, W , k, w1, . . . , wk, u1, . . . , uk, U as in the proof of Theorem 7 (a).

By the choice of C, all conditions in Lemma 13 are satisfied. Hence (1) and (2) hold. Since G

is an L0-graph, we obtain, instead of (3),

0 ≤
k∑

i=1
(|N(ui) ∩N(v)| − |N(wi) \ (N(ui) ∪N(v))|)

=
k∑

i=1
|N(ui) ∩N(v)| −

k∑
i=1
|N(wi) \ (N(ui) ∪N(v))|

≤
k∑

i=1
|N(ui) ∩W | −

k∑
i=1

(|N(wi) ∩ U |+ 1) = −k < 0,

an immediate contradiction.
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Proof of Theorem 10 (by induction). Let G be a connected L1-graph of even order.
If |V (G)| = 2, then clearly G has a perfect matching. Now assume |V (G)| > 2 and every
connected L1-graph of even order smaller than |V (G)| has a perfect matching. If G is a
block, then by Theorem 5, the number of components, and hence certainly the number of odd
components of G−S does not exceed |S|, and we are done by Tutte’s Theorem ( see Bondy &

Murty [6, page 76] ). Now assume G contains a cut vertex w. Let G1 and G2 be distinct
components of G−w. For i = 1, 2, let ui be a neighbor of w in Gi. Since |N(u1)∩N(u2)| = 1
and G is an L1-graph, we have N(w) \ (N(u1) ∪ N(u2)) = {u1, u2}. In other words, every
vertex in N(w) \ {u1, u2} is adjacent to either u1 or u2. It follows that G1 and G2 are the
only components of G− w and, since ui is an arbitrary neighbor of w in Gi,

(24) G[N(w) ∩ V (Gi) ] is complete ( i = 1, 2 ).

Since |V (G)| is even, exactly one of the graphs G1 and G2, G1 say, has odd order. Set
H = G[V (G1) ∪ {w} ]. We now show that G2 and H are L1-graphs.

Let x, y and z be vertices of G2 such that dG2(x, y) = 2 and z ∈ NG2(x) ∩ NG2(y).
By (24), w /∈ NG(x)∩NG(y), implying that NG2(x)∩NG2(y) = NG(x)∩NG(y). Furthermore,
NG2(z) \ (NG2(x) ∪NG2(y)) ⊆ NG(z) \ (NG(x) ∪NG(y)). Since G is an L1-graph, it follows
that G2 is an L1-graph.

A similar argument shows that H is an L1-graph.
Since, moreover, the graphs G2 and H have even order smaller than |V (G)|, each of them

has a perfect matching. The union of the two matchings is a perfect matching of G.
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