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Abstract

For an integer ¢, a graph is called an L;-graph if, for each triple of vertices u,v,w with
d(u,v) =2 and w € N(u) N N(v), d(u) +d(v) > |[N(u) UN(v) UN(w)| —i. Asratian and
Khachatrian proved that connected Lg-graphs of order at least 3 are hamiltonian, thus
improving Ore’s Theorem. All K 3-free graphs are Li-graphs, whence recognizing hamil-
tonian Li-graphs is an NP-complete problem. The following results about Li-graphs,
unifying known results of Ore-type and known results on K 3-free graphs, are obtained.
Set K ={G | Kypt1 € G C K, V K41 for some p > 2} (V denotes join). If G is a
2-connected Li-graph, then G is 1-tough unless G € K. Furthermore, if G is a connected
Li-graph of order at least 3 such that |[N(u) N N(v)| > 2 for every pair of vertices u, v
with d(u,v) = 2, then G is hamiltonian unless G € K, and every pair of vertices z,y with
d(x,y) > 3 is connected by a Hamilton path. This result implies that of Asratian and
Khachatrian. Finally, if G is a connected Li-graph of even order, then G has a perfect
matching.
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1 Introduction

We use BoNDY & MURTY [6] for terminology and notation not defined here and consider
finite simple graphs only.
A classical result on hamiltonian graphs is the following.

Theorem 1 (ORE [11])
If G is a graph of order n > 3 such that d(u) + d(v) > n for each pair of nonadjacent
vertices u, v, then G is hamiltonian.

In ASRATIAN! & KHACHATRIAN [7], Theorem 1 was improved to a result of local nature,
Theorem 2 below. For an integer i, we call a graph an L;-graph (L for local) if, for each
triple of vertices u, v, w with d(u,v) =2 and w € N(u) N N(v),

d(u) +d(v) > |N(u) UN(v)UN(w)| —1,
or, equivalently (see [7]),
[N(u) N N(v)| = [N(w) \ (N(u) UN (@) —i.

Theorem 2 ([7])
If G is a connected Ly-graph of order at least 3, then G is hamiltonian.

Clearly, Theorem 2 implies Theorem 1.

Almost all of the many existing generalizations of Theorem 1 only apply to graphs G
with large edge density (|E(G)| > constant - [V (G)|?) and small diameter (o(|V(G)])). An
attractive feature of Theorem 2 is that it applies to infinite classes of graphs G with small
edge density (A(G) < constant) and large diameter ( > constant - [V(G)|) as well. One
such class is provided in [7]. For future reference also, we here present a similar class. For

positive integers p, ¢, define the graph G, ; of order p g as follows: its vertex set is LqJ Vi, where
Vi,...,V, are pairwise disjoint sets of cardinality p; two vertices of G}, are adjzf;éent if and
only if they both belong to V; U V41 for somei € {1,...,g—1}, or to V1 UV,. Considering a
fixed integer p > 2, we observe that G, 4, being an Lo_,-graph, is hamiltonian by Theorem 2
unless p = 2 and ¢ = 1; furthermore, G, ; has maximum degree 3p—1 for ¢ > 3, and diameter
(4] = L& 1V(Gpy)l] for g > 2.

We define the family I of graphs by

K ={G|Kpps1 €G S KpV Kpyy for some p > 2},

where V is the join operation. The class of extremal graphs for Theorem 1, i.e., nonhamiltonian
graphs G such that d(u) 4+ d(v) > |V(G)| — 1 > 2 for each pair of nonadjacent vertices u, v, is
KU{KV (K, + Ks)|r,s>1} (see, e.g. SKUPIEN [13]). We point out here that the class
of extremal graphs for Theorem 2, i.e., nonhamiltonian Li-graphs of order at least 3, is far
less restricted. If G and H are graphs, then G is called H-free if G has no induced subgraph
isomorphic to H. The following observation was first made in ASRATIAN & KHACHATRIAN [2].

"Tn [7] the last name of the first author was transcribed as Hasratian.



Proposition 3 ([2])
Every K 3-free graph is an Li-graph.

Proof Let u,v,w be vertices of a K 3-free graph G such that d(u,v) =2 and w € N(u) N
N(v). Then |[N(w) \ (N(u) UN(v))] < 2 and |N(u) N N(v)| > 1, implying that G is an
Li-graph. [ |

In BERTOSSI [4] it was shown that recognizing hamiltonian line graphs, and hence recognizing
hamiltonian K7 3-free graphs is an NP-complete problem. Hence the same is true for recog-
nizing hamiltonian L;-graphs, and there is little hope for a polynomial characterization of
the extremal graphs for Theorem 2.

The study of Li-graphs in subsequent sections was motivated by the interesting fact
that the class of Li-graphs contains all K 3-free graphs as well as all graphs satisfying the
hypothesis of Theorem 1 (even with n replaced by n — 1). The nature of the investigated
properties of Li-graphs is reflected by the titles of Sections 2, 3 and 4. The proofs of the
obtained results are postponed to Section 5.

2 Toughness of Li-graphs

Let w(G) denote the number of components of a graph G. A graph G is t-tough if |S| >
t-w(G — S) for every subset S of V(G) with w(G — S) > 1. Clearly, every hamiltonian graph
is 1-tough. Hence the following result implies Theorem 1 (for n > 11).

Theorem 4 (JuNG [8])
If G is a 1-tough graph of order n > 11 such that d(u) + d(v) > n — 4 for each pair of
nonadjacent vertices u,v, then G is hamiltonian.

By analogy, one might expect that Theorem 2 could be strengthened to the assertion that
1-tough L4-graphs of sufficiently large order are hamiltonian. However, our first result shows
that the problem of recognizing hamiltonian graphs remains NP-complete even within the
class of 1-tough Lj-graphs. (Recall that the problem is NP-complete for L;-graphs, and
hence for 2-connected Li-graphs.)

Theorem 5
If G is a 2-connected Li-graph, then either G is 1-tough or G € K.

By Proposition 3, Theorem 5 extends the case k = 2 of the following result.

Theorem 6 ( MATTHEWS & SUMNER [10])
k

Every k-connected K 3-free graph is 5-tough.

In view of Theorem 6 we note that there exist 1-tough Li-graphs of arbitrary connectivity
that are not (1+ ¢)-tough for any € > 0. For example, consider the graphs K, ,, and K \/Fp,
and the graphs obtained from K, , and K, V K, by deleting a perfect matching (p > 3).



3 Hamiltonian properties of L,-graphs

If u,v,w are vertices of an Lg-graph such that d(u,v) = 2 and w € N(u) N N(v), then
N(w)\ (N(u)UN(v)) 2 {u,v}, and hence |[N(u) NN (v)| > |N(w)\ (N(u)UN(v))| > 2. Thus
our next result implies Theorem 2.

Theorem 7

Let G be a connected Li-graph of order at least 3 such that |N(u) N\ N(v)| > 2 for every pair
of vertices u,v with d(u,v) = 2. Then each of the following holds.

(a)  Either G is hamiltonian or G € K.

(b)  Every pair of vertices x,y with d(z,y) > 3 is connected by a Hamilton path of G.
An immediate consequence of Theorem 7 (a) is the following.

Corollary 8 ( ASRATIAN, AMBARTSUMIAN & SARKISIAN [1])
Let G be a connected Li-graph such that |[N(u) N N(v)| > 2 for every pair of vertices u,v
with d(u,v) = 2. Then G contains a Hamilton path.

The lower bound 3 on d(z,y) in Theorem 7 (b) cannot be relaxed. For example, consider for

p > 2 the graphs K, and K,V K, and for p > 4 the graphs obtained from K, , and K,V K,

by deleting a perfect matching. Each of these graphs satisfies the hypothesis of Theorem 7,

but contains pairs of vertices at distance 1 or 2 that are not connected by a Hamilton path.
By Proposition 3, Theorem 7 (a) has the following consequence also.

Corollary 9 (see, e.g., SHI RONGHUA [12])
Let G be a connected K 3-free graph of order at least 3 such that |[N(u) NN (v)| > 2 for every
pair of vertices u,v with d(u,v) = 2. Then G is hamiltonian.

An example of a graph that is hamiltonian by Theorem 7, but not by Theorem 2 or Corollary 9,
is the graph obtained from G3 4 (¢ > 3) by deleting the edges of a cycle of length ¢, containing
exactly one vertex of V; fori=1,...,q.

Although Theorem 7 implies Theorem 2, in Section 5 we also present a direct proof of The-
orem 2 as a simpler alternative for the algorithmic proof in ASRATIAN & KHACHATRIAN [7].

4 Perfect matchings of L;-graphs
Our last result is the following.

Theorem 10
If G is a connected Li-graph of even order, then G has a perfect matching.

The graph K, ,12 (p > 1) is a connected Lo-graph of even order without a perfect matching.
Thus Theorem 10 is, in a sense, best possible.



Corollary 11 (LAs VERGNAS [9], SUMNER [14])
If G is a connected K 3-free graph of even order, then G has a perfect matching.

Corollary 12 (see, e.g., BONDY & CHVATAL [5])
If G is a graph of even order n > 2 such that d(u) + d(v) > n— 1 for each pair of nonadjacent
vertices u, v, then G has a perfect matching.

5 Proofs

We successively present proofs of Theorems 5, 7, 2 and 10, but first introduce some additional
notation.

Let G be a graph. For S C V(G), Ng(S), or just N(S) if no confusion can arise, denotes
the set of all vertices adjacent to at least one vertex of S. For v € V(G), we write Ng(v)
instead of Ng({v}).

Let C be a cycle of G. We denote by C the cycle C with a given orientation, and by 8
the cycle C' with the reverse orientation. If u,v € V(C), then uC denotes the consecutive
vertices of C' from u to v in the direction specified by 6 The same vertices, in reverse
order, are given by vgu. We use u™ to denote the successor of u on 5and u~ to denote its
predecessor.

Analogous notation is used with respect to paths instead of cycles.

In the proofs of Theorems 5 and 7 we will frequently use the following key lemma.

Lemma 13

Let G be an Ly-graph, v a vertex of G and W = {wq,...,wy } a subset of N(v) of cardinal-
ity k. Assume G contains an independent set U = {uy,...,u } of cardinality k such that
UN(N(@w)U{v}) =0 and, fori=1,...,k, uyw; € E(G) and N(u;) N (N(v)\ W) = (. Then
N(w;)\ (N(w)U{v}) CN(u)UU (i=1,...,k).

Proof Under the hypothesis of the lemma, we have

(1) N(uj)NN(v) = N(u;)) "W (i=1,...,k),

and since U is an independent set,

(2)  N(w;)\ (N(uj) UN(v)) 2 (N(w;)) NU)U{v} (i=1,...,k).

Since G is an Li-graph, it follows that

o

0 < 3 (IN(ui) "N (v)| = [N(wi) \ (N(ui) UN(v))[ +1)

@
I
—

3) = X ING@) NN - SN\ (V) UNE)| - 1)
< iilw(“") AW —ﬁlw(wi)mf _ 0.



k k
(Note that both > |N(u;) NW| and > |N(w;) NU| represent the number of edges with one
i=1 i=1

end in U and the other in W.) We conclude that equality holds throughout (2) and (3). In
particular, (2) holds with equality, implying that

N(w;)\ (N(u;) UN(v)U{v}) = N(w;)NU C U,
and hence

N(w)\ (N(w)U{v}) € Nw)UU  (i=1,...,k). -

Proof of Theorem 5 Let G be a 2-connected Li-graph and assume G is not 1-tough.
Let X be a subset of V(G) of minimum cardinality for which w(G — X) > |X]|. Since G
is 2-connected, |X| > 2. Set | = |X| and m = w(G — X) — 1, so that m > 1 > 2. Let
Hy, Hq,...,H, be the components of G — X.

In order to prove that G € I, we first show that

(4) for every nonempty proper subset S of X, [{i | N(S)NV(H;) # 0} > |S|+2.

Suppose S C X, 0 # S # X and [{i | N(S)NV(H;) #0} <|S|+1. Set T =X\ S. Then
wG@—-T)>m+1—|S| >1+1—|S| =|T|+ 1. This contradiction with the choice of X
proves (4).

We next show that

(5) ifvé¢ X and N(v)NX # 0, then N(v) 2O X.

Suppose v ¢ X and N(v) N X # (), but N(v) 2 X. Set W = N(v)N X and k = |W|. Then
1 <k <. Letwi,...,w be the vertices of W. By (4) and Hall’s Theorem (see BONDY &
MURTY [6, page 72]), N(W) \ X contains a subset U = {uy,...,u } of cardinality &k such
that no two vertices of U U {v} are in the same component of G — X and wjwy, ..., upwy €
E(G). By Lemma 13, we have N(w;) \ (N(v)U{v}) C N(w;) UU (i =1,...,k). But then
{i | NOW)NV(H;) # 0} <k+1=|W]|+ 1. This contradiction with (4) proves (5).

Let x be a vertex in X and y; a vertex of H; with N(y;)N X # 0 (i =0,1,...,m). Set
Y ={vo,y1,---sym }. By (5), N(y;) 2 X for all 4, implying that N(z) O Y. Since G is an
Li-graph, we obtain

0 < [N(y:) "N (y;)| = IN(2) \ (N(yi) UN(y;))] +1
[ X = [N (2) \ (N(y:) UN(y;))| + 1
<IX|—Y|+1=1-m<0 (i#j).

(6)

Thus equality holds throughout (6). Hence m =1 and N () \ (N(y;) U N(y;)) =Y whenever
i # j. Consider a vertex yp, in Y. We have | X| > 2 and hence |Y| > 3, so there exist distinct
vertices y;, y; with yp, # ys,y;. Since N(z) \ (N (y;) UN(y;)) =Y, we obtain N(x) NV (Hy) =
{yn}. Since G is 2-connected, it follows that V' (H;) = {y;} for all i, whence G € K. [ |

Proof of Theorem 7 Let G satisfy the hypothesis of the theorem. Since |N(u)NN(v)| > 2
whenever d(u,v) = 2,



(7) G is 2-connected.

(a) Assuming G is nonhamiltonian, let C be a longest cycle of G and v a vertex in V(G) \
V(C) with N(v)NV(C) # 0. Set W = N(v)NV(C) and k = |[W|. Let wy,...,w; be the
vertices of W, occurring on 5111 the order of their indices. Set u; = wi+ (i=1,...,k) and
U= {ul,...,uk}.

The choice of C' implies that U N (N (v) U{v}) =0, U is an independent set, and

(8) N(u)N(Nw)\W) = N(u;) NN@)N(V(G)\V(C)) =0 (i1=1,...,k).
Hence by Lemma 13,
(9) N(w)\ (N(w)U{v}) € N(u;))UU (i=1,...,k).

Noting that k£ > 2 by (8) and the fact that |N(u1) NN (v)| > 2, we now prove by contradiction
that

(10) u; = w; (i=1,...,k; indices mod k).

Assume without loss of generality that u; # w; , whence w, ¢ U. Then by (9), w, € N(u2).
Since C is a longest cycle, wy, wy ¢ E(G). Hence ug # wy . Repetition of this argument shows
that u; # w;; and w;w; € E(G)foralli € {1,...,k}. By assumption, N(u1)NN(v) contains
a vertex z # wy. By (8), z € V(C), say that x = w;. But then the cycle wlvwiulawi_uiawl
is longer than C'. This contradiction proves (10).

Since C' is a longest cycle, there exists no path joining two vertices of U U {v} with all

internal vertices in V(G) \ V(C). Hence by (10), w(G — W) > |W/|. By (7) and Theorem 5,
it follows that G € K.
(b) Let x and y be vertices of G with d(x,y) > 3 and let P be a longest (z,y)-path.
Assuming P is not a Hamilton path, let v be a vertex in V(G) \ V(P) with N(v) NV (P) # 0.
Set W = N(v) NV(P) and k = |W|. As in the proof of (a), we have k > 2. Let wy,...,wg
be the vertices of W, occurring on P in the order of their indices. Since d(z,y) >3, wy #x
or wi # y. Assume without loss of generality that wy # y. Set u; = wf (i=1,...,k) and
U= {ul,...,uk}.

Since P is a longest (z,y)-path, Lemma 13 can be applied to obtain

(11) N(w) \(N@)U{e}) € Nw)UU  (i=1,....k).
We now establish the following claims.

(12) Ifi <j and ujw; € E(G), then wyw; ¢ E(G).

— — —
Assuming the contrary, the path rPwvwju; Pw; uj Py contradicts the choice of P.

(13) w; = .



Assuming wq # x, we have wyw; € E(G) by (11). As in the proof of (10), we obtain u;w; €
E(G) forallie {1,...,k} and wyw; € E(G) for some j € {2,...,k}, contradicting (12).

(14) w; = w;, (i=1,...,k—1).

Assuming the contrary, set 7 = min{4 | u; # w;,, }. As in the proof of (10), we obtain u;w; €
E(G)forallie {r+1,...,k}. Henceby (12), u;w; ¢ E(G) whenever i <rand j > r+1. By
Lemma 13, it follows that N(w;)\ (N(v)U{v}) C N(u;)U{u1,...,u,} (i=1,...,7). Hence
urprw; ¢ E(G) for i < r, implying that () # (N(up+1) N N(0)) \ {wr+1} C {wrs2,...,wg },
contradicting (12).

(15) For every longest (z,y)-path Q, V(G) \ V(Q) is an independent set.

It suffices to show that N(v) C V(P). Suppose v has a neighbor v; € V(G) \ V(P). The
choice of P implies N(vi) N (UUW) =0 = N(vi) N N(wy) N (V(G) \ (V(P) U {v})). In
particular, d(vi,w;) = 2 and hence |N(vi) N N(w;i)| > 2. Using (14) and the assumption
d(z,y) > 3, we conclude that v; and w; have a common neighbor z on uk"]?y**. By (11),
urz € E(G). Repeating the above arguments with P and vy instead of P and v, we obtain
vy € E(G) (since viz ¢ E(G)), and v12z" € E(G). Now the path 2z Pwsvoy 2+ Py
contradicts the choice of P.

(16) N(w) C V(P) (i=1,....k—1).

Assuming N (u;) € V(P) forsome i € {1,...,k—1}, the path x]?wivwiﬂl?y contradicts (15).
The above observations justify the following conclusions.

(17) If some longest (x,y)-path does not contain the vertex z, then either zz € E(G) or
zy € E(G).

(18) If C_Q)is any longest (z,y)-path, z € V(Q), ¢ € V(Q) and zq € E(G), then the vertices of
x(?q (if zx € E(Q)) or qay (if zy € E(G)) are alternately neighbors and nonneighbors
of z.

Henceforth additionally assume P and v are chosen in such a way that
(19) d(v) is as large as possible.

If wyjzx € E(G) for all i« € {1,...,k — 1}, then, considering the path xﬁwivwi+1ﬁy, (18)
and (19) imply u; has no neighbor on uk]?y (t=1,...,k—1). Together with (16) this implies
w(G — W) > |W|. By (7) and Theorem 5 we conclude that G € K, contradicting the fact
that G has diameter at least 3. Hence, for some i € {2,...,k — 1}, u; is not adjacent to z.
By (17), we obtain

(20) u;y € E(G) for some i € {2,...,k—1}.

Let r = min{i € {2,...,k — 1} |u;y € E(G)} and s = max{i € {1,...,k — 1} | u;z € E(G)}.
We first show



(21) r > s.

Assuming the contrary, consider the vertex w,. Clearly, (18) implies usw; € E(G) for all j €
{1,...,s}. If j € {1,...,s} and ujo € E(G), then, considering the path $ijUSFWJ+1UwS+1Fy
and using (18) again, we obtain ujws € E(G). Hence N(z)NU C N(w,). Clearly, (18) implies
N(y)n{ur,...,us—1} € N(ws) and u,w; € E(G) for all j € {r+1,...k}. If j € {s,...,k}
and ujy € E(G), then, considering the path x]?wrij]?uruj]?y and using (18) again, we
obtain u;w,11 € E(G) and hence ujws € E(G). Hence N(y)NU C N(ws). We conclude that
U C N(ws). Hence |N(ws) \ (N(u,) UN(v))| > k+ 1, while |[N(u,) N N(v)| < k—1. This
contradiction with the fact that G is an L;-graph completes the proof of (21).

Let j € {r,...,k}. By (17) and (21), ujy € E(G) and by (18), ujw; € E(G). Suppose
ujw, ¢ E(G). Then, by (18), ujw; ¢ E(G) foralli € {1,...,r}. Hence |[N(u;)NN(v)| < k—r,
while |N(wg) \ (N(uj) UN(v))| > k —r + 2, a contradiction. Thus

(22) wjw, € E(GQ) for all j € {r,... k}.

Now consider the path xﬁwwwrﬂﬁy, and let p = min{i € {2,...,7} | v,w; € E(G)},
je{p—1,...,r—1}. By (17) and (21), ujz € E(G) and by (18), ujw, € E(G). Suppose
ujw, &€ E(G). Then, by (18), ujw; ¢ E(G) for all ¢ € {r,...,k}. Hence |[N(u;) N N(u,)| <
r — p, while |[N(wp) \ (N(u;) UN(u,))| > r—p+ 3, a contradiction. Thus

(23) wjw, € B(G) forall j e {p—1,...,r —1}.

By (22) and (23), [N(w,) \ (N(u,) UN(v))| > k —p+ 3, while |[N(u,) "N N(v)]| < k—p+1,
our final contradiction. [ ]

An independent algorithmic proof of Theorem 7 (a), similar to the proof of Theorem 2 given
in ASRATIAN & KHACHATRIAN [7], will appear in ASRATIAN & SARKISIAN [3].

We now use the arguments in the proof of Theorem 7 (a) to obtain a short direct proof of
Theorem 2, as announced in Section 3.

Proof of Theorem 2 Let G be a connected Lo-graph with |V(G)| > 3. Assuming G is
nonhamiltonian, define a v, W, k, wy, ..., wg, U1, ...,u, U as in the proof of Theorem 7 (a).
By the choice of C, all conditions in Lemma 13 are satisfied. Hence (1) and (2) hold. Since G
is an Lg-graph, we obtain, instead of (3),

0 < S (N) NN~ [N\ (V) UN @)
= 3 ING) N N = 3 V(i) \ (V) U N )
< S ING) NW] = X (Nw) N0 +1) = =k < 0,
an immediate contradiction. [ |



Proof of Theorem 10 (by induction). Let G be a connected Li-graph of even order.
If [V(G)| = 2, then clearly G has a perfect matching. Now assume |V(G)| > 2 and every
connected Li-graph of even order smaller than |V(G)| has a perfect matching. If G is a
block, then by Theorem 5, the number of components, and hence certainly the number of odd
components of G—S does not exceed |S|, and we are done by Tutte’s Theorem (see BONDY &
MURTY [6, page 76]). Now assume G contains a cut vertex w. Let G; and G2 be distinct
components of G —w. For i = 1,2, let u; be a neighbor of w in G;. Since |N(u1) NN (u2)| =1
and G is an Lj-graph, we have N(w) \ (N (u1) U N(u2)) = {u1,u2}. In other words, every
vertex in N(w) \ {u1,us} is adjacent to either uj or ug. It follows that G; and G4 are the
only components of G — w and, since u; is an arbitrary neighbor of w in Gj,

(24) G[N(w)NV(G;)] is complete (i =1,2).

Since |V(G)| is even, exactly one of the graphs G; and Go, G say, has odd order. Set
H = G[V(Gy)U{w}]. We now show that G2 and H are Lj-graphs.

Let z, y and z be vertices of Gy such that dg,(z,y) = 2 and z € Ng,(x) N Ng,(y).
By (24), w ¢ Ng(xz)NNg(y), implying that Ng, () " Ng,(y) = Ng(x) N\ Ng(y). Furthermore,
Ne, (2) \ (Ngy () UNg,(y)) € Na(z) \ (Ng(xz) U Ng(y)). Since G is an Li-graph, it follows
that Go is an Li-graph.

A similar argument shows that H is an Li-graph.

Since, moreover, the graphs Gy and H have even order smaller than |V (G)|, each of them
has a perfect matching. The union of the two matchings is a perfect matching of G. [ |
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