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Abstract

We show that ten well-known global criteria for the hamiltonicity of a
connected graph have equivalent formulations in terms of balls of constant
radii not exceeding 4.

1 Introduction

We use [9] for terminology and notation not defined here and consider finite simple
graphs only. Let V(G) and E(G) denote, respectively, the vertex set and edge set
of a graph G, and let d(u,v) denote the distance between vertices v and v in G.
For each vertex u of G and a positive integer r, we denote by N,(u) and M, (u) the
sets of all v € V(G) with d(u,v) = r and d(u,v) < r, respectively. For a vertex u
of a graph G the ball G,(u) of radius r centered at u is a subgraph of G induced
by the set M,(u). We say that a vertex u is an interior vertex of a ball G,(z) if
Mi(u) C M, (z). If M,(z) = V(G) then G = G,(z) and every vertex u of G is an

interior vertex of G, ().
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In [1-4] the present authors developed some local criteria for the existence of Hamil-
ton cycles in a connected graph G, which generalize the classical global criteria due
to Dirac [10], Ore [17], Nash-Williams [16], and Jung [15]. The idea was to show that
if all balls of a small radius in G satisfy one of those global criteria K, or a variation
of K, then G is hamiltonian. We called our results localization theorems.!

In this paper we show that ten well-known global criteria for the hamiltonicity of a
connected graph have equivalent formulations in terms of balls of constant radii not
exceeding 4. Indeed we show a little more. For each of those global criteria K we
find a variation, X', and an integer r(K') < 4, such that

i) a connected graph G satisfies the criterion K if and only if every ball of radius
r(K') in G satisfies K,

ii) the class of graphs satisfying the criterion K is a proper subset of the class B(K")
which consists of all graphs G where every ball of radius 7(K') — 1 satisfies K'.

It follows from our results in [1-4] that if K is one of the criteria of Dirac [10],
Ore [17], Nash-Williams [16], and Jung [15] then all graphs in the class B(K') are
hamiltonian. For the other criteria K the following problem is open: are all graphs in
the class B(K') hamiltonian? We formulate two conjectures concerning the criteria
Fan [11] and Jackson [14].

2 Localizations with radius three

In this section we will show that the three classical criteria below (Theorems 2.1-2.3)
have equivalent formulations in terms of balls of radius 3.

Theorem 2.1 (Ore’s theorem [17]) Let G be a graph on at least 3 vertices such
that d(u) + d(v) > |V(G)| for each pair of nonadjacent vertices u,v. Then G is
hamiltonian.

Theorem 2.2 (See, for example Jung [15]) Let G be a 2-connected graph such that
d(u) + d(v) > |V(G)| = 1 for each pair of nonadjacent vertices u,v. Then either G
is hamiltonian or G € K where K = {G : K,,-1 C G C K, V K,y for some p > 2}
(V denotes join).

Theorem 2.3 (Nash-Williams [16]). A 2-connected r-regular graph G is hamiltonian
ifr > 3(IV(G)] - 1).

We need the following lemma:

Lemma 2.1. Let G be a connected graph on at least 3 vertices where for every vertex
z € V(G) the condition d(u)+d(v) > |Ms(x)|—1 holds for every pair of nonadjacent
interior vertices u and v of the ball G3(x). Then the diameter of G does not exceed 2.

Similar localization results were obtained for other hamiltonian properties of a graph (see, for
example, [5-7]).
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Proof. Suppose to the contrary that there is a pair of vertices u and v in G with
d(u,v) = 3. Let uyzv be a (u,v)-path of length 3 in G. Then M;(u) C M3(x) and
N(u) N N(v) = 0. Therefore

d(v) < [My(x) = Mi(u)] =1 = [My(z)] = [Mi(u)| = 1 = [Ms(z)| - d(u) = 2.

Thus d(u) + d(v) < |Ms(z)| — 2 for the pair of nonadjacent interior vertices u and v
of the ball G5(z), which contradicts the condition of the lemma. This implies that
the diameter of G' does not exceed 2. O

Now we will show that Ore’s theorem is equivalent to the following proposition:

Proposition 2.1. Let G be a connected graph on at least 3 vertices where for ev-
ery vertex © € V(G) the condition d(u) + d(v) > |Ms(z)| holds for every pair of
nonadjacent interior vertices u and v of the ball Gs(x). Then G is hamiltonian.

If G satisfies the condition of Theorem 2.1 then it also satisfies the conditions of
Proposition 2.1. Conversely, let G satisfy the conditions of Proposition 2.1. Then,
by Lemma 2.1, the diameter of G does not exceed 2. This means that M;(z) = V(G)
for each vertex x of G. Therefore Proposition 2.1 is equivalent to Theorem 2.1.

Using a similar argument we can prove that Theorem 2.2 is equivalent to the following
proposition:

Proposition 2.2. Let G be a 2-connected graph such that d(u) + d(v) > |Mz(z)| -1
for every pair of nonadjacent interior vertices u and v of the ball G3(x). Then either
G is hamiltonian or G € K.

Since the set K contains no regular graphs, Proposition 2.2 implies the following
result:

Proposition 2.3. Let G be a 2-connected r-regular graph where r > (| Ms(x)| — 1),
for each vertex x. Then G is a hamiltonian graph.

Now we will show that Proposition 2.3 is equivalent to the theorem of Nash-Williams
(Theorem 2.3).

If r > (|[V(G)| — 1)/2 then r > (|M3(x)| — 1)/2 for each vertex x.

Conversely, let » > (|]Ms(z)| — 1)/2 for each vertex z in an r-regular 2-connected
graph G. Lemma 2.1 implies that the diameter of G does not exceed 2. Therefore
M;(u) = V(G) for each vertex u. This means that r > (|V(G)| — 1)/2.

We showed above that Propositions 2.1-2.3 are equivalent to Theorems 2.1-2.3,
respectively. Now we will show that if we replace in Propositions 2.1-2.3 the set
M;(z) by the set My(x) and the graph Gj(z) by the graph G(z) then we obtain
new propositions (Propositions 2.4-2.6) which describe larger classes of hamiltonian
graphs than the classes given by the corresponding original theorems.

In [2] (see also [4]) we proved that a connected graph G with |V(G)| > 3 is hamilto-
nian if d(u) 4+ d(v) > |Ms(z)]| for every path uzv with uwv ¢ E(G). This implies the
following result:
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Proposition 2.4. Let G be a connected graph with |V(G)| > 3 where for every vertex
xz € V(G) the condition d(u) + d(v) > |My(x)| holds for every pair of nonadjacent
interior vertices u and v of the ball Gy(z). Then G is hamiltonian.

Clearly, Proposition 2.4 generalizes Proposition 2.1. The following two results were
obtained in [1]:

Proposition 2.5 [1] Let G be a connected graph with |V (G)| > 3 where all balls
of radius 2 are 2-connected and d(u) + d(v) > |My(z)| — 1 for every path uzv with
uwv ¢ E(G). Then either G is a hamiltonian graph or G € K.

Proposition 2.6 [1] Let G be a connected regular graph on at least 3 vertices where
every ball of radius 2 is 2-connected and d(u) > (|M(u)| — 1), for each vertex u.
Then G is a hamiltonian graph.

Propositions 2.5 and 2.6 generalize, respectively, Theorem 2.2 and Theorem 2.3,
because for each graph G satisfying one of those theorems we have Go(u) = G for
each vertex u.

Remark 2.1. The diameters of graphs satisfying the conditions of Theorem 2.1-2.3
do not exceed 2. In contrast with this, for every integer n > 2 there are graphs
of diameter n which satisfy the conditions of Propositions 2.4-2.6. Consider, for
example, the graph G(p, 2n) which is defined as follows: its vertex set is Vi U- - - UV,
where V1, ..., Vs, are pairwise disjoint sets of cardinality p > 2 and two vertices of
G(p,2n) are adjacent if and only if they both belong to V4 U V4, or to V; U Vi4; for
some i € {1,2,...,2n — 1}. Clearly, G(p,2n) has diameter n and for each vertex z
in G(p,2n) we have |My(z)| = 5p and d(z) = 3p — 1. This implies that G satisfies
the conditions of Propositions 2.4-2.6.

3 Localizations with radius four

In this section we give reformulation of seven well-known criteria for the hamiltonicity
of a connected graph in terms of balls of radii four.

3.1 Reformulation of Dirac’s theorem

Theorem 3.1 (Dirac’s theorem [10]) A graph G with |V (G)| > 3 is hamiltonian if
d(u) > 3|V(G)| for each vertez u.

In [3] (see also [4]) we obtained the following localization of Dirac’s criterion:

Theorem 3.2 (Asratyan, Khachatryan [3,4]) A connected graph G with |V(G)| > 3
is hamiltonian if d(u) > L|M;(u)| for each vertez u.

The diameters of graphs satisfying the conditions of Dirac’s theorem do not exceed 2.
In contrast with this there is an infinite class of graphs of diameter 5 which satisfy the
condition of Theorem 3.2. Consider, for example the graph G, on 10n + 2 vertices,
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n > 2, which is defined as follows: its vertex set is U3_,V;, where Vg, V1,..., Vs are
pairwise disjoint sets of cardinality |Vg| = |Vs5| = n, |Vi| = |Va] = 3n, V3| = V4| =
n + 1 and two vertices of G, are adjacent if and only if they both belong to V; UV,
for some i € {0,1,2,3,4}. It is not difficult to see that G, satisfies the condition of
Theorem 3.2.

By considering the balls of radius 4 we obtain an evident corollary of Theorem 3.2:

Proposition 3.1. A connected graph G with |V(G)| > 3 is hamiltonian if d(u) >
$|My(u)] for each vertez u.

We will show that Proposition 3.1 is equivalent to Dirac’s theorem.

If d(u) > 3|V(G)| then G is connected and d(u) > §|My(u)| for each vertex u in
G. Conversely, let d(u) > 3|Mjy(u)| for each vertex u of a connected graph G, and
let a vertex v have the minimum degree in G. We will show that d(v) > $|V(G)|.
Suppose to the contrary that d(v) < £|V(G)|. Then |My(v)| < |V(G)| and there is
a vertex z in G with d(z,v) = 3. Clearly,

d) < IMi() = M) =1 = [My(0)] = [Mi(0)] - 1
— Myfv)] - d(v) - 2
Myfo)| - 2 = M) = 2IM(w)] -2

IA

We have that d(z) < d(v) = minyey(c)d(u). This contradiction proves that d(u) >
1V(G)] for each vertex u.

3.2 Reformulation of Fan’s theorem

Theorem 3.3 (Fan [11]) Let G be a graph with |V(G)| > 3 such that
1
max(d(e), dy) 2 V(G)

for every pair of vertices x,y with d(x,y) = 2. Then G is hamiltonian.

We prove that Fan’s theorem is equivalent to the following proposition:

Proposition 3.2. Let G be a connected graph with |V (G)| > 3 vertices such that the
condition max(d(z),d(y)) > §max(|My(z)|,|Mys(y)|) holds for each pair of vertices
z, y with d(z,y) = 2. Then G is hamiltonian.

If G satisfies the condition of Fan’s theorem then clearly it also satisfies the condi-
tions of Proposition 3.2. Conversely, let G satisfy the conditions of Proposition 3.2.
Suppose to the contrary that there is a pair of vertices z and y with d(z,y) = 2
such that max(d(z),d(y)) < 3|V(G)|. Then this and the condition of Proposition
3.2 imply that the set

Vi={u e V(O): 11 Mifw)| < dw) < 3V(E))
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is not empty. Let v be a vertex in V; such that d(v) = minyey, d(u). Since v € V4,
we have that N;(v) # @ for ¢ = 1,...,5. Consider a path uuy; ...us where ug = v
and u; € N;(v) for i = 1,2,3,4,5. Clearly, d(u;,us) = 4 and

dlus) < IN)]+ NG|+ ING(@)] =1 = [My(o)] = [Ny (o)] -2
[My(o)] - 510i(0)] -2

IA

1
= 5|M4(v)|—2 < d(v).

Then us ¢ V4 because v has the minimum degree among the vertices of V5. Therefore
d(us) < 3|My(us)|]. This and d(us,u1) = 2 = d(us, us) imply, by the condition of
Proposition 3.2, that

max(d(usz),d(u1))

v

%max(|M4(u3)|,|M4(u1)|) and

max(d(usz), d(us))

v

%max(|M4(U3)|v | M (us)])-

These two inequalities and the inequality d(us) < §|My(us)| imply that d(uy) >
5| My(us)] and d(us) > 3|My(us)|. Then the distance between two interior vertices
uy and us of the ball G4(u3) must be 2, a contradiction with d(us, us) = 4. This con-
tradiction proves that the condition of Proposition 3.2 is equivalent to the condition
of Fan’s theorem.

The diameters of graphs satisfying the conditions of Fan’s theorem do not exceed 6.
If we replace in Proposition 3.2 the sets My(x) and My(y) by the sets Mz(x) and
M;(y) respectively, we obtain a new proposition such that the class of graphs given by
it is larger than the class of graphs given by Fan’s theorem. (Consider, for example,
the graph H, of diameter 7 which is defined as follows: its vertex set is Ul_,Vj,
where Vo, Vi, ..., V7 are pairwise disjoint sets of cardinality |Vo| = |Vz] = 2n (n > 1),
Vil = [Vs| = 2n + 2, |Va| = |V3] = |Va| = |Vs5]| = 3n + 3 and two vertices of G,, are
adjacent if and only if they both belong to V; U Viy; for some ¢ € {0,1,2,3,4,5,6}.)

Conjecture. Let G be a connected graph with |V(G)| > 3 vertices such that the
condition max(d(z),d(y)) > % max(|M;(xz)|,|M;(y)|) holds for each pair of vertices
z,y with d(z,y) = 2. Then G is hamiltonian.

3.3 Reformulation of results

In this subsection we give a reformulation of the results of Higgkvist-Nicoghossian
[13], Bauer et al. [8] and Flandrin et al [12].

Let x(G) denote the connectivity of a graph G. The following results were obtained
in [8,12,13]:

Theorem 3.4 (Bauer et al. [8]). Let G be a 2-connected graph such that d(z) +
d(y) +d(z) > |V(G)| + &(G) for each triple of independent vertices x,y,z. Then G
s hamaltonian.
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Theorem 3.5 (Haggkvist and Nicoghossian [13]). A 2-connected graph G is hamil-
tonian if d(u) > 3(|V(G)| + &(G)) for each vertex u.

Theorem 3.6 (Flandrin et al. [12]). Let G be a 2-connected graph such that d(z) +
d(y) +d(z) > |[V(G)| + |N(z) N N(y) N N(2)| for any triple of independent vertices
z,y,z. Then G is hamiltonian.

We will show that the next three propositions are equivalent formulations of the
above three theorems:

Proposition 3.3. A 2-connected graph G is hamiltonian if for every verter w €
V(G) the condition d(z) 4+ d(y) + d(z) > |My(w)| + k(Ga(w)) holds for each triple of
independent interior vertices z,y,z of the ball G4(w).

Proposition 3.4. A 2-connected graph G is hamiltonian if d(u) > 3(|Ma(w)| +
K(Ga(w)) for each interior vertex u of the ball Ga(w).

Proposition 3.5. Let G be a 2-connected graph such that d(z) + d(y) + d(z) >
|My(w)|+ |N(z)NN(y)NN(z)| for each triple of independent interior vertices x,y, z
of the ball G4(w). Then G is hamiltonian.

We need the following lemma:

Lemma 3.1. Let G be a connected graph such that for every vertex w € V(G) the
condition d(z) + d(y) + d(z) > |Ma(w)| holds for each triple of independent vertices
z,y,z of the ball G4(w). Then there is a vertex v € V(G) such that My(v) = V(G).

Proof. Consider a vertex v € V(G) satistying |My(v)| = mazyev(q)|Ma(u)|. Sup-
pose that My(v) # V(G). Then Ni(v) # 0. Let = be a vertex in the set N3(v). If
there is a vertex y € N3(v) with d(z,y) > 3 then

d(v) < [My(v)] = [My(z)] = [My(y)| = 1 = [Ma(v)] = 3 = d(z) — d(y).

Thus d(z)+d(y)+d(v) < |Ms(v)] for a triple of independent interior vertices «, y, v of
the ball G4(v), which contradicts the condition of the lemma. Therefore d(z,y) < 2
for every y € Nj(v). Then My(v) U N5(v) C My(z). Since My(v) N Ns(v) = 0
and Nj(v) # 0, we have [My(z)| > |Ma(v)| which contradicts our assumption. This
contradiction proves that My(v) = V(G). O

Now we prove that Theorem 3.4 is equivalent to Proposition 3.3.

Suppose that the conditions of Proposition 3.3 hold. Then, by Lemma 3.1, there is
a vertex v such that My(v) = V(G). We have that G4(v) = G and k(G) = £(G4(v)).
Therefore d(x) 4+ d(y) + d(z) > |Ma(v)| + £(G4(v)) = |V(G)| + &(G) for each triple
of independent vertices x,y, z of G. Thus the conditions of Theorem 3.4 hold.

Conversely, suppose that the condition of Theorem 3.4 holds for a 2-connected graph

G. First we will show that the diameter of G does not exceed 5. Suppose to the
contrary that there is a pair of vertices u,v in G such that d(u,v) > 6. Let vov; . .. v,
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be a (u,v)-path where vg = u, v, = v and r = d(u,v). Then d(vo,v3) = d(vs,vs) = 3
and
d(vo) + d(vs) + d(vs) < |V(G)\ {vo,v3,06}| = |V(G)| —3.

Thus the condition of Theorem 3.4 does not hold for independent vertices vg, v3, vg,
which contradicts our assumption. Therefore d(z,y) < 5 for each pair of vertices z, y
in G, that is, the diameter of G does not exceed 5.

Now we will show that |V(G)| + k(G) > |Ms(w)| + x(Ga(w)) for each vertex w.
Suppose to the contrary that |V(G)|+ k(G) < |My(w)| + £k(G4(w)) for some vertex
w. Then [My(w)| < |V(G)| and &(G) < £(G4(w)). This implies that Ns(w) # 0
and V(G) = My(w) U Ns(w) because the diameter of G does not exceed 5. Let S =
{u1,...,us} be a vertex cut of G, kK = k(G), and let Hy,..., H, be the components
of the graph H = G — S, r > 2. Since k(G) < k(G4(w)), the graph G4(w) — S
is connected. Therefore My(w) C S U V(H;), for some i,1 < ¢ < r. Without loss
of generality we assume that M(w) C SUV(H;). Then V(H;) C Nj(w) because
V(G) = My(w)UNs(w). Consider three independent vertices w,y, z where y € N3(w)
and z € V(G2) C Ny(w). Then d(z) < |Ns(w)| — 1+ £(G) and

d(w) + d(y) + d(z)
< Ny (w)| + (| N2(w)] + | N3(w)| = 1+ | Ny(w)]) + | Ns(w)| = 1 + 6(G)
= |V(G)] — 3+ k(G).

Thus the condition of Theorem 3.4 does not hold for the independent vertices w, y, z,
which contradicts our assumption. Therefore [V(G)| 4+ £(G) > |My(w)| 4+ £(G4(w))
for each vertex w. This implies that the conditions of Proposition 3.3 hold.

Therefore Proposition 3.3 is equivalent to Theorem 3.4.

Using similar arguments we can show that Theorem 3.5 is equivalent to Proposition
3.4 and Theorem 3.6 is equivalent to Proposition 3.5.

3.4 Reformulation of Jackson’s theorem and its generalization

The following results were obtained in [14,18]:

Theorem 3.7 (Jackson [14]). A 2-connected r-regular graph G is hamiltonian if
r>3lV(G)]

Theorem 3.8 (Zhu, Liu, Yu [18]). Let G be a 2-connected r-regular graph with
r > 3(|[V(G)| = 1). Then either G is hamiltonian or G is the Petersen graph.

We will prove that Jackson’s theorem is equivalent to the following proposition:

Proposition 3.6. A 2-connected r-regular graph G is hamiltonian if r > 5| My(w)]
for each vertex w.

If r > 3|V(G)| then clearly r > 3| Mjy(w)| for each vertex w in G.
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Conversely, let r > £|My(w)]| for each vertex w. Then Lemma 3.1 implies that there
is a vertex v such that My(v) = V(G). This means that r > 3|V(G)|.

Thus the condition 7 > £[V(G)| is equivalent to the condition r > |Mjy(w)] for each
vertex w.

Using similar arguments we can show that Theorem 3.8 is equivalent to the following
proposition:

Proposition 3.7. Let G be a 2-connected r-regular graph where r > (| My(w)| — 1)
for each vertex w. Then either G is hamiltonian or G is the Petersen graph.

Remark 3.1. If we replace in Propositions 3.3-3.7 the set My(w) by the set Mz(w)
and the graph G4(w) by the graph G3(w) we obtain new propositions such that the
classes of graphs given by them are larger than the classes of graphs given by the
corresponding original theorems. (Consider, for example, the (3p — 1)-regular graph
G = G(p,2n) defined in Remark 2.1 with n > 7 and p > 5 which has x(G) = 2p,
k(G4(w)) = p, [My(w)| = 9p and |Msz(w)| = 7p for every vertex w.)

Conjecture. A 2-connected r-regular graph G is hamiltonian if r > #|Ms(w)| for
each vertex w in G.
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