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Abstract. A bipartite graph G is called (α, β)-biregular if all vertices in
one part of G have the degree α and all vertices in the other part have the
degree β. An edge coloring of a graph G with colors 1, 2, 3, . . . , t is called
an interval t-coloring if the colors received by the edges incident with each
vertex of G are distinct and form an interval of integers and at least one edge
of G is colored i, for i = 1, . . . , t. We show that the problem to determine
whether an (α, β)-biregular bipartite graph G has an interval t-coloring is
NP-complete in the case when α > β ≥ 3 and β is a divisor of α. It is
known that if an (α, β)-biregular bipartite graph G on m vertices has an
interval t-coloring then α+β−gcd(α, β) ≤ t ≤ m−1, where gcd(α, β) is the
greatest common divisor of α and β. We prove that if an (α, β)-biregular
bipartite graph has m ≥ 2(α + β) vertices then the upper bound can be
improved to m − 3. We also show that this bound is tight by constructing,
for every integer n ≥ 1, a connected (α, β)-biregular bipartite graph G
which has m = n(α + β) vertices and admits an interval t-coloring for every
t satisfying α + β − gcd(α, β) ≤ t ≤ m − 3.

1 Introduction

We use [5] and [3] for terminology and notation not defined here and consider
simple finite graphs only. V (G) and E(G) denote the sets of vertices and
edges of a graph G, respectively.

An edge coloring of a graph G with colors 1, 2, 3, . . . is called a proper
coloring if no two edges incident with the same vertex of G receive the same
color. A proper coloring is called an interval (or consecutive) coloring if
the colors received by the edges incident with each vertex of G form an
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interval of integers. An interval coloring of G with colors 1, 2, . . . , t is called
an interval t-coloring if at least one edge is colored i, for i = 1, . . . , t.

The notion of interval colorings was introduced in 1987 by Asratian
and Kamalian [2]1. Later the theory of interval (consecutive) colorings was
developed in e.g. [4-6, 8-18]. Generally, it is an NP-complete problem to
determine whether a bipartite graph has an interval coloring [17]. However,
some classes of bipartite graphs have been proved to admit interval colorings.
It is known, for example, that trees, regular and complete bipartite graphs
(see [1], [11]), doubly convex bipartite graphs [14], grids [9] and outerplanar
bipartite graphs [8] have interval colorings.

Some results were obtained for (α, β)-biregular bipartite graphs. A sim-
ple bipartite graph with bipartition (X,Y ) is called (α, β)-biregular if every
vertex in X has degree α and every vertex in Y has degree β. Hansen
proved in [11] that every (α, 2)-biregular bipartite graph admits an interval
coloring if α is an even integer. A similar result for (α, 2)-biregular bipartite
graphs for odd α was given by Hanson, Loten and Toft [12] and indepen-
dently by Kostochka [15]. Very little is known for (α, β)-biregular bipartite
graphs where α > β ≥ 3. Toft conjectured [18] that every (α, β)-biregular
bipartite graph always has an interval coloring. Kamalian [14] showed that
the complete bipartite graph Kα,β has an interval t-coloring if and only if
α + β − gcd(α, β) ≤ t ≤ α + β − 1, where gcd(α, β) is the greatest common
divisor of α and β. Hanson and Loten [13] showed that if an (α, β)-biregular
bipartite graph has an interval t-coloring, then t ≥ α + β − gcd(α, β). Two
different sufficient conditions for the existence of an interval 6-coloring of a
(4, 3)-biregular bipartite graph were found by Pyatkin [16] and Casselgren
[6].

In this paper we show that the problem to determine whether a (6, 3)-
biregular bipartite graph G has an interval 6-coloring is NP-complete. We
deduce from this result that the problem to determine whether an (α, β)-
biregular bipartite graph G has an interval t-coloring is NP-complete for
any pair of integers α, β such that α > β ≥ 3 and β is a divisor of α. We also
prove that if an (α, β)-biregular bipartite graph on m ≥ 2(α + β) vertices
admits an interval coloring then the number of used colors is at most m−3.
This bound is better than the bound m − 1 obtained in [1] for an arbitrary
bipartite graph on m vertices. We show that the bound m − 3 is tight and
construct, for every integer n ≥ 1, a connected (α, β)-biregular bipartite
graph with m = n(α + β) vertices which admits an interval t-coloring for
every t satisfying α + β − gcd(α, β) ≤ t ≤ m − 3.

1A revised version of that paper in English was published in [1].
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2 Auxiliary results

Lemma 2.1. Let G be an (α, β)-biregular bipartite graph with bipartition
(X,Y ). We denote by d the greatest common divisor of α and β. Then
|X| = k β

d and |Y | = kα
d , for some k ∈ N.

Proof. Dividing the equality dG(X) = dG(Y ) by d we obtain

α

d
|X| =

β

d
|Y |. (1)

The greatest common divisor of α
d and β

d is 1. This implies that β
d divides

|X| and thus |X| = k β
d , for some k ∈ N. Combining this with (1) gives us

|Y | = kα
d , which completes the proof of the lemma.

Lemma 2.2. The complete bipartite graph Kd,d has an interval t-coloring,
for every integer t satisfying d ≤ t ≤ 2d − 1.

Proof. Let (X,Y ) be the bipartition of Kd,d where X = {x1, . . . , xd}, Y =
{y1, . . . , yd}. The graph Kd,d has an interval (2d − 1)-coloring where the
edge xiyj has color i + j − 1, for each 1 ≤ i, j ≤ d. Furthermore, if Kd,d

has an interval (t + 1)-coloring, d < t < 2d − 1, then it has also an interval
t-coloring which can be obtained by recoloring all edges of color t + 1 in
color t + 1 − d. Thus Kd,d has an interval t-coloring, for every integer t,
d ≤ t ≤ 2d − 1.

The following result was obtained by Kamalian [14].

Lemma 2.3. The complete bipartite graph Kα,β has an interval t-coloring,
for every integer t satisfying α + β − gcd(α, β) ≤ t ≤ α + β − 1.

Proof. Let (X,Y ) be the bipartition of Kα,β where X = {x1, . . . , xα} and
Y = {y1, . . . , yβ}. Furthermore, let t = α + β − d + k where d = gcd(α, β),
0 ≤ k < d. Let G1 be the subgraph induced by the vertices x1, x2, . . . , xd and
y1, y2, . . . , yd. Clearly, G1 = Kd,d. By Lemma 2.2 G1 has an interval (d+k)-
coloring f . Now using the coloring f we define an interval t-coloring of the
graph Kα,β: an edge xi+sdyj+rd we color with the color (s + r)d + f(xiyj),
where 1 ≤ i, j ≤ d, 0 ≤ s ≤ α

d − 1, 0 ≤ r ≤ β
d − 1. One can verify that the

resulting coloring is an interval t-coloring of Kα,β.

Lemma 2.4. A (6, 3)-biregular bipartite graph H has an interval 6-coloring
if and only if H has a cubic subgraph covering all vertices of degree 6 in H.
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Proof. Suppose that H has a cubic subgraph F which covers all vertices of
degree 6 in H. Then the subgraph F1 induced by the set E(H) \ E(F ) is a
cubic subgraph of H covering all vertices of degree 6 in H as well. Let f1

be a proper coloring of F1 using colors 1, 2, 3 and let f2 be a proper coloring
of F using colors 4, 5, 6. The edge colorings f1 and f2 clearly constitute an
interval 6-coloring of H.

Conversely, suppose that H has an interval 6-coloring f . Put E′ = {e ∈
E(H) : f(e) = 1, 2 or 3}. The subgraph induced by the set E′ is easily
verified to be a cubic subgraph of H covering all vertices of degree 6.

3 Complexity results

In this section we will show that the problem of determining whether an
(α, β)-biregular bipartite graph has an interval t-coloring is NP-complete
when α > β ≥ 3 and β is a divisor of α. Pyatkin [16] proved that the
following problem is NP-complete.

Problem 1. Cubic subgraph of a (4, 3)-biregular bipartite graph.
Instance: A (4, 3)-biregular bipartite graph G with bipartition (X,Y ).
Question: Does there exist a cubic subgraph F of G covering X, that is,
satisfying X ⊆ V (F )?

We will prove that the next problem is also NP- complete.

Problem 2. Interval 6-coloring of a (6, 3)-biregular bipartite graph.
Instance: A (6, 3)-biregular bipartite graph H.
Question: Does there exist an interval 6-coloring of H?

Theorem 3.1. Problem 2 is NP-complete.

Proof. We will reduce Problem 1 to Problem 2. For each (4, 3)-biregular
bipartite graph G we will construct a (6, 3)-biregular bipartite graph H.
Let (X,Y ) be the bipartition of G. By Lemma 2.1 we have |X| = 3k and
|Y | = 4k for some k ∈ N. Let X = {v1, v2, . . . , v3k}. We will construct a
new graph H = H(G, k) in the following way:

First we define the graph H1 by setting

V (H1) = V (G) ∪ {u1, u2, . . . , u3k}, where V (G) ∩ {u1, u2, . . . , u3k} = ∅ and
E(H1) = E(G) ∪ ⋃k

i=1{u3i−2v3i−2, u3i−2v3i−1, u3i−1v3i−2, u3i−1v3i, u3iv3i−1, u3iv3i}.
Then we put H2 =

⋃3k
i=1 K

(i)
3,5 ∪ H1 where K

(1)
3,5 ,K

(2)
3,5 , . . . ,K

(3k)
3,5 are disjoint

copies of the complete bipartite graph K3,5 and K
(i)
3,5 has bipartition (Ai, Bi),

where Ai = {a(i)
1 , . . . , a

(i)
5 }, Bi = {xi, yi, zi} and V (H1) ∩ (Ai ∪ Bi) = ∅.

4



Now we define H = H(G, k) by setting

V (H) = V (H2) ∪ {w1, w2, . . . , w2k} and
E(H) = E(H2) ∪

⋃3k
i=1{xiui} ∪

⋃k
i=1 Mi,

where V (H2) ∩ {w1, w2, . . . , w2k} = ∅,

M1 = {w1y1, w1z1, w1y2, w2z2, w2y3, w2y4},
Mi = {w2i−1z3(i−1), w2i−1z3i−2, w2i−1y3i−1, w2iz3i−1, w2iy3i, w2iy3i+1},
for 2 ≤ i ≤ k − 1, and
Mk = {w2k−1z3(k−1), w2k−1z3k−2, w2k−1y3k−1, w2kz3k−1, w2ky3k, w2kz3k}.

The graph H = H(G, k) is easily verified to be a (6, 3)-biregular bipartite
graph. (For H = H(G, 4) see Figure 1). We will show that G has a cubic
subgraph covering X if and only if the graph H(G, k) has an interval 6-
coloring.

(1)K3,5
(2)K3,5

(3)K3,5
(4)K3,5

(5)K3,5
(6)K3,5

(7)K3,5
(8)K3,5

(9)K3,5
(10)K3,5

(11)K3,5
(12)K3,5
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Figure 1: The graph H(G, 4).

Suppose that G has a cubic subgraph F covering X. Consider the graph
F ′ induced by the vertices

⋃3k
i=1{a(i)

1 , a
(i)
2 , a

(i)
3 , xi, yi, zi}. This obviously is a

cubic subgraph of H−V (G) and F ∪F ′ clearly constitutes a cubic subgraph
of H which covers all vertices of H of degree 6. Then, by Lemma 2.4,
H = H(G, k) has an interval 6-coloring.
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Conversely, suppose that H = H(G, k) has an interval 6-coloring. Then,
by Lemma 2.4, H has a cubic subgraph F covering all vertices of degree 6.
We will show that G has a cubic subgraph covering all vertices of degree 4.

First we will prove that if at least one vertex from U = {u1, u2, . . . , u3k}
belongs to V (F ), then U ⊆ V (F ). Let W = {w1, w2, . . . , w2k}. We need the
following properties.

Property 1. If a vertex ui ∈ U belongs to V (F ), then at least one vertex
from W belongs to V (F ).

Proof. We have that ui is adjacent to xi and ui ∈ V (F ). Then exactly two
of the vertices a

(i)
1 , . . . , a

(i)
5 belong to V (F ). This implies that yi must be

adjacent to a vertex in W ∩ V (F ), since in F the vertex yi must have three
neighbors.

Property 2. The following holds for the vertices w1, . . . , w2k:
a) If w1 ∈ V (F ) then w2 ∈ V (F ).
b) If wj ∈ V (F ), 1 < j < 2k, then wj−1, wj+1 ∈ V (F ).
c) If v2k ∈ V (F ) then w2k−1 ∈ V (F ).

Proof. Let w1 ∈ V (F ). Then w1 is adjacent to y2 and therefore exactly
two vertices from A2 belong to V (F ). Since z2 must have three neighbors
in F , the vertex w2 also must belong to V (F ).

Suppose that wj ∈ V (F ), where 1 < j < 2k. According to the con-
struction of H, wj is adjacent to a vertex zl of some triple Bl and wj−1 is
adjacent to yl. Since wj ∈ V (F ), exactly two vertices from Al can belong
to V (F ). This implies that wj−1 ∈ V (F ). Furthermore, wj is also adjacent
to a vertex ym of some triple Bm (m > l) and wj+1 is adjacent to zm. As
before, we must have wj+1 ∈ V (F ).

Now suppose w2k ∈ V (F ). We have that w2k is adjacent to z3k−1 and
that w2k−1 and y3k−1 are adjacent vertices. Arguing in the same way as
above we may conclude that w2k−1 ∈ V (F ).

The next property follows immediately from Property 2:

Property 3. If at least one vertex from the set W belongs to V (F ) then
W ⊆ V (F ).

Property 4. If at least one vertex from U belongs to V (F ), then U ⊆ V (F ).

Proof. Suppose that U ∩V (F ) 	= ∅ and that there is a vertex ur ∈ U which
does not belong to V (F ). Consider the triple {xr, yr, zr}. By Properties
1 and 3, W ⊆ V (F ). Hence, each of the vertices yr and zr is adjacent
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to exactly one vertex in W ∩ V (F ). This means that exactly two vertices
from Ar belong to the cubic subgraph F , which implies dF (xr) = 2, a
contradiction.

The remaining part of the proof will break into two cases.

Case 1. U ∩ V (F ) 	= ∅.
By Property 4, U ⊆ V (F ). Every vertex in X = {v1, v2, . . . , v3k} is adjacent
to two vertices in U . Therefore if H has a cubic subgraph F , then there
must be a subset Y ′ ⊆ Y of k vertices, such that the subgraph induced by
the set Y ′ ∪X is a (1, 3)-biregular subgraph in which every vertex in X has
the degree 1. It is easy to see that G − Y ′ is a cubic subgraph of G which
covers all vertices of degree 4.

Case 2. U ∩ V (F ) = ∅.
Since the sets U and V (F ) are disjoint, all vertices of F which are adjacent
to vertices in X must be in Y . This obviously implies that G has a cubic
subgraph covering all vertices of degree 4.

We have polynomially reduced Problem 1 to Problem 2 by proving that
the graph H = H(G, k) has an interval 6-coloring if and only if the graph
G has a cubic subgraph covering all vertices of degree 4. Since Problem 1 is
NP-complete, Problem 2 is also NP-complete.

Remark. The method suggested in the proof of Theorem 3.1 can be used
for constructing (6, 3)-biregular bipartite graphs which do not admit interval
6-colorings. To see this, let G be a (4, 3)-biregular bipartite graph which
does not have a cubic subgraph covering all vertices of degree 4 (take, for
example, the graph G in Figure 2). Then the graph H(G, k) constructed in
the proof of Theorem 3.1 does not have an interval 6-coloring.
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Figure 2: The graph G.

Now we will prove the NP-completeness of the following problem:
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Problem 3. Interval t-coloring of an (α, β)-biregular bipartite graph, such
that β is a divisor of α.
Instance: An integer t and an (α, β)-biregular bipartite graph H

′
where

α > β ≥ 3 and β is a divisor of α.
Question: Does there exist an interval t-coloring of H

′
?

Theorem 3.2. Problem 3 is NP-complete.

Proof. We can polynomially reduce Problem 2 to Problem 3 by setting
H ′ = H, t = 6, α = 6 and β = 3. Since Problem 2 is NP-complete,
Problem 3 is also NP- complete.

4 The number of colors in an interval coloring of
an (α, β)-biregular bipartite graph

In [1, 2] Asratian and Kamalian showed that if a simple bipartite graph G
has an interval t-coloring, then t ≤ |V (G)| − 1. We improve that result for
(α, β)-biregular bipartite graphs with more than 2(α + β) vertices.

Theorem 4.1. If a connected (α, β)-biregular bipartite graph G with |V (G)| ≥
2(α + β) has an interval t-coloring, then t ≤ |V (G)| − 3.

Proof. Suppose that the theorem is false. Let G be a connected (α, β)-
biregular bipartite graph with bipartition (X,Y ) and minimum number of
vertices which has an interval t-coloring f , where t > |V (G)| − 3. By the
proof of Asratian and Kamalian in [1] there is a path in G between an edge
colored t and an edge colored 1 with labels decreasing along the path. We
denote by θ the set of all such paths of minimum length. Let n be the length
of paths in θ. Define the subsets θ1, . . . , θn in the following way: θ1 = θ and
θi is the subset of paths from θi−1 with the greatest color of the ith edge,
i = 2, . . . , n. We choose some path P = v0e1v1 . . . envn from θn.

Let us show that n ≥ 5. Suppose that n = 4. According to the conditions
f(e1) = t. Suppose that v1 ∈ X, then f(e2) ≥ t − α + 1 and thus f(e3) ≥
t − α + 1 − β + 1. By continuing in the same way we arrive at f(e4) ≥
t − 2α + 2 − β + 1. According to our assumption f(e4) = 1 and therefore
2α+β−2 ≥ t. This contradicts our assumption t > |V (G)|−3 ≥ 2(α+β)−3.
Now suppose that v1 ∈ Y . Proceeding in the same way we did before we
have α+2β−2 ≥ t and t ≥ 2(α+β)−3, a contradiction in this case as well.
With a similar argument, it is easy to prove that n 	= 2, 3. Hence, n ≥ 5.
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Let A(i) = {y ∈ NG(vi) : f(ei+1) < f(viy) < f(ei)}, for each i =
1, . . . , n−1. We evidently have |A(i)| = f(ei)−f(ei+1)−1, i = 1, . . . , n−1.

Let us show that A(i) ∩ {v0, . . . , vn} = ∅, for each i = 1, . . . , n −
1. Assume that there exist i0, j0, for which vi0 ∈ A(j0) or vj0 ∈ A(i0).
We will define a path P ′ in the following way: If i0 	= 0, j0 	= n, then
P ′ = v0e1v1 . . . vi0e

′vj0 . . . vn, where e′ = vi0vj0. If i0 = 0, then P ′ =
v1e1v0e

′vj0 . . . vn, where e′ = v0vj0. If j0 = n, then P ′ = v0e1v1 . . . vi0e
′vnenvn−1,

where e′ = vi0vn. In all cases the labels along P ′ are decreasing and P ′

is shorter than P which contradicts the choice of P . We now show that
A(i) ∩ A(j) = ∅, if 1 ≤ i < j ≤ n − 1. Suppose that there exist i0, j0,
1 ≤ i0 < j0 ≤ n − 1 for which A(i0) ∩ A(j0) 	= ∅. Since G has no cycle
of odd length, j0 − i0 ≥ 2. Let v ∈ A(i0) ∩ A(j0). Consider a new path
P ′′ = v0e1v1 . . . vi0e

′ve′′vj0 . . . vn−1envn, where e′ is the edge joining vi0 and
v and e′′ is the edge joining v and vj0 . The colors along P ′′ are decreasing. If
j0−i0 ≥ 3 then P ′′ is shorter than P and if j0−i0 = 2, then f(e′) > f(e1+i0),
so in both cases we have a contradiction to the choice of P .

Let A(0) = {v ∈ NG(v0) : v /∈ V (P )}. We will show that there is at
least one vertex u ∈ A(0), such that u /∈ A(i), i = 1, . . . , n − 1. Evidently,
A(0) ∩ A(i) = ∅ if i ≥ 4, because otherwise we could form a shorter path
between an edge of G colored t and an edge of G colored 1 with labels
decreasing along the path, contradicting the choice of P . Furthermore,
A(0)∩A(3) = A(0)∩A(1) = ∅, because G is bipartite. Since |A(0)| ≥ |A(2)|+
1, we have A(0) \ A(2) 	= ∅. Thus, there is a vertex u ∈ A(0) \ ⋃n−1

i=1 A(i).
Now, consider the set A(n) = {v ∈ NG(vn) : v /∈ V (P )}. We will

show that there is at least one vertex v ∈ A(n) such that v /∈ A(i), i =
0, . . . , n− 1. If A(n)∩A(i) 	= ∅, when i ≤ n− 4, we would be able to form a
shorter path between an edge of G colored t and an edge of G colored 1 with
labels decreasing along the path, contradicting the choice of P . Hence, if
i ≤ n− 4, then A(n) ∩A(i) = ∅. Furthermore, since G is bipartite, we have
A(n) ∩ A(n − 1) = A(n) ∩ A(n − 3) = ∅. Because |A(n)| ≥ |A(n − 2)| + 1,
we can conclude that A(n) \ A(n − 2) 	= ∅. Therefore there is a vertex
v ∈ A(n) \ ⋃n−1

i=0 A(i).
Since n ≥ 5, P consists of n+1 vertices and there are at least two vertices

which do not belong to P or A(i), i = 1, . . . , n − 1, we can now conclude
that

|V (G)| ≥ n + 1 + 2 +
n−1∑

i=1

|A(i)| = n + 3 +
n−1∑

i=1

(f(ei) − f(ei+1) − 1)

= n + 3 + t − 1 − (n − 1) = 3 + t.
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This clearly contradicts the choice of G.

Corollary 4.2. Let G be a connected (α, β)-biregular bipartite graph such
that gcd(α, β) = 1 and G 	= Kα,β . If G has an interval t-coloring, then
t ≤ |V (G)| − 3.

Proof. Let X = {x ∈ V (G) : dG(x) = α} and Y = {y ∈ V (G) : dG(y) = β}.
By Lemma 2.1, |X| = kβ and |Y | = kα for some integer k ≥ 1. Since
G 	= Kα,β, we have k ≥ 2, that is, |V (G)| ≥ 2(α + β). The result now
follows from Theorem 4.1.

In Theorem 4.3 below we will show that the bound in Theorem 4.1 is
tight. First we give some new notations.

In the following we will denote a graph G with a proper coloring f
by (G, f). Let H = Kα,β be a complete graph with bipartition (X,Y )
where X = {x1, . . . , xα} and Y = {y1, . . . , yβ}, and let H1, . . . ,Hp be p
disjoint copies of H such that Hk has bipartition (Xk, Yk) where Xk =
{x(k)

1 , . . . , x
(k)
α } and Yk = {y(k)

1 , . . . , y
(k)
β }, k = 1, . . . , p. Assume that f

is a proper coloring of H using colors 1, . . . , t. Without loss of generality
we assume that f(x1y1) = 1 and f(xαyβ) = t. For each k = 1, . . . , p
consider an edge coloring fk of Hk, where fk(x

(k)
i x

(k)
j ) = f(xixj) for all i, j,

1 ≤ i ≤ α, 1 ≤ j ≤ β. We will say that the edge colorings f and fk are
equivalent. We define the colored composition Q(H1, . . . ,Hp, f1, . . . , fp) of
the colored graphs (H1, f1), . . . , (Hp, fp) in the following way:

If p = 1 then Q(H1, f1) is the graph H1 with coloring f1.
If p = 2 then we obtain Q(H1,H2, f1, f2) if we do the following: we

delete the edge x
(1)
1 y

(1)
1 of color 1 from (H1, f1) and the edge x

(2)
1 y

(2)
1 of color

1 from (H2, f2), and then add the edges x
(1)
1 y

(2)
1 and y

(1)
1 x

(2)
1 colored 1.

If p > 2 consider the graphs H ′
1, . . . ,H

′
p with colorings f ′

1, . . . , f
′
p, respec-

tively, which are defined as follows:

(H ′
1, f

′
1) is obtained from (H1, f1) by deleting the edge x

(1)
1 y

(1)
1 ,

for each k = 2, . . . , p − 1, (H ′
k, f

′
k) is obtained from (Hk, fk) by

deleting the edges x
(k)
1 y

(k)
1 and x

(k)
α y

(k)
β ,

(H ′
p, f

′
p) is obtained from (Hp, fp) by deleting the edge x

(p)
α y

(p)
β , if p is

odd, or, by deleting the edge x
(p)
1 y

(p)
1 , if p is even.
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We will obtain the colored graph Q(H1, . . . ,Hp, f1, . . . , fp) from the col-
ored graphs (H ′

1, f
′
1), . . . , (H

′
p, f

′
p) if for each k < p we do the following: if

k is odd we add the edges x
(k)
1 y

(k+1)
1 and y

(k)
1 x

(k+1)
1 of color 1 between H ′

k

and H ′
k+1, and if k is even we add the edges x

(k)
α y

(k+1)
β and y

(k)
β x

(k+1)
α of

color t between H ′
k and H ′

k+1. Clearly, the graph Q(H1, . . . ,Hp, f1, . . . , fp)
is 2-connected.

Theorem 4.3. For all integers n, α, β, where n ≥ 1 and α > β ≥ 3, there
is a connected (α, β)-biregular bipartite graph G with m = n(α+β) vertices,
which for every integer t, such that α + β − gcd(α, β) ≤ t ≤ m − 3, has an
interval t-coloring.

Proof. Let H = Kα,β be a complete graph with bipartition (X,Y ) where
X = {x1, . . . , xα} and Y = {y1, . . . , yβ}, and let t be an integer satisfying
α + β − gcd(α, β) ≤ t ≤ n(α + β) − 3.

Case 1 . α + β − gcd(α, β) ≤ t ≤ α + β − 1.
By Lemma 2.3, there is an interval t-coloring f of Kα,β . Without loss of
generality we assume that f(x1y1) = 1 and f(xαyβ) = t. Let H1, . . . ,Hn

be n disjoint copies of H such that Hk has bipartition (Xk, Yk) where Xk =
{x(k)

1 , . . . , x
(k)
α } and Yk = {y(k)

1 , . . . , y
(k)
β }, k = 1, . . . , n. For each k = 1, . . . , n

consider an edge coloring fk of Hk which is equivalent to f . Then the col-
ored composition Q(H1, . . . ,Hn, f1, . . . , fn) of (H1, f1), . . . , (Hn, fn) is the
required graph with an interval t-coloring.

Case 2 . α + β ≤ t ≤ n(α + β) − 3
Let t = r(α + β) − 1 + l, where 1 ≤ r ≤ n − 1, 0 ≤ l ≤ α + β − 1, and let
F1, . . . , Fr,H1, . . . ,Hn−r be n disjoint copies of H = Kα,β such that

(a) Hk has bipartition (Xk, Yk) where Xk = {x(k)
1 , . . . , x

(k)
α } and

Yk = {y(k)
1 , . . . , y

(k)
β }, k = 1, . . . , n − r.

(b) Fs has bipartition (Us, Zs) where Us = {u(s)
1 , . . . , u

(s)
α } and

Zs = {z(s)
1 , . . . , z

(s)
β }, s = 1, . . . , r.

Consider an interval (α+β−1)-coloring f of H where f(xiyj) = i+j−1
for i = 1, . . . , α, j = 1, . . . , β. Let fk be an edge coloring of Hk which is
equivalent to f , k = 1, . . . , n − r.

We define a proper coloring g1 of F1 by setting g1(u
(s)
i z

(s)
j ) = f(xiyj),

1 ≤ i ≤ α, 1 ≤ j ≤ β, and for each graph Fs, 1 < s ≤ r, we define a
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proper coloring gs as follows: gs(u
(s)
i z

(s)
j ) = f(xiyj) + (s − 1)(α + β) − 1,

1 ≤ i ≤ α, 1 ≤ j ≤ β. Now, using the colored graphs (F1, g1), . . . , (Fr, gr)
we define the colored graph T (F1, . . . , Fr, g1, . . . , gr) in the following way: If
r = 1 then T (F1, g1) is obtained from (F1, g1) by deleting the edge u

(1)
α z

(1)
β

of color α + β − 1.
If r ≥ 2 then T (F1, . . . , Fr, g1, . . . , gr) is obtained if we

(i) delete the edge u
(1)
α z

(1)
β of color α + β − 1 from (F1, g1),

(ii) for each s = 2, . . . , r, delete the edge u
(s)
1 z

(s)
β of color

β − 1 + (s − 1)(α + β) and the edge z
(s)
1 u

(s)
α of color

α − 1 + (s − 1)(α + β) from (Fs, gs),

(iii) for each s = 1, . . . , r − 1 add the edges u
(s)
α z

(s+1)
1 and z

(s)
β u

(s+1)
1

of color s(α + β) − 1.

Remark. The coloring of T (F1, . . . , Fr, g1, . . . , gr) is an interval coloring
with colors 1, 2, . . . , r(α + β) − 2. The colors of the edges incident with the
vertex u

(s)
α , z

(s)
β , u

(r)
α , z

(r)
α form the intervals [s(α + β) − β, s(α + β) − 1],

[s(α+β)−α, s(α+β)−1], [r(α+β)−β, r(α+β)−2], [r(α+β)−α, r(α+β)−2],
respectively.

Subcase 2a. l ≤ α + β − 2, that is, t ≤ (r + 1)(α + β) − 3.
We construct the colored composition Q(H1, . . . ,Hp, f1, . . . , fp) of the graphs
(H1, f1), . . . , (Hp, fp), where p = n − r. It follows from the definition of
Q(H1, . . . ,Hp, f1, . . . , fp) that the edge x

(1)
α y

(1)
β has the color α + β − 1.

The coloring of the graph Q(H1, . . . ,Hp, f1, . . . , fp) is an interval coloring
with colors 1, 2, . . . , α + β − 1, that is, each edge received a color (num-
ber) from the set {1, 2, . . . , α + β − 1}. Now we add to the color of each
edge of Q(H1, . . . ,Hp, f1, . . . , fp) the number t− (α + β − 1). The obtained
graph, colored with colors t − (α + β) + 2, t − (α + β) + 1, . . . , t, we de-
note by Qt(H1, . . . ,Hp, f1, . . . , fp). Clearly, for every number (color) c from
the set {t − (α + β) + 2, t − (α + β) + 1, . . . , t} there is at least one edge
in Qt(H1, . . . ,Hp, f1, . . . , fp) colored c. Since t ≤ (r + 1)(α + β) − 3, we
have t − (α + β) + 2 ≤ r(α + β) − 1. Therefore there is an edge e in
Qt(H1, . . . ,Hp, f1, . . . , fp) colored r(α + β) − 1. Clearly, e = x

(k)
i y

(s)
j for

some i, j, k, s, where 1 ≤ i ≤ α, 1 ≤ j ≤ β, 1 ≤ k, s ≤ p.
On the other hand there is no edge colored r(α+β)−1 at the vertices u

(r)
α

and z
(r)
β . We obtain the required graph G = G(n) with an interval t-coloring

if we delete the edge e = x
(k)
i y

(s)
j from the graph Qt(H1, . . . ,Hp, f1, . . . , fp)
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and add the edges u
(r)
α y

(s)
j and z

(r)
β x

(k)
i of color r(α + β) − 1 between the

graphs Qt(H1, . . . ,Hp, f1, . . . , fp) and T (F1, . . . , Fr, g1, . . . , gr).

Subcase 2b. l = α + β − 1, that is, t = (r + 1)(α + β) − 2.
The condition (r+1)(α+β)−2 = t ≤ n(α+β)−3 implies that n−r ≥ 2. Let
p = n−r. We construct the colored composition Q(H1, . . . ,Hp−1, f1, . . . , fp−1)
of the graphs (H1, f1), . . . , (Hp−1, fp−1). Now we define a coloring g of the
graph Hp as follows: g(x(r)

i y
(r)
j ) = i + j, for all 1 ≤ i ≤ α, 1 ≤ j ≤ β. Then

we delete the edge x
(1)
1 y

(1)
2 of color 2 from Q(H1, . . . ,Hp−1, f1, . . . , fp−1) and

the edge x
(r)
1 y

(r)
1 of color 2 from (Hp, g) and add the edges x

(1)
1 y

(r)
1 and

y
(1)
2 x

(r)
1 colored 2. We obtain a 2-connected graph with an interval color-

ing using colors 1, 2, . . . , α + β. Now we add to the color of each edge of
this graph the number t − (α + β). The new graph, colored with colors
t− (α+β)+1, t− (α+β)+2, . . . , t, we denote by Qt(H1, . . . ,Hp, f1, . . . , fp).
Note that for every number (color) c from the set {t − (α + β) + 1, t − (α +
β) + 2, . . . , t} there is at least one edge in Qt(H1, . . . ,Hp, f1, . . . , fp) colored
c. In particular, the edge x

(1)
1 y

(1)
1 receives the color t − (α + β) + 1. We

have that t − (α + β) + 1 = r(α + β) − 1. We obtain the required graph
G = G(n) with an interval t-coloring if we delete the edge x

(1)
1 y

(1)
1 of color

r(α + β)− 1 from Qt(H1, . . . ,Hp, f1, . . . , fp) and add the edges u
(r)
α y

(r)
1 and

z
(r)
β x

(r)
1 colored r(α + β) − 1.
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