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Abstract: We consider the problem of estimating optima of covering integer
linear programs with 0-1 variables under the following conditions: we do
not know exact values of elements in the constraint matrix A but we know
what elements of A are zero and what are nonzero, and also know minimal
and maximal values of nonzero elements. We find bounds for variation
of the optima of such programs in the worst and average cases. We also
find some conditions guaranteening that the variation of the optimum of
such programs in the average case is close to 1 as the number of variables
tends to infinity. This means that the values of nonzero elements in A can
vary without significantly affecting the value of the optimum of the integer
program.
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1 Introduction

Linear and integer linear programming are known to capture well optimiza-
tion problems relevant to high-speed networks [2, 9]. Often in such problems
data are not known exactly. The reasons for such uncertainty can be dif-
ferent: for example, data may vary quickly (as in economics, traffics in
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networks, etc.) or a part of the data may even be unknown. What can one
state about the solutions of such problems?

In [9] a model for linear programming with incomplete information (dis-
tributed among different agents) was presented. This model assumes, in
particular, that we know what elements of the matrix of constraints are zero
and what are nonzero. The following question was asked in [9] “What if
the uncertainty about the coefficients is not complete, but they are known
within some margin of error, or even have a known distribution?”.

We consider this question for a special class of covering integer linear
programs with 0-1 variables. Note that different types of covering integer
programs were intensively investigated [3, 5, 8, 10, 12].

Let b = (b1, ..., bm)T > 0 be a rational vector and M be a real number,
M ≥ 1. We consider integer programs of the form

min
n∑

j=1

xj (1)

Ax ≥ b (2)

0 ≤ xj ≤ 1, xj − integer, j = 1, . . . , n. (3)

where x = (x1, . . . , xn)T and A = (aij) is a rational m × n ”fuzzy”
matrix: we do not know the elements of A exactly but we know

a) zero-nonzero pattern of A, i.e. what elements of A are zero and what
are nonzero. This will be specified by a (0, 1)-matrix G = (gij) where gij = 0
if and only if aij = 0.

b) for every nonzero element we know that it is in the interval [1,M ],
that is, 1 ≤ aij ≤ M holds for any i, j such that aij 6= 0.

The value min
∑n

j=1 xj is called the integral optimum of (1)-(3) and de-
noted by Z(A,b). By a feasible solution of (1)-(3) we will mean any vector
x satisfying (2)-(3).

The assumptions (a) and (b) take place, say, when combinatorial struc-
ture (zero-nonzero pattern) does not vary during long time but the values
of nonzero elements vary during short time.

What can we do in this situation? Of course, we can solve each new
integer program every time when we obtain new data. But there is a simple
strategy to estimate optima variation: find maximum and minimum value
of the optimum for such class of integer programs. Clearly the optimum of
each program from this class will be between these two values. But how
close are these values to each other?
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In general case this problem seems difficult and is related to sensitivity of
integer programs [4]. In this paper we consider the worst and average cases.
We prove that even in the case when the variation of nonzero elements is
small (i.e. M is close to 1) there are situations where the integral optimum
can vary significantly. On the other hand we find some conditions guaran-
teeing that the variation of integral optimum in the average case (over all
zero-nonzero patterns) is close to 1 as the number of variables tends to infin-
ity. This means that the values of nonzero elements in A can vary without
significantly affecting the value of the optimum of the integer program. The
key step in our proof is the reduction of the problem to estimating the size
of multiple covering of a (0, 1)-matrix along with using combinatorial and
probabilistic methods for the last problem.

2 Worst case analysis

Given (0,1)-matrix G and a number M , M ≥ 1, let K(G, M) denote the
class of all matrices A = (aij) with zero-nonzero pattern G satisfying the
condition 1 ≤ aij ≤ M for any pair i, j such that aij 6= 0. Let

R(G, M,b) = max
A1,A2∈K(G,M)

Z(A1,b)
Z(A2,b)

.

It is not difficult to see that

max
A∈K(G,M)

Z(A,b) = Z(G,b),

and
min

A∈K(G,M)
Z(A,b) = Z(MG,b),

where MG denotes the matrix where all 1’s in G are replaced by M . Thus,

R(G, M,b) =
Z(G,b)

Z(MG,b)
.

Moreover, it is clear that instead of the system

MGx ≥ b,

we can consider the equivalent system (by dividing each inequality by M)

Gx ≥ b/M.
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This shows that

R(G, M,b) = Z(G,b)/Z(MG,b) = Z(G,b)/Z(G,b/M).

In other words, we can estimate this ratio for integer programs with the
same (0, 1)-matrix and different right-hand sides b and b/M .

The most interesting question is, of course, when is this ratio close to 1?
When this is the case, our upper and lower bounds for integer optima are
close to each other and it is not necessary to solve every new integer program
(1)-(3) with new data because we already have a good approximation of the
optimum. In section 3 we find some conditions guaranteeing that this ratio
is close to 1 for almost all G.

Note that for some G the value of R(G, M,b) can be large even if M is
close to 1. Consider the following example.

Let G0 = (gij) be a (0,1)-pattern where gi1 = 1, gii = 1, for i = 1, . . . ,m
and other elements of G0 are zeroes. Furthermore, let δ be a small positive
number, M = 1 + δ and let the vector b satisfy the condition: b1 = 1 and
1 < bi < 1 + δ for i = 2, ...,m.

Then we have R(G0,M,b) = Z(G0,b)/Z(G,b/M) = n because Z(G0,b/M) =
1 with the optimal solution x = (1, 0, ..., 0)T , and Z(G0,b) = n with the
optimal solution x = 1 = (1, 1, ..., 1)T .

It seems difficult to find R(G, M,b) for arbitrary G. For this reason we
investigate the worst case of G. We consider only patterns G for which the
inequality Ax ≥ b has a nonnegative 0-1 solution.

Theorem 1.

1 + dM − 1em ≤ max
G,n,b

R(G, M,b) ≤ dMem.

Proof. 1. Lower bound. Let G0 be a matrix of size m × 1 where all
elements are equal to 1, and let G1, ..., GdM−1e be m × m diagonal (0, 1)-
matrices.

Consider the program (1)-(3) where b = (M, . . . , M)T , n = dM − 1em
and the pattern G of A is the concatenation of matrices G0, G1, ..., GdM−1e.

Clearly, Z(G,b/M) = Z(G,1) = 1 with the optimal solution x =
(1, 0, ..., 0)T . On the other hand, Z(G,b) = 1 + dM − 1em with the op-
timal solution x = 1 = (1, 1, ..., 1)T . We have (see Section 2) that

R(G, M,b) = Z(G,b)/Z(G,b/M).
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Hence,
R(G, M,b) ≥ 1 + dM − 1em,

where n = dM − 1em, b = (M, ..., M)T and G is the (0, 1)-matrix defined
above. Therefore

max
G,n,b

R(G, M,b) ≥ 1 + dM − 1em.

2. Upper bound. Consider an arbitrary program (1)-(3) with an arbi-
trary pattern G. We have

R(G, M,b) = Z(G,b)/Z(G,b/M).

Clearly, the number of 1’s in any integral (0,1)-solution of the system Gx ≥
b/M must be at least d bmax

M e. Therefore,

Z(G,b/M) ≥ dbmax

M
e.

On the other hand, the number of 1’s in any integral (0,1)-solution of the
system Gx ≥ b is at most mdbmaxe. Therefore,

Z(G,b) ≤ dbmaxem = dbmax

M
Mem ≤ dMedbmax

M
em.

Thus,
R(G, M,b) = Z(G,b)/Z(G,b/M) ≤ dMem

for arbitrary G, n and b.

3 Average case analysis

In this section we investigate the variation of the integral optimum in the
average case, over all zero-nonzero patterns. To do this we can introduce
the probability distribution on G assuming that G = (gij) is a random (0,1)-
matrix where each gij independently takes value 1 with probability 1/2, and
0 with probability 1/2. Then the expectation of R(G, M,b) is equal to its
average value ∑

G∈W

1
2mn

R(G, M,b)

where W is the set of all 0-1 matrices of size m × n, that is, all possible
patterns G = (gij).
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But we will consider here a more general probabilistic model in which
G = (gij) is a random (0,1)-matrix such that P{gij = 1} = p and P{gij =
0} = 1 − p independently for all i, j. Then, for any M and b the value
R(G, M,b) is a random variable.

Our main result is the following theorem.

Theorem 2. Consider the problem (1)-(3) with a random G defined
above. Let the probability p be such that p ≤ c < 1 for some constant c and
let maxi bi = o(lnmp), and

ln lnn

lnmp
→ 0 as n →∞, (4)

lnm

np
→ 0 as n →∞. (5)

Then for any fixed ε > 0 P{R(G, M,b) ≤ 1 + ε} → 1 as n →∞.

This means that for most zero-nonzero patterns under the conditions
(1)-(2) the variation of values of nonzero elements does not significantly
affect the value of the optimum of (1)-(3), that is a very desirable situation.

Corollary 1. Let m = cn, where c is some constant and p = n−(1−δ),
for some constant δ > 0. Consider the problem (1)-(3) with a random G
defined above. Let maxi bi = o(lnn) as n → ∞. Then, for any fixed ε > 0
P{R(G, M,b) ≤ 1 + ε} → 1 as n →∞.

Corollary 1 follows from Theorem 2 because the conditions (4) and (5)
of Theorem 2 obviously hold when m = cn, p = n−(1−δ).

The key roles in the proof of Theorem 2 are played by the concept of a
cover and r-cover of a 0-1 matrix.

Definition. A cover of (0,1)-matrix G is a subset of its columns such
that each row contains at least one 1 in these columns. The number of
columns in a cover is called the size of the cover. An r-cover is a subset of
columns such that each row contains at least r 1’s in these columns.

We will also use the following two lemmas.
Lemma 1 [1]. Let Y be a sum of n independent random variables each

taking the value 1 with probability p and 0 with probability 1 − p. Then,
for any δ > 0

P{|Y − np| > δnp} ≤ 2 exp{−(δ2/3)np}.
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Lemma 2. Let gij be independent random variables such that P{gij =
1} = p and P{gij = 0} = 1 − p, for each pair i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
If the condition (5) holds then, for any δ > 0 with probability tending to 1
as n tends to infinity, every row of the random matrix G = (gij) contains at
least (1− δ)pn and at most (1 + δ)pn 1’s.

Proof. Let Yi =
∑n

i=1 gij and Ai be the event that |Yi − pn| > δpn,
i = 1, ...,m. Lemma 1 implies that

P{Ai} ≤ 2 exp{−(δ2/3)np}.

This and condition (5) imply that

P{
m⋃

i=1

Ai} ≤
m∑

i=1

P{Ai} ≤ 2m exp{−(δ2/3)np} =

= 2 exp{lnm−O(n)} → 0

as n → ∞. Clearly,
⋃m

i=1 Ai is the event: each row of G contains at least
(1− δ)pn and at most (1 + δ)pn 1’s. We have

P{
m⋃

i=1

Ai} = 1−P{
m⋃

i=1

Ai} → 1 as n →∞.

Proof of Theorem 2. We have (see Section 2) that

R(G, M,b) = Z(G,b)/Z(G,b/M).

To give an upper bound of R(G, M,b) we will give a lower bound of Z(G,b/M)
and an upper bound of Z(G,b).

1. Lower bound of Z(G,b/M). Every feasible solution x = (x1, ..., xn)
of the covering integer program (1)-(3) in the case when b = 1, represents
a cover of the (0,1)-matrix (pattern) G corresponding to A: if

S = {i : xi = 1, 1 ≤ i ≤ n}

then the set of columns {Ci : i ∈ S} in G is a cover of G. Therefore, Z(G,1)
is the size of a minimum cover of G.

Furthermore, it is clear that

Z(G,b/M) ≥ Z(G,1),
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because b is a positive vector, x is a (0,1)-vector and the elements of the
matrix G are zeroes and ones. Now we derive a lower bound of Z(G,1), the
size of a minimum cover of G.

Let X be the random variable equal to the number of covers in G of size
l0 = −d(1− δ) ln mp/ ln(1− p)e. Clearly,

EX =

(
n

l0

)
P (l0),

where P (l0) is the probability that fixed l0 columns form a cover in G. It is
not difficult to see that

P (l0) =
(
1− (1− p)l0

)m
≤ exp{−m(1− p)l0}.

Thus, using the inequality
(n
k

)
≤ nk, we have

lnEX ≤ l0 lnn−m(1− p)l0 ≤ (− lnmp/ ln(1− p)) lnn−

−m exp{−(1− δ) ln(1− p)
lnmp

ln(1− p)
} =

− (lnmp/ ln(1− p)) lnn−m(mp)−1+δ =

− (lnmp/ ln(1− p)) lnn− p−1(mp)δ.

It is not difficult to see that for any fixed 0 < δ < 1 under the condition (4)
the last expression tends to −∞ as n tends to infinity. This and Markov’s
inequality P{X ≥ 1} ≤ EX imply that P{X ≥ 1} → 0 as n →∞.

Thus, the probability that there is no cover of size l0 in a random (0, 1)-
matrix G tends to 1. Clearly, if there is no cover of size l0 in G then there
is also no cover of size smaller than l0. Therefore, P{Z(G,1) > l0} → 1 as
n →∞. Since Z(G,b/M) ≥ Z(G,1), we have

P{Z(G,b/M) > l0} → 1

as n →∞.
2. Upper bound of Z(G,b). Let B1 = maxi bi and B1 = (B1, . . . , B1).

Furthermore, let B = 1+B1 and B = (B, . . . , B). It is clear that B > 1 and
Z(G,b) ≤ Z(G,B1) ≤ Z(G,B). On the other hand, it is not difficult to see
that Z(G,B) is exactly the minimum size of a B-cover of the (0, 1)-matrix
G.
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Let k be a positive integer such that each row of G contains at least
k 1’s. Then we use the estimate of the size of a B-cover ([7]) obtained by
averaging over all l-subsets of columns of G:

Z(G,B) ≤ min
l
{l +

m(n
l

) B−1∑
i=0

(
k

i

)(
n− k

l − i

)
}.

The following simple proposition can be proved by induction by consid-
ering the ratio of two consecutive members of such a sequence.

Proposition 1. If l ≥ (n/k)B then

max
i

(
k

i

)(
n− k

l − i

)
=

(
k

B − 1

)(
n− k

l −B + 1

)
.

Thus, by Proposition 1,

Z(G,B) ≤ min
l≥(n/k)B

{l +
Bm(n

l

) ( k

B − 1

)(
n− k

l −B + 1

)
}.

By Lemma 2, with probability tending to 1,

k ≥ (1− δ)pn (6)

for any δ > 0. In Section 5 we prove the following proposition.

Proposition 2. Under the conditions of Theorem 2

min
l≥(n/k)B

{l +
Bm(n

l

) ( k

B − 1

)(
n− k

l −B + 1

)
} ≤ l1 + n/k

where

l1 = d(1 + δ)
ln mk

n

ln n
n−k

e.

Note that l1 ≥ (n/k)B since the condition B = o(lnmp) and inequality
(6) imply that (n/k)B = o(l1). Thus, Proposition 2 implies that Z(G,B) ≤
l1 + n/k. Let C be the event that

Z(G,B) ≤ (1 + δ)
lnmp

ln 1
1−p(1−δ)

+ ((1 + δ)p)−1.
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Inequality (6) and the inequality Z(G,b) ≤ l1 + n/k imply that P{C} → 1
as n → ∞. On the other hand (see the proof of the lower bound), the
probability of the event D:

Z(G,b/M) > l0

tends to 1 as n → ∞. Clearly, P{C ∩D} → 1 as n → ∞. Combining the
upper bound of Z(G,b) and the lower bound of Z(G,b/M) we obtain that
for any fixed ε > 0 the probability of the event

Z(G,b)
Z(G,b/M)

≤ 1 + ε.

tends to 1 as n →∞. This implies that

P{R(G, M,b) ≤ 1 + ε} → 1

as n → ∞ because R(G, M,b) = Z(G,b)/Z(G,b/M). The proof of Theo-
rem 2 is complete.

4 Proof of Proposition 2

We will use the inequalities (see [6], p. 243)

G(n, λ) >

(
n

λn

)
>

√
π

2
G(n, λ), (7)

where 0 < λ < 1, n ≥ 2 and

G(n, λ) =
λ−λn(1− λ)−(1−λ)n√

2πλ(1− λ)n
.

To prove Proposition 2 it is enough to show that

B(n
l1

)( k

B − 1

)(
n− k

l1 −B + 1

)
≤ n

mk

where

l1 = d(1 + δ)
ln mk

n

ln n
n−k

e.
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We will prove the above inequality in the following equivalent form:(n
l1

)
B

(
k

B − 1

)−1(
n− k

l1 −B + 1

)−1

≥ mk

n
.

Denote the left-hand side of this inequality by L. Applying the inequality
(7) we have

L ≥ (B

(
k

B − 1

)
)−1

√
π

2
G(n, λ1)/G(n− k, λ2), (8)

where λ1 = l1/n, and λ2 = (l1 −B + 1)/(n− k).
We have

G(n, λ1)
G(n− k, λ2)

= F exp{l1 ln
n

l1
− (n− l1) ln(1− l1

n
)−

(l1 −B + 1) ln
n− k

l1 −B + 1
− (n− k − l1 + B − 1) ln

n− k

n− k − l1 + B − 1
},

where

F =

√
λ2(1− λ2)(n− k)

λ1(1− λ1)n
≥
√

(1− B − 1
l1

)(1− l1 −B + 1
n− k

).

The conditions of Theorem 2 (B = o(lnmp) and lnm = o(np)) and Lemma
2 (pn(1 + δ) ≥ k ≥ (1− δ)pn) imply that F = 1− o(1).

Using the inequalities

−x ≤ − ln(1 + x), ln(1− x) ≤ −x, 0 < x < 1,

we have

ln(
G(n, λ1)

G(n− k, λ2)
) ≥ lnF + l1 −

l21
n

+ l1 ln
n

l1
− (l1 −B + 1) ln

n− k

l1 −B + 1
−

−(n− k − l1 + B − 1)
l1 −B + 1

n− k − l1 + B − 1
.

Combining this inequality with inequality (8) and taking into account that
B > 1 and (

k

B − 1

)
≤
(

ek

B − 1

)B−1

,
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we obtain

lnL ≥ O(1)− lnB − (B − 1) ln
ek

B − 1
+ (B − 1) ln

n− k

l1 −B + 1
−

− l21
n

+ B − 1 + l1 ln
n(l1 −B + 1)

l1(n− k)
. (9)

The conditions pn(1+δ) ≥ k ≥ (1−δ)pn, B = o(lnmp) and lnm = o(np)
imply that l1 = o(n), B = o(pl1), and

−(B − 1) ln
ek

B − 1
+ (B − 1) ln

n− k

l1 −B + 1
=

= (B − 1) ln
(B − 1)(n− k)
(l1 −B + 1)ek

= O((B − 1) ln
B

pl1
).

Let pl1/B = ϕ. We have ϕ →∞ and

−(B − 1) ln
pl1
B

≥ −B ln
pl1
B

= −pl1
ϕ

lnϕ = o(l1).

Hence, the right-hand side of the inequality (9) is

(1− o(1))l1 ln
n

n− k
≥ (1− o(1))(1 + δ) ln(mk/n),

and the inequality ln L ≥ ln(mk/n) holds for sufficiently large n.

5 Concluding remarks

In this paper we considered covering programs with 0-1 variables and cost
function of the form

∑
j xj under the assumption that we know a pattern

of coefficients in constraints which are nonzero and only those coefficients
can vary in some interval [1,M ] (zero elements do not change their value).
In our main result we found some sufficient conditions guaranteeing that
the variation of integral optimum in the average case (over all zero-nonzero
patterns) is close to 1 as the numbers of variables tends to infinity. This
means that for typical patterns the values of nonzero elements in A can
vary without affecting significantly the value of the optimum of the integer
program (that is the optimum value depends mostly on pattern but not on
values of nonzero elements).
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At the same time the typical patterns depends heavily on the probability
measure. For example, if the value of the probability p is constant, the
matrix A is in fact dense. If, however, the value of p tends to zero when the
number of variables increases, the matrix A is sparse. All the restrictions in
Theorem 2 also depend on the probability p. That is why it is difficult to
describe explicitly the class of programs given by Theorem 2.

However it seems interesting to find similar conditions for more general
classes of integer programs where negative elements are allowed.
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