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Abstract. Let (W,S) be a Coxeter system. We introduce the
boolean complex of involutions of W which is an analogue of the
boolean complex of W studied by Ragnarsson and Tenner. By
applying discrete Morse theory, we determine the homotopy type
of the boolean complex of involutions for a large class of (W,S),
including all finite Coxeter groups, finding that the homotopy type
is that of a wedge of spheres of dimension |S| − 1. In addition, we
find simple recurrence formulas for the number of spheres in the
wedge.

1. Introduction

Let F be a finite alphabet. A word over F is injective if it is a se-
quence of distinct letters from F . The poset of all injective words over
F ordered by the (not necessarily consecutive) subword relation is a
simplicial poset, hence the face poset of a boolean cell complex. This
is the well-studied complex of injective words. Farmer [2] showed that it
is homotopy equivalent to a wedge of spheres of dimension |F |−1. Jon-
sson and Welker [12] proved the same conclusion for considerably more
general classes of boolean cell complexes using shellability techniques.

Ragnarsson and Tenner [15] independently arrived at one of Jons-
son and Welker’s families of complexes from a different starting point.
Namely, Ragnarsson and Tenner considered the boolean elements of a
Coxeter system (W,S), i.e. those elements whose Bruhat order ideals
are boolean lattices. These elements were first considered by Tenner
in [18]. Under Bruhat order, they generate the face poset of a boolean
cell complex, the boolean complex of (W,S). Using discrete Morse the-
ory, it was shown in [15] that this complex is homotopy equivalent to
a wedge of spheres of dimension |S| − 1, and a recurrence formula for
the number of spheres was found.

In [9], the first named author and Vorwerk studied the boolean involu-
tions of (W,S) as an involution analogue of Tenner’s boolean elements.
In the Bruhat order on involutions, they too form the face poset of a
boolean cell complex. In this paper, we study this boolean complex of
involutions, ∆inv(W ). Such complexes are not special cases of Jonsson
and Welker’s constructions.

For a large class of Coxeter systems, including all finite ones, we
apply discrete Morse theory in order to show that ∆inv(W ) is also
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homotopy equivalent to a wedge of spheres of dimension |S| − 1 and
provide a recurrence formula for the number of spheres.

The remainder of this paper is organized in the following way. Sec-
tion 2 contains preliminaries on cell complexes, acyclic matchings, and
Coxeter group theory. Section 3 contains the main technical result of
this paper, Theorem 3.4. In Section 4, we provide applications of the
main result by computing the homotopy type of ∆inv(W ) for many
Coxeter groups, including all finite types.

2. Preliminaries

In this section, notions on simplicial posets, acyclic matchings and
cell complexes are collected for being used in the sequel.

2.1. Posets, matchings, and cell complexes. Let P be a poset and
x, y ∈ P such that x < y. We say that y covers x, written as xl y, if
there is no z ∈ P such that x < z < y.

Definition 2.1. Let P be a poset with cover relation l. An involution
M : P → P (i.e., M ◦M = id) such that for each x ∈ P , xlM(x) or
M(x)l x or M(x) = x is called a matching. An element x ∈ P such
that M(x) = x is called critical.

Definition 2.2. Let P be a poset and M be a matching on P . Consider
the Hasse diagram of P as a directed graph with edges x ← y if x l y
for x, y ∈ P . From the Hasse diagram of P construct a new directed
graph GM(P ) by reversing each arrow x ← y to x → y if y = M(x).
The matching M on P is called acyclic if there are no directed cycles
in GM(P ).

In GM(P ), the unchanged edge x← y is said to be downward while
the edge x → M(x) is said to be upward. Since for any matching M ,
no two incident edges are directed upward in GM(P ), the next lemma
follows:

Lemma 2.3. If a matching M on a poset P is not acyclic, then any
directed cycle in GM(P ) is of the form

a1 lM(a1)m a2 lM(a2) . . .m ak lM(ak)m a1,

for pairwise distinct ai and some k ≥ 2.

Let ∆ be a finite regular cell complex. The face poset of ∆, denoted
by P (∆), is the poset of all cells ordered by set inclusion of their closures
where a minimum element (sometimes thought of as the empty cell) is
also in P (∆). For more on regular cell complexes, see [13].

Definition 2.4. Let ∆ be a finite regular cell complex and P (∆) its face
poset. Then ∆ is called a boolean cell complex if P (∆) is a simplicial
poset (i.e., a poset with a minimum element in which every principal
order ideal is isomorphic to a boolean lattice).
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Conversely, any finite simplicial poset is the face poset of a boolean
cell complex which is unique (up to cellular isomorphism).

The following is one of the most useful consequences of discrete Morse
theory. It will serve as our main topological tool.

Theorem 2.5 ([3, Theorem 6.3]). Let ∆ be a boolean cell complex
and let M be an acyclic matching on the face poset P (∆). If there
are c critical cells, all of the same dimension m, then ∆ is homotopy
equivalent to a wedge of c spheres of dimension m.

Corollary 2.6. If an acyclic matching M on P (∆) does not have any
critical cells, then ∆ is contractible.

Lemma 2.7 has been discovered by Jonsson [11] and independently
by Hersh [6]. It provides a way to patch together acyclic matchings.

Lemma 2.7. Let ∆ be a boolean cell complex such that ∆ =
⋃
α∈Q ∆α

where the index set Q is partially ordered. Assume that:

(1) Each cell γ ∈ ∆ is only in one ∆α (i.e., the union is disjoint).
(2)

⋃
β≤α∈Q ∆β is an order ideal of P (∆) for every α ∈ Q.

For each α ∈ Q, suppose that Mα is an acyclic matching on P (∆α)
where P (∆α) is the subposet of P (∆) induced by ∆α. Then

⋃
α∈QMα

is an acyclic matching on P (∆).

2.2. Coxeter systems. We review some facts on Coxeter groups for
later use. For more, we refer the reader to [1] or [10].

Let W be a group generated by a finite set of involutions S, where
(ss′)m(s,s′) = e for m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2 for all s 6= s′ in
S and m(s, s′) ∈ Z+ ∪ {∞}. Here, e denotes the identity element in
W . The group W as described above, together with its generating set
S form a pair (W,S) which is called a Coxeter system. Any w ∈ W is a
product of generators in S. That is w = s1s2 · · · sk for some si ∈ S. If k
is smallest among all such expressions for w, then k is called the length
of w, denoted `(w) = k, and s1s2 · · · sk is called a reduced expression for
w. Note that we do not distinguish notationally between an expression
and the group element it represents.

A Coxeter system (W,S) is sometimes represented by its Coxeter
graph. It is the edge-labeled (simple, undirected) graph with vertex
set S and an edge labeled m(s, s′) connecting two vertices s and s′ if
m(s, s′) ≥ 3. By convention, the label is usually omitted if it is equal
to 3, see Figure 1.

If W is finite, it has a unique longest element w0. A subgroup WJ of
W , generated by J ⊆ S is called parabolic. If WJ is finite, its longest
element is denoted by w0(J).

A Coxeter system is irreducible if its Coxeter graph is connected.
The Coxeter graphs in Figure 1 indicate the classification of finite
irreducible Coxeter groups. There are three classical families of types
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Figure 1. The finite, irreducible Coxeter groups

An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4), six exceptional groups of types
E6, E7, E8, F4, H3 and H4, and one family of dihedral groups of type
I2(m) (m ≥ 3).

Given w ∈ W , define the right descent set of w by

DR(w) = {s ∈ S|`(ws) < `(w)}.
For s ∈ S, s ∈ DR(w) if and only if w has a reduced expression that
ends in s.

Let T := {wsw−1|w ∈ W, s ∈ S} be the set of reflections in W .

Definition 2.8. For u,w ∈ W , let u → w if there is t ∈ T such that
w = ut and `(u) < `(w). The Bruhat order is the partial order relation
on W which is defined by u ≤ w if there is a sequence

u = u0 → u1 → · · ·u→ un = w.

Definition 2.9. Let (W,S) be a Coxeter system and consider W as a
poset under Bruhat order. An element w ∈ W is called boolean if its
lower principal order ideal is isomorphic to a boolean algebra.

The following lemma is a characterization of boolean elements. For
W of type A, B, or D this lemma is [18, Proposition 7.3].
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Lemma 2.10 ([15]). Let (W,S) be a Coxeter system and w ∈ W .
Then w is boolean if and only if it has some reduced expression without
repeated letters.

In fact, Lemma 2.10 is equivalent to the statement that “w is boolean
if and only if no reduced expression for w has repeated letters.” Let
B(W ) denote the subposet of W induced by the boolean elements. The
subposet B(W ) is the boolean ideal. Note that B(W ) is a simplicial
poset.

Definition 2.11. For a Coxeter system (W,S), the boolean complex
of (W,S) is the boolean cell complex ∆(W ) whose face poset is B(W ).

All maximal cells of ∆(W ) have dimension |S| − 1. Boolean com-
plexes of Coxeter groups were studied by Ragnarsson and Tenner [15].
They showed that for every Coxeter system (W,S), there is a nonnega-
tive integer β(W ) called boolean number such that ∆(W ) is homotopy
equivalent to a wedge of β(W ) spheres of dimension |S|−1. Moreover,
they found a recurrence formula for computing β(W ) in terms of the
(unlabeled) Coxeter graph. Note that the labels of the Coxeter graph
have no effect in determining β(W ). That is, if W and W ′ have iso-
morphic Coxeter graphs when ignoring all edge labels that are at least
4, then B(W ) ∼= B(W ′). In particular, β(W ) = β(W ′) [15].

2.3. Reduced S-expressions. In this subsection we review some ma-
terial on reduced S-expressions and boolean involutions needed in Sec-
tions 3 and 4.

For a Coxeter system (W,S), let I = {w ∈ W |w = w−1} denote the
set of involutions. Consider an alphabet S = {s | s ∈ S}.
Definition 2.12. The free monoid S∗ acts from the right on the set
W by

ws =

{
ws if sws = w,

sws otherwise,

and ws1s2 · · · sk = (· · · ((ws1)s2) · · · sk).

Note that ws s = w for all w ∈ W and s ∈ S. For the identity
element e ∈ W , write s1s2 · · · sk for es1s2 · · · sk.

For every w ∈ I there are symbols s1, s2, . . . , sk such that w =
s1s2 · · · sk and, conversely, all such elements are involutions [16]. The
minimal k such that w = s1s2 · · · sk for some s1, s2, . . . , sk ∈ S is called
the rank of w, and is denoted ρ(w). The expression s1s2 · · · sk is then
called a reduced S-expression for w.

Reduced S-expressions appear under various names in the literature.
It is (the right-handed version of) what Richardson and Springer [16]
call “admissible sequences” and Hamaker, Marberg, and Pawlowski [4]
refer to as “involution words”. In this paper the notation is taken from
[7, 8].
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Definition 2.13. Let αs,s′ = s s′s · · · be the alternating word in s and
s′ where the number of letters s and s′ in αs,s′ is equal to m(s, s′).
Operating on words in S∗, we define a braid move as the replacement
of αs,s′ by αs′,s.

In fact braid moves in a reduced S-expression for w ∈ I preserve w
(see [4]).

Definition 2.14. Let R̂(w) denote the set of all reduced S-expressions

for w ∈ I. For u,w ∈ I, the replacement of one element in R̂(u) by
another in the beginning of a reduced S-expression for w ∈ I is called
an initial move.

The following theorem provides a minimal list of initial moves that
combined with braid moves suffice to connect all elements of R̂(w).

Theorem 2.15 ([5]). Let (W,S) be a Coxeter system and w ∈ I. Any
two reduced S-expressions for w can be connected by a sequence of braid
moves and initial moves that replace u with v if u, v ∈ R̂(w0(J)) for
some J ⊆ S. The following parabolic subgroups WJ are necessary and
sufficient:

(1) WJ of type B3;
(2) WJ of type D4;
(3) WJ of type H3;
(4) WJ of type I2(m), for m ≥ 3.

In other words, given x, y ∈ R̂(w), there exist some x0, x1, · · · , xk
such that x = x0, xk = y and for all i, xi differs from xi+1 by a braid
move or an initial move of the kind specified in Theorem 2.15.

Lemma 2.16 ([7]). Let w ∈ I. Then s ∈ DR(w) if and only if w has
a reduced S-expression that ends in s. Moreover, ρ(ws) = ρ(w) + 1 if
and only if s 6∈ DR(w).

Let Br(I) denote the subposet of the Bruhat order on W induced by
I. The order relation on Br(I) has been characterized in [7, 16, 17].

Lemma 2.17 (Subword property of I [7]). Suppose that v, w ∈ I and
s1s2 · · · sk is a reduced S-expression for w. Then v ≤ w if and only if
v = si1si2 · · · sir for some 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ k.

For w ∈ I, let B(w) denote the principal order ideal generated by w
in Br(I). Then we have:

Definition 2.18. An element w ∈ I is called a boolean involution if
B(w) is isomorphic to a boolean algebra.

Analogously to the characterization of boolean elements (i.e., Theo-
rem 2.10), we have:

Proposition 2.19 ([9]). Let w ∈ I. Then the following are equivalent:
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(1) w is a boolean involution.
(2) w has some reduced S-expression without repeated letters.

In fact, Proposition 2.19 is equivalent to “w is a boolean involution
if and only if no reduced S-expression for w has repeated letters.”

Suppose s, s′ ∈ S satisfy m(s, s′) = 3. Let us say that a half-braid
move is the replacement of of s s′ by s′s in the beginning of a reduced
S-expression.

Proposition 2.20. Any two reduced S-expressions for a boolean in-
volution w ∈ I can be connected by a sequence of braid moves and
half-braid moves.

Proof. In the list of parabolic subgroups given in Theorem 2.15, it is
only in type I2(3) that the longest element is a boolean involution. It
has only two reduced S-expressions, and the initial move replacing one
of them by the other is a half-braid move. �

Let P (∆inv(W )) denote the subposet of Br(I) induced by all boolean
involutions. It is a simplicial poset which we call the boolean involution
ideal. We have the following definition:

Definition 2.21. Let ∆inv(W ) be the boolean cell complex whose face
poset is P (∆inv(W )).

By abuse of notation, we identify a boolean involution with the cell it
represents. It follows from Proposition 2.20 together with Lemma 2.16
that every S-expression without repeated letters is reduced. Hence,
every maximal cell in ∆inv(W ) has dimension |S|−1. Let βI(W ) denote
the absolute value of the reduced Euler characteristic of ∆inv(W ).

In contrast to the situation for the boolean complex ∆(W ), it is not
the case that ∆inv(W ) only depends on the unlabeled Coxeter graph.
As the following lemma shows, it is however not necessary to keep track
of the actual labels:

Lemma 2.22. If the Coxeter graph of a Coxeter system (W ′, S) is
obtained from that of another system (W,S) by increasing some edge
labels which are at least 4, then ∆inv(W ′) ∼= ∆inv(W ).

Proof. In a reduced S-expression without repeated letters, the possible
braid moves are provided by the vertices that are not adjacent in the
Coxeter graph, and the half-braid moves come from the vertices that
are connected by an edge labeled 3 (i.e., with omitted label). It follows
that the boolean involution ideals of W and W ′ are isomorphic. �

3. Acyclic matchings on the boolean involution ideal

Say that a Coxeter system (W,S) (with S finite) is ordered if the
generating set S is endowed with a total order. For such a system,
with s = maxS, define

P1(W ) := {a ∈ ∆inv(W ) | s 6≤ a or s ∈ DR(a)}.



8 AXEL HULTMAN AND VINCENT UMUTABAZI

sn−2 sn−1 sn

W−2
W−3

Figure 2. A Coxeter graph of a path ended system (W,S)

Then, let

Γ(W ) : = ∆inv(W ) \ P1(W )

= {a ∈ ∆inv(W ) | s ≤ a and s 6∈ DR(a)}.

Definition 3.1. Suppose (W,S) is an ordered Coxeter system. A
matching M on P (∆inv(W )) is a Γ-matching if it satisfies the following
properties:

• M is acyclic;
• All critical cells of M are of top dimension |S| − 1;
• M preserves Γ(W );
• All critical cells of M belong to Γ(W ).

In particular, by Theorem 2.5, if P (∆inv(W )) has a Γ-matching,
then ∆inv(W ) is homotopy equivalent to a wedge of βI(W ) spheres of
dimension |S| − 1.

If (W,S) is ordered, we let W−k denote the parabolic subgroup which
is generated by the first |S|−k elements of S, i.e. the k largest elements
are removed from S. The corresponding subsystem is ordered with the
order inherited from S.

Definition 3.2. Let (W,S) be an ordered Coxeter system with S =
{s1 < · · · < sn} where n ≥ 3. We say that (W,S) is path ended if sn
commutes with every si for i ≤ n− 2, sn−1 commutes with every si for
i ≤ n− 3, snsn−1sn = sn−1snsn−1 and sn−1sn−2sn−1 = sn−2sn−1sn−2.

Definition 3.2 means that the Coxeter graph of a path ended system
(W,S) is as illustrated in Figure 2, where the parabolic subgroups W−2
and W−3 are also indicated; W−2 is generated by all si inside the blue
circle, andW−3 is generated by all si inside the black circle, respectively.

Now we have the following theorem.

Theorem 3.3. Let (W,S) be a path ended Coxeter system. Assume
that P (∆inv(W−2)) and P (∆inv(W−3)) have Γ-matchings M−2 and M−3,
respectively. Then, P (∆inv(W )) has a Γ-matching M . Moreover, the
number of critical elements of M equals the number of critical elements
of M−2 plus the number of critical elements of M−3.
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sn−2 sn−1 sn s
N

W

Figure 3. A Coxeter system (Z, S ′) as a path extension
of a path ended Coxeter system (W,S)

The proof of Theorem 3.3 is deferred to the next subsection. Here
we proceed to apply it in order to prove Theorem 3.4 below, which is
the main result of this paper.

For two ordered Coxeter systems (W,S) and (Z, S ′), we say that
(Z, S ′) is a path extension of (W,S) if S = {s1 < · · · < sn} and
S ′ = {s1 < · · · < sN} for some N ≥ n, and for all 1 ≤ i ≤ N and
n < j ≤ N with i 6= j, it holds that

m(si, sj) =

{
2 if |i− j| ≥ 2,

3 if |i− j| = 1.

In other words, we obtain the Coxeter graph of a path extension of
(W,S) from that of (W,S) by attaching a (possibly empty) path at
the maximum vertex sn. Figure 3 illustrates this situation for a path
ended system (W,S). This is the setting of the upcoming theorem.

Theorem 3.4. Let (W,S) be a path ended Coxeter system such that
P (∆inv(W−1)), P (∆inv(W−2)) and P (∆inv(W−3)) all have Γ-matchings.
Then, for every path extension (Z, S ′) of (W,S), ∆inv(Z) is homotopy
equivalent to a wedge of (|S ′| − 1)-dimensional spheres. The number of
spheres satisfies the recurrence βI(Z) = βI(Z−2) + β(Z−3).

Proof. Since (Z, S ′) is path ended, Theorem 3.3 together with Theorem
2.5 provide the desired conclusions if we are able to show that Z−2 and
Z−3 have Γ-matchings. By induction on |S ′|, it however follows from
Theorem 3.3 that Z−1, Z−2, and Z−3 all have Γ-matchings. �

3.1. Proof of Theorem 3.3. We now proceed to prove Theorem 3.3.
First let us establish a couple of lemmas.

Let (W,S) be as in Definition 3.2.

Lemma 3.5. Let w ∈ W be a boolean involution. If sn−1 comes after
both sn−2 and sn in some reduced S-expression for w, then this holds
in every reduced S-expression for w.



10 AXEL HULTMAN AND VINCENT UMUTABAZI

Proof. Note that if sn−1 comes after both sn−2 and sn in a reduced
S-expression for w, then this cannot be changed by a half-braid move
or a braid move. Hence the result follows from Proposition 2.20.

�

Now define

P2(W ) := {xsn−2snsn−1 : x ∈ ∆inv(W−3)}.

Lemma 3.6. We have P2(W ) ⊆ Γ(W ).

Proof. By Lemma 3.5, sn−1 comes after sn−2 and sn in every reduced
S-expression for every element a ∈ P2(W ). Hence by Lemma 2.16,
sn 6∈ DR(a). �

Define P3(W ) := Γ(W )\P2(W ). Note that P1(W ), P2(W ), and
P3(W ) are pairwise disjoint sets whose union is ∆inv(W ).

Lemma 3.7. P3(W ) = {ysnsn−1 : y ∈ Γ(W−2)}.

Proof. For any a ∈ {ysnsn−1 : y ∈ Γ(W−2)} we have that a 6∈ P2(W )
since sn−2 6∈ DR(y). By Lemma 3.5, sn−1 comes after sn−2 and sn in
every reduced S-expression for a, hence sn ≤ a and sn /∈ DR(a). Thus
a ∈ Γ(W )\P2(W ) = P3(W ).

Conversely, assume that a ∈ P3(W ). Since sn ≤ a and sn 6∈ DR(a),
sn−1 comes after sn in every reduced S-expression for a. Hence, no re-
duced S-expression for a can begin with snsn−1, which means that sn−1
also comes after sn−2 in every reduced S-expression for a. Therefore,
a = ysnsn−1 for some y ∈ ∆inv(W−2). Moreover, y ∈ Γ(W−2) because
a 6∈ P2(W ). �

Proof of Theorem 3.3. Define matchingsM1,M2 andM3 on P1(W ), P2(W )
and P3(W ) respectively as:

(1) M1(a) := asn for a ∈ P1(W );
(2) M2(a) := M−3(x)sn−2snsn−1 for a = xsn−2snsn−1 ∈ P2(W );
(3) M3(a) := M−2(y)snsn−1 for a = ysnsn−1 ∈ P3(W ).

Note thatM−2(y) ∈ Γ(W−2) sinceM−2 preserves Γ(W−2). This ensures
that M3 is well defined.

Define also a matching

M(a) :=


M1(a) if a ∈ P1(W ),

M2(a) if a ∈ P2(W ),

M3(a) if a ∈ P3(W )

on P (∆inv(W )). We shall show that M is a Γ-matching on P (∆inv(W )).

A. M is an acyclic matching on P (∆inv(W )): We will first show
that the matchings M1, M2 and M3 are acyclic on P1(W ), P2(W ) and
P3(W ) respectively and then use Lemma 2.7 to show that M is an
acyclic matching on P (∆inv(W )).
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The matching M1 is acyclic. To see it: By Lemma 2.3, if M1 has a
cycle on P1(W ), then a0lM1(a0) = a0snm a1 and a1lM1(a1) = a1sn
for some a0 6= a1. However since sn � a0 and sn � a1 we have that
a0 = a1, so there is no cycle. Hence M1 is acyclic.

Define a map g : P (∆inv(W−3)) → P2(W ) by g(x) = xsn−2snsn−1.
The subword property implies that g is a poset isomorphism. Since
M−3 is acyclic, M2 is an acyclic matching.

Similarly, Γ(W−2) and P3(W ) are isomorphic. Since M−2 is acyclic
and M−2 preserves Γ(W−2), M3 is an acyclic matching.

Our goal is to show that M is acyclic using Lemma 2.7. Let Q be
the (total) order whose Hasse diagram is shown in Figure 4.

P1(W )

P2(W )

P3(W )

Figure 4. Hasse diagram of Q

We proceed to verify the hypotheses of the lemma.

(1) As we have already seen, each cell belongs to only one Pi(W )
for i = 1, 2, 3.

(2) We show that P1(W ) and P1(W ) ∪ P2(W ) are order ideals. To
observe that P1(W ) is an order ideal we let a ∈ P1(W ) and
t ≤ a. If sn � a, then sn � t and hence t ∈ P1(W ). If
sn ∈ DR(a), then either sn � t or sn ∈ DR(t). So t ∈ P1(W ).
Thus P1(W ) is an order ideal.

Also P1(W ) ∪ P2(W ) is an order ideal. If a ∈ P2(W ) and
t < a, then we have t < a = xsn−2snsn−1. If sn−2snsn−1 ≤ t
then t ∈ P2(W ). If sn−2snsn−1 � t then si � t for at least one
of i = n− 2, n− 1, n. If sn−2 � t then t = xsnsn−1 = xsn−1sn ∈
P1(W ). Similarly if sn or sn−1 � t, then t = xsn−2sn−1 ∈ P1(W )
or t = xsn−2sn ∈ P1(W ). Hence P1(W ) ∪ P2(W ) is an order
ideal.

Now since P1(W ), P1(W )∪P2(W ) and P1(W )∪P2(W )∪P3(W ) are or-
der ideals, and M1,M2 and M3 are acyclic matchings on P1(W ), P2(W ),
and P3(W ) respectively, then by Lemma 2.7, M is an acyclic matching
on P (∆inv(W )).
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B. All critical cells are of top dimension n−1: Let a be a critical
cell of M . Since M1 is complete on P1(W ), then either a = xsn−2snsn−1
with x a critical cell of M−3 or a = ysnsn−1 with y a critical cell of
M−2. By the assumptions on M−2 and M−3, dim(a) = n − 1 in both
cases.

C. M preserves Γ(W ): That the matching M preserves Γ(W ) follows
by construction since Γ(W ) = P2(W ) ∪ P3(W ).

D. All critical cells belong to Γ(W ): SinceM is complete on P1(W ),
there are no critical cells in P1(W ). So all critical cells of M are in
P (∆inv(W ))\P1(W ) = Γ(W ).

This completes the proof that M is a Γ-matching on P (∆inv(W )).
Finally, the assertion about the number of critical cells is immediate
from part B above. �

4. Applications of Theorem 3.4

In this section we shall calculate the homotopy types of some ex-
plicit boolean involution complexes, including all those of finite Cox-
eter groups. Barring some small examples that are easily computed
by hand, we achieve this by identifying Γ-matchings of some suitably
chosen ordered Coxeter systems, and then invoking Theorem 3.4.

Theorem 4.1. If W is irreducible and finite, the homotopy type of
∆inv(W ) is as specified in Table 1, where the Betti numbers in the
classical types are determined by

• βI(An) = βI(An−2)+βI(An−3) with βI(A1) = 0, βI(A2) = 0 and
βI(A3) = 1,
• βI(Bn) = βI(Bn−2)+βI(Bn−3) with βI(B2) = 1, βI(B3) = 1 and
βI(B4) = 1,
• βI(Dn) = βI(Dn−2) + βI(Dn−3) with βI(D4) = 1, βI(D5) = 1

and βI(D6) = 2.

Remark 4.2. Recall that the Padovan sequence P0, P1, . . . is deter-
mined by P0 = 1, P1 = 0, P2 = 0 and Pn = Pn−2 + Pn−3 for n ≥ 3.
Hence, βI(An) = Pn for n ≥ 1, βI(Bn) = Pn+3 for n ≥ 2, and
βI(Dn) = Pn+2 for n ≥ 2. For more information about the Padovan
sequence see [14] and the references cited there.

Proof of Theorem 4.1. Let us provide Γ-matchings of P (∆inv(W )). In
types A, B, D, and E, this is achieved using Theorem 3.4. Somewhat
nonstandard type terminology will be employed in order to indicate
specific ordered Coxeter systems. Their Coxeter graphs are collected
in Figure 5.

First, let us make a general observation. In order to verify that the
boolean involution ideal of a certain ordered Coxeter system (W,S) has
a Γ-matching, it is enough to verify that the subposet induced by Γ(W )
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Coxeter group W Homotopy type of ∆inv(W )
An βI(An) · Sn−1
Bn βI(Bn) · Sn−1
Dn βI(Dn) · Sn−1
E6 a point
E7 S6

E8 S7

F4 a point
H3 S2

H4 S3

I2(m) S1

Table 1. Homotopy type of ∆inv(W ) for finite, irre-
ducible W

s1
B1

s1 s2
D2

s1 s3 s2
D3

s1 s2 s3
E3

s1 s2 s4 s3
E4

s1 s2

s4

s3

s5
E5

Figure 5. Ordered Coxeter systems that appear in the
proof of Theorem 4.1

admits an acyclic matching with all critical cells of top dimension.
Namely, just as in the proof of Theorem 3.3, the subposet P1(W ) is
an order ideal with a complete acyclic matching, and so the union of
these two matchings is a Γ-matching. This is illustrated for W of type
F4 in Figure 6. There, the entire acyclic matching on P (∆inv(W )) is
depicted. For the conclusion of the theorem, it is however enough to
inspect Γ(W ), which consists of the two yellow elements.

Type A. Consider (W,S) of type An, n ≥ 4, as an ordered Coxeter
system with the natural order on the generators indicated in Figure 1.
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e

s1 s2 s3 s4

s1s2 s1s3 s2s3 s1s4 s2s4 s3s4s3s2

s1s2s3 s1s2s4 s1s3s4 s1s3s2 s2s3s4 s3s2s4 s2s4s3s3s2s1

s1s2s3s4 s1s2s4s3s1s3s2s4 s3s2s1s4

Figure 6. A Γ-matching on P (∆inv(F4))

Then, (W,S) is a path extension of the path ended system A4. In order
to obtain the desired result from Theorem 3.4, it therefore suffices to
verify the hypotheses, namely that the boolean involution ideals of A3,
A2, and A1 have Γ-matchings. Concluding the proof in type A, one
readily verifies that Γ(A3) = {s1s3s2} and Γ(A2) = Γ(A1) = ∅.

Type B. We proceed similarly to type A. This time, we begin with the
ordered type B system in Figure 1 which, for n ≥ 4, is a path extension
of B4. Here, Γ(B3) = {s1s3s2}, Γ(B2) = {s2s1}, and Γ(B1) = ∅.

Type D. Again, we argue in a similar way. Here, we begin with the
ordered system of type Dn as in Figure 1, where Dn is a path extension
of D5 for all n ≥ 5. The hypotheses are verified by observing that
Γ(D2) = ∅, Γ(D3) = {s1s3s2}, and Γ(D4) = {s1s4s3, s2s4s3, s1s4s3s2,
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s1s4s3 s2s4s3

s1s4s3s2 s1s2s4s3 s2s4s3s1

Figure 7. An acyclic matching on Γ(D4)

s1s4s2 s2s4s3

s1s4s2s3 s1s2s4s3

Figure 8. An acyclic matching on Γ(E4)

s2s5s4 s3s5s4

s2s5s4s3 s1s2s5s4 s2s3s5s4 s3s5s4s2 s1s3s5s4

s1s2s5s4s3 s3s5s4s2s1s1s2s3s5s4s1s3s5s4s2

Figure 9. An acyclic matching on Γ(E5)

s1s2s4s3, s2s4s3s1}. Here, an acyclic matching on Γ(D4) is depicted in
Figure 7 where the only critical cell is s2s4s3s1.

Type E. We proceed in a similar way as in types A, B, D above. We
start with the ordered system of type E as in Figure 1 where E6, E7, and
E8 are path extensions of E6. The hypotheses are readily checked by
observing that Γ(E3) = ∅, Γ(E4) = {s2s4s3, s1s4s2, s1s2s4s3, s1s4s2s3}
see Figure 8, and Γ(E5) is as depicted in Figure 9 where an acyclic
matching on Γ(E5) with one critical cell, s3s5s4s2s1, is indicated.

Type H. The results in type H are the same as in type B by Lemma
2.22. �

Some concluding remarks are in order:
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First, the previous theorem concerns irreducible groups, but reducible
groups are easily covered. Namely, taking products of Coxeter systems
is readily seen to imply taking the join of their corresponding boolean
complexes of involutions.

Second, there is of course nothing that prevents extending the ap-
proach of the previous proof to path extensions which are not finite.
For example, F̃4 is a path extension of F4 and ∆inv(F̃4) is homotopy
equivalent to S4, Ẽ8 is a path extension of E8 and ∆inv(Ẽ8) is homotopy
equivalent to S8, etc.

Third, just as we did for type H in the proof above, we may ap-
ply Lemma 2.22 to obtain results for more Coxeter systems without
additional effort.

Let us end with the natural question: Does the above result extend
to all Coxeter systems? That is, is ∆inv(W ) homotopy equivalent to a
wedge of spheres of dimension |S| − 1 for every system (W,S)?
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