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Abstract. Let W be a finite Coxeter group. For a given w ∈ W , the following
assertion may or may not be satisfied:

(∗) The principal Bruhat order ideal of w contains as many elements as there

are regions in the inversion hyperplane arrangement of w.

We present a type independent combinatorial criterion which characterises the
elements w ∈ W that satisfy (∗). A couple of immediate consequences are
derived:

(1) The criterion only involves the order ideal of w as an abstract poset. In
this sense, (∗) is a poset-theoretic property.

(2) For W of type A, another characterisation of (∗), in terms of pat-
tern avoidance, was previously given in collaboration with Linusson,
Shareshian and Sjöstrand. We obtain a short and simple proof of that
result.

(3) If W is a Weyl group and the Schubert variety indexed by w ∈ W is
rationally smooth, then w satisfies (∗).

1. Introduction

Let n be a positive integer. Given indices 1 ≤ i < j ≤ n, define a hyperplane

Hi,j = {(x1, . . . , xn) ∈ R
n | xi = xj}.

The arrangement of all such hyperplanes

An = {Hi,j | 1 ≤ i < j ≤ n}

is known as the braid arrangement. The orthogonal reflections in the hyperplanes
Hi,j generate a finite reflection group isomorphic to the symmetric group Sn; a
natural isomorphism is given by associating a reflection through Hi,j with the
transposition (i, j) ∈ Sn.

Given a permutation w ∈ Sn, we define its inversion arrangement as the follow-
ing subarrangement of An:

Aw = {Hi,j | 1 ≤ i < j ≤ n, w(i) > w(j)}.

In particular, Aw0
= An, where w0 ∈ Sn is the reverse permutation i 7→ n + 1− i.

The inversion arrangement Aw cuts the ambient space into a set reg(w) of re-
gions, a region being a connected component of the complement Rn \ ∪Aw.

Let [·, ·] denote closed intervals in the Bruhat order on Sn (the definition of which
is recalled in Section 2). Postnikov [13] discovered a numerical relationship between
reg(w) and the Bruhat order ideal [e, w], where e ∈ Sn is the identity permutation.
When w is a Grassmannian permutation, he proved that the sets are equinumerous;
both are in 1-1 correspondence with certain cells in a CW decomposition of the
totally nonnegative Grassmannian. For arbitrary w, he conjectured the following
results that were subsequently proven in [8]:
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(A) For all w ∈ Sn, #reg(w) ≤ #[e, w].
(B) Equality holds in (A) if and only if w avoids the patterns 4231, 35142, 42513

and 351624.

The reader who is not familiar with the terminology employed in (B) may find an
explanation in Section 4.

We have just defined Aw using Sn-specific language. It is, however, completely
natural to replace Sn by an arbitrary finite Coxeter group W and consider Aw,
reg(w) and [e, w] for any w ∈W ; see Section 2 for details of the definitions. In fact,
it was not (A) but the following result which was established in [8]:

(A′) Given a finite Coxeter group W and any w ∈ W , #reg(w) ≤ #[e, w].

This generalises (A),1 but notice that there is no statement (B′). Indeed, the
problem of how to characterise those w ∈ W for which equality holds in (A′) was
posed as [8, Open problem 10.3]. Such a characterisation is the main result of the
present paper. The precise assertion is stated in Theorem 3.2. It essentially says
that equality holds in (A′) if and only if the following property is satisfied for every
u ≤ w: among all paths of shortest length from u to w in the Cayley graph of W

(with edges generated by reflections), there is one which visits vertices in order of
increasing Coxeter length.

A number of consequences are derived from the main result:
First, we conclude that the characterising property is poset-theoretic. That is,

whether or not equality holds in (A′) can be determined by merely looking at [e, w]
as an abstract poset.

Second, we give a new proof of the difficult direction of (B). In [8], (A′) was
proven by exhibiting an injective map φ from (essentially) reg(w) to [e, w]. Thus,
proving (B) amounts to characterising surjectivity of φ in terms of pattern avoidance
when W = Sn. That surjectivity implies the appropriate pattern avoidance is a
reasonably straightforward consequence of the construction of φ; see [8, Section 4].
Contrastingly, the proof of the converse statement given in [8, Section 5] is a direct,
fairly involved, counting argument which does not use φ at all. In light of our
Theorem 3.2, surjectivity of φ can now, however, be related to pattern avoidance
in a rather straightforward way.

Third, when W is a Weyl group, each element w ∈W corresponds to a Schubert
variety X(w). We derive from Theorem 3.2 that equality holds in (A′) whenever
X(w) is rationally smooth. To this end, we prove a variation of the classical Carrell-
Peterson criteria for rational smoothness which should be of independent interest.
It is to be noted that Oh and Yoo [11] recently derived a stronger q-analogue of
equality in (A′) for rationally smooth X(w).

Here is an outline of the structure of the remainder of the paper. In the next
section we agree on basic notation and concepts related to Coxeter groups. In
particular, the definition of the map φ is recalled from [8]. In Section 3, we establish
our main result. The new proof of (B) is described in Section 4 before we conclude
in Section 5 with the connection to rationally smooth Schubert varieties.

1An explanation of the implication (A′) ⇒ (A) can be found in [8].
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2. Coxeter groups and inversion arrangements

In this section, we recall some properties of finite Coxeter groups. The reader
looking for more information should consult [2] or [9]. We also review parts of [8]
that are needed for subsequent sections.

A finite Coxeter group is generated by a set S of simple reflections subject to
relations of the form s2 = e for all s ∈ S and (ss′)m(s,s′) = e for suitable m(s, s′).
Here, e ∈W is the identity element.

For w ∈W , the Coxeter length ℓ(w) is the smallest k such that w = s1 · · · sk for
some si ∈ S. The expression s1 · · · sk is then called reduced.

The set T of reflections consists of all conjugates of simple reflections, i.e. T =
{wsw−1 | w ∈ W}. The absolute length ℓ′(w) is the smallest k such that t1 · · · tk = w

for some ti ∈ T .
Choose a root system Φ ⊂ Rn for W with set of positive roots Φ+. In an

incarnation of W as a group generated by orthogonal reflections in Euclidean space,
the positive roots are in one-to-one correspondence with the reflections of W ; the
reflecting hyperplane fixed by a reflection is the orthogonal complement of the
corresponding root.

When W is a symmetric group Sn, so that T is the set of transpositions, it is well
known that ℓ′(w) = n − c(w), where c(w) is the number of cycles in the disjoint
cycle decomposition of w. This fact is generalised by the following fundamental
result of Carter which connects the absolute length function with the underlying
geometry.

Theorem 2.1 (Carter [4]). Let W be a finite reflection group. Given w ∈ W , the
following assertions hold.

(a) The codimension of the fixed point space of w equals ℓ′(w).
(b) Given reflections t1, . . . , tm ∈ T , we have ℓ′(t1 · · · tm) = m if and only if

the corresponding roots αt1 , . . . , αtm
∈ Φ+ are linearly independent.

Remark 2.2. A useful consequence is that if there are two minimal factorisa-
tions into reflections t1 · · · tm = r1 · · · rm = w, ℓ′(w) = m, then we must have
span{αt1 , . . . , αtm

} = span{αr1
, . . . , αrm

} since both sides of the equality sign co-
incide with the orthogonal complement of the fixed point space of w.

The Bruhat graph bg(W ) is the Cayley graph of W with edges directed towards
greater Coxeter length. That is, the vertex set is W and we have directed edges
x→ tx for x ∈W , t ∈ T , whenever ℓ(x) < ℓ(tx).

Taking transitive closure of bg(W ) yields the Bruhat order on W . In other words,
u ≤ w if and only if u → · · · → w. The subgraph of bg(W ) which is induced by
the principal order ideal [e, w] = {u ∈ W | u ≤ w} is denoted by bg(w). We refer
to bg(w), too, as a Bruhat graph. An example can be found in Figure 1.

Let al(u, w) denote the distance from u to w in bg(w) (equivalently, in bg(W ))
in the directed, graph-theoretic sense. Thus, al(u, w) is finite precisely when u ≤ w.
Clearly, al(u, w) ≥ ℓ′(uw−1) in general, since the right hand side can be thought of
as the distance from u to w in bg(W ) if we disregard directions of edges.

A convenient characterisation of the Bruhat order can be given in terms of re-
duced expressions:
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Figure 1. The Bruhat graph associated with the permutation
3412 ∈ S4 (one line notation). Disregarding the two curved edges
yields the Hasse diagram of the Bruhat interval [e = 1234, 3412].

Proposition 2.3. Choose a reduced expression s1 · · · sk for w ∈ W . Then, u ≤ w

if and only if u = s1 · · · ŝi1 · · · ŝim
· · · sk for some 1 ≤ i1 < · · · < im ≤ k, where a

hat denotes omission of an element.

The equivalence of these two appearances of the Bruhat order can be derived
from the following fundamental fact.

Proposition 2.4 (Strong exchange property). If u → w and s1 · · · sk is any ex-
pression for w ∈ W , then u = s1 · · · ŝi · · · sk for some i ∈ [k] = {1, . . . , k}.

For the remainder of this section, s1 · · · sk is a fixed reduced expression for some
w ∈ W , where W is a finite Coxeter group. The inversions of w are the reflections
of the form ti = s1s2 · · · si−1sisi−1 · · · s2s1, i ∈ [k]. The set inv(w) of inversions of
w is independent of the choice of reduced expression.

Let αi ∈ Φ+ be the root corresponding to ti, and denote by Hi = α⊥

i the
associated hyperplane. The inversion arrangement of w is

Aw = {H1, . . . , Hk}.

The connected components of the complement of ∪Aw are called regions of Aw.
The set of such regions is denoted by reg(w).

At the heart of [8] one finds the construction of an injective map reg(w) →
[e, w]. (More accurately, the domain of the map is not reg(w), but a set which is
equinumerous with reg(w).) We shall study this map further in the present paper,
so we review it here. For convenience, we deviate slightly from the presentation in
[8], but the formulations are equivalent via standard facts from matroid theory.

It is convenient to order positive roots that correspond to inversions of w with re-
spect to the indices. For example, {αi1 < · · · < αim

} indicates the set {αi1 , . . . , αim
}

under the assumption 1 ≤ i1 < · · · < im ≤ k.
A circuit is a minimal linearly dependent set X = {αi1 < · · · < αim

} ⊆ Φ+

of positive roots corresponding to inversions of w in the manner described above.
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If X is a circuit, {αi1 < · · · < αim−1
} is a broken circuit.2 If Y ⊆ {α1, . . . , αk}

does not have a subset which is a broken circuit, say that Y is an NBC set. We
denote the family of NBC sets by NBC(w), although it of course depends not only
on w but also on the choice of reduced expression s1 · · · sk. The point is that
#reg(w) = #NBC(w). This well known fact follows for instance by combining
two different interpretations of the characteristic polynomial of Aw evaluated at
−1. The reg(w) part of the story is due to Zaslavsky [16] whereas the NBC(w)
connection in this generality was presented by Rota [14]. A more thorough account
of these matters can be found e.g. in [12].

Definition 2.5. Construct a map φ : NBC(w) → [e, w] by {αi1 < · · · < αim
} 7→

ti1 · · · tim
w.

Proving statement (A′), it was shown in [8] that φ always is well defined and
injective.

3. A surjectivity characterisation

Maintain the notation of the previous section. Thus, we keep fixed a finite
Coxeter group W , an element w ∈ W with a reduced expression s1 · · · sk and
corresponding inversions ti with their associated positive roots αi, i ∈ [k].

In this section, we determine when the map φ is surjective. The image of φ is
dependent on the choice of reduced expression for w, but the cardinality of the
image is not, since it coincides with #reg(w). Thus, whether or not φ is surjective
depends solely on the element w.

The next lemma is the main source from which this paper flows.

Lemma 3.1. Assume al(u, w) = ℓ′(uw−1) for all u ≤ w. For fixed u ≤ w, let
m = al(u, w) and pick the lexicographically maximal sequence (im, . . . , i1) such that
u = s1 · · · ŝi1 · · · ŝim

· · · sk.
3 Then, {αi1 < · · · < αim

} ∈ NBC(w).

Proof. Suppose u is such that the indices 1 ≤ i1 < · · · < im ≤ k yield a coun-
terexample with m minimal. This minimality implies that if (jm−1, . . . , j1) is lexi-
cographically maximal such that s1 · · · ŝj1 · · · ŝjm−1

· · · sk = s1 · · · ŝi1 · · · ŝim−1
· · · sk,

then {αj1 < · · · < αjm−1
} ∈ NBC(w).

If jm−1 = im, then uw−1 = tj1 · · · tjm−2
and, consequently, ℓ′(uw−1) ≤ m − 2

which is a contradiction. Thus, jm−1 6= im.
Define V = span{αi1 , . . . , αim

}. By Carter’s result (Theorem 2.1), dimV = m.
Let

n = max{i ∈ [k] | αi ∈ V }.

We claim that n > im. If jm−1 > im, this is immediate since αjm−1
∈ V by Remark

2.2. If, on the other hand, jm−1 < im, we have ix = jx for all x ∈ [m − 1] by
maximality of (im, . . . , i1). Any broken circuit which is a subset of {αi1 , . . . , αim

}
therefore contains αim

. By assumption, such a broken circuit exists, and the claim
is established.

Having concluded n > im, observe uw−1tnw = s1 · · · ŝi1 · · · ŝim
· · · ŝn · · · sk ≤ w.

Again by Carter’s result, ℓ′(uw−1tn) ≤ m. Multiplication by a reflection changes
the absolute length by exactly one, so we conclude ℓ′(uw−1tn) = m − 1. Thus,

2Note that a broken circuit is a circuit missing its largest element. This convention is backwards
compared to common matroid terminology but convenient for our purposes.

3By the strong exchange property, such a sequence exists.
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uw−1tn = ta1
· · · tam−1

for some NBC set {αa1
< · · · < αam−1

} ⊂ V . By Remark

2.2, V = span{αa1
, . . . , αam−1

, αn}. Thus, am−1 < n and the fact that uw−1 =
ta1
· · · tam−1

tn therefore contradicts maximality of the sequence (im, . . . , i1). �

The desired characterisation is now within reach. For symmetric groups, it was
established in [8, Theorem 6.3]. The general case answers [8, Open problem 10.3].

Theorem 3.2. The map φ : NBC(w)→ [e, w] is surjective, hence bijective, if and
only if al(u, w) = ℓ′(uw−1) for all u ≤ w.

Proof. The only if part is a direct consequence of the following “going-down prop-
erty” of φ ([8, Proposition 6.2]): if φ is surjective, then the NBC set φ−1(u) =
{αi1 < · · · < αim

}, m = ℓ′(uw−1), corresponds to reflections ti1 , . . . , tim
∈ T such

that tij−1
· · · tim

w→ tij
· · · tim

w for all j. This immediately implies al(u, w) = m.
Under the assumption al(u, w) = ℓ′(u, w) for all u ≤ w, Lemma 3.1 provides a

preimage φ−1(v) for any v ≤ w, thereby establishing the if direction. �

When looking for a shortest path, in the undirected sense, from u to w in the
Bruhat graph, we a priori have to consider all of bg(W ). Fortunately, the situation
is simpler than that; the next lemma implies, in particular, that an undirected path
from u to w of length ℓ′(uw−1) can be found inside bg(w) if u ≤ w.

Lemma 3.3. Given any u, w ∈ W , there exists an element v ≤ u, w such that
al(v, w) + al(v, u) = ℓ′(uw−1).

Proof. The Bruhat subgraph induced by a coset corresponding to a reflection sub-
group D = 〈t1, t2〉 ⊆ W , where t1, t2 ∈ T , is isomorphic to the Bruhat graph
of the dihedral Coxeter group which is isomorphic to D [5]. The simple struc-
ture of such Bruhat graphs shows that whenever x → y ← z, there exists some
y′ with x ← y′ → z. This implies that, in the Bruhat graph bg(W ), among all
(not necessarily directed) paths from u to w of fixed length l, those that are mini-
mal with respect to the sum of the Coxeter lengths of the vertices are of the form
u = x0 ← x1 ← · · · ← xk → xk+1 → · · · → xl = w for some 0 ≤ k ≤ l. If we let
l = ℓ′(uw−1), v = xk is an element with the prescribed properties. �

As an example, one readily verifies that the directed distance from any vertex
to the top element always coincides with the undirected distance in Figure 1. By
Theorem 3.2 and Lemma 3.3, we may therefore conclude that φ is surjective when
w = 3412 ∈ S4. This, of course, is also immediate from the pattern avoidance
condition in statement (B).

An interesting consequence is that #reg(w) = #[e, w] is a combinatorial property
of the poset [e, w]. In the symmetric group setting, this was established in [8,
Corollary 6.4].

Theorem 3.4. If w, w′ ∈ W satisfy #reg(w) = #[e, w] and #reg(w′) < #[e, w′],
then [e, w] 6∼= [e, w′] as posets.

Proof. Dyer [5] has shown that the Bruhat graph bg(w) is determined by the com-
binatorial structure of [e, w]. By Lemma 3.3, it is therefore possible to determine
from the poset structure of [e, w] whether or not al(u, w) = ℓ′(uw−1) for all u ≤ w.
Invoking Theorem 3.2, that is sufficient for deciding whether φ is surjective. �
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Figure 2. A set of dots forming the diagram of the permutation
235164 ∈ S6. The right hull rh(235164) consists of the non-shaded
squares.

4. The symmetric group case revisited

We interpret composition of permutations from left to right. That is, uw(i) =
w(u(i)) for u, w ∈ Sn, i ∈ [n].4

For permutations p ∈ Sm and w ∈ Sn, say that w contains the pattern p if there
exist indices 1 ≤ i1 < · · · < im ≤ n such that for all 1 ≤ j < k ≤ m, p(j) < p(k) if
and only if w(ij) < w(ik). If w does not contain the pattern p, it avoids p.

If w ∈ Sn avoids the patterns 4231, 35142, 42513 and 351624, then #[e, w] =
#reg(w). This is the difficult direction of statement (B); the fairly involved proof
given in [8] is based on deriving a common recurrence relation for #[e, w] and
#reg(w) and does not use any properties of the map φ. Finding a direct proof of
surjectivity of φ was formulated as [8, Open problem 10.1]. The purpose of this
section is to derive such a proof from the results of the previous section.

We shall use a characterisation of the permutations that avoid the four patterns
which is due to Sjöstrand [15]. To this end, define the diagram of a permutation
w ∈ Sn as the set diag(w) = {(i, w(i)) | i ∈ [n]} ⊂ [n]2. We think of it as a set of
dots on an n× n chessboard with matrix conventions for row and column indices,
so that, for instance, (1, 1) is the upper left square.

Definition 4.1. Given w ∈ Sn, the right hull rh(w) is the subset of [n]2 which
consists of those (i, j) such that each of the rectangles {(x, y) | x ≤ i, y ≥ j} and
{(x, y) | x ≥ i, y ≤ j} has nonempty intersection with diag(w).

These concepts are illustrated in Figure 2.
For w ∈ Sn and i, j ∈ [n], let

w[i, j] = #{x ∈ [n] | x ≤ i, w(x) ≥ j}.

The Bruhat order on a symmetric group has the following convenient characterisa-
tion, a proof of which can be found e.g. in [2]:

Proposition 4.2. For u, w ∈ Sn, u ≤ w if and only if u[i, j] ≤ w[i, j] for all
i, j ∈ [n].

Taking into account that 180◦ diagram rotation yields a Bruhat order automor-
phism, Proposition 4.2 makes it clear that u ≤ w implies diag(u) ⊆ rh(w). We are
interested in the permutations w that satisfy the converse.

4When W = Sn, this makes our concept of inversions (defined in Section 2) coincide with that
which is standard for permutations. Composing from right to left would require minor adjustments
in the proofs, but not in the results.
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Theorem 4.3 (Sjöstrand [15]). For w ∈ Sn, the following are equivalent:

• w has the right hull property, meaning [e, w] = {u ∈ Sn | diag(u) ⊆ rh(w)}.
• w avoids 4231, 35142, 42513 and 351624.

This section is motivated by the desire to find a simple new proof of (B), so
since we are going to use Theorem 4.3 in that process, it is relevant to note that
Sjöstrand’s proof (in part based on ideas of Gasharov and Reiner [7]) is both elegant
and conceptual.

In light of Theorem 4.3 and our main result, the if part of (B) now is equivalent
to the following statement:

Lemma 4.4. If w ∈ Sn has the right hull property, then al(u, w) = ℓ′(uw−1) for
all u ≤ w.

Proof. Assume w has the right hull property and pick u < w. To argue by induction,
it suffices to find a transposition t ∈ T such that u → tu ≤ w and ℓ′(uw−1) =
ℓ′(tuw−1) + 1.

Choose a nontrivial cycle c in the disjoint cycle decomposition of uw−1. Then,
cw < w because every dot in the diagram of cw also appears either in the diagram
of w or in that of u, both of which are contained in rh(w).

Let supp(c) = {i1 < · · · < im} ⊆ [n] denote the set of non-fixed elements of c.
Defining

Sc = {x ∈ Sn | x(i) = w(i) for all i 6∈ supp(c)},

we thus have w, cw ∈ Sc. A natural bijection Sc → Sm, denoted x 7→ x̃, is
constructed as follows. Starting with diag(x), obtain diag(x̃) by considering only
rows indexed by supp(c) and columns indexed by w(supp(c)). Proposition 4.2 shows
that this correspondence is a Bruhat order isomorphism.

We have c̃w < w̃. There is some transposition x̃ ∈ Sm such that c̃w → x̃c̃w ≤ w̃.
Observe that x̃c̃w = t̃cw for some transposition t ∈ Sn with supp(t) ⊆ supp(c).
Thus, tuw−1 has one more cycle than uw−1 does (the cycle c of uw−1 is “split”
upon multiplication by t). It follows that t has the desired properties. �

For convenience, let us record as a theorem the various equivalent conditions
that have made appearances in this section.

Theorem 4.5. Given a permutation w ∈ Sn, the following assertions are equiva-
lent:

(i) #reg(w) = #[e, w].
(ii) w has the right hull property.
(iii) w avoids the patterns 4231, 35142, 42513 and 351624.
(iv) al(u, w) = ℓ′(uw−1) for all u ≤ w.

Proof. Theorem 3.2 shows (i) ⇔ (iv), the equivalence (ii) ⇔ (iii) is Sjöstrand’s
Theorem 4.3, (ii) ⇒ (iv) is Lemma 4.4 and, finally, (i) ⇒ (iii) is the less tricky
direction of (B); see [8, Theorem 4.1]. �

Remark 4.6. A fifth equivalent assertion, which has not been used in this section,
was given by Gasharov and Reiner in [7]. They showed that w ∈ Sn satisfies
condition (iii) of Theorem 4.5 if and only if the type A Schubert variety indexed by w

is “defined by inclusions” (see [7] for the definition). Moreover, they discovered that
these varieties admit a particularly nice cohomology presentation. It would be very
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interesting to understand more explicitly how the other equivalent conditions are
connected to this picture. Regarding the type independent conditions (i) and (iv),
this could perhaps lead to interesting cohomological information about Schubert
varieties of other types.

5. Rational smoothness implies surjectivity

Suppose W is a Weyl group of a semisimple simply connected complex Lie group
G. Then, W is a finite Coxeter group whose elements index the Schubert varieties
in the (complete) flag variety of G. A lot of work has been devoted to understanding
how singularities of Schubert varieties are reflected by combinatorial properties of
W . A good general reference is [1].

Oh, Postnikov and Yoo established in [10] that when W is a symmetric group,
a q-analogue of the equality #reg(w) = #[e, w] holds whenever the corresponding
Schubert variety is rationally smooth. The same property was conjectured for all
Weyl groups W . Recently, Oh and Yoo [11] presented a proof of this conjecture.

In this section, we shall see that the q = 1 case, i.e. the actual identity #reg(w) =
#[e, w], of Oh and Yoo’s result is a simple consequence of Theorem 3.2. In the
process, we formulate a combinatorial criterion (Theorem 5.3 below) for detecting
rational singularities of Schubert varieties.

Let X(w) denote the Schubert variety indexed by w ∈ W . For the purposes of
the present paper, the following classical criterion could be taken as the definition
of X(w) being rationally smooth.

Theorem 5.1 (Carrell-Peterson [3]). The variety X(w) is rationally smooth if and
only if the Bruhat graph bg(w) is regular, i.e. has equally many edges (disregarding
directions) incident with each vertex.

For instance bg(3412), depicted in Figure 1, is not regular. Hence, X(3412) is
not rationally smooth.

If w ∈W is understood from the context and u ≤ w, let

E(u) = {t ∈ T | tu ≤ w}.

Thus, E(u) can be thought of as the set of edges incident to u in bg(w). Define
deg(u) = #E(u). Since E(w) = inv(w), deg(w) = ℓ(w). Hence, bg(w) is regular if
and only if it is ℓ(w)-regular.

Definition 5.2. Suppose x, y, z ≤ w. We say that [e, w] contains the broken rhom-
bus (x, y, z) if the following conditions are satisfied:

(i) x← y → z.
(ii) There is some v ∈W with x→ v ← z.
(iii) If x→ v ← z, then v 6≤ w.

Returning to Figure 1, several broken rhombi can be found in [e, 3412]. One is
given by (2314, 1324, 1342), another is (1432, 1234, 2134).

The following rational smoothness criterion can be easily derived from the main
result of Dyer’s manuscript [6]; thanks are due to an anonymous referee for directing
us to that reference. We state here a direct proof based on Theorem 5.1.

Theorem 5.3. The Schubert variety X(w) is rationally smooth if and only if [e, w]
contains no broken rhombi.
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Proof. For a fixed reflection t ∈ T , we partition T \ {t} in the following way. For
r ∈ T \ {t}, let

Ct(r) = f−1
(
span({αr, αt}) ∩ Φ+

)
,

where f : T → Φ+ is the natural 1–1 correspondence r 7→ αr between reflections
and positive roots. In other words, Ct(r) consists of all reflections that correspond
to roots in the plane spanned by αt and αr, and 〈Ct(r)〉 is a dihedral reflection
subgroup of W . Now, {Ct(r) \ {t} | r ∈ T \ {t}} is a partition of T \ {t}.

Any subgroup of W generated by reflections is a Coxeter group in its own right
with a canonically defined set of Coxeter generators [5]. As was mentioned in the
proof of Lemma 3.3, there is an isomorphism of directed graphs from the subgraph
of bg(W ) induced by a coset 〈Ct(r)〉u to the Bruhat graph of the dihedral Coxeter
group D ∼= 〈Ct(r)〉. The image of [e, w] ∩ 〈Ct(r)〉u is a Bruhat order ideal I in D.
The special structure of dihedral Bruhat intervals shows that either the number
of elements of odd respectively of even lengths in I are equal, or they differ by
one. Assuming I contains at least two elements, in the former case I has a unique
maximum and in the latter it has two maximal elements m1 6= m2 of the same
Coxeter length. In this case, let x and z be the preimages of m1 and m2, respectively,
and choose y ∈ 〈Ct(r)〉u such that x← y → z. Then, Dyer’s [5, Lemma 3.1] shows
that x → v ← z implies v ∈ 〈Ct(r)〉u. Thus, (x, y, z) forms a broken rhombus in
[e, w].

Observe that in the Bruhat graph of a dihedral group, u and v are adjacent if
and only if ℓ(u) and ℓ(v) have different parity.

Suppose tu → u ≤ w, t ∈ T . If [e, w] contains no broken rhombi, the above
considerations show that |E(u) ∩ Ct(r)| = |E(tu) ∩ Ct(r)| for all r ∈ T \ {t}. Thus,
deg(tu) = deg(u) so that in fact all vertices in [e, w] have degree deg(w), and X(w)
is rationally smooth by the Carrell-Peterson criterion.

For the converse statement, assume (x, y, z) is a broken rhombus in [e, w] with
ℓ(y) maximal. Let t = xy−1 and r = zy−1. Then, y has one more neighbour
in 〈Ct(r)〉y than x does. That is, |E(y) ∩ Ct(r)| = |E(x) ∩ Ct(r)| + 1. Moreover,
by maximality of y, there is no r′ ∈ T with |E(y) ∩ Ct(r

′)| = |E(x) ∩ Ct(r
′)| − 1.

Therefore deg(y) > deg(x), implying that X(w) is rationally singular. �

With this criterion and Theorem 3.2 at our disposal, the q = 1 case of Oh and
Yoo’s result is little more than an observation:

Corollary 5.4. The map φ is surjective, hence bijective, if X(w) is rationally
smooth.

Proof. Suppose φ is not surjective. Assume z ≤ w is such that al(z, w) > ℓ′(zw−1)
and ℓ′(zw−1) is minimal among all z with this property. By Lemma 3.3, there
exist x, y ≤ w such that x← y → z and ℓ′(xw−1) = ℓ′(yw−1) − 1 = ℓ′(zw−1) − 2.
Now, x→ v ← z implies v 6≤ w; otherwise a directed path of length al(v, w) + 1 =
ℓ′(vw−1)+1 ≤ ℓ′(xw−1)+2 would exist from z to w, contradicting the assumptions.
Hence, (x, y, z) is a broken rhombus. Theorem 5.3 concludes the proof. �
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