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AXEL HULTMAN

Abstract. A zircon is a poset in which every principal order ideal is finite
and equipped with a so-called special matching. We prove that the subposet
induced by the fixed points of any automorphism of a zircon is itself a zircon.
This provides a natural context in which to view recent results on Bruhat
orders on twisted involutions in Coxeter groups.

1. Background and results

Let P be a partially ordered set (poset). A matching on P is an involution
M : P → P such that M(p) C p or p C M(p) for all p ∈ P , where C denotes the
covering relation of P . In other words, M is a graph-theoretic (complete) matching
on the Hasse diagram of P .

Definition 1.1. Suppose M is a matching on a poset P . Then, M is called special
if for all p, q ∈ P with p C q, we either have M(p) = q or M(p) < M(q).

The term “special matching” was coined by Brenti [3, 4]. In the context of an
Eulerian poset, a special matching is another way to think of a compression labelling
as defined by du Cloux [6].

Definition 1.2. A poset P is a zircon if for any non-minimal element x ∈ P , the
subposet induced by the principal order ideal {p ∈ P | p ≤ x} is finite and has a
special matching.

Zircons were defined by Marietti in [12]. Actually, his definition differs somewhat
from ours, but Proposition 2.3 below shows that they are equivalent. We have
chosen to use our definition because it is typically more convenient to check the
finiteness condition in Definition 1.2 rather than finding a rank function as required
by the definition in [12].

The motivation to introduce zircons comes from the fact that they mimic the
behaviour of Coxeter groups ordered by the Bruhat order. More precisely, the
Bruhat order ideal below a non-identity element w in a Coxeter group has a special
matching given by multiplication with any descent of w. The finiteness condition in
Definition 1.2 is trivially satisfied, implying that the Bruhat order on any Coxeter
group is a zircon.

In this note, we study the fixed points of automorphisms of zircons. Our main
results are the next theorem and its corollary. The proofs are postponed to Section
2.

Say that a poset is bounded if it has unique maximal and minimal elements.

Theorem 1.3. Suppose P is a finite, bounded poset equipped with a special match-
ing M . Let φ be an automorphism of P . Then, the subposet of P induced by the
fixed points of φ has a special matching.
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Corollary 1.4. The fixed points of any automorphism of a zircon induce a subposet
which is itself a zircon.

Now, we briefly describe our reasons for being interested in results of this kind.
We refer to [11] or [1] for a thorough account of the theory of Coxeter groups and
their Bruhat orders.

Let (W,S) be a finitely generated Coxeter system. For X ⊆ W , let Br(X) denote
the subposet of the Bruhat order on W which is induced by X. A fundamental
result due to Björner and Wachs [2] asserts that the (order complexes1 of the) open
intervals in Br(W ) are homeomorphic to spheres.

An interesting subposet of Br(W ) is induced by the involutions in W . More
generally, if θ : W → W is an involutive group automorphism which preserves the
generating set S, the set of twisted involutions is

I(θ) = {w ∈ W | θ(w) = w−1}.
The ordinary involutions are obtained by taking θ to be the trivial automorphism.
Richardson and Springer [15, 16] showed that Br(I(θ)) is of importance to the study
of orbit decompositions of certain symmetric varieties.

In [10] it was shown that Br(I(θ)), just as Br(W ), has the property that every
open interval is a sphere. The method of proof was to show that Br(I(θ)), too, is a
zircon (although this terminology was not used), and then observing that a result
of Dyer [7] implies that every open interval in any zircon is homeomorphic to a
sphere.

Earlier, another approach to the topology of Br(I(θ)) was followed in [9] where
it was observed that Br(I(θ)) is the subposet of Br(W ) induced by the fixed points
of the involutive poset automorphism given by w 7→ θ(w−1). Invoking Smith theory
on automorphisms of spheres [17], this permitted the conclusion that the intervals
in Br(I(θ)) are homology spheres over the integers modulo 2.

To summarise, we have a zircon (namely Br(W )) whose intervals are spheres.
We construct an involution on it whose induced subposet of fixed points (namely
Br(I(θ))) also turns out to form a zircon. Therefore, the intervals in this fixed point
poset are not only Z2-homology spheres (as implied by Smith theory) but actual
spheres.

Corollary 1.4 explains this behaviour by showing that, in fact, any automorphism
of any zircon has a zircon as induced fixed point poset.

Remark 1.5. Let θ and W be as above. Then, θ is a poset automorphism of
Br(W ). Moreover, it is known [8, 13, 18] that the fixed points Fix(θ) themselves
form a Coxeter group. It was shown in [9], and independently by Nanba [14],
that the subposet of Br(W ) induced by Fix(θ) coincides with the Bruhat order on
Fix(θ). In particular, this is another situation where the fixed points of a zircon
automorphism are known to form a zircon.

2. Proofs

The next lemma provides an extremely useful tool when dealing with posets with
special matchings. For Bruhat orders it was established by Deodhar [5, Theorem
1.1]. Brenti [4, Lemma 4.2] proved the general case under the assumption that P

1The order complex of a poset is the (abstract) simplicial complex whose simplices are the
totally ordered subsets.
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is graded. This assumption is, however, not essential to the proof. For the reader’s
convenience, we restate Brenti’s proof with slight adjustments.

A poset is locally finite if every interval is finite.

Lemma 2.1 (Lifting property). Suppose P is a locally finite poset with a special
matching M . Choose x, y ∈ P with x < y and M(y) < y. Then,

(i) M(x) ≤ y.
(ii) M(x) < x ⇒ M(x) < M(y).

Proof. We proceed by induction on the length of a shortest non-refinable chain c in
[x, y], both statements following directly from the definition of special matchings if
x C y.

For the first assertion, we may assume M(x) > x. Choose z ∈ c such that x C z.
If M(x) = z, we are done. Otherwise, we have M(z) > M(x) since M is a special
matching. By the induction assumption, we may therefore conclude M(z) ≤ y, so
that M(x) ≤ y.

To prove the second claim, suppose M(x) < x. Pick z ∈ c with z C y. In case
M(y) = z, there is nothing to prove. Otherwise, because M is special, M(z) <
M(y). Moreover, M(z) < z since otherwise we would have z < M(z) < M(y) <
y contradicting the choice of z. By induction, M(x) < M(z), and the proof is
complete. ¤

We are now ready to prove the main results.

Proof of Theorem 1.3. The automorphism φ is of finite order N since it is a per-
mutation of a finite set. Each automorphism φk, k ∈ [N ] = {1, . . . , N}, transforms
M into a special matching Mk on P . In particular, M = MN .

Given p ∈ P , let

C(p) = {q ∈ P | q = Mit ◦Mit−1 ◦ · · · ◦Mi1(p) for some i1, . . . , it ∈ [N ]}.
In other words, C(p) consists of the elements in the same connected component as
p in the graph we obtain from the Hasse diagram of P by throwing away the edges
that are not used by any of the matchings Mk. By abuse of notation, we also let
C(p) denote the subposet of P induced by this set.

Given q ∈ C(p), we may write q = Mit ◦ · · · ◦Mi1(p) for suitably chosen ij ∈ [N ].
Now define q′ ∈ C(p) by q′ = M ′

it
◦ · · · ◦M ′

i1
(p), where we recursively have defined

M ′
ij

=

{
Mij if Mij ◦M ′

ij−1
· · · ◦M ′

i1
(p) < M ′

ij−1
◦ · · · ◦M ′

i1
(p),

id otherwise.

For brevity, define aj = Mij ◦ · · · ◦Mi1(p) and a′j = M ′
ij
◦ · · · ◦M ′

i1
(p). We claim

that a′j ≤ aj for all j ∈ {0, . . . , t}. To see this, we assume by induction that
a′j−1 ≤ aj−1. If aj > aj−1, the desired conclusion is immediate. Otherwise, we
either have a′j = Mij (a

′
j−1) or a′j = a′j−1. In the former case, a′j ≤ aj by the lifting

property. In the latter, we may apply the lifting property with (using the notation
of Lemma 2.1) x = Mij (a

′
j−1) and y = aj−1, again concluding a′j ≤ aj . The claim

is established. In particular, q′ ≤ q.
By construction, p ≥ q′. Furthermore, if q is a minimal element in C(p), we

have q = q′. Thus, C(p) has a unique minimal element. A completely analogous
argument, where we reverse the inequality in the definition of M ′

ij
, shows that C(p)

also has a unique maximal element. Moreover, the same line of reasoning shows
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that if p is neither minimal nor maximal in C(p), then there exist i, j ∈ [N ] such
that Mi(p) C p and Mj(p) B p.

Let Pφ be the subposet of P induced by the fixed points of φ. Any p ∈ Pφ is
either minimal or maximal in C(p), because Mi(p) C p either holds for all i or for
none of the i. Furthermore, for any given p ∈ P , min C(p) belongs to Pφ if and
only if max C(p) does; this happens if and only if φ(C(p)) = C(p).

Assume p ∈ Pφ is the maximal element in C(p), and let q ∈ Pφ denote the
minimal element in C(p). We claim that p covers q in Pφ. Indeed, suppose r < p
for some r ∈ Pφ with r = min C(r). Choose an expression q = Mit ◦ · · · ◦Mi1(p)
with t as small as possible. Repeated application of the lifting property shows
Mij ◦ · · · ◦Mi1(p) ≥ r for all j ∈ [t]. Hence, q ≥ r. A similar argument shows that
if q < r and r = maxC(r), then r ≥ p. The claim is established.

The above shows that we have a well-defined matching Mφ on Pφ given by

Mφ(p) =

{
min C(p) if p = max C(p),
maxC(p) otherwise.

It remains to show that Mφ is special, so suppose p covers q in Pφ. First, we
assume p = max C(p). If min C(p) = q, there is nothing to show. Otherwise, q =
maxC(q) as was shown above. In this case, the above argument shows min C(p) >
min C(q), i.e. Mφ(p) > Mφ(q) as required. The situation when p = min C(p) is
completely analogous. ¤

Corollary 1.4 is now straightforward to establish.

Proof of Corollary 1.4. Let P be a zircon. Choose a non-minimal p ∈ P . The
principal order ideal P≤p = {q ∈ P | q ≤ p} contains a unique minimal element
min P≤p. To see this, choose a special matching M on P≤p. If p0 ∈ P≤p is minimal,
then p0 < M(p0) ≤ p and p0 ≤ M(p) by the lifting property. Therefore, if P≤p

would contain more than one minimal element, the same would be true for P≤M(p).
Thus, we would obtain an infinite descending sequence in P≤p contradicting its
finiteness.

Choose an automorphism φ of P , and let Pφ denote the subposet of P induced
by the fixed points. If p ∈ Pφ, then min P≤p ∈ Pφ, too. Thus, the principal order
ideal Pφ

≤p coincides with the fixed point set of the restriction of φ to the interval
[minP≤p, p]. By Theorem 1.3, Pφ

≤p has a special matching. ¤

Earlier, we claimed that our definition of zircons coincides with the one given by
Marietti. We conclude by verifying this assertion.

A poset P is ranked if there is a rank function ρ : P → N satisfying ρ(x) = ρ(y)−1
whenever x C y.

Definition 2.2 (Marietti [12]). A zircon is a locally finite, ranked poset in which
every non-trivial principal order ideal has a special matching.

Proposition 2.3. Definition 1.2 and Definition 2.2 define the same class of posets.

Proof. In this proof, say that a poset satisfying Definition 1.2 is of the first kind,
whereas Definition 2.2 defines posets of the second kind.

First, suppose P is of the second kind. It was shown in [12] that the principal
order ideals in P are intervals, i.e. have unique minimal elements. They are finite
since P is locally finite. Hence, P is of the first kind.
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For the converse, we now assume P to be of the first kind. Since every interval
is contained in a principal order ideal, P is locally finite. To show that P is ranked,
it suffices to verify that for any p ∈ P , the maximal chains in P≤p all have the same
length.

Assume, in order to deduce a contradiction, that P≤p is a minimal non-ranked
principal order ideal. Let M be a special matching on P≤p. Choose q C p such that
the maximal chains in P≤q differ in length from those in P≤M(p). Since M(q) <
M(p), this implies that there is some z with M(q) C z < M(p). By the lifting
property, M(z) ∈ P≤p. However, this means that q 6< M(z), contradicting the fact
that M is special. Hence, P is of the second kind. ¤
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