
Formation and Dynamics of

Shock Waves in

the Degasperis-Procesi Equation

H. Lundmark

REPORT No. 26, 2005/2006, fall

ISSN 1103-467X
ISRN IML-R- -26-05/06- -SE+fall

INSTITUT MITTAG-LEFFLER
THE ROYAL SWEDISH ACADEMY OF SCIENCES



Formation and dynamics of shock waves in the

Degasperis–Procesi equation

Hans Lundmark∗

Department of Mathematics
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Abstract

Solutions of the Degasperis–Procesi nonlinear wave equation may de-

velop discontinuities in finite time. As shown by Coclite and Karlsen,

there is a uniquely determined entropy weak solution which provides a

natural continuation of the solution past such a point. Here we study

this phenomenon in detail for solutions involving interacting peakons and

antipeakons. We show that a jump discontinuity forms when a peakon

collides with an antipeakon, and that the entropy weak solution in this

case is described by a “shockpeakon” ansatz reducing the PDE to a system

of ODEs for positions, momenta, and shock strengths.

1 Introduction

The Degasperis–Procesi (DP) equation

mt + mxu + 3mux = 0, m = u − uxx (1.1)

was isolated by Degasperis and Procesi [11] as one of three equations in the
family

ut − α2uxxt + γuxxx + c0ux = (c1u
2 + c2u

2
x + c3uuxx)x (1.2)

satisfying “asymptotic integrability to third order”, a necessary condition for
complete integrability. The other two cases are the KdV equation ut + uux +
uxxx = 0 and the Camassa–Holm (CH) shallow water equation [5]

mt + mxu + 2mux = 0, m = u− uxx, (1.3)

∗Many thanks to the Institut Mittag-Leffler (Djursholm, Sweden) for hospitality and sup-
port during the 2005 Fall program Wave motion, and to the participants for interesting
discussions, in particular Kenneth Karlsen, Nils Henrik Risebro, Yue Liu and Zhaoyang Yin
who kindly provided drafts of their ongoing work.
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both well known to be integrable. Degasperis, Holm and Hone [10] later showed
that the DP equation is integrable as well, by deriving a Lax pair and a bi-
Hamiltonian structure for it. Although the DP equation is similar to the CH
equation in several aspects, there are also important differences, as we shall see.

Peakons

One of the features that has made the CH equation (1.3) famous is that it
admits a class of weak solutions known as peakons. A peakon (peaked soliton)
is a wave of the form u = m0 G(x − x0) where

G(x) = e−|x|. (1.4)

This wave profile corresponds to the momentum m = u − uxx = 2m0 δ(x − x0)
being a discrete measure (δ is the Dirac delta distribution). Such a single
peakon is a travelling wave solution if m0 is constant and x0(t) = x0(0) + m0t,
and it moves to the right if m0 > 0. A peakon with m0 < 0 moves to the left
and is called an antipeakon. The n-peakon solution of the CH equation is a
superposition of interacting peakons,

u(x, t) =

n∑

i=1

mi(t) G(x − xi(t)),

m(x, t) = 2

n∑

i=1

mi(t) δ(x − xi(t)),

(1.5)

whose positions x1(t), . . . , xn(t) and momenta m1(t), . . . , mn(t) are governed by
the system of ODEs

ẋk =

n∑

i=1

mi G(xk − xi), ṁk = −
n∑

i=1

mkmi G′(xk − xi), (1.6)

which is a canonical Hamiltonian system with H = 1
2

∑
i,j mimjG(xi − xj).

Here the value zero is assigned to the otherwise undetermined derivative G′(0),
so that

G′(x) := − sgn(x)e−|x| =





ex, x < 0,

0, x = 0,

−e−x, x > 0.

(1.7)

For us this is just a notational convention which simplifies the statement of the
peakon ODEs (1.6) and some other equations to appear later on. However, it
can also be used to provide meaning to the term mux in the PDE (1.3), where
the function ux otherwise would be undefined exactly where the Dirac deltas in
the distribution m are situated. We refer to [2] for a discussion of why this is
justified, since another way to make sense of weak solutions will be described
below.

Degasperis, Holm and Hone [10] showed that the DP equation also has
peakon solutions. In fact, they showed that the ansatz (1.5) satisfies the more
general peakon PDE

mt + mxu + bmux = 0, m = u − uxx, (1.8)
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Figure 1: Two-peakon solution of the Camassa–Holm equation, computed from
the exact solution formulas (3.2) in the pure peakon case (m1 and m2 both
positive). The wave profile u(x, t) is shown at some evenly sampled times. Both
peakons move to the right and no collision (in the sense x1 = x2) occurs. Before
the interaction, the left peakon is higher and faster than the right peakon (left
solid curve). When the peakons get close, some of the momentum is transferred
(dashed curves). Afterwards it is the peakon on the right that is higher and
faster (right solid curve). The two-peakon solution of the Degasperis–Procesi
equation, given by (3.6), has the same qualitative behaviour in the pure peakon
case.

if and only if the positions and momenta satisfy the ODEs

ẋk = u(xk), ṁk = −(b − 1) mk ux(xk), (1.9)

where the shorthand u(xk) denotes u(xk(t), t) as obtained by letting x = xk(t)
in (1.5), and similarly for ux(xk). The integrable CH and DP cases correspond
to b = 2 and b = 3, respectively. For b = 2 this coincides with (1.6) above, while
b = 3 gives the DP peakon ODEs

ẋk =

n∑

i=1

mi G(xk − xi), ṁk = −2

n∑

i=1

mkmi G′(xk − xi). (1.10)

The CH and DP peakon ODEs (1.6) and (1.10) can be solved explicitly in
terms of elementary functions. The case n = 1 is trivial, while the two-peakon
solutions were obtained using sum-and-difference variables x1±x2 and m1±m2

in the original papers by Camassa and Holm [5], and by Degasperis, Holm
and Hone [10]. See Figure 1. The general n-peakon solutions were derived using
inverse scattering techniques by Beals, Sattinger and Szmigielski for CH peakons
[3, 2] and by Lundmark and Szmigielski for DP peakons [18, 19]. Equations (3.2)
and (3.6) below show the two-peakon formulas, in the form that they appear
when using that method of solution. The formulas for n ≥ 3 are of the same
flavour but more involved; we omit them here since writing them down efficiently
requires defining a fair amount of notation.

We will always assume that all mk’s are nonzero, since any vanishing mk

remains identically zero and never enters the solution. Without loss of generality
we will restrict our attention to solutions satisfying

x1(t) < x2(t) < · · · < xn(t). (1.11)

When peakons and antipeakons are present simultaneously, it may happen that
some xk = xk+1 after finite time, which we refer to as a collision.1 It is not

1Sometimes the word ‘collision’ is used also for the type of interaction shown in Figure 1,
but not so in this paper.
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obvious what happens to the solution u(x, t) of the PDE at (or after) a collision.
The CH case is well understood by now [2, 22, 4, 12], while the DP case is the
subject of this paper. We will return to this in Section 3.

Let us mention in passing that a term αux can be added to the left-hand
side of either the CH equation (1.3) or the DP equation (1.1) without destroying
integrability. Then smooth solitons are obtained, which converge to peakons as
α → 0+. In the DP case this has recently been studied by Matsuno [20, 21].

We also remark that the long paper by Holm and Staley [14] contains, among
many other things, a large number of numerically computed solutions of the
peakon PDE (1.8), both in integrable and nonintegrable cases.

Weak solutions in general

As mentioned above, the sense in which the peakons are weak solutions can be
specified by enforcing the convention G′(0) = 0, but a more appealing approach
is to write the equation as

0 = mt + mxu + bmux

= (u − uxx)t + (b + 1)uux − buxuxx − uuxxx

= (1 − ∂2
x)[ut + ( 1

2u2)x] + b( 1
2u2)x + (3 − b)( 1

2u2
x)x

(1.12)

and then apply the formal inverse of 1 − ∂2
x, which is (1 − ∂2

x)−1f = 1
2G ∗ f =∫

R

1
2e−|y|f(x − y) dy. This gives

0 = ut + ∂x

[
1
2u2 + 1

2G ∗ ( b
2u2 + 3−b

2 u2
x)
]
, (1.13)

so that the CH equation (b = 2) becomes [9]

ut + ∂x

[
1
2u2 + 1

2G ∗
(
u2 + 1

2u2
x

)]
= 0 (1.14)

and the DP equation (b = 3) becomes [24]

ut + ∂x

[
1
2u2 + 1

2G ∗ 3
2u2

]
= 0. (1.15)

Weak solutions (not only peakons) are then defined as functions which satisfy
this conservation law (with nonlocal flux term) in the usual distributional sense.

For the CH equation (1.14) it is natural to impose at least H1 regularity
(and hence continuity) with respect to x in the definition of weak solution,
because of the term u2

x in the equation. Breakdown of smooth initial data can
occur, but then it is only ux that develops singularities; the solution u itself
remains continuous (see for example McKean [22]). The DP equation (1.15)
has been studied from a similar point of view, for example by Yin who has
given existence and well-posedness results for strong solutions with initial data
u0 ∈ Hs(R) with s > 3/2 (hence with u0x continuous) [24], and for weak
solutions with u0 ∈ H1(R)∩L3(R) [25]. A detailed study of the blow-up of ux

in the Hs (s > 3/2) setting is undertaken in a forthcoming paper by Liu and
Yin [17].

However, since the DP equation (1.15) does not involve ux explicitly one can
also consider less regular solutions, as shown recently by Coclite and Karlsen [7]
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who proved various existence and uniqueness results in spaces of discontinuous
functions. They defined a weak solution of the DP equation as a function u ∈
L∞(R+; L2(R)) which satisfies (1.15) in the sense of distributions for (x, t) ∈
R× [0,∞), and an entropy weak solution of the DP equation as a weak solution
which in addition belongs to L∞(0, T ; BV (R)) for all T > 0 and satisfies the
Kružkov-type entropy condition

∂tη(u) + ∂xq(u) + η′(u)∂x

[
1
2G ∗ 3

2u2

]
≤ 0 (1.16)

in the distributional sense, for all convex C2 entropies η : R → R with the
corresponding entropy flux q : R → R defined by q′(u) = η′(u)u. Then they
showed that for initial data u0 ∈ L1(R)∩BV (R) there exists a unique entropy
weak solution of the DP equation, which is obtained as the limit (as ε → 0+) of
smooth functions uε satisfying the viscous regularization

∂tuε + ∂x

[
1
2u2

ε + 1
2G ∗ 3

2u2
ε

]
= ε ∂2

xuε. (1.17)

A forthcoming paper by Coclite, Karlsen and Risebro [8] deals with numerical
methods for computing such entropy weak solutions of the DP equation, and
another forthcoming paper by Coclite and Karlsen [6] studies weak solution
satisfying an Olĕınik-type entropy condition instead of (1.16).

Outline of the paper

Our purpose here is to provide concrete examples of entropy weak solutions of
the DP equation, in the sense of Coclite and Karlsen [7]. We will consider a
class of solutions where u(x, t) at each instant t consists of a finite number of
smooth segments, each a linear combination of ex and e−x, just like for peakons.
The new feature here is that these segments are not required to join to form
a continuous function, since u is allowed to have jump discontinuities. We will
begin by presenting this generalized “shockpeakon” ansatz and the ODEs that
it gives rise to. Then we will show how this type of solution forms when a
peakon collides with an antipeakon in the DP equation, and contrast this with
the behaviour of the CH equation. Finally, we will study the solutions of the
shockpeakon ODEs in some particular cases.

2 Shockpeakon solutions of the DP equation

Let G(x) and G′(x) be given by (1.4) and (1.7) as before; note in particular the
convention G′(0) = 0. We will look for solutions of the DP equation of the form

u(x, t) =

n∑

i=1

mk(t) G(x − xk(t)) +

n∑

i=1

sk(t) G′(x − xk(t)), (2.1)

that is, a superposition of n “shockpeakons”, each shaped like

m G(x) + s G′(x) =






(m + s) ex, x < 0,

m, x = 0,

(m − s) e−x, x > 0.

(2.2)
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Figure 2: Shockpeakon with momentum m = 1 and shock strength s = 1
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Figure 3: Superposition (solid curve) of two shockpeakons (dotted curves) with
x1 = − 3

2 , m1 = 1, s1 = 1
4 and x2 = 1, m2 = − 1

2 , s2 = 1.

At x = xk, the function u(x, t) has a jump of −2mk in the derivative ux just
like for peakons, but also a jump of −2sk in the function u itself. (Mnemonic:
m stands for momentum and s for shock strength.) See Figures 2 and 3.

If one tries to substitute (2.1) into the usual form (1.1) of the DP equation,
then m = u−uxx will be a linear combination of δ and δ′ distributions, while ux

will contain δ, so the equation mt + mxu + 3mux = 0 will contain meaningless
terms involving products of Dirac deltas. Through the ad hoc procedure of
simply neglecting all such terms, one obtains (2.3) below, but of course rigour
requires that we verify the result using the proper weak formulation (1.15).

Theorem 2.1. The shockpeakon ansatz (2.1) satisfies the DP equation in the
weak form (1.15) if and only if

ẋk = u(xk),

ṁk = 2sku(xk) − 2mk{ux(xk)},
ṡk = −sk{ux(xk)},

(2.3)

where curly brackets denote the nonsingular part, i.e.,

u(xk) =

n∑

i=1

mi G(xk − xi) +

n∑

i=1

si G′(xk − xi) (2.4)

and

{ux(xk)} :=

n∑

i=1

mi G′(xk − xi) +

n∑

i=1

si G(xk − xi). (2.5)
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Proof. The proof is a straighforward but lengthy computation; see the Appendix
for details.

Remark 2.2. The condition sk = 0 is preserved by the equations. If some
sk = 0, then we assume that the corresponding mk is nonzero, since otherwise
mk = sk = 0 identically. When all sk = 0, the shockpeakon ODEs (2.3) reduce
to the ordinary DP peakon ODEs (1.10) as they should.

Theorem 2.3. The solution described in Theorem 2.1 satisfies the entropy con-
dition (1.16) if and only if sk ≥ 0 for all k. In other words, all shocks must
satisfy u(x−

k ) ≥ u(x+
k ).

This result is due to Coclite and Karlsen [6], but we sketch a proof here for
completeness.

Proof. Since the nonlocal term P = 1
2G ∗ 3

2u2 is twice differentiable even when
u is discontinuous, the jump conditions for the DP equation ut +∂x

(
1
2u2 +P

)
=

0 will be the same as for the inviscid Burgers equation ut + ∂x( 1
2u2) = 0.

More precisely, let u be a strong solution piecewise, and consider an isolated
discontinuity along a curve x = x0(t), with left and right limits ul(t) and ur(t).
Then for a test function φ ≥ 0 with support contained in a small neighbourhood
D of a point on the curve, the entropy condition requires that

0 ≤
∫∫

D

(
η(u)φt + q(u)φx − η′(u)Pxφ

)
dx dt.

Let D1 and D2 be the parts of D to the left and right of the curve. The integral
over each Di equals

∫∫

Di

(
(η(u)φ)t + (q(u)φ)x

)
dx dt −

∫∫

Di

(
η(u)t + q(u)x + η′(u)Px

)
φ dx dt

=

∮

∂Di

(
−η(u)φ dx + q(u)φ dt

)
−
∫∫

Di

(
ut + uux + Px

)
η′(u)φ dx dt,

where the second term vanishes since u is a strong solution in each Di. What
remains does not contain P , and the standard arguments for entropy weak
solutions of the inviscid Burgers equation [13] show that ul ≥ ur. (It also
follows that the usual Rankine–Hugoniot relation ẋ0 = 1

2 (ul + ur) must hold.
This agrees with the equation ẋk = u(xk) in (2.3), since u(xk) is nothing but an
abbreviation for 1

2

(
u(x−

k ) + u(x+
k )
)

because of the convention G′(0) = 0.)

Letting n = 1 in (2.3) we see that the dynamics of a single shockpeakon is
described by the trivial equations

ẋ1 = m1, ṁ1 = 0, ṡ1 = −s2
1. (2.6)

Consequently the solitary shockpeakon moves at constant speed m1; in partic-
ular, it does not move at all if m1 = 0. As for the shock strength, the equation
for s1 is equivalent to s1 ≡ 0 or d

dt (1/s1) = 1, hence

s1(t) =
s1(t0)

1 + (t − t0) s1(t0)
, (2.7)
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so that the shock strength decays like 1/t as t → +∞, assuming that the
entropy condition s1(t0) > 0 is satisfied. If s1(t0) < 0 then s1(t) blows up after
finite time, but in this case our ansatz does not yield the entropy weak solution
(which is a rarefaction wave instead; see Remark 3.7). As we will see in section 3,
shockpeakons which form at peakon-antipeakon collisions automatically satisfy
sk > 0.

The case n = 2 is already quite complicated. Assuming x1 < x2 and using
the abbreviation R = exp(x1 − x2), the ODEs (2.3) take the form

ẋ1 = m1 + (m2 + s2)R,

ẋ2 = m2 + (m1 − s1)R,

ṁ1 = −2(m1 − s1)(m2 + s2)R,

ṁ2 = +2(m1 − s1)(m2 + s2)R,

ṡ1 = −s2
1 − s1(m2 + s2)R,

ṡ2 = −s2
2 + s2(m1 − s1)R.

(2.8)

It is clear that m1 +m2 is conserved, but we have not found any other constants
of motion, so it is still an open question whether the shockpeakon ODEs (2.3) are
integrable in any sense. We will study the reduction 0 = x1 + x2 = m1 + m2 =
s1−s2 in section 4. The results there indicate that if the shockpeakon ODEs are
integrable, the constants of motion must take a considerably more complicated
form than in the shockless case (where they are polynomials in m1, . . . , mn with
coefficients depending rationally on ex1 , . . . , exn).

3 Peakons, antipeakons, and shock formation

As mentioned earlier, an antipeakon is a peakon with mk < 0. Since ẋk =∑
i mi e−|xk−xi| ≈ mk when the xi’s are well separated, peakons generally speak-

ing move to the right and antipeakons to the left.
There is a qualitative difference between “pure” peakon solutions where all

mk’s are positive (or all negative), and mixed peakon-antipeakon solutions where
both signs occur. This can be seen by considering the functions

M1 =

n∑

k=1

mk and Mn =

(
n∏

k=1

mk

)
n−1∏

k=1

(
1 − exk−xk+1

)b−1
(3.1)

which are constants of motion for the peakon ODEs (1.9) under the usual or-
dering assumption x1 < · · · < xn. (Recall that b = 2 for CH and b = 3 for
DP.)

In the pure peakon case we have 0 < Mn/Mn−1
1 < mk < M1 for all k, and

then no xk − xk+1 can become zero since this would violate Mn > 0. In other
words, the peakons never collide and the ordering assumption is preserved for
all t.

In the peakon-antipeakon case a collision can occur after finite time. The
only way to keep Mn 6= 0 constant if xk − xx+1 → 0 is for at least one mi to
go to infinity, and to keep M1 constant this has to be cancelled by some other
mj going to minus infinity. In fact, what will happen is that mk+1 → +∞ and
mk → −∞ (this follows from the explicit solution formulas). Since the ODEs
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break down, the question arises if and how the PDE solution u(x, t) can be
continued past the collision. As we show below, the DP equation and the CH
equation behave completely differently with regard to this.

The CH case

The following facts are well known, and collected here mainly to facilitate com-
parison to the DP case. The general solution of the CH peakon ODEs (1.6) in
the case n = 2 is

x1(t) = log
(λ1 − λ2)

2b1b2

λ2
1b1 + λ2

2b2
, x2(t) = log(b1 + b2),

m1(t) =
λ2

1b1 + λ2
2b2

λ1λ2(λ1b1 + λ2b2)
, m2(t) =

b1 + b2

λ1b1 + λ2b2
,

(3.2)

where bk = bk(t) = bk(0) et/λk ; the real, nonzero, distinct constants λ1, λ2, and
the positive constants b1(0), b2(0) are determined from the initial conditions
through the relations

1 − (m1 + m2) z + m1m2

(
1 − ex1

ex2

)
z2 =

(
1 − z

λ1

)(
1 − z

λ2

)
(3.3)

(which implies that the number of positive/negative λk’s equals the number of
positive/negative mk’s) and

b1 + b2 = ex2 ,
b1

λ1
+

b2

λ2
= m1e

x1 + m2e
x2 . (3.4)

The solution given by (3.2) automatically satisfies x1(t) ≤ x2(t) for all t since

ex2 − ex1 =
(λ1b1 + λ2b2)

2

λ2
1b1 + λ2

2b2
≥ 0.

Equality x1(t) = x2(t) holds exactly when the denominator λ1b1 + λ2b2 in m1

and m2 vanishes, which only happens in the peakon-antipeakon case λ1λ2 < 0,
and then for exactly one t = t0. As t → t±0 , the momenta m1 and m2 blow up
in such a way that the derivative ux(x, t) tends to ±∞ on the shrinking interval
x1(t) < x < x2(t), but at the same time u(x1(t), t)− u(x2(t), t) → 0 so that the
peaks meet and the wave profile u(x, t) = m1 e−|x−x1| + m2 e−|x−x2| converges
uniformly to

u(x, t0) =

(
1

λ1
+

1

λ2

)
e−|x−x1(t0)|. (3.5)

See Figure 4. Defining u(x, t) by (1.5) and (3.2) for t 6= t0 and by (3.5) for
t = t0 provides a global solution of the CH equation. This continuation of u
past the collision is not unique, but it is distinguished by the desirable property
that the total energy

∫
R

(u2 + u2
x) dx is preserved for all t except at the instant

of collision, where the discrepancy can be accounted for by an “invisible” Dirac
delta contribution from the term u2

x. See [4, 12] for detailed discussions.
The solution for general n depends on 2n parameters {λk, bk}n

k=1 which arise
as eigenvalues and Weyl function residues of the “discrete string”, a certain
spectral problem related to the CH Lax pair. The eigenvalues λk are real,
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x
Before collision

x
After collision

Figure 4: Camassa–Holm peakon-antipeakon interaction, computed from the
exact solution formulas (3.2) with asymptotic speeds 0 < −λ−1

2 < λ−1
1 , the case

where the peakon is stronger than the antipeakon. Solid curves show u(x, t)
at evenly sampled times, with some additional samples close to the collision
shown by dashed curves; notice how the slope ux steepens between the peaks.
The arrows indicate roughly the motion of the peaks, which coalesce into a
single peak at the instant of collision and then reemerge. In the symmetric case
λ1 +λ2 = 0 (not shown here), the peakon and the antipeakon cancel out exactly
so that u = 0 at the instant of collision.

nonzero, distinct constants which we number such that λ−1
n < · · · < λ−1

1 for
definiteness. The number of positive/negative eigenvalues equals the number
of peakons/antipeakons. The residues bk are positive and evolve as bk(t) =
bk(0) et/λk . As t → ±∞ the peakons behave like asymptotically free particles
with distinct speeds; ẋk ∼ mk ∼ λ−1

k as t → −∞ and ẋk ∼ mk ∼ λ−1
n+1−k as

t → +∞. The explicit solution formulas define xk(t) and mk(t) for all t, except
that mk(t) may be undefined for finitely many values of t where collisions occur
(always in distinct peakon-antipeakon pairs, no triple collisions). Away from the
times of collision x1(t) < · · · < xn(t) holds. The peakon and antipeakon involved
in a collision behave just like in the case n = 2 described above; in particular,
the corresponding terms mk e−|x−xk| + mk+1 e−|x−xk+1| tend to a well-defined
limit limt→t0 [mk(t) + mk+1(t)] e

−|x−xk(t0)| at the instant of collision, so that
u(x, t0) is defined even though mk(t0) and mk+1(t0) are not. The derivation
and analysis of the solution formulas uses concepts and identities related to the
classical moment problem, such as Stieltjes continued fractions and the theory
of orthogonal polynomials [1, 2]).

Remark 3.1. Reference [2] uses the opposite sign convention for the eigenvalues
λk, and also a different normalization of the CH equation, which produces some
additional factors of 2 in the solution formulas. The notation here is chosen to
be similar to that used for the DP case below and in [19].

Remark 3.2. A similar phenomenon with ux blowing up but u remaing con-
tinuous occurs for piecewise linear solutions of the Hunter–Saxton equation
(ut + uux)xx = uxuxx, where it has been called a “zero-strength shock” by D.
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Holm, according to [15]. The Hunter–Saxton equation can be obtained from the
CH equation (u−uxx)t+3uux = uuxxx+2uxuxx by substituting (x, t) 7→ (εx, εt)
and letting ε → 0. The same high-frequency limit applied to the DP equation
yields the “derivative Burgers equation” (ut+uux)xx = 0. (This was first stated
in a footnote in the preprint version of [10], but that was removed in the pub-
lished version. It has also been pointed out elsewhere, for example in [14].) Since
the inviscid Burgers equation ut + uux = 0 is the prototype equation for study-
ing shock formation, this provides some intuition for why shock waves form in
the DP equation. It is interesting that the derivative Burgers equation inherits
the integrable structure of the DP equation. Like the Hunter–Saxton equation,
it has piecewise linear solutions u(x, t) =

∑n
k=1 mk(t) |x − xk(t)| which can be

computed using inverse scattering [16]. These solutions do not satisfy the or-
dinary Burgers equation ut + uux = 0 unless

∑
mk = 0, so the additional x

derivatives do make a difference. The derivative Burgers equation belongs to an
integrable hierarchy described by Qiao and Li [23].

The DP case

Solutions of the DP equation may develop discontinuities in finite time, as we
will show below using the explicit solution formulas.

The general two-peakon solution of the DP equation, except for the case
λ1 + λ2 = 0 which is treated separately below, is

x1(t) = log

(λ1−λ2)2

λ1+λ2
b1b2

λ1b1 + λ2b2
, x2(t) = log(b1 + b2),

m1(t) =
(λ1b1 + λ2b2)

2

λ1λ2

(
λ1b2

1 + λ2b2
2 + 4λ1λ2

λ1+λ2
b1b2

) ,

m2(t) =
(b1 + b2)

2

λ1b2
1 + λ2b2

2 + 4λ1λ2

λ1+λ2
b1b2

,

(3.6)

with bk(t) = bk(0) et/λk . Here the constants λ1 and λ2, which we will number
such that λ−1

2 < λ−1
1 , are the real, nonzero, disctinct zeros of the invariant

polynomial2

1 − (m1 + m2) z + m1m2

(
1 − ex1

ex2

)2

z2 =
(
1 − z

λ1

)(
1 − z

λ2

)
, (3.7)

while b1 and b2 are again given by (3.4).
The n-peakon ODEs are fully understood in the pure peakon case where all

mk’s are positive. Then the general solution is given in terms of eigenvalues
and Weyl function residues {λk, bk}n

k=1 of the “discrete cubic string”, a third
order nonselfadjoint spectral problem related to the Lax pair of the DP equation
[19]. The eigenvalues λk are positive and distinct, the residues bk are positive,
the peakons behave like free particles with distinct speeds λ−1

n < · · · < λ−1
1 as

t → ±∞, and no collisions occur.
In the general case n > 2 with both peakons and antipeakons present, not

much is really known for sure, although reasonable conjectures can be made.

2Note that the coefficient of z2 in (3.7) is slightly different from the CH case (3.3).
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The crucial point is whether the eigenvalues must be real and distinct, with
the same number of positive (negative) eigenvalues as the number of positive
(negative) mk’s, like in the CH case. This is true for n = 2, as can be verified
directly from (3.7), but has not been proved for n > 2. Unlike the CH case,
the residues bk need not always be positive (see the proof of Theorem 3.5).
For initial data such that the eigenvalues are indeed real and distinct, with no
λi +λj equal to zero, the explicit formulas for xk(t) and mk(t) provide solutions
which are valid locally in t but may have singularities after finite time. As we
will see already for n = 2, it is not possible to extend these solutions past the
singularities without taking shock formation into account.

Leaving the complete analysis of the general case as an open problem for
future research, we will concentrate here on the case n = 2. We begin with
the completely symmetric peakon-antipeakon case m1 +m2 = 0, which by (3.7)
is exactly the exceptional case λ1 + λ2 = 0 not covered by (3.6). Since the
solutions will not be globally defined in t, we focus on the inital value problem.
By shifting the x axis we can assume x1(0)+x2(0) = 0 without loss of generality.
See Figure 5 for an illustration of the result.

Theorem 3.3. The solution of the n = 2 DP peakon ODEs (1.10) in the
symmetric peakon-antipeakon case m1 + m2 = 0 with −x1(0) = x2(0) > 0 is
given by

−x1(t) = x2(t) = x2(0) − t

λ
,

m1(t) = −m2(t) =
1

λ
(
1 − e−2x2(t)

) ,
(3.8)

where λ =
(
m1(0)(1 − e−2x2(0))

)−1
.

• If m1(0) < 0 < m2(0), then λ < 0 and the solution (3.8) is valid for

t > tmin, where tmin = λ x2(0) < 0. In particular, u =
∑2

1 mk e−|x−xk|

provides a solution of the initial value problem which is valid for all t ≥ 0.

• If m1(0) > 0 > m2(0), then λ > 0 and a collision occurs at x = 0 for

t = t0 = λ x2(0) > 0. The function u =
∑2

1 mk e−|x−xk| only satisfies the
DP equation (1.15) for t < t0. The unique continuation of u(x, t) into an
entropy weak solution is given by the stationary decaying shockpeakon

u(x, t) =
− sgn(x) e−|x|

λ + (t − t0)
for t ≥ t0. (3.9)

Proof. Direct substitution shows that (3.8) satisfies the peakon ODEs, and that

u(x1(t), t) = −u(x2(t), t) =
1

λ
, (3.10)

independently of t. Hence, unlike the CH case where u → 0 uniformly, the
peakon and the antipeakon do not cancel out completely at a collision. Instead
u(x, t) converges as t → t−0 to the discontinuous function

u(x, t0) = − 1

λ
sgn(x) e−|x| =

1

λ
G′(x). (3.11)

12
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x
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After collision

Figure 5: Degasperis–Procesi peakon-antipeakon collision in the symmetric case
λ1 + λ2 = 0, computed from the exact solution formulas (3.8) and (3.9). Solid
curves show u(x, t) at evenly sampled times, with some additional samples close
to the collision shown by dashed curves. As the arrows indicate, the peaks
approach each other with constant speed and height, and form a stationary
shockpeakon whose shock strength decays like 1/t as t → +∞.
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(The convergence is uniform on any interval not containing x = 0). In other
words, a shock forms at the collision. The unique entropy weak solution with
(3.11) as initial data at t = t0 is given by the n = 1 shockpeakon ODEs (2.6)
with x1(t0) = m1(t0) = 0 and s1(t0) = 1/λ. This proves (3.9).

Remark 3.4. Degasperis, Holm and Hone [10] give the formula

u(x, t) =
c

1− e−2c|t|

[
e−|x+c|t|| − e−|x−c|t||

]
, (3.12)

which (if c > 0) satisfies the DP equation in the interval t < 0, but not for t > 0
since the formula is even in t so that the peakon and antipeakon incorrectly
would move “backwards” for t > 0. This can easily be remedied by multiplying
(3.12) by − sgn(t), which gives the solution that the authors probably had in
mind. However, that solution suffers from the problem that the wave profile
flips abruptly from u(x, 0−) = −c sgn(x) e−|x| to u(x, 0+) = c sgn(x) e−|x|, so it
is doubtful whether this can be considered a valid global solution, even though
it is fine in the intervals t < 0 and t > 0 separately (where it agrees with (3.8)
up to a translation of t).

Similarly, Holm and Staley [14, Sect. 5.4], arguing using explicit solution
formulas for the two-peakon ODEs, state the following for symmetric (m1+m2 =
0, x1+x2 = 0) peakon-antipeakon collisions in any equation from the “b family”
(1.8) of which the CH and DP equations are the members b = 2 and b = 3:

As the separation q → 0, the positive and negative peaks “bounce”,
thereby reversing polarity, after which they separate in opposite di-
rections.

This can also be questioned from the point of view of making global sense of
the PDE. If b < 3 then u(x, t) → 0 uniformly at the collision, as can be seen
from the explicit formula u(x1) = −u(x2) = const. × (1 − ex1−x2)(3−b)/2. In
this case the statement above is true. (An alternative description of the same
thing is that the peakon and the antipeakon appear to pass through each other.)
But for the DP equation (b = 3) we have just seen that it is instead the shock
scenario of Theorem 3.3 that gives the correct entropy weak solution after a
collision. And for b > 3, u(x1) = −u(x2) → +∞ at the collision, so it does not
seem reasonable to try to continue the solution of the PDE past the collision at
all in this case. These different behaviours are related to the sign of the term
3−b
2 u2

x in (1.13). (The significance of this sign can also be seen in the proof of
the “peakon steepening lemma” later in the same paper [14, Prop. 6.1], where
the authors do impose the condition b ≤ 3.)

Next we describe the solution of the DP initial value problem for the generic
case m1 + m2 6= 0. See Figure 6 for an illustration of the third case in the
theorem.

Theorem 3.5. The solution of the n = 2 DP peakon ODEs (1.10) with x1(0) <
x2(0) and m1 + m2 6= 0 is given by (3.6), where λk and bk(0) are determined
from the initial conditions.

• If m1(0) and m2(0) have the same sign, then u =
∑2

1 mk e−|x−xk| to-
gether with (3.6) defines a global solution of the DP equation (1.15). In
particular, as a solution of the initial value problem it is valid for all t ≥ 0.
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Figure 6: Nonsymmetric Degasperis–Procesi peakon-antipeakon collision, com-
puted from the exact solution formulas (3.6) and (3.15) with 0 < −λ−1

2 < λ−1
1 ,

the case where the peakon is stronger than the antipeakon, so that the resulting
shockpeakon moves to the right. Solid curves show u(x, t) at evenly sampled
times, with some additional samples close to the collision shown by dashed
curves. The shock strength decays like 1/t as t → +∞.

• If m1(0) < 0 < m2(0), then (3.6) gives a valid solution of the DP equation
for t > tmin, where

tmin =
−1

λ−1
1 − λ−1

2

log

(
1 − κ

κ(1 + κ)

b1(0)

b2(0)

)
< 0 (κ =

√
−λ2/λ1). (3.13)

In particular, as a solution of the initial value problem it is valid for all t ≥
0.

• If m1(0) > 0 > m2(0), then (3.6) gives a valid solution of the DP equation
for t < t0, where the time of collision t0 is

t0 =
1

λ−1
1 − λ−1

2

log

(
κ(κ − 1)

1 + κ

b2(0)

b1(0)

)
> 0 (κ =

√
−λ2/λ1). (3.14)

The continuation of u(x, t) into the unique entropy weak solution of the
initial value problem is for t ≥ t0 given by the moving shockpeakon

u(x, t) =

(
m̃1 − sgn

(
x − x̃1(t)

)
s̃1(t)

)
e−|x−ex1(t)|, (3.15)

where m̃1 = m1 +m2 = λ−1
1 +λ−1

2 is constant, x̃1(t) = (t− t0)m̃1 + x̃1(t0)
with x̃1(t0) = x1(t0) = x2(t0) the point of collision, and s̃1(t) =

(
t − t0 +

s̃1(t0)
−1
)−1

with s̃1(t0) =
√
−λ−1

1 λ−1
2 > 0.

Proof. It can be verified by substitution that (3.6) satisfies (1.10) for any values
of λ1, λ2, b1(0), b2(0), and t such that all expressions make sense and x1(t) <
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x2(t). (This restriction is needed to get rid of the absolute value signs in the
ODEs (1.10).) See [19] for the derivation of these formulas.

In what follows, we will use the abbreviations R = ex1−x2 ∈ (0, 1) and
Q = 1 − R ∈ (0, 1). From (3.7), the eigenvalues λk are given by

λ−1
1,2 = 1

2

(
m1 + m2 ±

√
(m1 + m2)2 − 4m1m2Q2

)
, (3.16)

where, because of our convention λ−1
2 < λ−1

1 , the plus sign refers to λ−1
1 . This

implies that 0 < λ−1
2 < λ−1

1 if m1 and m2 are positive, λ−1
2 < λ−1

1 < 0 if m1

and m2 are negative, and λ−1
2 < 0 < λ−1

1 if m1m2 < 0. Solving for the residues
bk from (3.4) then yields

b1,2 = 1
2ex2

(
1 ∓ sgn(m1)f(m2/m1)

)
, (3.17)

where the minus sign refers to b1, and3

f(s) =
−1 + 2Q− s√
(1 + s)2 − 4sQ2

. (3.18)

Simple calculus shows that f increases from its limit 1 at s = −∞ to f(−1 −
2Q) =

√
2/(1 + Q) ∈ (1,

√
2), and then decreases to its limit −1 at s = +∞,

passing f(−1) = 1 and f(−1 + 2Q) = 0 on its way down. Thus f(s) > 1
for s < −1, so by (3.17) b1 and b2 are both positive if −1 < m2/m1 < 0 or
0 < m2/m1, and have opposite signs if m2/m1 < −1. The case m2/m1 = −1,
where one of the bk’s is zero, will be excluded here since it is the completely
symmetric peakon-antipeakon case λ1 +λ2 = 0 already treated in Theorem 3.3.

From (3.6) we have

ex2 − ex1 =
W

λ1b1 + λ2b2
, (3.19)

where

W = λ1b
2
1 + λ2b

2
2 +

4λ1λ2

λ1 + λ2
b1b2 (3.20)

is the expression also occuring in the denominator of m1 and m2. Recall that
the bk’s evolve according to bk(t) = bk(0) et/λk and consequently do not change
sign. If m1(0)m2(0) > 0, then λ1λ2 > 0, while b1(0) and b2(0) are positive.
Hence W never changes sign, and neither does any of the other expressions
involved in (3.6). Hence, in this case ex2 − ex1 > 0 for all t and the solution is
valid globally.

In the peakon-antipeakon case m1(0)m2(0) < 0 the situation is more com-
plicated since W , as well as the expressions U = b1 + b2 and V = λ1b1 + λ2b2,
might become zero for some t 6= 0, causing the solution (3.6) to blow up. To
analyze this it is convenient to define

v1 = λ−1
1 > 0, v2 = −λ−1

2 > 0, (3.21)

and

β =
b2

b1
, κ =

√
−λ2

λ1
=

√
v1

v2
6= 1. (3.22)

3The CH case is identical except that Q2 is replaced by Q in (3.16) and in the denominator
of (3.18). This change makes |f(s)| < 1 for all s, so that b1 and b2 are always positive in that
case.
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The time evolution of β is

β(t) =
b2(0) et/λ2

b1(0) et/λ1
= β(0) e−(v1+v2)t,

so |β| decays exponentially to zero. Note that U becomes zero if β = −1, while
V becomes zero if β = 1/κ2. Moreover W = λ2b

2
1P (β), where

P (β) = β2 +
4β

1 − κ2
− 1

κ2
=

(
β − 1 − κ

κ(1 + κ)

)(
β +

1 + κ

κ(1 − κ)

)
, (3.23)

so W vanishes for one positive and one negative value of β. There are four
different cases to consider, depending on whether m1 < 0 < m2 or m1 > 0 > m2,
and whether m1 + m2 = v1 − v2 is positive (κ > 1) or negative (0 < κ < 1).

We show the details for the case m1 > 0 > m2, κ > 1, with a peakon on
the left and a (weaker) antipeakon on the right, as in Figure 6. In this case
−1 < m2(0)/m1(0) < 0, so that b1(0) > 0 and b2(0) > 0. Then the following
chart describes the signs of U , V , W as functions of β:

β −1 − κ−1
κ(1+κ) 0 1

κ2
1+κ

κ(κ−1)

U − 0 + + + +
V + + + 0 − −
W − − 0 + + 0 −

Since at t = 0 we have m2 = U2/W negative and W/V = ex2 − ex1 positive, W
and V must both be negative. This shows that β(0) must be in the rightmost
part of the chart, β(0) > (1 + κ)/κ(κ − 1) > 0. As time passes and β decreases
towards zero, W therefore vanishes before V does. This happens at t = t0 > 0,
where

β(t0) = β(0) e−(v1+v2)t0 =
1 + κ

κ(κ − 1)
,

which proves (3.14) in this case. Since ex2 − ex1 = W/V becomes negative after
t passes t0, the solution formulas (3.6) do not provide a valid solution for t > t0.

Next we investigate what happens to the wave profile u(x, t) as t → t−0 .
Since m1(t) + m2(t) = λ−1

1 + λ−1
2 = v1 − v2 and x1(t) − x2(t) → 0, we have

u(x1(t), t) + u(x2(t), t) = (m1 + m2)(1 + ex1−x2) → 2(v1 − v2). (3.24)

Moreover,

1

λ1λ2
= m1m2Q

2 =

(
m1 + m2

2
Q

)2

−
(

m1 − m2

2
Q

)2

,

where the first term tends to zero since m1+m2 is constant and Q = 1−ex1−x2 →
0, so that

u(x1(t), t) − u(x2(t), t) = (m1 − m2)Q → 2

√
−1

λ1λ2
= 2

√
v1v2. (3.25)

(The sign of the square root is determined since m1 > 0 > m2.) Consequently
u(x, t) converges to a single shockpeakon with position x̃1 = x1(t0) = x2(t0),
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momentum m̃1 = v1 − v2, and shock strength s̃1 =
√

v1v2 > 0. The continu-
ation of u(x, t) into an entropy weak solution for t ≥ t0 is given by the n = 1
shockpeakon dynamics (2.6) with these values as initial data at t = t0, resulting
in (3.15).

The other three cases are analyzed in a similar way. We omit the details.

Remark 3.6. If, in the case m1(0) > 0 > m2(0) of Theorem 3.5, the right-
moving peakon is the stronger one (v1 > v2) we get a shock moving to the right,
while if the left-moving antipeakon dominates (v1 < v2) we get a shock moving
to the left. Note that in both cases the jump in u is from high at the left to low
at right; it is the average value of u at the jump that determines the direction
of motion.

If the shock strength is less than the resulting momentum (
√

v1v2 < |v1 − v2|),
then the weaker peak is pulled over to the opposite side of the x axis before col-
lision, so that both peaks actually travel in the same direction for a while. For
example, if the peakon dominates sufficiently4 over the antipeakon, then the
antipeakon changes its velocity ẋ2 = u(x2) from negative to positive a while
before the collision, but it still cannot escape being “run over” by the faster
peakon catching up from the left.

Remark 3.7. In the case m1(0) < 0 < m2(0) of Theorem 3.5 (or Theorem 3.3),
the solution describes an antipeakon to the left and a peakon to the right,
drifting apart. The time t = tmin is when they would collide if time was running
backwards, and the solution defined for t > tmin is a rarefaction wave solution
to the initial value problem with initial data at t = tmin consisting of a single
shockpeakon with a negative shock strength s̃1 = −(−λ−1

1 λ−1
2 )1/2 (or s̃1 =

−1/ |λ| in the symmetric situation of Theorem 3.3).

For the general peakon ODEs with n > 2, we also expect a shock to form
whenever a peakon and an antipeakon collide, but we cannot at present exclude
that Camassa–Holm style zero-strength shocks might also be possible. As times
passes, further collisions may occur. The limiting wave profile at each collision
must piecewise be a linear combination of ex and e−x, with decay at infinity, and
therefore describable by the shockpeakon ansatz (2.1). The dynamics between
collisions are then described by the appropriate shockpeakon ODEs (2.3) with
n decreasing after each collision, as the colliding (shock)peakons merge.

As shown in [7], weak solutions of the DP equation satisfy the following
one-sided Lipschitz estimate for any T > 0:

ux(t, x) ≤ 1

t
+ KT for a.e. (x, t) ∈ R× (0, T ),

where KT is a constant depending on T and on the L2 ∩ BV norm of u(x, 0).
This implies that ux cannot tend to +∞ in finite time, and consequently any
shocks that form must jump downwards, from high at the left to low at the
right. So whenever a shockpeakon forms at a collision, it will automatically
satisfy the entropy condition sk > 0.

4That is, if
√

v1v2 < v1 − v2, which is the same as κ > (1 +
√

5)/2. In Figure 6, where
κ ≈ 1.66, this condition is just barely satisfied.
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4 Shock dynamics

In this section we will study properties of solutions of the shockpeakon ODEs
(2.3), repeated here for convenience:

ẋk = u(xk),

ṁk = 2sk u(xk) − 2mk{ux(xk)},
ṡk = −sk{ux(xk)}.

(2.3)

Proposition 4.1. M =
∑n

k=1 mk is a constant of motion for (2.3).

Proof. This can be checked directly from (2.3), or one can use that the DP
equation (1.15) is in the form of a conservation law ut + ( 1

2u2 + P )x = 0, where
P = 1

2G∗ 3
2u2. Thus

∫
R

u dx is conserved, and for the shockpeakon ansatz (2.1)
we find that

∫
R

u dx =
∑

mk.

Remark 4.2. The other (infinitely many) conservation laws of the DP equation
[10] do not produce additional constants of motion, since their derivation relies
on the chain rule, which is not valid for discontinuous functions. For example,
using that P − Pxx = 3

2u2 by definition, one derives a conservation law for∫
R

u3 dx:

−(u3)t = −3u2ut = 3u2
(
( 1
2u2)x + Px

)
= 3
(
( 1
2u2)2

)
x

+ 2(P − Pxx)Px

=⇒ (u3)t +

(
3u4

4
+ P 2 − P 2

x

)

x

= 0.

But for shockpeakons it can be checked that

∂

∂t

(∫

R

u3 dx

)
= −4

n∑

k=1

u(xk)s3
k, (4.1)

so that
∫
R

u3 dx is in fact not conserved if there are shocks.

We note that if the shockpeakons are well separated, then u(xk) ≈ mk and
{ux(xk)} ≈ sk, so that each shockpeakon behaves almost like in the case n = 1:

ẋk ≈ mk, ṁk ≈ 0, ṡk ≈ −s2
k.

Consequently, if the separation is large enough at t = 0, then the shocks (which
decay like 1/t) will be very small by the time two shockpeakons come close. At
least in the case with all mk > 0 and all shocks sufficiently small, one expects
the interaction to be virtually undistinguishable from normal peakon dynamics.
This is verified by numerical experiments.

On the other hand, interactions where sk is large compared to mk can behave
very differently. For example, the property mk = 0 is not preserved by the
ODEs, hence there is nothing to stop the mk’s from changing sign. In other
words, the distinction between peakons and antipeakons is not so clear when
shocks are present.

We have not been able to prove much about the shockpeakon ODEs in
general, even for the n = 2 case (2.8). Studying collisions numerically is a
nontrivial problem since the solutions can be rather badly behaved, so here we
will restrict ourselves to the some simple cases where progress can be made
analytically.
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Two shockpeakons, symmetric case

Consider the reduction of the n = 2 shockpeakon ODEs (2.8) obtained by
choosing the variables so that u(−x, t) = −u(x, t):

−x1 = x2 =: ξ > 0, −m1 = m2 =: µ, s1 = s2 =: σ > 0. (4.2)

Inserting this into (2.8) yields

ξ̇ = µ(1 − R) − σR,

µ̇ = −2(µ + σ)2R,

σ̇ = −σ2(1 + R) − µσR,

(4.3)

where
R = ex1−x2 = e−2ξ ∈ (0, 1). (4.4)

We impose σ > 0 because of the entropy condition (cf. Theorem 2.3), and this
is clearly preserved by the equations.

If the shock strength σ is small enough not to be influential, one expects the
shockpeakons to collide at x = 0 if µ(0) < 0, and to drift apart to ±∞ with
asymptotically constant speed if µ(0) > 0. The question is whether something
else can happen if σ is large.

Now it turns out that the reduced system (4.3) admits the constant of motion

K = µ(1 − R) − 2σR. (4.5)

(We have not been able to find any corresponding constant of motion for the
non-reduced system (2.8).) If K > 0 we can think of it as being the asymptotic
speed, since if indeed ξ → ∞ as t → ∞, then R → 0 and µ → K, provided
σ is bounded. In that case, ξ̇ ≈ K for large t. However, if K < 0 this would
contradict ξ → ∞, which leads one to suspect that K = 0 is the breaking point
where σ is large enough (compared to µ) to change the dynamics qualitatively.

To investigate this closer, we eliminate µ from (4.3) using (4.5). This yields

ξ̇ = K + σR, σ̇ = −σ2(1 + R2) + KσR

1− R
(R = e−2ξ). (4.6)

We consider three separate cases.

The case K = 0

This case represents a delicate balance between µ(0) and σ(0), and can only
happen if µ(0) > 0. The equations become separable,

dσ

dξ
=

σ̇

ξ̇
= −σ

1 + R2

R(1 − R)
,

which gives

σ = L exp(− 1
2e2ξ)

e−ξ

1 − e−2ξ
, (4.7)
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with L > 0 a constant of integration. (Expressed differently, L = σ exp( 1
2e2ξ)(eξ−

e−ξ) is a constant of motion when K = 0.) Now r = eξ = R−1/2 satisfies
ṙ = rξ̇ = rσr−2 = L exp(−r2/2)/(r2 − 1), so ξ(t) is given implicitly by

Lt =

∫ eξ(t)

eξ(0)

(r2 − 1)er2/2 dr. (4.8)

This result shatters any hope for explicit solution formulas (or constants of
motion) as simple as those for the shockless case. It follows that ξ(t) → ∞
(although very slowly since ξ̇ → K = 0), µ(t) → 0, and σ(t) → 0 (at least as
fast as 1/t, since (1/σ)̇ = (1 + R2)/(1 − R) → 1+).

The case K > 0

For K 6= 0 we have not been able to integrate (4.6). But when K > 0, which
happens if µ(0) > 0 and σ(0) is relatively small, it is immediately seen that
ξ̇ > K > 0 and σ̇ < 0, so that σ is bounded and the scenario outlined after
(4.5) indeed takes place: ξ(t) → ∞ with asymptotically constant speed ẋ → K,
µ(t) → K, and σ(t) → 0 (at least as fast as 1/t).

The case K < 0

This case happens if µ(0) ≤ 0, or (more interestingly) if µ(0) > 0 and σ(0)
is relatively large. Since the equations are singular along the axis ξ = 0, we
consider first the nonsingular auxiliary system obtained by multiplying the right-
hand side of (4.6) by 1 − R,

ξ̇ = (K + σR)(1 − R), σ̇ = −σ2(1 + R2) − KσR (R = e−2ξ). (4.9)

The phase portrait of (4.9) is shown in Figure 7. It is clear that all orbits of (4.9)
starting in the first quadrant approach the stable equilibrium (ξ, σ) = (0, |K| /2)
as t → ∞. Since 1−R > 0 in the first quadrant, our original system (4.6) follows
the orbits of (4.9) with the same direction (but different speed). Hence the orbits
of (4.6) starting in the first quadrant also tend to (ξ, σ) = (0, |K| /2), with the
difference that now this point is reached in finite time. Indeed, if σ ≥ 3 |K| /4
and ξ > 0, then

σ̇ = −1 + R2

1 − R

(
σ − |K|R

1 + R2

)
σ < −1 · |K|

4
· 3 |K|

4
,

which implies that eventually σ < 3 |K| /4, and from then on ξ̇ = σR − |K| <
− |K| /4, which drives ξ to zero in finite time.

In other words, the two shockpeakons collide at x = 0 after finite time,
merging into a single shockpeakon, and after that the entropy weak solution
is given by the n = 1 shockpeakon equations (2.6). Since u(x2) = ẋ2 = ξ̇ =
K + σR → K/2, we have u(x−

1 ) = −u(x+
2 ) = −u(x2) + σ → −K, so the

shockpeakon that forms has momentum m̃1 = 0 and shock strenght s̃1 = |K|.
Finally, by (4.5) µ(t) is given by

µ =
K + 2σR

1 − R
= −2σ +

K + 2σ

1 − e−2ξ
= −2σ +

σ − (−K/2)

ξ + O(ξ2)
,
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ξ

σ

�

�

σ =
|K| e−2ξ

1 + e−4ξ

σ = |K| e2ξ

Figure 7: Phase portrait for the auxiliary system (4.9) in the case K < 0.
The nullclines ξ̇ = 0 and σ̇ = 0 are drawn as dashed and dotted curves,
respectively. There are two equilibria: the origin is a saddle point with Ja-
cobian J = diag(2K,−K), while (0, |K| /2) is an attracting star node with
J = diag(K, K).

where both terms have finite limits at the collision. The limit of the second
term equals the slope with which the orbit approaches the star node (ξ, σ) =
(0, |K| /2), and so depends on the initial conditions in some complicated manner,
but the actual value does not affect the shape of the resulting shockpeakon, and
is consequently of little interest here. We note that µ > 0 corresponds to the
region above the curve σ = 1

2 |K| e2ξ in the phase portrait, so that µ can be
positive at the time of collision, but it is also possible for µ to change sign from
positive to negative before the collision. (But not from negative to positive of
course, since µ̇ ≤ 0 by (4.3).)

Remark 4.3. From the n = 2 shockpeakon ODEs (2.8) one sees that a positive
s2 increases the velocity of x1 compared to the shockless case, while a positive
s1 slows x2 down. Hence the shocks tend to draw the peakons together, at
least in the short run. Over longer time scales, the effect of the shocks on the
evolution of m1 and m2 makes the overall effect harder to predict. Nevertheless,
this simple argument provides some explanation of the phenomenon observed
above where shockpeakons initially moving apart are pulled back and collide
provided that the shocks are large enough.

Remark 4.4. In the shockless case m1 and m2 blow up at a collision, as we
know from Section 3. In the symmetric collision with shocks (the case K < 0),
µ = −m1 = m2 and σ = s1 = s2 both have finite limits, so this collision is
less dramatic from the point of view of the ODEs. Nevertheless, we learn that
the variables can in some cases change extremely quickly close to a collision,
so numerical experiments must be performed with caution. For example, if one
starts in the lower right of the first quadrant in the phase portrait in Figure 7,
then σ will be small until the last moment, when the trajectory makes an abrupt
turn and very rapidly approaches (0, |K| /2) almost straight from below.
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A triple collision

Another interesting reduction, due to Coclite, Karlsen and Risebro [8], is ob-
tained by placing a stationary shockpeakon between a peakon and an antipeakon
of equal strength:

−x1 = x3 =: ξ > 0, x2 = 0,

−m1 = m3 =: µ, m2 = 0,

s1 = s3 = 0, s2 =: σ > 0.

From the n = 3 shockpeakon ODEs one then obtains

ξ̇ = µ(1 − R2) − σR,

µ̇ = −2(µ2R2 + µσR),

σ̇ = −σ2 − 2µσR,

(4.10)

where
R = ex1−x2 = ex2−x3 = e−ξ ∈ (0, 1). (4.11)

In [8] this is used as a test case with ξ(0) = 5, µ(0) = −1, σ(0) = 1. For these
initial data the system (4.10) is easily integrated numerically, which reveals
that ξ decreases with nearly constant speed5 and reaches zero at t = t0 ≈
5.32, at which time µ ≈ −1.10 and σ ≈ 0.80. After this triple collision, the
entropy weak solution is given by a single decaying shockpeakon at x = 0, with
initial shock strenght s̃1(t0) = σ(t0) ≈ 0.80. (Since µ(t0) is finite, the peakon
and the antipeakon cancel out and do not affect the strength of the resulting
shockpeakon.) Note that the collision would have taken place exactly at t = 5
without the shock. Thus it takes longer for the peakons to collide when the shock
is present, which serves as a warning that one cannot predict global dynamics
based on the attracting effect of shocks described in Remark 4.3. However, the
phenomenon with shockpeakons moving apart and being pulled back again can
be (numerically) observed here as well, if one takes µ(0) > 0 and starts with a
sufficiently large shock σ(0).

5 Concluding remarks

The continued study of the Degasperis–Procesi equation should provide inter-
esting insights into the interplay between complete integrability and the theory
of weak solutions of conservation laws. In this initial work we have used very ele-
mentary methods to investigate the formation and dynamics of shocks in simple
cases. Clearly, more refined tools are required to understand these phenomena
in greater generality.

For example, the Camassa–Holm peakon-antipeakon solutions can be ana-
lyzed for any n using the highly developed machinery of orthogonal polynomials,
because the CH Lax pair is related to the discrete string, Padé approximation,
Stieltjes continued fractions, the classical moment problem, etc. [2]. Some-
thing similar would be needed in order to fully analyze the Degasperis–Procesi

5Note that ξ̈ = −σµR(1 − R)2 + σ2R(1 − R) is small if σ is small or if ξ is either large or
small.
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solution formulas, but the discrete cubic string and the associated Padé-like ap-
proximation problem appearing in the solution of the inverse spectral problem
[19] are much more involved, and the corresponding theory is only in its infancy.

The shockpeakon ODEs (2.1) introduced in this paper also need to be better
understood. The DP Lax pair due to Degasperis–Holm–Hone, which was the key
to solving the usual DP peakon ODEs, involves m = u− uxx and is compatible
with the DP equation in the form (1.1). Hence it does not seem to be of much
help in understanding the shockpeakons, for which (1.1) does not make sense
and the weak formulation (1.15) must be used instead. A systematic numerical
study of the shockpeakon ODEs might be useful, but we have not attempted
that here since it is a nontrivial problem to handle the collisions, where the
variables can behave badly and the number of shockpeakons change.

The numerical experiments in [8] give indications that shockpeakons are
stable, but this has yet to be proved.

Finally, it is of course of interest to study other weak solutions than shock-
peakons. We hope that the examples presented here can provide useful intuition
about what kind of blowup behaviour one can expect from the DP equation in
general.

A Appendix: Proof of Theorem 2.1

Proof. Equation (1.15) reads ut + 1
2 (u2)x + Px = 0, where P = 1

2G ∗ 3
2u2 and

thus Px = 1
2G′ ∗ 3

2u2. This is to be satisfied in the space of distributions
D′(R× [0,∞)), which means that

∫ ∞

0

∫

R

(
u φt + 1

2u2φx − Pxφ
)
dx dt +

∫

R

u0(x) φ(x, 0) dx = 0 (A.1)

for any test function φ(x, t) ∈ C∞
c (R× [0,∞)). As explained in [7, Remark 3.3],

one can interpret the initial conditions in the L1 sense, ‖u(·, t) − u0‖L1 → 0 as
t → 0+, and then simplify by restricting the choice of test functions to those
satisfying φ(x, 0) = 0.

Moreover, here we will deal with functions of the form u(x, t) = f
(
x −

x0(t)
)
, with f(x) arbitrary and x0(t) differentiable. For such functions, the

distributional partial derivative with respect to t is given by

〈ut, φ〉 = −
∫ ∞

0

∫

R

f
(
x − x0(t)

)
φt(x, t) dx dt

= −
∫ ∞

0

∫

R

f(x) φt

(
x + x0(t), t

)
dx dt

= −
∫ ∞

0

∫

R

f(x)

(
d

dt
φ
(
x + x0(t), t

)
− ẋ0(t)φx

(
x + x0(t), t

))
dx dt

=

∫ ∞

0

(
ẋ0(t)

∫

R

f
(
x − x0(t)

)
φx(x, t) dx

)
dt.

The inner integral can be viewed as the action of the distribution −f ′
(
x −

x0(t)
)
∈ D′(R) on a test function φ(·, t) ∈ C∞

c (R) which depends only para-
metrically on t. Here of course f ′(x) means the distributional derivative of f(x)
in D′(R). With this interpretation of our functions being distributions with re-
spect to x for each fixed t, we will identify ut with −ẋ0(t)f

′
(
x−x0(t)

)
. Similary,
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for functions of the form u(x, t) = m0(t) f
(
x−x0(t)

)
it can be verified that the

chain rule holds and thus the identification ut = ṁ0f(x−x0)−m0ẋ0f
′(x−x0)

can be made.
This means that we can simplify the calculations by computing ut+

1
2 (u2)x+

Px as a distribution in the variable x with the rules of distributional calculus,
without having to involve test functions and double integrals explicitly. Abbre-
viating G(x − xk(t)) as Gk, the ansatz (2.1) reads u =

∑n
k=1(mkGk + skG′

k),
so according to the remarks above we have at once

ut =
n∑

k=1

(
ṁkGk − mkẋkG′

k + ṡkG′
k − skẋk(Gk − 2δk)

)
, (A.2)

where δk = δ(x − xk(t)). Furthermore,

u2 =

n∑

k,l=1

(
mkmlGkGl + skslG

′
kG′

l + mkslGkG′
l + skmlG

′
kGl

)
, (A.3)

hence

(u2)x =

n∑

k,l=1

(
(mkml + sksl)(GkG′

l + G′
kGl)

+ (mksl + skml)(GkGl + G′
kG′

l)

− 2
[
sksl(G

′
kδl + G′

lδk) + mkslGkδl + mlskGlδk

])
.

(A.4)

We also need to compute G′ ∗ u2, which is more tedious. When dealing with a
term like GkGl it is natural to view the the real line as split into three intervals
by the points xk and xl (or two intervals if xk = xl), and write the term as a
sum of functions with support in the respective intervals. Let χI(x) be 1 if x ∈ I
and 0 otherwise, and let i ≤ j be the unique indices such that min(xk, xl) = xi

and max(xk , xl) = xj . Then

GkGl = akl + bkl + ckl,

G′
kG′

l = akl − bkl + ckl,

GiG
′
j = akl + bkl − ckl,

G′
iGj = akl − bkl − ckl,

(A.5)

with

akl(x) =
GkGl + G′

kG′
l + GkG′

l + G′
kGl

4
= e2x−xk−xlχ(−∞,xi)(x),

bkl(x) =
GkGl − G′

kG′
l

2
=

GiG
′
j − G′

iGj

2
= e−|xk−xl|χ(xi,xj)(x),

ckl(x) =
GkGl + G′

kG′
l − GkG′

l − G′
kGl

4
= e−2x+xk+xlχ(xj ,∞)(x),

(These equalities hold pointwise except maybe at the points xk and xl, hence
they hold in the distributional sense.) Now,

(G′ ∗ akl)(x) =

∫

R

G′(x − y)e2y−xi−xj χ(−∞,xi)(y) dy
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equals

e−xi−xj

(∫ x

−∞

(−ey−x)e2y dy +

∫ xi

x

ex−ye2y dy

)

if x < xi, and

e−xi−xj

∫ xi

−∞

(−ey−x)e2y dy

if xi < x. We evaluate the integrals and collect the results to obtain

(G′ ∗ akl)(x) = (− 4
3e2x−xi−xj + ex−xj )χ(−∞,xi)(x) − 1

3e−x+2xi−xjχ(xi,∞)(x)

= − 4
3akl + exi−xj

Gi + G′
i

2
− 1

3exi−xj
Gi − G′

i

2
.

Similar computations apply to G′ ∗ bkl and G′ ∗ ckl. The results are

G′ ∗ akl = 1
3e−|xk−xl|(Gi + 2G′

i) − 4
3akl,

G′ ∗ bkl = e−|xk−xl|(Gi − Gj),

G′ ∗ ckl = 1
3e−|xk−xl|(−Gj + 2G′

j) + 4
3ckl.

(A.6)

It follows from (A.5) and (A.6) that

G′ ∗ (GkGl) = 2
3e−|xk−xl|(2Gi − 2Gj + G′

i + G′
j) − 4

3 (akl − ckl),

G′ ∗ (G′
kG′

l) = 2
3e−|xk−xl|(−Gi + Gj + G′

i + G′
j) − 4

3 (akl − ckl),

G′ ∗ (GiG
′
j) = 2

3e−|xk−xl|(2Gi − Gj + G′
i − G′

j) − 4
3 (akl + ckl),

G′ ∗ (G′
iGj) = 2

3e−|xk−xl|(−Gi + 2Gj + G′
i − G′

j) − 4
3 (akl + ckl),

and consequently

G′ ∗ (GkGl) = 2
3e−|xk−xl|(2 sgn(xl − xk)(Gk − Gl) + G′

k + G′
l)

− 2
3 (GkG′

l + G′
kGl),

G′ ∗ (G′
kG′

l) = 2
3e−|xk−xl|(− sgn(xl − xk)(Gk − Gl) + G′

k + G′
l)

− 2
3 (GkG′

l + G′
kGl),

G′ ∗ (GkG′
l) = 2

3e−|xk−xl|
(
2Gk − Gl + sgn(xl − xk)(G′

k − G′
l)
)

− 2
3 (GkGl + G′

kG′
l),

G′ ∗ (G′
kGl) = 2

3e−|xk−xl|
(
−Gk + 2Gl + sgn(xl − xk)(G′

k − G′
l)
)

− 2
3 (GkGl + G′

kG′
l).
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Applying this to (A.3) we obtain

2Px = G′ ∗ 3
2u2 =

n∑

k,l=1

(
−(mkml + sksl)(GkG′

l + G′
kGl)

− (mksl + skml)(GkGl + G′
kG′

l)

)

+

n∑

k,l=1

e−|xk−xl|

(
(mkml + sksl)(G

′
k + G′

l)

+ mksl(2Gk − Gl) + skml(−Gk + 2Gl)

)

+

n∑

k,l=1

sgn(xl − xk)e−|xk−xl|

(
(2mkml − sksl)(Gk − Gl)

+ (mksl + skml)(G
′
k − G′

l)

)
.

(A.7)

When adding (A.4) and (A.7), all terms of type GG, GG′ and G′G′ cancel out.
We add on (A.2) as well, and swap the labels k and l in some terms in order to
collect the remaining x-dependent ingredients δk(x), Gk(x), and G′

k(x):

2ut + (u2)x + 2Px

= 2

n∑

k=1

(
(ṁk − skẋk)Gk + (ṡk − mkẋk)G′

k + 2skẋkδk

)

− 4

n∑

k=1

( n∑

l=1

slG
′
l(xk) +

n∑

l=1

mlGl(xk)

)
skδk

+

n∑

k=1

(
2mk

n∑

l=1

mle
−|xk−xl| + 2sk

n∑

l=1

sle
−|xk−xl|

)
G′

k

+

n∑

k=1

(
4mk

n∑

l=1

sle
−|xk−xl| − 2sk

n∑

l=1

mle
−|xk−xl|

)
Gk

+

n∑

k=1

(
4mk

n∑

l=1

ml sgn(xl − xk)e−|xk−xl|

− 2sk

n∑

l=1

sl sgn(xl − xk)e−|xk−xl|

)
Gk

+
n∑

k=1

(
2mk

n∑

l=1

sl sgn(xl − xk)e−|xk−xl|

+ 2sk

n∑

l=1

ml sgn(xl − xk)e−|xk−xl|

)
G′

k.
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The DP equation (1.15) requires the above to equal zero, that is

0 = 4

n∑

k=1

sk

(
ẋk − u(xk)

)
δk

+ 2

n∑

k=1

(
ṁk + 2mk{ux(xk)} − 2sk u(xk) − sk

(
ẋk − u(xk)

))
Gk

+ 2
n∑

k=1

(
ṡk + sk{ux(xk)} − mk

(
ẋk − u(xk)

))
G′

k,

which is equivalent to (2.3) since {δk, Gk, G′
k}n

k=1 is a linearly independent set.
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