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Abstract

Newton systems q̈ = M(q), q ∈ Rn, with integrals of motion
quadratic in velocities, are considered. We show that if such a sys-
tem admits two quadratic integrals of motion of so-called cofactor type,
then it has in fact n quadratic integrals of motion and can be embedded
into a (2n+ 1)-dimensional bi-Hamiltonian system, which under some
non-degeneracy assumptions is completely integrable. The majority
of these cofactor pair Newton systems are new, but they include also
conservative systems with elliptic and parabolic separable potentials,
as well as many integrable Newton systems previously derived from
soliton equations. We explain the connection between cofactor pair
systems and solutions of a certain system of second order linear PDEs
(the fundamental equations), and use this to recursively construct in-
finite families of cofactor pair systems.
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1 Introduction

Conservative Newton systems, i.e., systems of differential equations of the
form

q̈ = −∇V (q), (1.1)

are of fundamental importance in classical mechanics. Here q = (q1, . . . , qn)T

are Cartesian coordinates onRn, dots denote derivatives with respect to time
t, and ∇ = (∂1, . . . , ∂n)T is the gradient operator. (We use ∂i, or sometimes
∂qi , as an abbreviation for ∂/∂qi, and XT denotes the transpose of a matrix
X. Thus, we regard elements of Rn as column vectors. We will only consider
systems on Rn, not on general manifolds.) A large mathematical machin-
ery has been built up for integrating such systems. We will here quickly
review some well-known facts. For a system of the form (1.1), the energy
E = 1

2 q̇
T q̇ + V (q) is always an integral of motion. There are the standard

Lagrangian and Hamiltonian formulations. The system is called completely
integrable if it has n Poisson commuting integrals of motion, in which case
the Liouville–Arnol’d theorem says (among other things) that it can, in prin-
ciple, be integrated by quadrature. A powerful method for finding solutions
analytically is the Hamilton–Jacobi method, which is applicable if the poten-
tial V is such that the Hamilton–Jacobi equation 1

2

∑n
1 (∂iF (q))2+V (q) = E

can be solved by separation of variables in some suitable coordinate system.
In that case the potential is said to be separable, and the n integrals of
motion of the system will all depend quadratically on the momenta pi = q̇i.
It is known through the work of many people, beginning with classical re-
sults by Stäckel, Levi-Civita and Eisenhart, that in Rn such separation can
only occur in so-called generalized elliptic coordinates or some degeneration
thereof. There exist criteria for determining if, and in that case in which
system of coordinates, a given potential V is separable. For n = 2, the
condition is that V (q1, q2) must satisfy the Bertrand–Darboux equation [1,
Sec. 152]

0 =(αq1q2 + β1q2 + β2q1 + γ12)(∂22V − ∂11V )

+ (α(q21 − q22) + 2β1q1 − 2β2q2 + γ11 − γ22)∂12V
− 3(αq2 + β2)∂1V + 3(αq1 + β1)∂2V

(1.2)

for some constants α, β1, β2, γ12, γ11 − γ22, not all zero. Depending on the
values of these parameters, the characteristic coordinates of the Bertrand–
Darboux equation are either elliptic, polar, parabolic, or Cartesian coordi-
nates, and this determines the coordinate system in which the Hamilton–
Jacobi equation separates. The extra integral of motion is F = (αq22+2β2q2+
γ22)q̇

2
1 − 2(αq1q2 + β1q2 + β2q1 + γ12)q̇1q̇2 + (αq21 + 2β1q1 + γ11)q̇

2
2 + k(q1, q2)

for some function k. Similar results are known for n > 2. These will be
described in section 7.
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For general (nonconservative) Newton systems

q̈ = M(q) (1.3)

less is known. (In this article we use the term Newton system only for
systems in which the right-hand side M(q) does not depend on the velocity
q̇ or on time t.) In [2] we studied the class of systems of the form (1.3)
which possess an “energy-like” integral of motion E which is quadratic in
q̇1, . . . , q̇n. The theory originated from the following example.

Example 1.1 (Harry Dym stationary flow). The system

q̈1 = κq1 − q2/q51,
q̈2 = 4κq2 − d,

(1.4)

is equivalent, under the substitution u = q−41 , to the second stationary
flow of the Harry Dym soliton hierarchy, and therefore it was suspected to
be integrable in some sense. In addition to the integral of motion F =
1
2 q̇

2
2 − 2κq22 + dq2, which comes from the second equation alone, this system

has another quadratic integral of motion

E =− q2q̇21 + q1q̇1q̇2 − κq21q2 +
q22
2q41

+
d

2
q21

=
(
q̇1 q̇2

)(−q2 q1/2
q1/2 0

)(
q̇1
q̇2

)
− κq21q2 +

q22
2q41

+
d

2
q21

=q̇TA(q) q̇ + k(q).

(1.5)

No Lagrangian formulation could be found for the system (1.4). However, it
was discovered that it could be generated from E in a “quasi-Lagrangian”
way by changing the minus sign in the Euler–Lagrange derivate δ to plus.
Indeed, defining the quasi-Lagrangian operator δ+ = (δ+1 , . . . , δ

+
n )T by

δ+i E =
∂E

∂qi
+
d

dt

∂E

∂q̇i
, (1.6)

one finds immediately that the equation 0 = δ+E yields(
0
0

)
=

(
δ+1 E
δ+2 E

)
= 2

(
−q2 q1/2
q1/2 0

)(
q̈1 − (κq1 − q2/q51)
q̈2 − (4κq2 − d)

)
,

which is clearly equivalent to (1.4). This proved to be a general feature of
Newton systems with quadratic integrals of motion, so such systems were
given the name quasi-Lagrangian Newton systems, or QLN systems. Ex-
pressed in terms of the matrix A(q) and the function k(q) in (1.5), the
system (1.4) can be written

q̈ = −1

2
A(q)−1∇k(q),
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a result that also holds in general (see theorem 2.1 below). Clearly, this
contains the conservative case (1.1) as the special case A = I (identity
matrix) and k = 2V .

The following nonstandard Hamiltonian formulation was found for the
system (1.4):

d

dt


q1
q2
p1
p2
d

 =


0 0 0 −q1/2 p1

0 −q1/2 −q2 p2
0 p1/2 κq1 − q2/q51

∗ 0 4κq2 − d
0




0
0
0
0
1

 = Π∇d, (1.7)

where the star denotes entries determined by antisymmetry of the matrix
Π, and ∇ = (∂q1 , ∂q2 , ∂p1 , ∂p2 , ∂d)

T is the gradient operator on the extended
phase spaceM = R5. The last column in the matrix Π equals the Hamilto-
nian vector field determined by the function H(q, p, d) = d, while the other
entries are chosen so that {f, g} = (∇f)TΠ∇g defines a Poisson bracket (in
particular, so that the Jacobi identity is satisfied). The quadratic integral
of motion E is a Casimir of Π, i.e., Π∇E = 0.

The results for the system in example 1.1 gave rise to a general theory of
two-dimensional QLN systems, developed in [2]. It was shown that they all
admit a nonstandard Hamiltonian formulation similar to (1.7). In general,
unlike in example 1.1, the parameter d which is used as an extra phase space
variable is not present from the start, but has to be introduced by adding
terms linear in d to the right-hand side of the original Newton system,
which can be recovered as the restriction of the Hamiltonian system to the
hyperplane d = 0.

Of special interest are the integrability properties of two-dimensional
QLN systems with two functionally independent quadratic integrals of mo-
tion, say E = q̇TA(q) q̇ + k(q) and F = q̇TB(q) q̇ + l(q). It was shown that
such a system can be embedded into a completely integrable bi-Hamiltonian
system in extended phase space, in the sense that the trajectories of the ex-
tended system on the hyperplane d = 0 coincide with the trajectories of the
original QLN system; however, they are in general traversed at a different
speed. The reason for this extra complication is that some care has to be
taken in order to ensure that both integrals of motion of the QLN system
really give rise to corresponding integrals of motion of the extended system.
The Poisson structures for the bi-Hamiltonian system are in general both
non-canonical.

Both E and F can be used for generating the Newton system, which
leads to the equality q̈ = −1

2A
−1∇k = −1

2B
−1∇l. From ∇k = AB−1∇l and

the equality of mixed second order derivatives of k, one finds that l satisfies
a certain second order linear PDE, whose coefficients depend on the entries
of the matrices A(q) and B(q) (these entries are known to be quadratic
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polynomials of a certain form; see (3.1) below). Similarly one finds from
∇l = BA−1∇k that k satisfies another PDE. A remarkable discovery made
in [2] was that if one substitutes k = K1 detA and l = K2 detB in these
equations, then K1 and K2 both satisfy the same second order linear PDE,
which was named the fundamental equation associated with the matrices
A and B. The coefficients in this equation are cubic polynomials in q,
depending on the entries of A and B. It was shown that there is a one-to-one
correspondence between fundamental equations and linear spans λA+ µB,
which makes it possible to classify the types of systems that occur according
to the polynomial degree of the matrices A and B. For example, when B = I
the fundamental equation reduces to the Bertrand–Darboux equation (1.2),
which shows that this new class of system includes, but also significantly
extends, the class of two-dimensional conservative systems with separable
potentials. The fundamental equation was also used for constructing infinite
families of integrable two-dimensional QLN system.

The aim of the present paper is to investigate what can be said in the
n-dimensional case. In particular, we are interested in finding nonstandard
Hamiltonian and bi-Hamiltonian formulations, similar to the ones in [2],
which will allow us to show the integrability of (in general nonconservative)
n-dimensional Newton systems with sufficiently many quadratic integrals of
motions. The benefit of a Hamiltonian formulation is that only n integrals
are needed, instead of 2n− 1 as in the general case. The rather unexpected
result of our investigations is that even in n dimensions the existence of
just two quadratic integrals of motion implies integrability, provided these
integrals are of what we call cofactor type. Any Newton system with two
such integrals of motion must in fact have n quadratic integrals of motion of
a certain structure. Such systems are the principal objects of study in this
paper, and we call them cofactor pair systems. We give a simple method of
testing if a given Newton system is a cofactor pair system, and show how any
cofactor pair system can be embedded in a bi-Hamiltonian system in (2n+
1)-dimensional phase space. This bi-Hamiltonian system, whose Poisson
structures are in general both non-canonical, is completely integrable under
some mild non-degeneracy conditions, which explains in what sense cofactor
pair systems can be considered integrable. We also find the analogue of the
fundamental equation, which in this case is a system of

(
n
2

)
second order

linear PDEs, whose coefficients are cubic polynomials in q, and use this to
recursively construct infinite families of cofactor pair systems.

This theory is richly illustrated by examples, and connects many dif-
ferent results obtained by other methods. In particular, we explain how
n-dimensional separable potentials fit into this framework.
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2 Quasi-Lagrangian Newton systems in n dimen-
sions

In this section we review the basic facts about Newton systems with one or
more quadratic integrals of motion. A characteristic feature of such a system
is that it can easily be reconstructed from any of its quadratic integrals of
motion E = q̇TA(q) q̇ + k(q), either via the quasi-Lagrangian equations
δ+E = 0 or directly as q̈ = −1

2A
−1∇k.

Theorem 2.1 (Newton systems with quadratic integrals). Let

E(q, q̇) = q̇TA(q) q̇ + k(q) =
n∑

i,j=1

Aij(q) q̇iq̇j + k(q), (2.1)

where AT = A. Then E is an integral of motion for the Newton system
q̈ = M(q) if and only if

∂iAjk + ∂jAki + ∂kAij = 0, for all i, j, k = 1, . . . , n, (2.2)

and
2A(q)M(q) +∇k(q) = 0. (2.3)

So if detA(q) 6= 0, then the system can be reconstructed from its integral of
motion E as

q̈ = M(q) = −1

2
A(q)−1∇k(q), (2.4)

which is equivalent to the system of quasi-Lagrangian equations δ+E = 0
defined by (1.6).

Proof. E is an integral of motion if and only if

Ė =
∑
i

(2(Aq̈)i + ∂ik)q̇i +
1

3

∑
i,j,k

(∂iAjk + ∂jAki + ∂kAij)q̇iq̇j q̇k

vanishes identically, which proves the first statement. Moreover,

δ+i E = 2(Aq̈)i + ∂ik +
∑
j,k

(∂iAjk + ∂jAki + ∂kAij)q̇j q̇k,

so that δ+E = 2AM +∇k if (2.2) holds.

Definition 2.2 (QLN system). A Newton system of the form (2.4) in the-
orem 2.1, or, in other words, a Newton system with a quadratic integral of
motion E = q̇TA(q) q̇+k(q) with detA 6= 0, will be called a quasi-Lagrangian
Newton system, or QLN system.

6



Definition 2.3 (Cyclic conditions). The system (2.2) of linear first order
PDEs ∂iAjk + ∂jAki + ∂kAij = 0 will be referred to as the cyclic conditions
for the matrix A(q).

Remark 2.4 (Killing tensor). The cyclic conditions, with covariant instead
of partial derivatives, are the equation for a second order Killing tensor on
a Riemannian manifold (i.e., a tensor Aij such that Aij q̇

iq̇j is an integral of
motion of the geodesic equations). Consequently, in our case we could speak
of Killing tensors on Rn with the Euclidean metric. However, most of the
time we will simply refer to “matrices satisfying the cyclic conditions.”

Remark 2.5. That a Newton system q̈ = M(q) can be reconstructed from
one of its integrals of motion was known already to Bertrand, whose method
is not restricted to quadratic integrals [1, Sec. 151]. The quasi-Lagrangian
formulation, however, was noticed only recently—it was first published in
[3], and further theory was developed in [2]. It is at present unclear whether
it has any geometric or similar significance, or if it is just an algebraic
property. For example, unlike the ordinary Lagrange equations which admit
arbitrary point transformations, the quasi-Lagrangian equations are only
invariant under affine changes of variables. In any case, “QLN system” is a
convenient designation for “velocity-independent Newton system, in general
not conservative, with a nondegenerate quadratic integral of motion,” and
the notation δ+E = 0 is also useful.

Remark 2.6. From theorem 2.1 it follows that if a Newton system q̈ = M(q)
has two (or more) quadratic integrals of motion, say E = q̇TA(q) q̇ + k(q)
and F = q̇TB(q) q̇ + l(q), then any of them can be used to reconstruct the
system as long as the matrix is nonsingular. Thus,

M = −1

2
A−1∇k = −1

2
B−1∇l. (2.5)

If B is singular but not A, then B + λA is nonsingular for some λ ∈ R, so
we can replace F with F + λE to give

M = −1

2
A−1∇k = −1

2

(
B + λA

)−1∇(l + λk
)
.

3 Matrices satisfying the cyclic conditions

A QLN system q̈ = −1
2A
−1∇k is completely determined by the matrix A(q),

which has to satisfy the cyclic conditions (2.2), and the arbitrary function
k(q), which plays the role of a “potential.” In order to understand the class
of QLN systems, it is essential to determine what a matrix A satisfying the
cyclic conditions looks like. The general solution of the cyclic conditions is
known (see for instance [4], which also gives results about Killing tensors
on general manifolds). Since we will not use these results in full, we merely
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outline the general structure in proposition 3.1 below, which shows that the
entries of A must be quadratic polynomials in q. The main purpose of this
section is to introduce a special class of solutions that will be central in what
follows: cofactor matrices of elliptic coordinates matrices.

Proposition 3.1. If the symmetric matrix A(q) satisfies the cyclic condi-
tions (2.2), then

1. For all i, j, k and l,

∂ijAkl = ∂klAij = const.

In particular, each matrix entry Aij(q) is a polynomial of degree at
most two.

2. Aii is independent of qi for all i.

3. For i 6= j, Aij contains no q2i or q2j terms.

Proof. Taking i = j = k the cyclic conditions read 3∂iAii = 0, so Aii does
not depend on qi. For k = i 6= j we have ∂jAii + 2 ∂iAij = 0, which shows
that ∂iAij is independent of qi. Thus, Aij is linear in qi and, by symmetry,
in qj . Finally, the stated relationship between the second derivatives follows
from

2(∂klAij − ∂ijAkl) = ∂l(∂kAij + ∂iAjk + ∂jAki)

+ ∂k(∂lAij + ∂iAjl + ∂jAli)

− ∂i(∂jAkl + ∂kAlj + ∂lAjk)

− ∂j(∂iAkl + ∂kAli + ∂lAik)

= 0,

and they are constant since

3∂klmAij = ∂kl∂mAij + ∂lm∂kAij + ∂km∂lAij

= ∂kl(−∂iAmj − ∂jAim) + ∂lm(−∂iAkj − ∂jAik)
+ ∂km(−∂iAlj − ∂jAil)

= − 1

2

[
∂ik(∂lAmj + ∂mAlj) + ∂il(∂kAmj + ∂mAkj)

+ ∂kj(∂lAim + ∂mAil) + ∂lj(∂kAim + ∂mAik)

+ ∂mi(∂lAkj + ∂kAlj) + ∂mj(∂lAik + ∂kAil)

]
=

1

2

[
∂ik∂jAlm + ∂il∂jAkm + ∂kj∂iAml

+ ∂lj∂iAkm + ∂mi∂jAlk + ∂mj∂iAlk

]
= ∂ij(∂kAlm + ∂lAmk + ∂mAkl)

= 0.
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With the help of these facts it is possible to find the general solution of
(2.2) for any given n. For n = 2, it is

A =

(
αq22 + 2β2q2 + γ22 −(αq1q2 + β1q2 + β2q1 + γ12)

−(αq1q2 + β1q2 + β2q1 + γ12) αq21 + 2β1q1 + γ11

)
= cof

(
αq21 + 2β1q1 + γ11 αq1q2 + β1q2 + β2q1 + γ12

αq1q2 + β1q2 + β2q1 + γ12 αq22 + 2β2q2 + γ22

)
,

(3.1)

which depends on the six parameters α, β1, β2, γ11, γ12 and γ22. The choice
of notation will be made clear below; see in particular remark 3.9. For
n = 3 the general solution already involves 20 parameters, and in general
the number of parameters is n(n+ 1)2(n+ 2)/12 [4].

Now we will focus on some special types of solutions of the cyclic condi-
tions. First, we note that there is the following simple method of producing
new solutions from a given one.

Proposition 3.2 (Change of variables). If A(q) satisfies the cyclic condi-
tions (2.2), then so does STA(Sq + v)S, for any constant matrix S ∈ Rn×n
and vector v ∈ Rn.

Proof. This is easily verified directly using the chain rule. Alternatively,
one can first verify that the quasi-Lagrangian equations are invariant under
affine changes of variables q = Sr + v, which means that the Newton sys-
tem δ+E(q, q̇) = 0 expressed in the new variables r is the Newton system
generated by the integral of motion E = q̇TA(q) q̇ + k(q) when expressed in
r and ṙ:

E(r, ṙ) = (Sṙ)TA(Sr + v) (Sṙ) + k(Sr + v).

Thus, by theorem 2.1, STA(Sr + v)S must satisfy the cyclic conditions
(expressed in the r variables).

There is a class of matrices satisfying the cyclic conditions, that will
be very important in what follows: cofactor matrices of elliptic coordinates
matrices. Let us remind the reader that the cofactor (or adjoint) matrix
cof X of a quadratic matrix X is the matrix whose (i, j) entry is the cofactor
of Xji in detX, so that X cof X = (detX)I. Elliptic coordinates matrices
and their cofactor matrices appear in a natural way when trying to find a
Hamiltonian formulation for QLN systems, as will be seen in theorem 4.1 in
the next section.

Definition 3.3 (Elliptic coordinates matrix). A symmetric n × n-matrix
G(q) whose entries are quadratic polynomials in q of the form

Gij(q) = αqiqj + βiqj + βjqi + γij (3.2)
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will be called an elliptic coordinates matrix. Using matrix multiplication,
G(q) can be written

G(q) = αqqT + qβT + βqT + γ, where α ∈ R, β ∈ Rn, γ = γT ∈ Rn×n.

(Let us emphasize, for clarity, that we consider elements in Rn as column
vectors. Thus, qqT is an n × n-matrix, not to be confused with the scalar
qT q =

∑
q2i .)

The reason for the terminology is that the eigenvalues u1(q), . . . , un(q) of
an elliptic coordinates matrix (under some assumptions) determine a change
of variables from Cartesian coordinates q to generalized elliptic coordinates
u, which will be of interest when discussing separable potentials (see sec-
tion 7). For the moment, we are only interested in the following remarkable
property of such matrices:

Theorem 3.4 (Cofactor matrix). If G(q) is an elliptic coordinates matrix,
then A(q) = cof G(q) satisfies the cyclic conditions (2.2).

Proof. To begin with, we note that A is symmetric, since G is symmetric.
Now let N(q) = αq+β. Differentiating G we find, using the Kronecker delta
notation,

∂kGij = α(δkiqj + qiδkj) + βiδkj + βjδki = δkiNj + δkjNi, (3.3)

or, in matrix notation,

∂kG = (NeTk + ekN
T ), (3.4)

where ek = (0, . . . , 1, . . . , 0)T is the k’th standard basis vector of Rn.
Next, we show show that

∇ detG = 2AN, (3.5)

a formula that also will be useful elsewhere in this article. For ease of
notation, let us show the case n = 3:

∂1

∣∣∣∣∣∣
G11 G12 G13

G12 G22 G23

G13 G23 G33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2N1 G12 G13

N2 G22 G23

N3 G23 G33

∣∣∣∣∣∣+

∣∣∣∣∣∣
G11 N2 G13

G12 0 G23

G13 0 G33

∣∣∣∣∣∣+

∣∣∣∣∣∣
G11 G12 N3

G12 G22 0
G13 G23 0

∣∣∣∣∣∣
=(2N1A11 +N2A12 +N3A13) +N2A12 +N3A13

=2[AN ]1,

and similarly for the other ∂k. The notation [AN ]1 means, of course, the
first entry in the column vector AN . It is obvious that a similar calculation
can be made for any n, which proves (3.5).
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Thus, differentiating the identity AG = (detG)I, we obtain

(∂kA)G+A(NeTk + ekN
T ) = 2[AN ]kI.

After multiplying this by A from the right, we extract from the (i, j) entry

(detG)∂kAij = 2[AN ]kAij − [AN ]iAkj − [AN ]jAik. (3.6)

Summing cyclically we obtain

(detG)(∂iAjk + ∂jAki + ∂kAij) = 0.

The left-hand side of this equation is a polynomial in q, whose coefficients
are polynomials in the parameters α, βr and γrs, while the right-hand side
vanishes identically. Since detG is not identically zero as a function of these
parameters, as can be seen by taking α = 0, β = 0 and γ nonsingular,
we conclude that the sum in parentheses must vanish identically. In other
words, A satisfies the cyclic conditions for any values of α, β and γ (even
such values that make detG = 0).

Remark 3.5. This theorem implies, by proposition 3.1, that the cofactors of
G(q) are polynomials in q of degree at most two. This is a rather surprising
fact, since one could expect them to have degree 2n−1, being determinants
of (n−1)×(n−1)-matrices of quadratic polynomials. What happens is that
all the terms of degree higher than two cancel due to the special structure
of G. Similarly, since detG is the cofactor of the lower right entry in an
elliptic coordinates matrix of size (n+1)×(n+1), it must also be a quadratic
polynomial. However, checking this by direct calculation is already for n = 3
a quite formidable task!

We can use theorem 3.4 to produce a “cofactor chain” of matrices satis-
fying the cyclic conditions. Such chains will be very useful later on.

Proposition 3.6. Let G(q) = αqqT+qβT+βqT+γ and G̃(q) = α̃qqT+qβ̃T+
β̃qT + γ̃ be elliptic coordinates matrices. Then the matrices A(0), . . . , A(n−1)

defined by

Aµ = cof(G+ µG̃) =
n−1∑
i=0

A(i)µi (3.7)

all satisfy the cyclic conditions (2.2).

Proof. G + µG̃ is an elliptic coordinates matrix, with α + µα̃ instead of α
and so on. By theorem 3.4, Aµ satisfies the cyclic conditions for all µ. These
being linear equations, it follows that the coefficients at different powers of
µ in Aµ each must satisfy the cyclic conditions.
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Remark 3.7. Note that A(0) = cof G and A(n−1) = cof G̃, but that the
interjacent matrices A(1), . . . , A(n−2) in general are impossible to write as
cofactor matrices of elliptic coordinates matrices.

Obviously, we can obtain even larger variation if we form linear com-
binations of more than two elliptic coordinates matrices. For example, in
cof(G+ µG′ + λG′′) the coefficient at each different power µiλj will satisfy
the cyclic conditions. However, we have not found any particular use for
this. Combinations of two matrices, on the other hand, are absolutely fun-
damental for the construction of integrable Newton systems in section 5, as
the following example indicates.

Example 3.8 (KdV stationary flow). Define elliptic coordinates matrices
G and G̃ by

α = 0, β =

0
0
1

 , γ =

 0 −1 0
−1 0 0
0 0 0

 ; α̃ = 0, β̃ =

0
0
0

 , γ̃ =

0 0 1
0 1 0
1 0 0

 .

Then

cof(G+ µG̃) = cof

 0 −1 q1
−1 0 q2
q1 q2 2q3

+ µ

0 0 1
0 1 0
1 0 0


=

 −q22 q1q2 + 2q3 −q2
q1q2 + 2q3 −q21 −q1
−q2 −q1 −1


+ µ

2q3 q2 −q1
q2 −2q1 −1
−q1 −1 0

+ µ2

 0 0 −1
0 −1 0
−1 0 0


=A(0) + µA(1) + µ2A(2).

According to proposition 3.6, the matrices A(0), A(1) and A(2) so defined all
satisfy the cyclic conditions, and this is also easily verified directly. They
occur in the integrals of motion of the Newton system

q̈1 = −10q21 + 4q2,

q̈2 = −16q1q2 + 10q31 + 4q3,

q̈3 = −20q1q3 − 8q22 + 30q21q2 − 15q41 + d,

(3.8)

which, under the substitution q1 = u/4, is equivalent to the integrated form

1

64
(u6x + 14uu4x + 28uxuxxx + 21u2xx + 70uu2x + 70u2uxx + 35u4) = d
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of the seventh order stationary KdV flow [5]. Indeed, this system has three
quadratic integrals of motion of the form E(i) = q̇TA(i) q̇ + k(i) − dD(i),
i = 0, 1, 2, where

k(0) = 24q31q
2
2 − 8q1q

3
2 − 10q51q2 − 16q1q

2
3 − 10q41q3

+ 8q21q2q3 − 8q22q3,

k(1) = 8q21q
2
2 + 10q41q2 − 5q61 − 8q32 + 4q23 − 24q1q2q3,

k(2) = − 20q21q3 + 8q2q3 − 16q1q
2
2 + 20q31q2 − 6q51,

(3.9)

and

D(0) =− 2(q1q2 + q3),

D(1) =− (q21 + 2q2),

D(2) =− 2q1.

The system can be reconstructed from any one of these integrals as

q̈ = −1

2
[A(i)]−1∇(k(i) − dD(i)).

It was shown in [5] to be bi-Hamiltonian and completely integrable. The
parameter d was used as an extra phase space variable in the bi-Hamiltonian
formulation. Notice that the D(i) occur as coefficients in

det(G+ µG̃) = −2(q1q2 + q3)− (q21 + 2q2)µ− 2q1µ
2 − µ3.

All this fits nicely into the general scheme to be developed in section 5, where
we construct a large class of bi-Hamiltonian Newton systems containing this
one as a special case. (In this particular example, the matrix G̃ happens to
be independent of q. This will not be the case in general.)

Remark 3.9. For n = 2 every matrix satisfying the cyclic conditions is the
cofactor matrix of an elliptic coordinates matrix, as equation (3.1) shows.
For n > 2 this is not the case, as we have already noticed in remark 3.7. As
another example, a matrix with the block structure

A =

(
cof G1(q1, . . . , qr) 0

0 cof G2(qr+1, . . . , qn)

)
,

where G1 and G2 are elliptic coordinate matrices of smaller dimensions,
satisfies the cyclic conditions but cannot in general be written as the cofactor
matrix of a single elliptic coordinates matrix. Applying proposition 3.2 we
can obtain matrices for which the same is true, but without the blocks of
zeros immediately revealing them as “decomposable.”

An interesting open problem is how to detect whether the reverse pro-
cess is possible, i.e., if a given solution A of the cyclic conditions can be
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transformed, by changing variables according to proposition 3.2, into such
a decomposable form with “cofactor blocks” along the diagonal and zeros
elsewhere. If in that case k(q) = k1(q1, . . . , qr) + k2(qr+1, . . . , qn) in the
new variables, then the QLN system 0 = δ+(q̇TA(q) q̇ + k(q)) splits into
the direct sum of two smaller QLN systems, one for q1, . . . , qr and one for
qr+1, . . . , qn, to which the theory that we will develop for “cofactor systems”
can be applied separately.

4 Hamiltonian formulation and cofactor systems

Now we turn to the question of integrability of QLN systems. The notion of
complete integrability concerns Hamiltonian systems. If one has a Hamilto-
nian formulation for some system under study, then the task of showing the
system’s integrability is just a matter of finding sufficiently many Poisson
commuting integrals of motion. In this section, we present a (nonstandard)
Hamiltonian formulation for a certain class of QLN systems, the cofactor
systems.

Recall that a Poisson manifold is a manifold endowed with Poisson
bracket, i.e., a bilinear antisymmetric mapping {·, ·} : C∞(M)×C∞(M)→
C∞(M) which satisfies the Leibniz rule and the Jacobi identity. In coordi-
nates (x1, . . . , xn) the bracket takes the form

{f, g} (x) = (∇f(x))TΠ(x)∇g(x)

for some antisymmetric Poisson matrix Π(x), where ∇ = (∂x1 , . . . , ∂xn)T . A
Hamiltonian system on M is a dynamical system of the form ẋi = {xi, H},
or ẋ = Π∇H, for some function H(x).

Conservative Newton systems q̈ = −∇V (q) on Rn admit the standard
Hamiltonian formulation

d

dt

(
q
p

)
=

(
0 I
−I 0

)
∇H, where H(q, p) =

1

2
pT p+ V (q),

on the phase space M = R2n with coordinates (q, p). In this section, the
manifold M will be R2n+1 with coordinates (q, p, d) and we will investi-
gate the possibility of finding a nonstandard Hamiltonian formulation for
some nonconservative Newton systems q̈ = M(q). The idea is that several
known nonstandard Hamiltonian formulations of integrable Newton systems
derived from soliton equations [5, 6] or bi-Hamiltonian formulations for sys-
tems with separable potentials [3, 7], involve Poisson matrices on R2n+1 with
a certain block structure (see (4.1) below). We investigate what the most
general form of a Poisson matrix with this structure is. The answer leads
us to define cofactor systems, which are just the systems which admit this
type of Hamiltonian formulation. The previously known systems are special
instances of this class. Our results generalize the ones found using similar
methods in [2, 3] for the cases n = 2 or M = −∇V .

14



Theorem 4.1 (Poisson matrix). Let M denote the space Rn+n+1 with co-
ordinates (q, p, d). Let Π be an antisymmetric (n+n+1)×(n+n+1)-matrix
with the block structure

Π =


0 λ

2G(q) p

∗ λ
2F (q, p) M̂(q, d)

∗ ∗ 0

 , (4.1)

where F and G are n×n-matrices, p and M̂ column n-vectors, λ a nonzero
real parameter (introduced for later convenience) and stars denote elements
determined by antisymmetry. Then Π is a Poisson matrix if and only if:

1. G is an elliptic coordinates matrix, i.e.,

G(q) = αqqT + qβT + βqT + γ (4.2)

for some α ∈ R, β ∈ Rn and γ = γT ∈ Rn×n.

2. F is given by

F (q, p) = NpT − pNT , where N(q) = αq + β. (4.3)

3. M̂ has the structure

M̂(q, d) = M(q) + λdN(q), (4.4)

where M(q) satisfies the equations

0 = Pij − Pji, where Pij = 3NiMj +

n∑
k=1

Gki∂kMj , (4.5)

for all i, j = 1, . . . , n. If detG(q) 6= 0, this is equivalent to

M = −1

2
A−1∇k, for some function k(q), (4.6)

where A(q) = cof G(q). In other words, q̈ = M(q) is the QLN system
generated by E = q̇TA(q) q̇ + k(q) = q̇T cof G(q) q̇ + k(q).

Moreover, then the function

Ê(q, p, d) = pT cof G(q) p+ k(q)− λd detG(q) (4.7)

is a Casimir of Π, i.e.,
Π∇E = 0,

where ∇ = (∂q1 , . . . , ∂qn , ∂p1 , . . . , ∂pn , ∂d)
T .
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Proof. First of all, F must be antisymmetric in order for Π to be so. Then
we must determine what form F , G and M̂ must take in order for the Jacobi
identity to be satisfied for all combinations of the coordinates q, p, d. Let us
use the abbreviation J(f, g, h) = {{f, g} , h}+ {{h, f} , g}+ {{g, h} , f}. We
find that J(qi, qj , qk) and J(qi, qj , pk) are both identically zero for all i, j, k,
while J(qi, qj , d) = λ

2 (Gij−Gji), which implies that the matrix G(q) must be

symmetric. Further, J(qi, pj , d) = λ
2 (pT∇Gij − Fij)− pi∂dM̂j , which shows

that ∂dM̂(q, d) is independent of d, and thus M̂(q, d) = M(q) + λdN(q) for
some M(q) and N(q). (∇ = (∂q1 , . . . , ∂qn)T , as usual, and λ is introduced

here for convenience.) With this expression for M̂ we obtain 0 = pT∇Gij −
Fij − 2piNj . Adding and subtracting this expression and the corresponding
one with i and j interchanged, and using G = GT , F = −F T , we obtain

Fij = Nipj −Njpi,

which is (4.3) except that we do not know the form of N yet, and

pT∇Gij = Nipj +Njpi.

Let us now go back to writing ∂k instead of ∂qk , since only derivatives with
respect to the q variables remain. Taking i = j we see that Ni = 1

2∂iGii
and that Gii and Ni must depend on qi only. For i, j and k different,
we obtain ∂iGij = Nj(qj), ∂jGij = Ni(qi), and ∂kGij = 0. Since mixed
derivatives are equal, this gives ∂iNi(qi) = ∂jNj(qj) for all i, j, and so
∂1N1 = · · · = ∂nNn = α for some constant α. This shows that Ni = αqi+βi,
from which it follows that Gij = αqiqj + βiqj + βjqi + γij . We have now
established (4.2) and (4.3). With F , G and N given by these formulas it is
easy to check that J(qi, pj , pk) and J(pi, pj , pk) vanish identically. For the
only remaining condition, we obtain J(pi, pj , d) = λ

2 (Pij − Pji), from which
(4.5) follows. When detG 6= 0, the equations 0 = Pij − Pji are equivalent,
through the forming of suitable linear combinations, to the equations 0 =
∂i[AM ]j − ∂j [AM ]i, where A(q) = cof G(q) (the proof of this is slightly
technical and has therefore been relegated to the appendix). It follows that
there is a function k(q) such that AM = −1

2∇k. We have now completely
determined the structure of the Poisson matrix Π. Recall from theorem 3.4
that A = cof G satisfies the cyclic conditions, so that M = −1

2A
−1∇k really

is a QLN system.
It remains to verify that the function Ê given by (4.7) is a Casimir of

Π. One needs to use the facts that GA = (detG)I and G∇(pTAp) = 2FAp.
The latter equality is established as follows. By theorem 3.4, A satisfies the
cyclic conditions, so that ∂kAij = −∂iAkj − ∂jAki. Thus, using (3.3) and
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(3.5), we obtain

[G∇(pTAp)]a =
∑
k

Gak ∂k

∑
i,j

Aijpipj

 = −2
∑
i,j,k

Gak(∂iAkj)pipj

=− 2
∑
i,j,k

(
∂i(GakAkj)− (δiaNk + δikNa)Akj

)
pipj

=− 2

∑
i,j

∂i(δaj detG)pipj −
∑
j,k

NkAjkpapj −Na

∑
i,j

Aijpipj


=2
∑
k,m

(Napk −Nkpa)Akmpm = 2[FAp]a.

Knowing this, the result Π∇Ê = 0 follows from a relatively straightforward
calculation which we omit here.

Remark 4.2. If we assume from the outset that M(q) = −∇V (q), as was
done in [3], then (4.5) takes the form

0 =
n∑
r=1

(
Gir ∂rjV −Gjr ∂riV

)
+ 3
(
Ni∂jV −Nj∂iV

)
. (4.8)

As pointed out in [3], this system of equations has been found before as a
criterion for the separability of the potential V . We will return to this in
section 7.

We need a name for the type of QLN systems occurring in theorem 4.1.

Definition 4.3 (Cofactor system). A QLN system δ+E = 0 generated by
E = q̇TA q̇ + k, where A is the cofactor matrix of a nonsingular elliptic
coordinates matrix, i.e.,

A(q) = cof G(q), G(q) = αqqT + qβT + βqT + γ, detG(q) 6= 0,

will be called a cofactor system, and E an integral of motion of cofactor
type.

In two dimensions any QLN system is a cofactor system, by remark 3.9.
Theorem 4.1 leads immediately to a Hamiltonian formulation for cofactor
systems:

Theorem 4.4 (Hamiltonian formulation). Let q̈ = M(q) be a cofactor sys-
tem, generated by E = q̇TA(q) q̇ + k(q), with A = cof G. Then, using the
notation of theorem 4.1, there is on the extended phase space M = R2n+1

with coordinates (q, p, d) a related Hamiltonian system

d

dt

qp
d

 =

 p
M(q) + λdN(q)

0

 = Π∇d, (4.9)
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whose motion on the hyperplane d = 0 coincides with the motion of the
original system q̈ = M(q) in (q, q̇ = p)-space.

Proof. Since M = −1
2A
−1∇k by theorem 2.1, all the conditions of theo-

rem 4.1 are satisfied. Thus, Π is a Poisson matrix and the system is Hamil-
tonian. Trajectories with initial values in the hyperplane d = 0 remain there,
since ḋ = 0. The motion

d

dt

qp
d

 =

 p
M(q)

0


in that hyperplane is clearly equivalent to q̈ = M(q).

Remark 4.5. The restriction of the extended system (4.9) to any hyper-
plane of constant d (not necessarily d = 0) is equivalent to the Newton
system q̈ = M(q) + λdN(q), which is just the QLN system generated by
Ê(q, q̇, d) = q̇TA q̇+k(q)−λd detG(q), since −1

2A
−1∇

(
k(q)−λd detG(q)

)
=

M + λdN , by (3.5). Here we can view d just as a parameter in Ê, which is
indeed how it first turns up in integrable Newton systems derived from soli-
ton theory. In that context, d is typically an integration constant appearing
when integrating the stationary flow of some soliton PDE. See for instance
[5, 6] and example 3.8.

Remark 4.6. We have shown that one integral of motion of cofactor type
is enough for a Newton system q̈ = M(q) to admit a certain type of Hamil-
tonian formulation, but it is of course not enough to guarantee integrability
of any kind. If the extended system (4.9) admits n−1 functionally indepen-
dent Poisson commuting extra integrals of motion in addition to the Casimir
Ê and the Hamiltonian d, then it is completely integrable. Indeed, the re-
striction of the system to any level surface of Ê is a Hamiltonian system [8,
Prop. 6.19], which is symplectic, since Π obviously has rank 2n if detG 6= 0,
and has n commuting integrals of motion. Since the original Newton system
q̈ = M(q) is obtained by restriction to the hyperplane d = 0, it can in this
case be considered as completely integrable too. For instance, the system in
example 3.8 falls into this category; setting p = q̇ it is actually the “extended
system,” while what we have called here the “original system” corresponds
to the case d = 0.

This, however, does not mean that any cofactor system with n integrals
E(q, q̇), F2(q, q̇), . . . , Fn(q, q̇) must be integrable in this sense, because it
may not be possible to incorporate d-dependence into the Fi to even make
them integrals F̂i(q, p, d) of the extended system, not to mention that the F̂i
have to Poisson commute. In the next section, we will see how it is possible
to overcome this difficulty for the class of cofactor pair systems, i.e., systems
with two integrals of motion of cofactor type, by using a slightly different
(bi-Hamiltonian) extended system. The system in example 3.8 is in fact a

18



cofactor pair system, but of a rather special kind (G̃ is constant), which is
why already the theory in this section is sufficient for proving its integrability.
(Actually, one can get by with even less. That system has a Lagrangian with
indefinite kinetic energy q̇1q̇3 + 1

2 q̇
2
2, so when introducing momenta s1 = q̇3,

s2 = q̇2, s3 = q̇1 as was done in [5], one obtains a canonical Hamiltonian
formulation.)

5 Bi-Hamiltonian formulation and cofactor pair
systems

This section forms the central part of the paper. We show that cofactor
pair systems, i.e., QLN systems with two independent integrals of motion
of cofactor type, automatically must have n quadratic integrals of motion,
and that they under some non-degeneracy assumptions can be considered
as completely integrable via embedding into bi-Hamiltonian completely in-
tegrable systems in (2n+1)-dimensional phase space. The rest of the article
is then devoted to the explicit construction of cofactor pair systems in large
numbers, and to showing that many known integrable Newton systems from
the literature, in particular conservative systems with separable potentials,
fit into this framework as special cases. However, the main part of the class
of cofactor pair systems seems not to have been considered before.

We now show how the results from the previous section lead naturally to
the concept of a cofactor pair system. The matrix Π in theorem 4.1 depends
linearly on the parameters α, β, γ in the G, N and F blocks. In order to
construct a pencil of compatible Poisson matrices, let these parameters in
turn depend linearly on a variable µ:

αµ = α+ µα̃,

βµ = β + µβ̃,

γµ = γ + µγ̃,

(5.1)

where α, β, γ and α̃, β̃, γ̃ are two separate sets of parameters. Then the
corresponding Gµ, Nµ and Fµ also depend linearly on µ:

Gµ = αµqq
T + qβTµ + βµq

T + γµ =G+ µG̃,

Nµ = αµq + βµ =N + µÑ,

Fµ = Nµp
T − pNT

µ =F + µF̃ ,

(5.2)

where, for instance, N = αq + β and Ñ = α̃q + β̃, and similarly for G and
F . On the other hand, Aµ = cof Gµ is a polynomial in µ of degree n− 1:

Aµ = cof(G+ µG̃) =
n−1∑
i=0

A(i)µi. (5.3)
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Note that A(0) = cof G and A(n−1) = cof G̃, that G and G̃ are both elliptic
coordinates matrices, and that the matrices A(i) so defined all satisfy the
cyclic conditions (2.2) (cf. proposition 3.6 and remark 3.7).

If we now require the M block in the matrix Π not to depend on µ, we
obtain the following result.

Theorem 5.1 (µ-dependent Poisson matrix). Let Gµ, Nµ and Fµ be given

by (5.2), and suppose that G and G̃ are nonsingular and linearly indepen-
dent. Then the matrix

Πµ =


0 λ

2Gµ(q) p

∗ λ
2Fµ(q, p) M(q) + λdNµ(q)

∗ ∗ 0

 (5.4)

is a Poisson matrix (for all µ) if and only if the Newton system q̈ = M(q)
has n quadratic integrals of motion

E(i) = q̇TA(i)(q) q̇ + k(i)(q), i = 0, . . . , n− 1, (5.5)

where the matrices A(i) are defined by (5.3).
Moreover, then the function

Êµ(q, p, d) = pTAµ(q) p+ kµ(q)− λddetGµ(q), (5.6)

where

kµ(q) =

n−1∑
i=0

k(i)(q)µi, (5.7)

is a Casimir of Πµ.

Proof. Nearly all of the requirements of theorem 4.1 are automatically ful-
filled. What remains is that we must have AµM = −1

2∇kµ for some function
kµ(q) in order for Πµ to be Poisson. If this is to be an identity in µ, kµ must
have the form kµ =

∑n−1
i=0 k

(i)µi, and A(i)M = −1
2∇k

(i) must hold for all i.

The latter condition is, by theorem 2.1, equivalent to E(i) = q̇TA(i) q̇ + k(i)

being an integral of motion of q̈ = M(q), which proves the first part of the
theorem. The Casimir follows immediately from theorem 4.1.

Remark 5.2 (Poisson pencil). The matrix Πµ splits in the following way:

Πµ = Π + µΠ0

=


0 λ

2G(q) p

∗ λ
2F (q, p) M(q) + λdN(q)

∗ ∗ 0

+ µ


0 λ

2 G̃(q) 0

∗ λ
2 F̃ (q, p) λd Ñ(q)

∗ ∗ 0

 ,

(5.8)
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where Π is Poisson by theorem 4.1, and likewise Π0, by a similar (but sim-
pler) calculation. (Alternatively, we could infer this from Π0 = limµ→∞Πµ/µ.)
Thus, Πµ is a Poisson pencil of compatible Poisson matrices Π and Π0.

We have already, in example 3.8 (with d = 0), seen a Newton system of
the type required in theorem 5.1. In the remainder of this article, we will
show that such systems exist in large numbers, including for example systems
with separable potentials, and we will also show that they are completely
integrable (in a slightly generalized sense). To begin with, we have the
following theorem, which says that the existence of n integrals of motion of
the special form required in theorem 5.1 is guaranteed by the existence of
just two integrals of motion of cofactor type. This is clearly a feature which
cannot be seen until one considers more than two dimensions, and thus it
has no counterpart in the two-dimensional theory [2].

Theorem 5.3 (“2 implies n”). In the notation of theorem 5.1, if the Newton
system q̈ = M(q) has integrals of motion E(0) and E(n−1) of cofactor type,
then it also has integrals of motion of the form E(2), . . . , E(n−2).

Proof. The question is whether each vector field A(i)M has a potential
−1

2k
(i), given that A(0)M and A(n−1)M do, where the matrices A(i) are

defined by (5.3). We will show this in a rather indirect way. By theo-
rem 4.1, applied first with (cof G)M = −1

2∇k
(0) and then with (cof G̃)M =

−1
2∇k

(n−1), the matrices

Π′ =


0 λ

2G(q) p

∗ λ
2F (q, p) M(q) + λdN(q)

∗ ∗ 0


and

Π′′ =


0 λ

2 G̃(q) p

∗ λ
2 F̃ (q, p) M(q) + λd Ñ(q)

∗ ∗ 0


are both Poisson. At the same time,

Π′ −Π′′ =


0 λ

2 (G− G̃) 0

∗ λ
2 (F − F̃ ) λd (N − Ñ)

∗ ∗ 0


has the form of Π0 in (5.8), so it is also Poisson. This implies [8, Lemma
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7.20] that

Π′ + µΠ′′ =


0 λ

2Gµ (1 + µ)p

∗ λ
2Fµ (1 + µ)M + λdNµ

∗ ∗ 0


is Poisson for all µ, and also for all λ, since λ is just an arbitrary numerical
parameter. Replacing λ with λ(1 + µ), and dividing the matrix by (1 + µ),
we obtain precisely the matrix Πµ in (5.4), which we thus have shown to be
Poisson for all µ. Theorem 5.1 now implies that q̈ = M(q) has n integrals
of motion E(i), as claimed.

Remark 5.4. In [9] Newton systems on R2m are constructed which have m
quadratic and m quartic integrals of motion. This shows that the existence
of two quadratic integrals of motion which are not of cofactor type is not
sufficient for n quadratic integrals to exist.

Theorem 5.3 motivates the following definition:

Definition 5.5 (Cofactor pair system). An n-dimensional QLN system with
two independent quadratic integrals of motion E = q̇TA q̇ + k and Ẽ =
q̇T Ã q̇+ k̃, where A and Ã both are cofactor matrices of linearly independent
nonsingular elliptic coordinates matrices, i.e.,

A(q) = cof G(q), G(q) = αqqT + qβT + βqT + γ, detG(q) 6= 0,

Ã(q) = cof G̃(q), G̃(q) = α̃qqT + qβ̃T + β̃qT + γ̃, det G̃(q) 6= 0,

will be called a cofactor pair system.

Note that A and Ã are the same as A(0) and A(n−1) in theorems 5.1
and 5.3, and similarly for k, k̃ and E, Ẽ. By theorem 5.3, a cofactor pair
system always has n quadratic integrals of motion E(i) = q̇TA(i) q̇ + k(i)

which can be found by solving the equations −2A(i)M = ∇k(i) for k(i).
Theorem 5.1 leads immediately to the following theorem, which is the key
to explaining in what sense cofactor pair systems can be considered to be
integrable.

Theorem 5.6 (Bi-Hamiltonian formulation). Let q̈ = M(q) be a cofactor
pair system. Then there is on the extended phase space M = R2n+1 with
coordinates (q, p, d) a related bi-Hamiltonian system

d

dt

qp
d

 = Π∇(λd det G̃) = Π0∇(Ẽ − λdD(n−1)), (5.9)

where Π and Π0 are given by (5.8), and D(n−1) is defined by

Dµ = detGµ = det(G+ µG̃) =

n∑
i=0

D(i)µi. (5.10)
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The trajectories of this system on the hyperplane d = 0 coincide with the
trajectories of the original system in (q, q̇ = p)-space, but are traversed with
λ det G̃(q) times the velocity at each point.

Proof. From theorem 5.1 we know that

Êµ(q, p, d) = pTAµ(q) p+ kµ(q)− λdDµ(q) =
n∑
i=0

Ê(i)µi,

is a Casimir of the Poisson pencil Πµ = Π + µΠ0. Collecting powers of µ,
we obtain the following bi-Hamiltonian chain:

0 =Πµ∇Êµ = (Π + µΠ0)∇

(
n∑
i=0

Ê(i)µi

)
=Π∇Ê(0) + µ

[
Π∇Ê(1) + Π0∇Ê(0)

]
+ · · ·+ µn

[
Π∇Ê(n) + Π0∇Ê(n−1)

]
+ µn+1Π0∇Ê(n).

(5.11)

Since Ê(n) = −λdD(n) = −λddet G̃ and Ê(n−1) = E(n−1) − λdD(n−1) =
Ẽ−λdD(n−1), we identify at µn the bi-Hamiltonian system (5.9). Computing
the right-hand side of the system explicitly yields

d

dt

qp
d

 = Π∇(λd det G̃) = λ

 (det G̃)p

−λ
2dG(∇ det G̃) + (det G̃)(M + λdN)

−dpT∇ det G̃

 ,

which for d = 0 reduces to

d

dt

qp
d

 = λdet G̃

 p
M
0

 .

The last claim follows.

Corollary 5.7. If the functions Ê(i)(q, p, d), i = 0, . . . , n, are functionally
independent, then the bi-Hamiltonian system (5.9) is completely integrable.

Proof. This follows by similar reasoning as in remark 4.6, since the functions
Ê(i)(q, p, d) Poisson commute with respect to Π and Π0 by Magri’s theorem
[10].

Remark 5.8. Since a completely integrable Hamiltonian system can, in
principle, be solved by quadrature, the same is true for cofactor pair systems
satisfying the assumptions of corollary 5.7. The final step, from the solution
of the extended bi-Hamiltonian system back to the original Newton system,
is just a matter of re-parameterizing the trajectories to obtain the correct
velocity at each point. This can be done with one further quadrature.
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Remark 5.9. The assumption about functional independence of the func-
tions Ê(i) seems to be fulfilled for most cofactor pair systems, like for in-
stance in example 3.8. As an example of a degenerate case when it is not,
consider G = qqT and G̃ = I for n = 3. The system q̈ = −q is a co-
factor pair system with these matrices. It is just a harmonic oscillator, so
it is integrable. The integrals of motion in the cofactor chain (for the ex-
tended system) are Ê(0) = 0, Ê(1) = l212 + l213 + l223, where lij = qipj − qjpi,
Ê(2) = pT p + qT q + λdqT q, and Ê(3) = λd. Since A(0) = cof G = 0, the
cofactor chain does not provide us with all the integrals of motion of this
system. (G is singular in this example, which simplifies the formulas a little,
but it could be replaced with the nonsingular matrix G = qqT + I with
essentially the same results; Ê(0) would not be zero, but the functions Ê(i)

would be dependent.)
The harmonic oscillator above is integrable, so there are integrals of

motion which do not appear in the degenerate cofactor chain. It might
also be possible that there exist non-integrable cofactor pair systems, with
dependent Ê(i) and no other integrals of motion.

The standard test for functional independence is the following: the func-
tions Ê(i)(q, p, d) are functionally dependent in an open set U if and only
if their gradients ∇Ê(i)(q, p, d) are linearly dependent everywhere in U [8].
This shows that a sufficient conditions for the functions E(i) to be func-
tionally independent is that the vectors A(i)p, i = 0, . . . , n − 1 are linearly
independent. It would be nice to have some simple criterion, expressed di-
rectly in terms of G and G̃, which would guarantee this, but we have not
been able to find any such. As the above example shows, it is not enough
that G and G̃ are nonsingular.

Remark 5.10. Theorems 4.1 and 5.6 generalize the corresponding results
obtained in [2] for n = 2. When G̃ = I they reproduce, respectively, the-
orem 4.1 and corollary 4.2 of [3] (bi-Hamiltonian formulation for separable
potentials; see also section 7).

6 The fundamental equations and recursive con-
struction of cofactor pair systems

Considering the results of the previous section, which show that cofactor pair
systems can be considered as completely integrable, it is natural to ask how
large the class of such systems is, and how to find or identify them in practice.
In this section, we show that cofactor pair systems are closely related to a
system of

(
n
2

)
second order linear PDEs, which we call the fundamental

equations. This yields an extremely simple method of constructing infinite
families of cofactor pair systems.

Definition 6.1 (Fundamental equations). Let G(q) = αqqT +qβT +βqT +γ
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and G̃(q) = α̃qqT + qβ̃T + β̃qT + γ̃ be elliptic coordinates matrices. Let, as
usual, N = αq + β and Ñ = α̃q + β̃. The fundamental equations associated
with the pair (G, G̃) are, for i, j = 1, . . . , n,

0 =

n∑
r,s=1

(
GirG̃js −GjrG̃is

)
∂rsK

+ 3
n∑
r=1

(
GirÑj + G̃jrNi −GjrÑi − G̃irNj

)
∂rK

+ 6
(
NiÑj −NjÑi

)
K.

(6.1)

The number of independent equations is (at most)
(
n
2

)
since the equations

are antisymmetric in i and j.

The coefficients in this system are polynomials in q. The highest powers
of q cancel in each coefficient, so that the coefficient at ∂rsK is in general of
degree three, at ∂rK of degree two, and at K of degree one.

The fundamental equations are antisymmetric not only with respect to
i and j, but also under swapping of corresponding parameters with and
without tilde. This means that the fundamental equations associated with
the pair (G, G̃) are the same as the fundamental equations for (G̃,G), or even
for any linear combination (λ1G+λ2G̃, µ1G+µ2G̃). Consequently, we might
say that the fundamental equations are associated with the linear span of
the matrices G and G̃. The following theorem shows the intimate connection
between cofactor pair systems and the corresponding fundamental equations.

Theorem 6.2 (Fundamental equations). For a cofactor pair system with
integrals of motion E = q̇TA q̇+k and Ẽ = q̇T Ã q̇+ k̃, where A = cof G and
Ã = cof G̃, the functions

K ′(q) =
k(q)

detG(q)
and K ′′(q) =

k̃(q)

det G̃(q)
,

although in general different, both satisfy the fundamental equations associ-
ated with the pair of matrices (G, G̃).

Conversely, for each solution K of the fundamental equations the two
different QLN systems

0 = δ+Ẽ, where Ẽ = q̇T Ã q̇ + k̃, k̃ = K det G̃,

0 = δ+F, where F = q̇TA q̇ + l, l = K detG

are both cofactor pair systems. Explicitly, there exist extra integrals of mo-
tion

E = q̇TA q̇ + k and F̃ = q̇T Ã q̇ + l̃

for the first and second system respectively.
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Proof. The cofactor pair system can be written q̈ = −1
2A
−1∇k = −1

2Ã
−1∇k̃ =

M . This means that the vector field AM = −1
2∇k satisfies the integrability

conditions
∂a[AM ]b − ∂b[AM ]a = 0

for all a, b. As shown in the proof of theorem 4.1, these conditions are
equivalent to the equations

0 = Pij − Pji,where Pij = 3NiMj +
n∑
k=1

Gik∂kMj . (6.2)

Expressing M = −1
2Ã
−1∇k̃ in terms of K = K ′′ = k̃/ det G̃ yields

−2M = Ã−1∇k̃ = Ã−1(∇K det G̃+K∇ det G̃) = G̃∇K + 2K Ñ,

where we have used equation (3.5) (with tildes attached) and the relation
G̃Ã = (det G̃)I. Substituting this into (6.2) we obtain after a short calcula-
tion the fundamental equations (6.1), which thus are satisfied by K = K ′′.
Exchanging the roles of E and Ẽ, we find that K = K ′ = k/detG sat-
isfies the corresponding equations with coefficients with and without tilde
interchanged. But this is in fact the same system, since (6.1) is completely
antisymmetric under that operation.

The second part of the theorem follows easily by doing the same calcula-
tions backwards. Indeed, if K satisfies the fundamental equations and we let
k̃ = K det G̃, then the vector field −2AM = A(G̃∇K + 2K Ñ) = AÃ−1∇k̃
satisfies the integrability conditions, so there exists a function k such that
∇k = AÃ−1∇k̃. Thus, q̈ = 1

2A
−1∇k = 1

2Ã
−1∇k̃ is the cofactor pair system

δ+E = 0 = δ+Ẽ. Similarly, if we let l = K detG, then, because of the anti-
symmetry, the fundamental equations are also equivalent to the integrability
conditions for the vector field ÃA−1∇l, so that we obtain the cofactor pair
system δ+F̃ = 0 = δ+F .

Corollary 6.3. K(q) = 1/detG(q) and K(q) = 1/ det G̃(q) are solutions
of the fundamental equations (6.1).

Proof. The Newton system q̈ = 0 is trivially a cofactor pair systems for any
pair (G, G̃) and any constant k and k̃, so we just take k = k̃ = 1 in the
preceding theorem.

Remark 6.4. Since A−1∇k = −2q̈ = Ã−1∇k̃, the first part of the theorem
can be expressed by saying that the equation

A−1∇(K ′ detG) = Ã−1∇(K ′′ det G̃)

is an auto-Bäcklund transformation between solutions K ′ and K ′′ of the
fundamental equations. For example, when G =

(
1 0
0 −1

)
and G̃ = ( 0 1

1 0 ) this
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reproduces the Cauchy–Riemann equations, a well-known auto-Bäcklund
transformation for the Laplace equation, which is the fundamental equation
in this case (when n = 2, there is just one fundamental equation).

Theorem 6.2 opens up the possibility of recursively constructing families
of solutions to the fundamental equations, or, equivalently, constructing
families of cofactor pair systems whose integrals of motion all have the same
“kinetic” parts q̇TA(i)q̇, determined by cof(G + µG̃) =

∑n−1
0 A(i)µi, but

different “potential” parts k(i). We can combine the two statements of the
theorem as the following diagram illustrates:

Cofactor pair

system δ+Ẽ = 0.

K= k̃

det G̃−−−−−→ Solution K
l=K detG−−−−−−→ Cofactor pair

system δ+F = 0.

I.e., starting with a cofactor pair system δ+E = 0 = δ+Ẽ, we obtain
another cofactor pair system δ+F = 0 = δ+F̃ by defining l = K detG =
(k̃/ det G̃) detG and determining l̃ from

∇l̃ = ÃA−1∇l. (6.3)

That this integration is possible is precisely what theorem 6.2 says. Then we
can repeat the procedure to find yet another cofactor pair system δ+G = 0 =
δ+G̃, and so on. We can also go to the left, thereby producing a bi-infinite
sequence of cofactor pair systems

· · · ←→ δ+E = 0 ←→ δ+F = 0 ←→ δ+G = 0 ←→ · · ·

The next theorem shows that there is a purely algebraic relation between
the integrals of motion of adjacent systems in this sequence. This means
that we can get from one system to the next without having to integrate
(6.3), but instead we need to keep track of all n integrals of motion of each
system.

Theorem 6.5 (Recursion formula). Let 0 = δ+E and δ+F = 0 be cofactor
pair systems related as in the second part of theorem 6.2. Let, as usual,
E(i) = q̇TA(i)q̇ + k(i) and F (i) = q̇TA(i)q̇ + l(i), i = 0, . . . , n− 1 denote their
integrals of motion, where k̃ = k(n−1) and l = l(0), and let kµ =

∑n−1
i=0 k

(i)µi

and lµ =
∑n−1

i=0 l
(i)µi. Then, up to an arbitrary additive constant in each

l(i),

lµ =
det(G+ µG̃)

det G̃
k̃ − µkµ, (6.4)

with the inverse relationship

kµ =
1

µ

(
det(G+ µG̃)

detG
l − lµ

)
. (6.5)
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Proof. This proof is quite technical and has therefore been put in the ap-
pendix.

Remark 6.6. Setting

det(G+ µG̃)

det G̃
=

n∑
i=0

X(i)µi

we can write (6.4) as
l(0)

l(1)

...

l(n−2)

l(n−1)

 =


0 X(0)

−1 0 X(1)

. . .
...

−1 0 X(n−2)

−1 X(n−1)




k(0)

k(1)

...

k(n−2)

k(n−1)

 , (6.6)

which is sometimes convenient. We note that the matrix is (minus) what is
known as the companion matrix of the polynomial µn +X(n−1)µn−1 + · · ·+
X(0).

Remark 6.7 (Families of cofactor pair systems). With the help of the
recursion theorem we can easily construct a bi-infinite family of cofactor
pair systems for any given pair (G, G̃). Namely, we observe that any kµ
which is independent of q gives rise to the trivial cofactor pair system q̈ = 0,
which can be used as a starting point for the recursion. For example, we
can take kµ = µn−1 and iterate (6.4) to obtain the “upwards” part of the
family, or start with lµ = 1 and iterate (6.5) to obtain the “downwards”
part. (Starting with other choices of constant kµ or lµ will only lead to
systems which are linear combinations of the systems in this family.) For
systems q̈ = M(q) obtained in this way, M1(q), . . . ,Mn(q) will always be a
rational functions. However, if we find some cofactor pair system which does
not depend rationally on q, then we can use the recursion formula in both
directions to obtain another bi-infinite family, associated with this system,
whose members will all be non-rational. This is illustrated in example 7.7.

Example 6.8. To illustrate the procedure in the case n = 3, define elliptic
coordinates matrices G and G̃ by

α = 1, β =

0
0
0

 , γ =

1 0 0
0 2 0
0 0 3

 ; α̃ = 0, β̃ =

0
0
1

 , γ̃ =

1 0 0
0 1 0
0 0 0

 .
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Then

cof(G+ µG̃) =

= cof

q21 + 1 q1q2 q1q3
q1q2 q22 + 2 q2q3
q1q3 q2q3 q23 + 3

+ µ

 1 0 q1
0 1 q2
q1 q2 2q3


=

3q22 + 2q23 + 6 −3q1q2 −2q1q3
−3q1q2 3q21 + q23 + 3 −q2q3
−2q1q3 −q2q3 2q21 + q22 + 2


+ µ

q23 + 4q3 + 3 0 −q1q3 − 2q1
0 q23 + 2q3 + 3 −q2q3 − q2

−q1q3 − 2q1 −q2q3 − q2 q21 + q22 + 3


+ µ2

−q22 + 2q3 q1q2 −q1
q1q2 −q21 + 2q3 −q2
−q1 −q2 1


= A(0) + µA(1) + µ2A(2)

and

det(G+ µG̃) = (6q21 + 3q22 + 2q23 + 6) + (3q21 + 3q22 + 3q23 + 4q3 + 9)µ

+ (−2q21 − q22 + q23 + 6q3 + 3)µ2 + (−q21 − q22 + 2q3)µ
3.

An application of the “upwards” recursion formula (6.4) with kµ = µ gives
lµ = l(0) + l(1)µ+ l(2)µ2, where

l(0) =
6q21 + 3q22 + 2q23 + 6

−q21 − q22 + 2q3
,

l(1) =
3q21 + 3q22 + 3q23 + 4q3 + 9

−q21 − q22 + 2q3
,

l(2) =
−2q21 − q22 + q23 + 6q3 + 3

−q21 − q22 + 2q3
.

This corresponds to the nontrivial Newton system

q̈ = −1

2
[A(i)]−1∇l(i) =

−1

(−q21 − q22 + 2q3)2

 q1q3 + q1
q2q3 + 2q2
q23 − 3

 (6.7)

with integrals of motion q̇TA(i)q̇ + l(i) (i = 0, 1, 2).
Applying the “downwards” recursion formula (6.5) with lµ = 1 gives
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kµ = k(0) + k(1)µ+ k(2)µ2, where

k(0) =
3q21 + 3q22 + 3q23 + 4q3 + 9

6q21 + 3q22 + 2q23 + 6
,

k(1) =
−2q21 − q22 + q23 + 6q3 + 3

6q21 + 3q22 + 2q23 + 6
,

k(2) =
−q21 − q22 + 2q3

6q21 + 3q22 + 2q23 + 6
,

corresponding to the Newton system

q̈ = −1

2
[A(i)]−1∇k(i) =

1

(6q21 + 3q22 + 2q23 + 6)2

2q1q3 + 6q1
2q2q3 + 3q2

2q23 − 6

 (6.8)

with integrals of motion q̇TA(i)q̇ + k(i) (i = 0, 1, 2).
The systems (6.7) and (6.8) are integrable in the sense described in the

previous section, but it is not known if they admit, for example, any kind
of variable separation. Further systems in the recursive sequence are easily
computed with the help of symbolic algebra software, but the expressions
quickly become rather long.

7 Identifying cofactor pair system

There is a straightforward way of testing if a given Newton system q̈ = M(q)
is a cofactor pair system.

Theorem 7.1. The Newton system q̈ = M(q) admits an integral of motion
E = q̇T cof G(q) q̇ + k(q) of cofactor type if and only if the equations

0 = Pij − Pji, where Pij = 3NiMj +
n∑
k=1

Gki∂kMj , (7.1)

viewed as a linear system for the parameters α, β, γ in G = αqqT + qβT +
βqT + γ and N = αq + β, has a nontrivial solution with G nonsingular. It
is a cofactor pair system if and only if there is a two-parameter family of
solutions G = sG′+tG′′, from which it is possible to choose G = s1G

′+t1G
′′

and G̃ = s2G
′ + t2G

′′ nonsingular and linearly independent.

Proof. These equations occurred previously as equations (4.5). The claim
follows immediately from the statement in theorem 4.1 connecting equations
(4.5) and (4.6).

Example 7.2 (Harry Dym stationary flow). As a simple example, let us
apply this test to the system (1.4) from example 1.1. Inserting M(q) from
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(1.4) into (7.1) (with i = 1, j = 2) yields 0 = −α q−51 q22 − 5β1 q
−6
1 q22 +

γ22 q
−5
1 −5γ12 q

−6
1 q2+(polynomial terms). Since different powers are linearly

independent we must have α = β1 = γ12 = γ22 = 0, and with these values
the polynomial terms cancel as well, leaving β2 and γ11 free to attain any
values. Thus

G = s

(
0 q1
q1 2q2

)
+ t

(
1 0
0 0

)
is the general solution of (7.1) in this case. The matrices at s and t cor-
respond to the two known quadratic integrals of motion E and F from
example 1.1. If we want both G and G̃ to be nonsingular, we can take for

example
(

0 q1
q1 2q2

)
and

(
1 q1
q1 2q2

)
.

Example 7.3 (KdV stationary flow). For a three-dimensional example,
consider the Newton system (3.8) from example 3.8. If we apply theo-
rem 7.1 to this system, we obtain first 0 = P12 − P21 = 60α q41 + 90β1 q

3
1 +

(lower order terms), from which it follows that α = β1 = 0. This sim-
plifies the expressions considerably. What remains is 0 = P12 − P21 =
(30γ11 + 34β2)q

2
1 + 4(β3 + γ12)q1 − (20β2 + 16γ11)q2 + 4(γ13 − γ22), which

forces β2 = γ11 = 0, β3 = −γ12 and γ13 = γ22. Taking this into account,
we find P13 − P31 = −4γ23 and P23 − P32 = −4γ23 q1 − 4γ33, which gives
γ23 = γ33 = 0. Consequently, the most general matrix G for which the
system has an integral of motion of the form q̇T (cof G)q̇ + k(q) is

G = s

 0 −1 q1
−1 0 q2
q1 q2 2q3

+ t

0 0 1
0 1 0
1 0 0

 .

In this way we recover the matrices G and G̃ from example 3.8.
The system (3.8) has an indefinite Lagrangian q̇1q̇3 + q̇22/2−V (q) + d q1,

where −2V (q) = k(2) using our notation from (3.9). This gives a canonical
Hamiltonian formulation via the Legendre transformation to momenta s1 =
q̇3, s2 = q̇2, s3 = q̇1, and there is also a second, non-canonical, Hamiltonian
formulation given in [5]. Except for naming the momenta in the reverse
order, this bi-Hamiltonian formulation is just a special case of the one in
theorem 5.6. The system was shown in [11] to be separable in the Hamilton–
Jacobi sense, using results about so-called quasi-bi-Hamiltonian systems [12].
The same can be shown to hold for any cofactor pair system where one of
the matrices G or G̃ (say G̃, as in this case) is independent of q. Briefly,
when changing to momenta s = G̃−1p instead of p, our bi-Hamiltonian
formulation of theorem 5.6 takes the form required for the methods used
in [11] to apply. However, it is not known if general cofactor pair system,
with both G and G̃ depending on q, can be solved through separation of
variables. A separation procedure not using the Hamilton–Jacobi equation
was given in [2] for a special class of two-dimensional cofactor pair systems,

31



the so-called driven systems. Similar results have been found also for n > 2
and will be published in a separate paper.

Finally, the fundamental equations (6.1) for K = k(2)/ det G̃ = −k(2) =
2V associated with the pair (G, G̃) reduce to precisely the system (4.20) for
V in [5], found there as the conditions for the Jacobi identity of the non-
canonical Poisson matrix to be fulfilled. The authors note that any V sat-
isfying these equations gives rise to a completely integrable bi-Hamiltonian
system, but do not address the question of finding such V . Our recursion
formula (6.4), which in this case can be writtenk(0)k(1)

k(2)

 7−→
 0 0 2q1q2 + 2q3
−1 0 q21 + 2q2
0 −1 2q1

k(0)k(1)

k(2)

 ,

immediately provides us with an infinite family of solutions, one of which
corresponds to the Newton system (3.8). In fact, starting with k(0) = k(1) =
0, k(2) = −1, and iterating, we obtain the k(i) of (3.9) after five steps.

Separable potentials

There is an interesting special case of theorem 7.1 that deserves mentioning.
The Newton system q̈ = M(q) is conservative when G = I (identity matrix)
is a solution of (7.1). A two-parameter solution sG+tI with G non-constant
indicates a special kind of cofactor pair system, namely a conservative system
with separable potential (in the Hamilton–Jacobi sense). Indeed, I being a
solution implies that M = −∇V for some potential V , and inserting this
into (7.1) shows that G and V satisfy the equations (cf. remark 4.2)

0 =

n∑
r=1

(
Gir ∂rjV −Gjr ∂riV

)
+ 3
(
Ni∂jV −Nj∂iV

)
=

n∑
r=1

(
(αqiqr + βiqr + βrqi + γir) ∂rjV − (αqjqr + βjqr + βrqj + γjr) ∂riV

)
+ 3
(
(αqi + βi)∂jV − (αqj + βj)∂iV

)
,

(7.2)

which have been found before in various forms [13, 14, 15, 16, 3] as a crite-
rion for the potential V to be separable in generalized elliptic coordinates or
some degeneration thereof. The matrix G determines in which coordinates
the separation takes place, in a way which we will now describe briefly. The
proofs of the following three propositions, which finally justify the terminol-
ogy “elliptic coordinates matrix,” can be found in the appendix.

Proposition 7.4 (Standard form). Let G(q) = αqqT + qβT +βqT +γ be an
elliptic coordinates matrix with α and β not both zero. Any (G, I) cofactor
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pair system can be transformed by an orthogonal change of reference frame
q → Sq + v, S ∈ SO(n), v ∈ Rn, to an equivalent system where G has the
standard form

G(q) = −qqT + diag(λ1, . . . , λn), (7.3)

if α 6= 0, or
G(q) = enq

T + qeTn + diag(λ1, . . . , λn−1, 0), (7.4)

where en = (0, . . . , 0, 1)T , if α = 0, β 6= 0.

Proposition 7.5 (Elliptic coordinates). If

G(q) = −qqT + diag(λ1, . . . , λn),

then the eigenvalues u1(q), . . . , un(q) of G satisfy

n∏
i=1

(z − ui)

/
n∏
j=1

(z − λj) = 1 +
n∑

m=1

q2m
z − λm

, (7.5)

which, when all λi are distinct, is the defining equation for generalized elliptic
coordinates u with parameters (λ1, . . . , λn).

Proposition 7.6 (Parabolic coordinates). Let en = (0, . . . , 0, 1)T . If

G(q) = enq
T + qeTn + diag(λ1, . . . , λn−1, 0),

then the eigenvalues u1(q), . . . , un(q) of G satisfy

−
n∏
i=1

(z − ui)

/
n−1∏
j=1

(z − λj) =
n−1∑
m=1

q2m
z − λm

+ (2qn − z), (7.6)

which, when all λi are distinct, is the defining equation for generalized
parabolic coordinates u with parameters (λ1, . . . , λn−1).

Now, to find the separation coordinates, first change Euclidean reference
frame so as to transform G to standard form. Then change to the elliptic or
parabolic coordinates defined by the eigenvalues of G, and the Hamilton–
Jacobi equation separates. See for example [16] for a nice summary of the
theory. (There are some technicalities concerning degenerate cases; see [13].)

The equations (7.2) are precisely the fundamental equations (6.1) for
the special case G̃ = I (and with V instead of K). Thus, the recursion
theorem 6.5 provides an easy way of producing separable potentials for any
elliptic coordinates matrix G. In fact, when G takes one of the standard
forms above, the recursion formula reduces to known recursion formulas [15]
for elliptic and parabolic separable potentials respectively.
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Example 7.7. When n = 2 and G̃ = I, the matrix form (6.6) of the
recursion formula reduces to(

l

l̃

)
=

(
0 detG
−1 trG

)(
k

k̃

)
,

with k̃ corresponding to the potential V and k occurring in the second
quadratic integral of motion. We can solve the recursion explicitly by com-
puting the powers of the matrix. For example, with

G =

(
0 q1
q1 2q2

)
(7.7)

it is not hard to show that we recover the combinatorial potentials

Vm =

bm/2c∑
k=0

(
m− k
k

)
q2k1 (2q2)

m−2k, m ≥ 0, (7.8)

found in [17], as well as the accompanying downwards family

V−m =
(−1)m

q2m1
Vm−1, m ≥ 1. (7.9)

These potentials are all separable in the parabolic coordinates u1,2 = q2 ±√
q21 + q22 defined by the eigenvalues of G, and in fact constitute the two-

dimensional case of a more general family of parabolic separable potentials
in n dimensions [15].

The two-dimensional Kepler potential

W0(q) = −(q21 + q22)−1/2 (7.10)

(which is not rational in q) is also separable in these same parabolic coordi-
nates, with second integral F0 = q̇T (cof G)q̇+ 2q2W0(q) = 2q2q̇

2
1 − 2q1q̇1q̇2 +

2q2W0(q). Starting the recursion with kµ = (q2 + µ)W0(q), we obtain what
might be called the Kepler family of parabolic separable potentials:

Wm = (−q2Vm−1 + Vm)W0, m ≥ 0, (7.11)

and
W−m = (q2V−m − V−(m−1))W0, , m ≥ 1, (7.12)

where the Vi are given by (7.8) and (7.9).
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8 Conclusions

We have introduced the class of cofactor pair Newton systems in n dimen-
sions, and explained their integrability properties through embedding into
bi-Hamiltonian systems in extended phase space. As well as providing many
new integrable systems, this gives a framework into which several previously
known systems fit, such as separable potentials and some integrable Newton
systems derived from soliton theory. Perhaps the most remarkable feature of
cofactor pair systems is the algebraic structure of their integrals of motion;
namely, that a Newton system with two integrals of motion of cofactor type
must have an entire “cofactor chain” consisting of n quadratic integrals of
motion. We have shown how to construct infinite families of cofactor pair
systems, and how to determine if a given Newton system is a cofactor pair
system. Whether all cofactor pair systems can be integrated through some
kind of variable separation is an interesting open question, but only partial
results are known yet.
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10 Note added in proof

Several works have already appeared which elaborate further on the subject
of cofactor pair systems. In my PhD thesis [18] it is shown how the theory
developed in this paper can be used to separate variables for a class of time-
dependent potentials, and also how to obtain new cofactor pair systems using
a “multiplication” formula (of which the recursion formula is a special case).
The geometric properties of cofactor pair systems have been much clarified
through the coordinate-free description given by Crampin and Sarlet [19,
20, 21], who define cofactor systems on (pseudo-)Riemannian manifolds. In
that setting Topalov [22] constructs hierarchies of metrics admitting cofactor
systems. Marciniak and B laszak [23] have investigated the separability of
cofactor pair systems with G and G̃ both non-constant.

A Appendix

This appendix contains the missing part of the proof of the Poisson matrix
theorem 4.1 as well as the proofs of the recursion theorem 6.5 and proposi-
tions 7.4, 7.5, and 7.6.
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Proof of theorem 4.1. It remains to show that the
(
n
2

)
equations (1 ≤

i < j ≤ n)

0 = Pij − Pji, where Pij = 3NiMj +

n∑
k=1

Gik∂kMj , (A.1)

are equivalent to the
(
n
2

)
equations (1 ≤ a < b ≤ n)

0 = ∂a[AM ]b − ∂b[AM ]a, where A(q) = cof G(q), detG(q) 6= 0. (A.2)

Consider the following linear combination of equations (A.2):∑
a<b

(GiaGjb −GjaGib)(∂a[AM ]b − ∂b[AM ]a)

=
1

2

∑
a,b

(GiaGjb −GjaGib)(∂a[AM ]b − ∂b[AM ]a)

=
∑
a,b

(GiaGjb −GjaGib)∂a[AM ]b

= Qij −Qji,

where

Qij =
∑
a,b

GiaGjb∂a[AM ]b

=
∑
a,b

∂a(GiaGjb[AM ]b)−
∑
a,b

∂a(GiaGjb)[AM ]b

=
∑
a

∂a(Gia[GAM ]j)−
∑
a

(∂aGia)[GAM ]j

−
∑
a,b

Gia(δajNb + δabNj)[AM ]b

=
∑
a

Gia∂a(Mj detG)−GijNTAM −Nj [GAM ]i

=(detG)

(∑
a

Gia∂aMj −NjMi

)
+Mj [G 2AN ]i −GijNTAM

=(detG)

(∑
a

Gia∂aMj −NjMi + 2MjNi

)
−GijNTAM.

Here we have made use of (3.3) and (3.5), as well as the fact GA = (detG)I.
It follows that

Qij −Qji = (detG)(Pij − Pji)

so that (A.2) implies (A.1). The opposite implication follows from the fact
that equations (A.1) can be linearly combined to yield (A.2). Explicitly,
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the inverse transformation of the linear combination above is obtained by
multiplying (A.1) by the algebraic complement of GiaGjb−GjaGib in detG
and summing over i < j. This completes the proof. (It can be noted,
for completeness, that the implication (A.1) =⇒ (A.2) does not require
detG 6= 0.)

Before turning to the proof of theorem 6.5 we need some preliminaries.
From (3.5) we know that ∇ detG = 2AN , or, since 2N = ∇ trG and GA =
(detG)I,

G∇ detG = (detG)∇ trG. (A.3)

This can be generalized in the following way.

Lemma A.1. If X = G̃−1G, where G and G̃ are elliptic coordinates matri-
ces, then

X∇ detX = (detX)∇ trX. (A.4)

Moreover,
X∇ detX

detX
=

(X + µI)∇ det(X + µI)

det(X + µI)
. (A.5)

Proof. Multiplying (A.4) by G̃, we see that it is equivalent to

G∇
(

detG

det G̃

)
=

detG

det G̃
G̃∇ tr(G̃−1G).

Using (A.3) we find that the left-hand side equals

G

(
∇ detG

det G̃
− detG

∇ det G̃

(det G̃)2

)
=

detG

det G̃

(
∇ trG−GG̃−1∇ tr G̃

)
.

We are done if we can show that the expression in parentheses equals
G̃∇ tr(G̃−1G). Let us temporarily use the notation H̃ = G̃−1. Then the
general formula for the derivative of an inverse matrix, together with (3.3),
yields

∂kH̃rs = −[H̃(∂kG̃)H̃]rs = −H̃kr[H̃Ñ ]s − H̃ks[H̃Ñ ]r.

Now we can compute

[G̃∇ tr(G̃−1G)]m =
∑
k,r,s

G̃mk∂k(H̃rsGsr)

=
∑
k,r,s

G̃mk
(
−H̃kr[H̃Ñ ]s − H̃ks[H̃Ñ ]r

)
Gsr

+
∑
k,r,s

G̃mkH̃rs(δksNr + δkrNs)

=− 2
∑
r,s

[G̃H̃]mr[H̃Ñ ]sGsr + 2[G̃H̃N ]m

=− 2[GH̃Ñ ]m + 2Nm

=[∇ trG−GG̃−1∇ tr G̃]m.
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This establishes (A.4).
To prove (A.5), observe that (A.4) can be applied withX+µI = G̃−1(G+

µG̃) instead of X, since G+µG̃ is an elliptic coordinates matrix. This shows
that (A.5) is just a restatement of the identity ∇ tr(X + µI) = ∇ trX.

Proof of theorem 6.5. We remind the reader that l = l(0), k̃ = k(n−1),
A = A(0), and Ã = A(n−1). If q̈ = M(q) is the cofactor pair system δ+E =
0 = δ+Ẽ, then we know that it is generated by any of its integrals of motions,
so that −2AµM = ∇kµ. In particular, M = −1

2Ã
−1∇k̃, which shows that

∇kµ = AµÃ
−1∇k̃. (A.6)

Similarly, lµ is determined up to integration constant by

∇lµ = AµA
−1∇l. (A.7)

The relationship between k̃ and l is by construction given by K = k̃/ det G̃ =
l/detG, where K is some solution of the fundamental equations. This is
in agreement with the recursion formula (6.4) that we are trying to prove.
What needs to be verified is consequently that the expression (6.4) for lµ as
a function of kµ satisfies (A.7), given that kµ satisfies (A.6). Rewriting this

in terms of X = G̃−1G, we have to verify that

∇
[
det(X + µI)k̃ − µkµ

]
=

det(X + µI)

detX
(X + µI)−1X∇

[
(detX)k̃

]
(A.8)

when
∇kµ = det(X + µI)(X + µI)−1∇k̃.

With the help of lemma A.1, we find

(X + µI)× [RHS of (A.8)] =
det(X + µI)

detX
X∇

[
(detX)k̃

]
= det(X + µI)

X∇ detX

detX
k̃ + det(X + µI)(X + µI − µI)∇k̃

= (X + µI)∇ det(X + µI)k̃ + (X + µI) det(X + µI)∇k̃ − µ(X + µI)∇kµ
= (X + µI)× [LHS of (A.8)].

This completes the proof of (6.4). The inverse formula (6.5) follows imme-
diately, since k(n−1) = l(0) det G̃/detG.

Proof of proposition 7.4. We need to study how the velocity-dependent
parts of the integrals of motion transform under the stated change of vari-
ables. Clearly, q̇T I q̇ in Ẽ does not change, while q̇T (cof G(q)) q̇ in E goes
to (Sq̇)T (cof G(Sq + v))(Sq̇) = q̇T cof(STG(Sq + v)S)q̇, since ST = cof S
if S ∈ SO(n). Thus, we must show that we can choose S and v such that
STG(Sq + v)S takes the stated standard form.
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Consider first the case α 6= 0. Dividing G by −α and adjusting the
cofactor chain accordingly, we can assume α = −1 without loss of generality.
If we then take v = β and choose S so as to diagonalize the symmetric
matrix γ + ββT , i.e., ST (γ + ββT )S = diag(λ1, . . . , λn), it is easily verified
that STG(Sq + v)S = −qqT + diag(λ1, . . . , λn).

Similarly, in the case α = 0 we can assume that the vector β is normal-
ized. Direct calculation shows that STG(Sq+ v)S = (STβ)qT + q(STβ)T +
ST (γ + βvT + vβT )S, which, if the last column in the orthogonal matrix S
equals β, equals enq

T +qeTn+STγS+env
T +veTn . Now, to choose the remain-

ing columns of S, let R be any orthogonal matrix with last column β, and
let P be an orthogonal (n−1)× (n−1) matrix which diagonalizes the upper
left (n − 1) × (n − 1) block Q in RTγR, i.e., P TQP = diag(λ1, . . . , λn−1).
Setting

S = R

(
P 0
0 1

)
,

we find STγS = diag(λ1, . . . , λn−1, 0)+enc
T +ceTn for some vector c. Finally

we complete the proof by taking v = −c, which gives STG(Sq + v)S =
enq

T + qeTn + diag(λ1, . . . , λn−1, 0).

Proof of proposition 7.5. We have
∏n
i=1(z−ui) = det(zI−G) = det(qqT+

diag(z − λ1, . . . , z − λn)), so the statement follows from taking µi = z − λi
in the identity

det(qqT + diag(µ1, . . . , µn)) =
n∏
i=1

µi +
n∑

m=1

q2m

 n∏
i=1
i 6=m

µi


=

(
1 +

n∑
m=1

q2m
µm

)
n∏
i=1

µi,

(A.9)

which can be proved by induction on the dimension n, as follows. It is obvi-
ously true for n = 1. Let A(q) = cof(qqT + diag(µ1, . . . , µn)). The diagonal
entries Aaa are determinants of the same form as the one we are comput-
ing, so they are Aaa =

∏
i 6=a µi +

∑
m 6=a q

2
m(
∏
i 6=m,a µi) by the induction

hypothesis. From them the off-diagonal entries are found, using the cyclic
conditions ∂aAab = −1

2∂bAaa (theorem 3.4), to be Aab = −qaqb
∏
i 6=a,b µi

(there can be no constant term since all entries from row a in G that occur
in the determinant Aab contain the factor qa). A cofactor expansion along
any row or column now yields (A.9).

Proof of proposition 7.6. This is similar to the elliptic case, but easier.
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The proposition follows quickly once we prove

det(enq
T + qeTn + diag(µ1, . . . , µn))

=

(
n−1∏
i=1

µi

)
(2qn + µn)−

n−1∑
m=1

q2m

n−1∏
i=1
i 6=m

µi


=

(
n−1∏
i=1

µi

)(
2qn + µn −

n−1∑
m=1

q2m
µm

)
.

(A.10)

The elements in the cofactor matrix which correspond to nonzero elements
in the first column are A11, which by induction is given by (A.10) with sum
and product indices starting from 2 instead of 1, and An1 = −q1

∏n−1
i=2 µi.

Cofactor expansion along the first column completes the proof.
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