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Abstract

We study second order ordinary differential equations of Newton type with in-
tegrals of motion that depend quadratically on the velocity. In particular, we
introduce the class of cofactor pair systems, which admit two quadratic integrals
of motion of a special form. It is shown that this implies that the system in fact
admits a full set of Poisson commuting integrals of motion, and consequently is
completely integrable. Methods are given for testing whether a given Newton sys-
tem belongs to this class, and for constructing infinite families of cofactor pair
systems. Several known result about separable potentials are included in the the-
ory as special cases. As an application, it is shown how to extend the classical
concept of Stickel separability to a class of time-dependent potentials.
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Strength in numbers
All you need is two

We are finding who we are
King’s X

1 Quasi-potential Newton systems

This thesis, which is a collection of three research papers [1, 2, 3], concerns systems
of ordinary differential equations of Newton type (Newton systems or Newton
equations for short)?

G=M(q), q€R" (L.1)

This is the type of equations obtained from Newton’s law that mass times accel-
eration equals force, if it is assumed that forces depend only on position, and not
on velocity or time. Such equations are in general nonlinear and highly nontrivial
to solve. Most known results deal with the conservative case § = —VV, when the
force is derived from a potential V(q). Here we study instead “quasi-potential”
Newton systems?

i=—A(q)"'VW(q), (1.2)
with a symmetric n x n matrix A(g) satisfying the cyclic conditions
0iAji + 0jApi + Or Ay =0, foralli,jk=1,...,n. (1.3)

By construction, such a system admits an integral of motion® E which is “energy-
like” in the sense of being quadratic in the velocity components ¢;:

L1 ¢ . iy :
E(g,4) =5 > Ai(@)did; + W(g) = §qTA(q)q + Wi(g). (1.4)
ij=1
Notice that when A = I (the identity matrix) this reduces to the classical conser-
vative case, with F being the usual energy (kinetic energy plus potential energy).

2 Integrable Hamiltonian systems

We investigate such systems from the point of view of integrability. Naively speak-
ing, a system is called integrable if it can be solved (more or less) explicitly. A
more precise definition can be given in the framework of Hamiltonian mechanics.
For a good introduction, see chapter 6 in Olver’s book [5]. Roughly speaking,

1Dots denote derivatives with respect to time: ¢ = dq/dt and § = d?q/dt?. We will use matrix
notation, considering ¢ = (q1,...,qn)T and M(q) = (M1(q),..., Mn(q))T as a column vectors
(T denotes the transpose of a matrix).

2The early papers [4, 1] have a factor % in this formula instead of in the integral of motion E.
The convention used here seems more in harmony with the tradition in mechanics and differential
geometry.

3 An integral of motion is a function of ¢ and ¢ which is constant along solutions of the system;
if ¢(t) is a solution, then %E(q(t),q(t)) = 0. Other names: first integral, constant of motion,
invariant.



if a system can be rewritten as a Hamiltonian system (see below) then it can in
principle be solved provided that it admits sufficiently many integrals of motion,
where “sufficiently many” means about half as many as would be needed for a
system without the Hamiltonian structure.

A conservative Newton system § = —VV can be written as the following
Hamiltonian system on the “phase space” R2™:

i q\ p (0 I\ [0H/Oq

dt \p) \-VV(g)) \-I 0)\0H/0p)"
where H(q,p) = 3p"p+ V(q). This is the “standard” or “canonical” Hamiltonian
form, with “n degrees of freedom.” More generally, a Hamiltonian system is a
system of the form & = H(x)%—f. Here x are coordinates on some phase space,

while II(z) is a Poisson matriz, which means an antisymmetric matrix such that
the Poisson bracket defined by {F, G} = (2£)TTI(z) < satisfies the Jacobi identity

{{F,G},H}+{{H,F},G}+{{G,H} ,F} =0

for all functions F'; G, H on the phase space.

In the canonical case, the system is completely integrable (in the Liouville—
Arnol’d sense) if it admits n functionally independent integrals of motion H; that
pairwise commute with respect to the Poisson bracket: {H;, H;} = 0. Liouville
showed that in this situation the system can in principle be solved “by quadra-
tures.” One also has geometric information about the trajectories; they must wind
periodically or quasi-periodically around n-dimensional tori in phase space (in the
case that the surface of constant energy is compact), as was shown by Arnol’d [6].
Similar statements can be made in the case of nonstandard Hamiltonian structures.

A special class of integrable systems are given by separable potentials. This
has to do with the Hamilton—Jacobi method, the details of which are beyond the
scope of this introduction. The idea is that the solution of § = —VV(g) can
be found if one is able to solve the Hamilton—Jacobi equation, a nonlinear PDE
involving V(¢). The Hamilton—Jacobi equation is in general very difficult to solve,
but for certain potentials V' one can do it using separation of variables (after
having changed to a suitable coordinate system). The so-called Stéckel conditions
describe when separation in orthogonal coordinates is possible. First of all, there
is a restriction on the coordinate system. In certain spaces (like R™, S™, H") the
possible coordinate systems have been completely classified. In R? these are the
cartesian, polar, elliptic, and parabolic coordinates. Secondly, the potential, when
expressed in these new coordinates u, must take the form V(u) = Y0, fi(u;)/HZ,
where H? are the metric coefficients of the orthogonal coordinate system. For
example, the potential V is separable in polar coordinates on R?, with metric
ds? = 12dr? + 12d¢?, if and only if it has the form V(r,¢) = 242 4 22 ¢ v
is separable, then the system § = —VV is integrable, and the integrals of motion
are all (at most) quadratic in ¢ (or p).

3 Cofactor systems and cofactor pair systems

When studying arbitrary Newton system § = M (q) we cannot use the standard
Hamiltonian structure. However, it turns out that quasi-potential Newton systems



admit a nonstandard Hamiltonian formulation with R?"*! as phase space, if the
matrix A(q) has the form

A(q) = cof G(q), where Gi;(q) = agiq; + Bigj + Biqi + Vij- (3.1)

Here cof denotes the cofactor matrix, cof X = (det X)X ~!. An integral of motion
(1.4) with A(q) of this form is said to be of cofactor type, and the corresponding
system (1.2) is called a cofactor system. The Hamiltonian formulation considerably
simplifies the study of integrability of cofactor systems. Thanks to the Liouville—
Arnol’d theorem, the main problem is now to construct cofactor systems with a
sufficient number of extra integrals of motion, in addition to the one which exists
by assumption. The surprising answer is that it is enough to require one extra
integral of motion E, provided that it is of cofactor type too. Then there must
in fact exist n integrals of motion, all quadratic in ¢. The investigation of such
cofactor pair systems occupies the major part of this work.

4 Some motivating examples

There are methods for constructing integrable Newton systems from stationary
or restricted flows of soliton equations (see for example [7, 8, 9]). The interest
in quasi-potential Newton equations arose when studying some examples found in
this way.

Example 4.1. The fifth order Korteweg—de Vries (KdV) equation is the inte-
grable PDE

_1 > 3
Up = 15 (Ugzar + 10Uz, + Sug + 10u”),.
A stationary flow is a time-independent solution u(x), which clearly must satisfy
the ODE uyyz0 + 10Uty + 5u2 + 10u® = 16¢, where c is a constant of integration.
This ODE is equivalent, under the substitution ¢; = %u, Q2 = %um + %ui, to
the Newton system

G1 = —10¢7 + 4qz,
Go = 10¢; — 20g1g2 + c.

This Newton system is completely integrable, because it inherits two Hamiltonian
formulations (one canonical and one non-canonical) from the KdV equation in
a way which we will not go into here. Such a bi-Hamiltonian formulation is an
effective formalism for producing Poisson commuting integrals of motion [10, 5].
There is a hierarchy of KdV equations, and the KdV equation of order 2n+1 gives
rise to an integrable Newton system in R", whose integrals of motion all depend
quadratically on g.

Example 4.2. Another soliton hierarchy is the Harry Dym hierarchy, whose sec-
ond stationary flow

1
0= E(uil/Q)a:wI - K(u71/2)7;a



where k is a constant, can be integrated once and then written as the Newton
system

G =kaq —q/q,
Go = 4Kk g2 — ¢,

by setting u = ¢; 4 One (non-canonical) Hamiltonian formulation was known for
this system, but in contrast to all the other examples studied so far, no Lagrangian
formulation could be found. (As is well-known from classical mechanics, a nonsin-
gular Lagrangian system is equivalent to a canonical Hamiltonian system via the
Legendre transformation.) In the search for a Lagrangian, Rauch—Wojciechowski
accidentally discovered that the system is equivalent to the “quasi-Lagrangian”
equations (note the change of sign compared to the usual Euler—Lagrange deriva-
tive)

OF dOF
+ —=—=0, =12,
8qi dt 8q1-
where
2 2 % € 2
E = —q47 +q1G1G2 — kg1 q2 + 2g4 T30 (4.1)
4 2
is a quadratic integral of motion for the system.
Conservative Newton systems § = —VV with additional quadratic integrals of

motion besides the energy have been studied for a long time, since this is closely
connected to the question of separability of the potential V' as we mentioned above.
The basic results for the two-dimensional case, by Bertrand and Darboux, can be
found in Whittaker’s classical book [11, sec. 152].

The desire to understand example 4.2 better was the main motivation for study-
ing Newton systems without a potential but still admitting a quadratic integral
of motion. Such systems were initially referred to as “quasi-Lagrangian” systems,
but this feature later turned out to be rather irrelevant. In particular, it has no
counterpart when the theory is generalized to Riemannian manifolds. This is why
we now prefer to speak about “quasi-potential” systems instead.

5 Overview of the papers

The first results, which were mainly restricted to the two-dimensional case, were
published in a paper by Rauch-Wojciechowski, Marciniak, and the author [4].%
There we showed (for n = 2) that any quasi-potential system admits a nonstan-
dard Hamiltonian formulation, similar to the one known for example 4.2, and that
any Newton system with two quadratic integrals of motion is completely integrable
(bi-Hamiltonian, with two nonstandard Hamiltonian formulations). It is not obvi-
ous that any nontrivial such systems actually exist. The question is closely related
to the existence of solutions of a certain second order linear PDE with polynomial
coeflicients, called the “fundamental equation.” A recursion formula for construct-
ing infinite families of such integrable systems (and solutions of the fundamental

4That paper is not included in this thesis for reasons of space, and since the results are
superseded by Paper 1 and Paper 2.



equation) was given. As a special case (when one of the two quadratic integrals is
just the usual energy) several known results concerning separable potentials were
recovered. Finally, we showed that driven systems

g1 = Myi(q1),
Go = M>(q1, q2),

admitting a quadratic integral of motion, can be integrated in a more concrete
way by introducing a new type of separation coordinates. These coordinates are
somewhat similar to the classical separation coordinates for separable potentials
(elliptic coordinates and degenerations), but they are nonorthogonal and the co-
ordinate curves are conics which are not confocal. The system (4.2) is an example
of such a driven system (if we rename q; < ¢2).

In Paper 1 all of these results, except the ones about driven systems, were
extended to the n-dimensional case. The main new insight was the following. For
n = 2 the general solution of the cyclic conditions (1.3) can easily be found. In [4]
it was written as

(An A12) _ ( ag+bg+a —aqiq2 — 51 — §q2 + §>
A1z Az —aqiq2 — g1 — S+ & agi +cq+7y ’

depending on the six parameters a, b, ¢, a, 3, 7. However, to make the relevant
structure emerge, it is better to rename the parameters as a, 20, 201, Y22, —27v12,
711, so that the solution takes the form

_ ags + 2Baqa + Y22 —(aq1q2 + B1g2 + Boq1 + 712)
—(q1q2 + B1g2 + B2q1 + Y12) agl + 2611 + 1
— cof agi + 261q1 + 71 aq1g2 + B1q2 + B2q1 + 712
=co 9 )
aqiqz + B1q2 + Baq1 + 712 oqs + 262q2 + V22

From this it is seen that in two dimensions the general solution of the cyclic
conditions has the form (3.1). For n > 2, it turns out that (3.1) still gives solutions
to the cyclic conditions, although not the general solution. Consequently, the
special role played by integrals of motion of cofactor type is not apparent until
one considers the higher-dimensional case. Once this was realized, nearly all of
the results from the case n = 2 could be generalized to n > 2, in many cases with
a clearer structure and better notation.

The paper [4] and an earlier version of Paper 1 appeared in the author’s “li-
centiate thesis” [12].

There remained the question of how to extend the results about driven systems
to higher dimensions. This was not solved until recently, and the solution is
presented in Paper 2. There it is shown that if a Newton system in R™™ of the



form

jjl = Ml(yla“'aym)a

Ym = Mm(yla e 7ym)a
191%

I = —a—h(yl,...,ym;xl,...,an
. oV
Ty = fa—%(yl,...,ym;xl,...,xn)

admits a quadratic integral of motion of cofactor type, then it admits n additional
integrals of motion, one of which involves only the variables y; and is of cofactor
type in these variables. Moreover, given any solution y(t) of the “driving system”
(i.e., the first m equations), the solution for z(t) can be found by quadratures. The
system I = —%—‘;(y(t), x) can be seen as given by a time-dependent potential, and
the method of solution as a natural extension of the classical Stackel separability
to the time-dependent case.

During the work on Paper 2 there appeared a preprint by Crampin and Sarlet
(now published [13]), where the results from Paper 1 were given an invariant
geometric formulation, valid not only in R™ but also on Riemannian manifolds.
Their basic setup is briefly described in the beginning of Paper 3. We believe that
the results of Paper 2 can also be generalized to this more general setting with
minor modifications, but this has not been done yet.

Paper 3 concerns the question of constructing cofactor pair systems in the
setting of Crampin and Sarlet, a topic not addressed in [13]. It is shown that the
recursion formula holds virtually unchanged, and, what is more interesting, that it
is only a special case of a “multiplication formula” which maps two given cofactor
pair systems to a third one. The proofs are much simplified using the powerful
formalism introduced by Crampin and Sarlet. As a special case, the multiplication
formula contains the fact that the product of two holomorphic functions is again
holomorphic. It is an interesting open question whether more of the classical
function theory can be transferred to the setting of cofactor pair systems.

A question which is not resolved in these papers is whether all cofactor pair
systems are separable in some sense. The answer to this question is yes, according
to a recent preprint by Marciniak and Blaszak [14].
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Higher-dimensional integrable Newton systems
with quadratic integrals of motion

Hans Lundmark

November 26, 1999

Abstract

Newton systems ¢ = M(q), ¢ € R"™, with integrals of motion quadratic
in velocities, are considered. We show that if such a system admits two
quadratic integrals of motion of so-called cofactor type, then it has in fact
n quadratic integrals of motion and can be embedded into a (2n + 1)-
dimensional bi-Hamiltonian system, which under some non-degeneracy as-
sumptions is completely integrable. The majority of these cofactor pair New-
ton systems are new, but they include also conservative systems with elliptic
and parabolic separable potentials, as well as many integrable Newton sys-
tems previously derived from soliton equations. We explain the connection
between cofactor pair systems and solutions of a certain system of second
order linear PDEs (the fundamental equations), and use this to recursively
construct infinite families of cofactor pair systems.

1 Introduction
Conservative Newton systems, i.e., systems of differential equations of the form
G=—-VV(q), (1.1)

are of fundamental importance in classical mechanics. Here ¢ = (qi,...,¢,)7 are
Cartesian coordinates on R™, dots denote derivatives with respect to time ¢, and
V = (d1,...,0,)7 is the gradient operator. (We use 9;, or sometimes 9,,, as an
abbreviation for 9/0q;, and X7 denotes the transpose of a matrix X. Thus, we
regard elements of R™ as column vectors. We will only consider systems on R"”,
not on general manifolds.) A large mathematical machinery has been built up for
integrating such systems. We will here quickly review some well-known facts. For
a system of the form (1.1), the energy E = %qTq + V(q) is always an integral of
motion. There are the standard Lagrangian and Hamiltonian formulations. The
system is called completely integrable if it has n Poisson commuting integrals of
motion, in which case the Liouville-Arnol’d theorem says (among other things)
that it can, in principle, be integrated by quadrature. A powerful method for
finding solutions analytically is the Hamilton—Jacobi method, which is applicable
if the potential V' is such that the Hamilton—Jacobi equation § Y7 (9;F(q))? +
V(q) = E can be solved by separation of variables in some suitable coordinate
system. In that case the potential is said to be separable, and the n integrals of
motion of the system will all depend quadratically on the momenta p; = ¢;. It
is known through the work of many people, beginning with classical results by

11



Stéckel, Levi-Civita and Eisenhart, that in R™ such separation can only occur in
so-called generalized elliptic coordinates or some degeneration thereof. There exist
criteria for determining if, and in that case in which system of coordinates, a given
potential V' is separable. For n = 2, the condition is that V (g, g2) must satisfy
the Bertrand-Darboux equation [1, Sec. 152]

0 =(aq1q2 + Biq2 + faq1 + 712)(022V — 011V)
+ (a(q? — ¢3) + 2B1q1 — 2B2q2 + Y11 — Y22)012V (1.2)
—3(age + £2)01V + 3(aqi + [1)0.V

for some constants «, 31, B2, Y12, Y11 — Y22, not all zero. Depending on the values of
these parameters, the characteristic coordinates of the Bertrand—Darboux equation
are either elliptic, polar, parabolic, or Cartesian coordinates, and this determines
the coordinate system in which the Hamilton—Jacobi equation separates. The
extra integral of motion is F' = (ag3 + 262¢2 + 722)¢7 — 2(aqiq2 + B1g2 + foq1 +
Y12)G1d2 + (ag? + 2611 + 711)45 + k(q1,q2) for some function k. Similar results
are known for n > 2. These will be described in section 7.
For general (nonconservative) Newton systems

G=M(q) (1.3)

less is known. (In this article we use the term Newton system only for systems in
which the right-hand side M (g) does not depend on the velocity ¢ or on time ¢.) In
[2] we studied the class of systems of the form (1.3) which possess an “energy-like”
integral of motion E which is quadratic in ¢1,...,¢,. The theory originated from
the following example.

Example 1.1 (Harry Dym stationary flow). The system

. 5
?1 = Rq1 q2/q17 (14)
G2 = 4kg2 — d,
is equivalent, under the substitution v = ¢; 1. to the second stationary flow of the
Harry Dym soliton hierarchy, and therefore it was suspected to be integrable in
some sense. In addition to the integral of motion F' = %qg — 2kq3 + dgo, which
comes from the second equation alone, this system has another quadratic integral
of motion

2
. .. q d
E =~ it + q1d1de — Kqige + o 2+ 4t
q 2

o[ @/2) (¢ . o g d, (1.5)
~lo o) (o3 49) (0) e g+
=" A(q) ¢+ k(q)-

No Lagrangian formulation could be found for the system (1.4). However, it
was discovered that it could be generated from F in a “quasi-Lagrangian” way by
changing the minus sign in the Euler-Lagrange derivate ¢ to plus. Indeed, defining

the quasi-Lagrangian operator 6% = (§7,...,6;)7 by
OFE dOFE
§TE = — 1.6
! 0q; * dt 0¢;’ (16)

12



one finds immediately that the equation 0 = §tE yields

0\ _ (6E) _ o (92 @/2) (G — (kg - a/4)

0 55 E @/2 0 Go — (4kq2 —d) )’
which is clearly equivalent to (1.4). This proved to be a general feature of Newton
systems with quadratic integrals of motion, so such systems were given the name

quasi-Lagrangian Newton systems, or QLN systems. Expressed in terms of the
matrix A(q) and the function k(q) in (1.5), the system (1.4) can be written

i=—5AW)"' VK@)

a result that also holds in general (see theorem 2.1 below). Clearly, this contains
the conservative case (1.1) as the special case A = I (identity matrix) and k = 2V.

The following nonstandard Hamiltonian formulation was found for the system
(1.4):

q1 0 0 0 —q1/2 1 0

d | 0 —¢1/2 —q P2 0 .

pr p | = 0 p1/2 kg — /¢ 0] =1IVd, (1.7)
Do * 0 dkqe — d 0
d 0 1

where the star denotes entries determined by antisymmetry of the matrix II, and
V = (Og1+04ss Opy» Opy» 9a) T is the gradient operator on the extended phase space
M = R®. The last column in the matrix II equals the Hamiltonian vector field
determined by the function H(q,p,d) = d, while the other entries are chosen so
that {f,g} = (Vf)TTIVg defines a Poisson bracket (in particular, so that the
Jacobi identity is satisfied). The quadratic integral of motion E is a Casimir of II,

ie., IIVE = 0.

The results for the system in example 1.1 gave rise to a general theory of two-
dimensional QLN systems, developed in [2]. It was shown that they all admit
a nonstandard Hamiltonian formulation similar to (1.7). In general, unlike in
example 1.1, the parameter d which is used as an extra phase space variable is not
present from the start, but has to be introduced by adding terms linear in d to
the right-hand side of the original Newton system, which can be recovered as the
restriction of the Hamiltonian system to the hyperplane d = 0.

Of special interest are the integrability properties of two-dimensional QLN
systems with two functionally independent quadratic integrals of motion, say E =
iTA(q) ¢+ k(q) and F = ¢"B(q) ¢+ 1(q). It was shown that such a system can be
embedded into a completely integrable bi-Hamiltonian system in extended phase
space, in the sense that the trajectories of the extended system on the hyperplane
d = 0 coincide with the trajectories of the original QLN system; however, they are
in general traversed at a different speed. The reason for this extra complication
is that some care has to be taken in order to ensure that both integrals of motion
of the QLN system really give rise to corresponding integrals of motion of the
extended system. The Poisson structures for the bi-Hamiltonian system are in
general both non-canonical.

Both E and F can be used for generating the Newton system, which leads
to the equality ¢ = —%A“Vk = —%B“Vl. From Vk = AB~'VI and the

13



equality of mixed second order derivatives of k, one finds that [ satisfies a certain
second order linear PDE, whose coefficients depend on the entries of the matrices
A(q) and B(q) (these entries are known to be quadratic polynomials of a certain
form; see (3.1) below). Similarly one finds from VI = BA™'Vk that k satisfies
another PDE. A remarkable discovery made in [2] was that if one substitutes
k = Kydet A and | = K> det B in these equations, then K7 and K5 both satisfy
the same second order linear PDE, which was named the fundamental equation
associated with the matrices A and B. The coefficients in this equation are cubic
polynomials in ¢, depending on the entries of A and B. It was shown that there
is a one-to-one correspondence between fundamental equations and linear spans
AA + pB, which makes it possible to classify the types of systems that occur
according to the polynomial degree of the matrices A and B. For example, when
B = I the fundamental equation reduces to the Bertrand—Darboux equation (1.2),
which shows that this new class of system includes, but also significantly extends,
the class of two-dimensional conservative systems with separable potentials. The
fundamental equation was also used for constructing infinite families of integrable
two-dimensional QLN system.

The aim of the present paper is to investigate what can be said in the n-
dimensional case. In particular, we are interested in finding nonstandard Hamilto-
nian and bi-Hamiltonian formulations, similar to the ones in [2], which will allow
us to show the integrability of (in general nonconservative) n-dimensional Newton
systems with sufficiently many quadratic integrals of motions. The benefit of a
Hamiltonian formulation is that only n integrals are needed, instead of 2n — 1 as
in the general case. The rather unexpected result of our investigations is that even
in n dimensions the existence of just two quadratic integrals of motion implies in-
tegrability, provided these integrals are of what we call cofactor type. Any Newton
system with two such integrals of motion must in fact have n quadratic integrals
of motion of a certain structure. Such systems are the principal objects of study
in this paper, and we call them cofactor pair systems. We give a simple method
of testing if a given Newton system is a cofactor pair system, and show how any
cofactor pair system can be embedded in a bi-Hamiltonian system in (2n + 1)-
dimensional phase space. This bi-Hamiltonian system, whose Poisson structures
are in general both non-canonical, is completely integrable under some mild non-
degeneracy conditions, which explains in what sense cofactor pair systems can be
considered integrable. We also find the analogue of the fundamental equation,
which in this case is a system of (g) second order linear PDEs, whose coefficients
are cubic polynomials in ¢, and use this to recursively construct infinite families
of cofactor pair systems.

This theory is richly illustrated by examples, and connects many different re-
sults obtained by other methods. In particular, we explain how n-dimensional
separable potentials fit into this framework.

2 Quasi-Lagrangian Newton systems in n dimen-
sions
In this section we review the basic facts about Newton systems with one or more

quadratic integrals of motion. A characteristic feature of such a system is that
it can easily be reconstructed from any of its quadratic integrals of motion E =
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qT A(q) ¢ + k(q), either via the quasi-Lagrangian equations 6+ E = 0 or directly as
.. 14-1

Theorem 2.1 (Newton systems with quadratic integrals). Let

E(q,q) = d"Al@)q+k(g) = D Ai(a) did; + k(q), (2.1)

ij=1

where AT = A. Then E is an integral of motion for the Newton system § = M(q)
if and only if

0iAji + 0 Ak + Ok Aij =0, foralli, j, k=1,...,n, (2.2)
and
2A(q)M(q) + Vk(q) = 0. (2.3)

So if det A(q) # 0, then the system can be reconstructed from its integral of motion
E as

i=M(g) = 5 Ala) " V(a), (24)

which is equivalent to the system of quasi-Lagrangian equations 6T E = 0 defined
by (1.6).

Proof. E is an integral of motion if and only if

E= 2(2(14(])2‘ + 0;k)d; + 3 Z(aiAjk + 0 Aki + Ok Aij)did;dk

i .5,k
vanishes identically, which proves the first statement. Moreover,

57 E = 2(Ag); + 0k + Y _(0:Ajk + 0 Ai + OnAij)djd,
J.k

so that 6T E = 2AM + Vk if (2.2) holds. O

Definition 2.2 (QLN system). A Newton system of the form (2.4) in theo-
rem 2.1, or, in other words, a Newton system with a quadratic integral of motion
E = ¢TA(q) ¢ + k(q) with det A # 0, will be called a quasi-Lagrangian Newton
system, or QLN system.

Definition 2.3 (Cyclic conditions). The system (2.2) of linear first order PDEs
0;Aji+0; Agi+0r Ay = 0 will be referred to as the cyclic conditions for the matrix

A(qg).

Remark 2.4 (Killing tensor). The cyclic conditions, with covariant instead of
partial derivatives, are the equation for a second order Killing tensor on a Rieman-
nian manifold (i.e., a tensor A;; such that 4;;¢"¢’ is an integral of motion of the
geodesic equations). Consequently, in our case we could speak of Killing tensors
on R™ with the Euclidean metric. However, most of the time we will simply refer
to “matrices satisfying the cyclic conditions.”
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Remark 2.5. That a Newton system ¢ = M(q) can be reconstructed from one
of its integrals of motion was known already to Bertrand, whose method is not
restricted to quadratic integrals [1, Sec. 151]. The quasi-Lagrangian formulation,
however, was noticed only recently—it was first published in [3], and further the-
ory was developed in [2]. It is at present unclear whether it has any geometric or
similar significance, or if it is just an algebraic property. For example, unlike the
ordinary Lagrange equations which admit arbitrary point transformations, the
quasi-Lagrangian equations are only invariant under affine changes of variables.
In any case, “QLN system” is a convenient designation for “velocity-independent
Newton system, in general not conservative, with a nondegenerate quadratic inte-
gral of motion,” and the notation 6T F = 0 is also useful.

Remark 2.6. From theorem 2.1 it follows that if a Newton system § = M(q)
has two (or more) quadratic integrals of motion, say E = ¢7 A(q) ¢ + k(q) and
F = ¢"B(q) ¢+ l(q), then any of them can be used to reconstruct the system as
long as the matrix is nonsingular. Thus,

1 1
M=—--A"'Vk=—--B"'VL (2.5)
2 2
If B is singular but not A, then B + AA is nonsingular for some A € R, so we can
replace F' with F'+ AE to give

M= _%A—lvk - —%(B + AA)_lv(l + Ak).

3 Matrices satisfying the cyclic conditions

A QLN system ¢ = —%A”Vk is completely determined by the matrix A(g), which
has to satisfy the cyclic conditions (2.2), and the arbitrary function k(q), which
plays the role of a “potential.” In order to understand the class of QLN systems, it
is essential to determine what a matrix A satisfying the cyclic conditions looks like.
The general solution of the cyclic conditions is known (see for instance [4], which
also gives results about Killing tensors on general manifolds). Since we will not
use these results in full, we merely outline the general structure in proposition 3.1
below, which shows that the entries of A must be quadratic polynomials in g. The
main purpose of this section is to introduce a special class of solutions that will
be central in what follows: cofactor matrices of elliptic coordinates matrices.

Proposition 3.1. If the symmetric matriz A(q) satisfies the cyclic conditions
(2.2), then

1. Foralli, j, k and [,
03 Akt = O Aij = const.
In particular, each matriz entry A;;(q) is a polynomial of degree at most two.
2. A;; is independent of q; for all i.

3. Fori# j, Ai; contains no ¢ or q?- terms.
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Proof. Taking ¢ = j = k the cyclic conditions read 39;A4;; = 0, so A;; does not
depend on ¢;. For k =i # j we have 0;4;; + 2 0;A;; = 0, which shows that 0;A4;;
is independent of ¢;. Thus, A;; is linear in g; and, by symmetry, in ¢;. Finally,
the stated relationship between the second derivatives follows from
2(8MAU — 8ijAkl) = 31(5%141‘3‘ + &Ajk + ajAki)

+ Ok ((91141']‘ + 81'14]'1 + 3]‘14”)

— 0;(0; A + O A + 01 Ajk)

— 0j(0iAri + O A + 01 Aig)

=0,
and they are constant since
30kimAij = OriOmAij + OimOkAij + OkmO1Asj
=0 (—=0;Amj — 05 Aim) + Oim (—0; Arj — 05 Aik)
+ 8km(—8iAlj - ainl)

2
+ O (01 Aim + Om Ait) + 01 (Ok Aimn + O Aik)

1
= - [aik(alAmj + OmAyj) + 05 (O Amj + Om Akj)

+ Omi (01 Akj + O Arj) + Omj (01 Ak + akAil)]

{@kajAlm + 0510 Ak, + Ok 0i Ay

N | =

+ 0103 Ak + Omi0; A + 6mj6iAlk]
=0, (OkAtm + 01 Apk + Om Apl)
=0.
O

With the help of these facts it is possible to find the general solution of (2.2)
for any given n. For n = 2, it is

_ ags + 202q2 + Y22 —(aqiqz + B1g2 + Boq1 + 712)
—(aq1g2 + B1g2 + B2q1 + 712) agl + 2611 + 711 (3.1)
— cof agi +2B1q1 + 71 aq1g2 + B1q2 + B2q1 + 712 '
aqiq2 + B1q2 + Baq1 + 712 g3 + 202g2 + Y22

which depends on the six parameters «, (1, (2, 711, 712 and 722. The choice
of notation will be made clear below; see in particular remark 3.9. For n = 3
the general solution already involves 20 parameters, and in general the number of
parameters is n(n + 1)%(n + 2)/12 [4].

Now we will focus on some special types of solutions of the cyclic conditions.
First, we note that there is the following simple method of producing new solutions
from a given one.

Proposition 3.2 (Change of variables). If A(q) satisfies the cyclic conditions
(2.2), then so does ST A(Sq+v)S, for any constant matriz S € R™*"™ and vector
vE R".
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Proof. This is easily verified directly using the chain rule. Alternatively, one can
first verify that the quasi-Lagrangian equations are invariant under affine changes
of variables ¢ = Sr + v, which means that the Newton system 6T E(q,q¢) = 0
expressed in the new variables r is the Newton system generated by the integral
of motion E = ¢ A(q) ¢ + k(q) when expressed in r and 7

E(r,7) = (S#)T A(Sr + v) (S7) + k(Sr + v).
Thus, by theorem 2.1, ST A(Sr+ v)S must satisfy the cyclic conditions (expressed

in the r variables). O

There is a class of matrices satisfying the cyclic conditions, that will be very
important in what follows: cofactor matrices of elliptic coordinates matrices. Let
us remind the reader that the cofactor (or adjoint) matrix cof X of a quadratic
matrix X is the matrix whose (¢, j) entry is the cofactor of X; in det X, so that
Xcof X = (det X)I. Elliptic coordinates matrices and their cofactor matrices
appear in a natural way when trying to find a Hamiltonian formulation for QLN
systems, as will be seen in theorem 4.1 in the next section.

Definition 3.3 (Elliptic coordinates matrix). A symmetric nxn-matrix G(q)
whose entries are quadratic polynomials in ¢ of the form

Gij(q) = aqiqj + Biaj + Bjqi + Vi (3.2)

will be called an elliptic coordinates matriz. Using matrix multiplication, G(gq) can
be written

G(q) = aqq” 4+ q6T + B¢ +~, where a € R, f € R", v =~T € R™*".

(Let us emphasize, for clarity, that we consider elements in R™ as column vectors.
Thus, g¢” is an n x n-matrix, not to be confused with the scalar ¢7q = ¢2.)

The reason for the terminology is that the eigenvalues ui(q),...,u,(q) of an
elliptic coordinates matrix (under some assumptions) determine a change of vari-
ables from Cartesian coordinates ¢ to generalized elliptic coordinates u, which will
be of interest when discussing separable potentials (see section 7). For the moment,
we are only interested in the following remarkable property of such matrices:

Theorem 3.4 (Cofactor matrix). If G(q) is an elliptic coordinates matriz, then
A(q) = cof G(q) satisfies the cyclic conditions (2.2).

Proof. To begin with, we note that A is symmetric, since G is symmetric. Now
let N(q) = aq + (. Differentiating G we find, using the Kronecker delta notation,

OkGij = a(0kiqj + qi0kj) + BiOkj + Bi0ki = 0rilNj + 0x; Ni, (3.3)
or, in matrix notation,
oG = (Ne{ JrekNT), (3.4)

where e, = (0,...,1,...,0)T is the k’th standard basis vector of R".
Next, we show show that

Vdet G = 24N, (3.5)
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a formula that also will be useful elsewhere in this article. For ease of notation,
let us show the case n = 3:

Gi1 Gi2 Gis 2N,y Gi2 Gis Gi1 Na Gis Gi1 Gia N3
01|Gi2 Gaz Gaz|=|Na Ga Gaz|+|Giz2 0 Gaz|+ |Gz G2 0
Gz Gaz G33 N3  Gaz Ga3 Giz 0 Gss Giz Gaz O

=(2N1A11 + NoAjg + N3Aiz) + NoAio + N3Ags
=2[AN];,

and similarly for the other dy. The notation [AN]; means, of course, the first
entry in the column vector AN. It is obvious that a similar calculation can be
made for any n, which proves (3.5).

Thus, differentiating the identity AG = (det G)I, we obtain

(OLA)G + A(Nei + e, NT) = 2[AN], I
After multiplying this by A from the right, we extract from the (i, j) entry
(det G)OkA;j = 2[AN],Aij — [AN]; Ay — [AN]; A (3.6)
Summing cyclically we obtain
(det G)(0; Ak + 0; Ak + OxAij) = 0.

The left-hand side of this equation is a polynomial in ¢, whose coefficients are
polynomials in the parameters «, (5, and 7,5, while the right-hand side vanishes
identically. Since det G is not identically zero as a function of these parameters,
as can be seen by taking o = 0, § = 0 and  nonsingular, we conclude that the
sum in parentheses must vanish identically. In other words, A satisfies the cyclic
conditions for any values of «, 8 and v (even such values that make det G = 0). O

Remark 3.5. This theorem implies, by proposition 3.1, that the cofactors of G(q)
are polynomials in g of degree at most two. This is a rather surprising fact, since
one could expect them to have degree 2"~ !, being determinants of (n—1) x (n—1)-
matrices of quadratic polynomials. What happens is that all the terms of degree
higher than two cancel due to the special structure of G. Similarly, since det G
is the cofactor of the lower right entry in an elliptic coordinates matrix of size
(n+1) x (n+ 1), it must also be a quadratic polynomial. However, checking this
by direct calculation is already for n = 3 a quite formidable task!

We can use theorem 3.4 to produce a “cofactor chain” of matrices satisfying
the cyclic conditions. Such chains will be very useful later on.

Proposition 3.6. Let G(q) = aqq? + qB% + B¢* +~ and C:'(q) = aqq” + qB7 +
BqT +7 be elliptic coordinates matrices. Then the matrices A ... A=Y defined
by

A, = cof (G + pG) = ZA< (3.7)
all satisfy the cyclic conditions (2.2).
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Proof. G + ué is an elliptic coordinates matrix, with « + pa instead of o and so
on. By theorem 3.4, A, satisfies the cyclic conditions for all u. These being linear
equations, it follows that the coefficients at different powers of 1 in A, each must
satisfy the cyclic conditions. O

Remark 3.7. Note that A(®) = cof G and A1 = cof C:’, but that the inter-
jacent matrices A1), ... A("=2) in general are impossible to write as cofactor
matrices of elliptic coordinates matrices.

Obviously, we can obtain even larger variation if we form linear combinations
of more than two elliptic coordinates matrices. For example, in cof (G + uG’ +
AG") the coefficient at each different power p‘ )\ will satisfy the cyclic conditions.
However, we have not found any particular use for this. Combinations of two
matrices, on the other hand, are absolutely fundamental for the construction of
integrable Newton systems in section 5, as the following example indicates.

Example 3.8 (KdV stationary flow). Define elliptic coordinates matrices G
and G by

0 0 -1 0 A 00 1
a=0,=(0),y=|-1 0 0]; a=0,8=(0,7y=10 1 0
1 0 0 0 0 1 0 0
Then
. 0 -1 @ 0 0 1
cof(G+puG)=cof |[-1 0 g |+p[0 1 O
G G2 2q3 1 00
—q3 Qg2 +2q3 —q2
= | q1q2 + 2¢q3 —q? —-q1
—q2 —q1 -1
23 @ —q 0o 0 -1
+ul @@ —2¢0 -1 |4+p2l 0 -1 0
—-q1 —1 0 -1 0 0

:A(O) + ,UJA(l) + ,U,QA(2).

According to proposition 3.6, the matrices A, AM) and A®) so defined all satisfy
the cyclic conditions, and this is also easily verified directly. They occur in the
integrals of motion of the Newton system

G1 = —10q7 + 4qo,

G2 = —16q1q2 + 1043 + 4q3, (3.8)
i3 = —20q1q3 — 843 + 30¢3q2 — 15¢7 + d,

which, under the substitution ¢; = u/4, is equivalent to the integrated form

1
@(uﬁw + Mty + 28UgUse + 21u2, + T0uu? + 7T0uu,, + 35u*) = d
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of the seventh order stationary KdV flow [5]. Indeed, this system has three
quadratic integrals of motion of the form F(®) = ¢TA® 44+ kD —dDW i =0,1,2,
where

K =24q75 — 8q1¢5 — 10¢7q2 — 16¢1¢5 — 10q1qs
+ 843243 — 84343,
kY = 8475 + 10q1q> — 545 — 8¢3 + 4¢3 — 24419243,
k®) = — 20¢%qs + 8g2q3 — 16¢1¢3 + 2043 g2 — 647,
and

DO = —2(q192 + g3),
DW = — (¢} + 2¢0),
D(Q) = — 2(]1.

The system can be reconstructed from any one of these integrals as
1 ) . )
= —§[A(“]‘1V(k(” —dDW).

It was shown in [5] to be bi-Hamiltonian and completely integrable. The parameter
d was used as an extra phase space variable in the bi-Hamiltonian formulation.
Notice that the D®) occur as coefficients in

det(G + uG) = —2(q1g2 + q3) — (¢} + 2a2)p — 2qup1* — 1i°.

All this fits nicely into the general scheme to be developed in section 5, where we
construct a large class of bi-Hamiltonian Newton systems containing this one as a
special case. (In this particular example, the matrix G happens to be independent
of q. This will not be the case in general.)

Remark 3.9. For n = 2 every matrix satisfying the cyclic conditions is the co-
factor matrix of an elliptic coordinates matrix, as equation (3.1) shows. For n > 2
this is not the case, as we have already noticed in remark 3.7. As another example,
a matrix with the block structure

A (ot Crla ) 0
0 COf GQ(q'r+1; ceey qn) ’

where (G; and G» are elliptic coordinate matrices of smaller dimensions, satisfies
the cyclic conditions but cannot in general be written as the cofactor matrix of a
single elliptic coordinates matrix. Applying proposition 3.2 we can obtain matrices
for which the same is true, but without the blocks of zeros immediately revealing
them as “decomposable.”

An interesting open problem is how to detect whether the reverse process is
possible, i.e., if a given solution A of the cyclic conditions can be transformed, by
changing variables according to proposition 3.2, into such a decomposable form
with “cofactor blocks” along the diagonal and zeros elsewhere. If in that case
k(¢) = ki(q1,---,q) +k2(¢rs1,---,qn) in the new variables, then the QLN system
0 =6T(¢TA(q) ¢ + k(q)) splits into the direct sum of two smaller QLN systems,
one for ¢, ..., ¢, and one for ¢, 11, ..., ¢, to which the theory that we will develop
for “cofactor systems” can be applied separately.
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4 Hamiltonian formulation and cofactor systems

Now we turn to the question of integrability of QLN systems. The notion of
complete integrability concerns Hamiltonian systems. If one has a Hamiltonian
formulation for some system under study, then the task of showing the system’s in-
tegrability is just a matter of finding sufficiently many Poisson commuting integrals
of motion. In this section, we present a (nonstandard) Hamiltonian formulation
for a certain class of QLN systems, the cofactor systems.

Recall that a Poisson manifold is a manifold endowed with Poisson bracket,
i.e., a bilinear antisymmetric mapping {-,-} : C*° (M) x C*°(M) — C*°(M) which
satisfies the Leibniz rule and the Jacobi identity. In coordinates (z1,...,z,) the
bracket takes the form

{f.9} (2) = (V§(2))"TI(2) Vg (=)

for some antisymmetric Poisson matriz 1(z), where V = (04,,...,0.,)7. A
Hamiltonian system on M is a dynamical system of the form &; = {z;, H}, or
@ =1IIVH, for some function H(z).

Conservative Newton systems § = —VV(g) on R™ admit the standard Hamil-
tonian formulation

(O = (5 §) T where fHap) = 5"+ V)
on the phase space M = R?" with coordinates (g, p). In this section, the manifold
M will be R?"*! with coordinates (g, p, d) and we will investigate the possibility of
finding a nonstandard Hamiltonian formulation for some nonconservative Newton
systems ¢ = M (q). The idea is that several known nonstandard Hamiltonian
formulations of integrable Newton systems derived from soliton equations [5, 6] or
bi-Hamiltonian formulations for systems with separable potentials [3, 7], involve
Poisson matrices on R?"*! with a certain block structure (see (4.1) below). We
investigate what the most general form of a Poisson matrix with this structure is.
The answer leads us to define cofactor systems, which are just the systems which
admit this type of Hamiltonian formulation. The previously known systems are
special instances of this class. Our results generalize the ones found using similar
methods in [2, 3] for the cases n =2 or M = —VV.

Theorem 4.1 (Poisson matrix). Let M denote the space R"*" 1 with coordi-
nates (q,p,d). Let II be an antisymmetric (n +n + 1) x (n + n + 1)-matriz with
the block structure

0 3G(q) p
I=1% 3F(q,p) M(gd |- (4.1)
* * 0

where F' and G are n X n-matrices, p and M column n-vectors, A a nonzero real
parameter (introduced for later convenience) and stars denote elements determined
by antisymmetry. Then I1 is a Poisson matriz if and only if:

1. G is an elliptic coordinates matrix, i.e.,

G(q) = agq” + g8 + Bg" + v (4.2)
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for some a € R, B € R" and v =~T € R™™".
2. F is given by

F(q,p) = Npt —pNT,  where N(q) = aqg+ 5. (4.3)

3. M has the structure

o~

M(q,d) = M(q) + Ad N(q), (4.4)

where M(q) satisfies the equations

OZPZ _Pji» where -Pij :?)N,LMJ +ZGkiaijv (45)
k=1

foralli,j=1,...,n. If det G(q) # 0, this is equivalent to
1
M= —§A_1Vk;, for some function k(q), (4.6)
where A(q) = cof G(q). In other words, § = M (q) is the QLN system gener-
ated by E = ¢" A(q) § + k(q) = ¢" cof G(q) ¢ + k(q).
Moreover, then the function
E(g,p,d) = p" cof G(g) p + k() — A det G(q) (4.7)
is a Casimir of IL, i.e.,
VE =0,

where ¥ = (0gys -+ 10q,,0pys -, 0p, 0a) .

Proof. First of all, F' must be antisymmetric in order for II to be so. Then we must
determine what form F, G and M must take in order for the Jacobi identity to be
satisfied for all combinations of the coordinates ¢, p, d. Let us use the abbreviation

J(f,9,h) = {{f 9}, h} +{{h, f}, 9} +{{g,h}, f}. We find that J(g;, gj,qx) and
J(gi, q;, p) are both identically zero for all ¢, j, k, while J(g;, q;,d) = %(Gij —-Gji),
which implies that the matrix G(¢) must be symmetric. Further, J(¢;,p;,d) =
%(pTVGij —F;) — piad]\/ij, which shows that adM\(q, d) is independent of d, and
thus J\/Z(q,d) = M(q) + MdN(q) for some M(q) and N(q). (V = (9y,,---,0,,)%,
as usual, and A is introduced here for convenience.) With this expression for M
we obtain 0 = pTVGij — F;; —2p;N;. Adding and subtracting this expression and
the corresponding one with ¢ and j interchanged, and using G = G7, F = —FT,
we obtain

Fij = Nip; — Njpi,
which is (4.3) except that we do not know the form of N yet, and
p'VGij = Nipj + Njpi.
Let us now go back to writing 0y, instead of Jy, , since only derivatives with respect

to the ¢ variables remain. Taking i = j we see that N; = %@'Gn and that G;; and
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N; must depend on ¢; only. For 4, j and k different, we obtain 9;,G;; = N,(g;),
0;Gi; = Ni(¢;), and 9yG;; = 0. Since mixed derivatives are equal, this gives
0;N;(q:;) = 0;N;(g;) for all 4, j, and so 01Ny = --- = 0, N,, = « for some constant
a. This shows that V; = ag; + 8;, from which it follows that Gi; = agq; +
Biq; + B;jqi + vij. We have now established (4.2) and (4.3). With F, G and N
given by these formulas it is easy to check that J(g;, p;, px) and J(p;, p;, px) vanish
identically. For the only remaining condition, we obtain J(p;, pj,d) = 5(P;j — Pj;),
from which (4.5) follows. When det G # 0, the equations 0 = P;; — Pj; are
equivalent, through the forming of suitable linear combinations, to the equations
0 = 0;][AM]; — 0;[AM];, where A(q) = cof G(q) (the proof of this is slightly
technical and has therefore been relegated to the appendix). It follows that there
is a function k(q) such that AM = —%Vk. We have now completely determined
the structure of the Poisson matrix II. Recall from theorem 3.4 that A = cof G
satisfies the cyclic conditions, so that M = f%A*Vk really is a QLN system.

It remains to verify that the function E given by (4.7) is a Casimir of II. One
needs to use the facts that GA = (det G)I and GV (pTAp) = 2F Ap. The latter
equality is established as follows. By theorem 3.4, A satisfies the cyclic conditions,
so that Oy A;; = —0;Ak; — 0jAk:. Thus, using (3.3) and (3.5), we obtain

[GV (p"Ap)la Z Gak Ok Z Aijpipj | = =2 Z Gar(0i Arj)pipj
ik
=-2 Z (GakArj) — (8o Nk + 6:6No) Ar;j ) pipj
N

=—2 2(9 (05 det G)pip; — ZNk jkPaPj — Na ZAszng

] gk ]

ZQZ(Napk' - Nkpa)Akmpm = Q[FAp]a-

k.,m

Knowing this, the result IIVE = 0 follows from a relatively straightforward cal-
culation which we omit here. O

Remark 4.2. If we assume from the outset that M(q) = —VV/(q), as was done
n [3], then (4.5) takes the form

0= Z(GW 8”-V — Gjr GMV) + 3(N18JV — NJ&V) (48)

r=1

As pointed out in [3], this system of equations has been found before as a criterion
for the separability of the potential V. We will return to this in section 7.

We need a name for the type of QLN systems occurring in theorem 4.1.

Definition 4.3 (Cofactor system). A QLN system §*F = 0 generated by £ =
GTA¢ + k, where A is the cofactor matrix of a nonsingular elliptic coordinates
matrix, i.e.,

A(q) = cof G(q), Glq) = aqq” +qB" +B¢" +~, detG(q) #0,

will be called a cofactor system, and E an integral of motion of cofactor type.
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In two dimensions any QLN system is a cofactor system, by remark 3.9. The-
orem 4.1 leads immediately to a Hamiltonian formulation for cofactor systems:

Theorem 4.4 (Hamiltonian formulation). Let ¢ = M(q) be a cofactor sys-
tem, generated by E = ¢7 A(q) ¢+ k(q), with A = cof G. Then, using the notation
of theorem 4.1, there is on the extended phase space M = R*™+1 with coordinates
(¢,p,d) a related Hamiltonian system

d (¢ p L
—|p| =1 M(g)+XdN(q) | =11Vd, (4.9)
dt d 0

whose motion on the hyperplane d = 0 coincides with the motion of the original
system § = M (q) in (q,§ = p)-space.
Proof. Since M = —%A‘1Vk by theorem 2.1, all the conditions of theorem 4.1 are

satisfied. Thus, IT is a Poisson matrix and the system is Hamiltonian. Trajectories
with initial values in the hyperplane d = 0 remain there, since d = 0. The motion

d q p
i p|=1| M)
d 0
in that hyperplane is clearly equivalent to § = M(q). O

Remark 4.5. The restriction of the extended system (4.9) to any hyperplane
of constant d (not necessarily d = 0) is equivalent to the Newton system § =
M(q) + Ad N(q), which is just the QLN system generated by E(q, g, d)=q¢"Aq+
k(q) — Addet G(q), since —2 A7V (k(q) — Addet G(q)) = M + AdN, by (3.5).
Here we can view d just as a parameter in E, which is indeed how it first turns
up in integrable Newton systems derived from soliton theory. In that context, d is
typically an integration constant appearing when integrating the stationary flow
of some soliton PDE. See for instance [5, 6] and example 3.8.

Remark 4.6. We have shown that one integral of motion of cofactor type is
enough for a Newton system § = M(q) to admit a certain type of Hamiltonian
formulation, but it is of course not enough to guarantee integrability of any kind.
If the extended system (4.9) admits n — 1 functionally independent Poisson com-
muting extra integrals of motion in addition to the Casimir E and the Hamiltonian
d, then it is completely integrable. Indeed, the restriction of the system to any
level surface of F is a Hamiltonian system [8, Prop. 6.19], which is symplectic,
since II obviously has rank 2n if det G # 0, and has n commuting integrals of
motion. Since the original Newton system ¢ = M(q) is obtained by restriction to
the hyperplane d = 0, it can in this case be considered as completely integrable
too. For instance, the system in example 3.8 falls into this category; setting p = ¢
it is actually the “extended system,” while what we have called here the “original
system” corresponds to the case d = 0.

This, however, does not mean that any cofactor system with n integrals F(q, ¢),
F5(q,49), ..., Fn(q,q) must be integrable in this sense, because it may not be
possible to incorporate d-dependence into the F; to even make them integrals
Fi(q,p,d) of the extended system, not to mention that the F; have to Poisson
commute. In the next section, we will see how it is possible to overcome this
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difficulty for the class of cofactor pair systems, i.e., systems with two integrals of
motion of cofactor type, by using a slightly different (bi-Hamiltonian) extended
system. The system in example 3.8 is in fact a cofactor pair system, but of a
rather special kind (G is constant), which is why already the theory in this section
is sufficient for proving its integrability. (Actually, one can get by with even less.
That system has a Lagrangian with indefinite kinetic energy ¢1qs + %q’%, so when
introducing momenta $1 = ¢3, S2 = ¢2, S3 = ¢1 as was done in [5], one obtains a
canonical Hamiltonian formulation.)

5 Bi-Hamiltonian formulation and cofactor pair
systems

This section forms the central part of the paper. We show that cofactor pair sys-
tems, i.e., QLN systems with two independent integrals of motion of cofactor type,
automatically must have n quadratic integrals of motion, and that they under some
non-degeneracy assumptions can be considered as completely integrable via em-
bedding into bi-Hamiltonian completely integrable systems in (2n+1)-dimensional
phase space. The rest of the article is then devoted to the explicit construction
of cofactor pair systems in large numbers, and to showing that many known in-
tegrable Newton systems from the literature, in particular conservative systems
with separable potentials, fit into this framework as special cases. However, the
main part of the class of cofactor pair systems seems not to have been considered
before.

We now show how the results from the previous section lead naturally to the
concept of a cofactor pair system. The matrix IT in theorem 4.1 depends linearly
on the parameters «, 3, v in the G, N and F blocks. In order to construct a pencil
of compatible Poisson matrices, let these parameters in turn depend linearly on a
variable p:

a, = a+ pa,
By =B+ ub, (5.1)
Y =Y + 17,

where «, 8, v and a, ﬁ, ~ are two separate sets of parameters. Then the corre-
sponding G/, N, and F}, also depend linearly on u:

Gy = auqq” +aBL + Bug” +7.=G + uG,
N, = auq+ B, =N + uN, (5.2)
Fy = Nu,p" —pN] =F + uF,

where, for instance, N = aq + 3 and N= aq + @ and similarly for G and F. On
the other hand, A, = cof G, is a polynomial in u of degree n — 1:

n—1
A, = cof (G + uG) = Z AW 7 (5.3)
i=0

Note that A© = cof G and A®=1 = cof G, that G and G are both elliptic
coordinates matrices, and that the matrices A so defined all satisfy the cyclic
conditions (2.2) (cf. proposition 3.6 and remark 3.7).
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If we now require the M block in the matrix II not to depend on u, we obtain
the following result.

Theorem 5.1 (y-dependent Poisson matrix). Let G, N, and F,, be given

by (5.2), and suppose that G and G are nonsingular and linearly independent.
Then the matrix

0 %GM(Q) p
o=+ 3F.(¢.p) M(q)+AdN,(q) (5-4)
* * 0

is a Poisson matriz (for all u) if and only if the Newton system § = M(q) has n
quadratic integrals of motion

EW = ¢"AD () 4+ kD (q), i=0,...,n—1, (5.5)

where the matrices AW are defined by (5.3).
Moreover, then the function

Eu(g,p,d) = pT Au(q) p + ku(q) — Mddet G, (q), (5.6)
where
n—1 ) )
ku(g) = Y kW (g)p, (5.7)
1=0

is a Casimir of 11,,.

Proof. Nearly all of the requirements of theorem 4.1 are automatically fulfilled.
What remains is that we must have 4,M = —1Vk, for some function k,(q) in
order for II,, to be Poisson. If this is to be an identity in u, £, must have the
form k, = ngol k@t and AOM = —%Vk(i) must hold for all ¢. The latter
condition is, by theorem 2.1, equivalent to E) = ¢T A® § + k() being an integral
of motion of § = M (q), which proves the first part of the theorem. The Casimir
follows immediately from theorem 4.1. O

Remark 5.2 (Poisson pencil). The matrix II, splits in the following way:
10, = II + pll,
0 3G9 p 0 3G9 0
= |* 3F(ap) M@ +MN(@) | +TH |« 3F(gp) MN() |
* * 0 * * 0

where II is Poisson by theorem 4.1, and likewise Iy, by a similar (but simpler)
calculation. (Alternatively, we could infer this from Iy = lim,,_,o, II, /p.) Thus,
I1,, is a Poisson pencil of compatible Poisson matrices IT and Ilp.

We have already, in example 3.8 (with d = 0), seen a Newton system of the
type required in theorem 5.1. In the remainder of this article, we will show that
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such systems exist in large numbers, including for example systems with separable
potentials, and we will also show that they are completely integrable (in a slightly
generalized sense). To begin with, we have the following theorem, which says that
the existence of n integrals of motion of the special form required in theorem 5.1
is guaranteed by the existence of just fwo integrals of motion of cofactor type.
This is clearly a feature which cannot be seen until one considers more than two
dimensions, and thus it has no counterpart in the two-dimensional theory [2].

Theorem 5.3 (“2 implies n”). In the notation of theorem 5.1, if the Newton
system § = M (q) has integrals of motion E©) and E™=Y of cofactor type, then it
also has integrals of motion of the form E® ... E("=2)

Proof. The question is whether each vector field A® M has a potential —%k(i),
given that A M and A=Y M do, where the matrices A are defined by (5.3).

We will show this in a rather indirect way. By theorem 4.1, applied first with
(cof G)M = —3VE©® and then with (cof G)M = —1Vk("~1 the matrices

0 3G(q) p

=14 2F(q,p) M(q)+ A N(q)

* * 0
and
0 3G(g) p

"= 14 2F(g,p) M(g)+\N(q)

* * 0

are both Poisson. At the same time,

0 2(G-G) 0
W-1"= 1, XF-F) M(N-N)
* * 0

has the form of Iy in (5.8), so it is also Poisson. This implies [8, Lemma 7.20]
that

0 3Gy (I+pp
W+ pll" =\ s AR, (14 p)M + AN,

* * 0

is Poisson for all p, and also for all A, since A is just an arbitrary numerical
parameter. Replacing A with A(1 + u), and dividing the matrix by (1 4 p), we
obtain precisely the matrix II,, in (5.4), which we thus have shown to be Poisson
for all p. Theorem 5.1 now implies that § = M(q) has n integrals of motion E®,
as claimed. O
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Remark 5.4. In [9] Newton systems on R?™ are constructed which have m
quadratic and m quartic integrals of motion. This shows that the existence of
two quadratic integrals of motion which are not of cofactor type is not sufficient
for n quadratic integrals to exist.

Theorem 5.3 motivates the following definition:

Definition 5.5 (Cofactor pair system). An n-dimensional QLN system with
two independent quadratic integrals of motion E = dTA¢+k and E= qTA q+ k:
where A and A both are cofactor matrices of linearly independent nonsingular
elliptic coordinates matrices, i.e.,

A(g) = cof G(g), G(q) = aqq” +qB" + Bq" +, detG(q) #0
A(q) = cof G(q), G(q) = agq” +qB" +Bq" +7, detG(q) #0
will be called a cofactor pair system.

Note that A andNX are the same as A© and A1 in theorems 5.1 and 5.3,
and similarly for k, k and E, E. By theorem 5.3, a cofactor pair system always
has n quadratic integrals of motion E®) = ¢T A® § 4+ k() which can be found by
solving the equations —2A@ M = VE® for k). Theorem 5.1 leads immediately

to the following theorem, which is the key to explaining in what sense cofactor
pair systems can be considered to be integrable.

Theorem 5.6 (Bi-Hamiltonian formulation). Let § = M(q) be a cofactor
pair system. Then there is on the extended phase space M = R?"T1 with co-
ordinates (q,p,d) a related bi-Hamiltonian system

a L
% | = IV (ddet G) = T, V(E — AdD®-D), (5.9)
d

where I1 and Iy are given by (5.8), and D™~V is defined by
= det G, = det(G + pG) = ZD() g (5.10)

The trajectories of this system on the hyperplane d = 0 coincide with the trajec-
tories of the original system in (q,q = p)-space, but are traversed with Adet G(q)
times the wvelocity at each point.

Proof. From theorem 5.1 we know that

n

Eyu(q,p.d) = p" Au(q) p+ ku(q) — MdDyu(q) = > EO ',
i=0
is a Casimir of the Poisson pencil II,, = II 4+ ully. Collecting powers of u, we
obtain the following bi-Hamiltonian chain:

0 =I1,VE, = (Il + ully)V (ZE( )

=IIVE©® + [HVE(D + HoVE(O)} (5.11)
+ u"*lﬂoﬁﬁ(")
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Since E™ = —X\dD™ = —\ddetG and E("~D = =1 _ \qD("=1) = F —
MDY we identify at pu" the bi-Hamiltonian system (5.9). Computing the
right-hand side of the system explicitly yields

g (7 - N ~(det é)p N
T p| =TV(AddetG) = A —%dG(VdetG)qL(detG)(M+>\dN) ,
d —dpTV det G
which for d = 0 reduces to
d (4 [P
T p|l =AdetG | M
d 0
The last claim follows. O

Corollary 5.7. If the functions E(i)(q,p, d), i=0,...,n, are functionally inde-
pendent, then the bi-Hamiltonian system (5.9) is completely integrable.

Proof. This follows by similar reasoning as in remark 4.6, since the functions
E®(q,p,d) Poisson commute with respect to IT and Iy by Magri’s theorem [10].
O

Remark 5.8. Since a completely integrable Hamiltonian system can, in principle,
be solved by quadrature, the same is true for cofactor pair systems satisfying the
assumptions of corollary 5.7. The final step, from the solution of the extended
bi-Hamiltonian system back to the original Newton system, is just a matter of re-
parameterizing the trajectories to obtain the correct velocity at each point. This
can be done with one further quadrature.

Remark 5.9. The assumption about functional independence of the functions
E® seems to be fulfilled for most cofactor pair systems, like for instance in exam-
ple 3.8. As an example of a degenerate case when it is not, consider G' = gqT and
G = I for n = 3. The system § = —q is a cofactor pair system with these matrices.
It is just a harmonic oscillator, so it is integrable. The integrals of motion in the
cofactor chain (for the extended system) are E(0) =0, E() = (2, 4+ 12, +13,, where
lij = qipj —a;ps, E® = pTp+qTg+Mdg” q, and E® = \d. Since A® = cof G = 0,
the cofactor chain does not provide us with all the integrals of motion of this sys-
tem. (G is singular in this example, which simplifies the formulas a little, but it
could be replaced with the nonsingular matrix G' = qqi+ I with essentially the
same results; £(©) would not be zero, but the functions E(?) would be dependent.)
The harmonic oscillator above is integrable, so there are integrals of motion
which do not appear in the degenerate cofactor chain. It might also be possible
that there exist non-integrable cofactor pair systems, with dependent £(®) and no
other integrals of motion.
__ The standard test for functional independence is the following: the functions
E®@(q,p,d) are functionally dependent in an open set U if and only if their gradi-
ents VE®©) (q,p,d) are linearly dependent everywhere in U [8]. This shows that a
sufficient conditions for the functions E(*) to be functionally independent is that
the vectors AWp, i = 0,...,n — 1 are linearly independent. It would be nice to
have some simple criterion, expressed directly in terms of G and G, which would
guarantee this, but we have not been able to find any such. As the above example
shows, it is not enough that G and G are nonsingular.
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Remark 5.10. Theorems 4.1 and 5.6 generalize the corresponding results ob-
tained in [2] for n = 2. When G = I they reproduce, respectively, theorem 4.1
and corollary 4.2 of [3] (bi-Hamiltonian formulation for separable potentials; see
also section 7).

6 The fundamental equations and recursive con-
struction of cofactor pair systems

Considering the results of the previous section, which show that cofactor pair
systems can be considered as completely integrable, it is natural to ask how large
the class of such systems is, and how to find or identify them in practice. In this
section, we show that cofactor pair systems are closely related to a system of (g)
second order linear PDEs, which we call the fundamental equations. This yields an
extremely simple method of constructing infinite families of cofactor pair systems.

Definition 6.1 (Fundamental equations). Let G(q) = aqq” + ¢ + B¢" +~
and G( ) = aqq’ + qﬁT + ﬁq + 7 be elliptic coordinates matrices. Let, as usual,

N = aq+ 8 and N= aq+ ﬂ The fundamental equations associated with the pair
(@, G) are, for i,j = 1,.

0= Z (G,’,«éjs — Gjréis)arsK

r,s=1

+3Y (GiwN; + Gy N; — G N; — Giy N;) 0, K
r=1

+6(N;N; — N; N K.

The number of independent equations is (at most) (72’) since the equations are
antisymmetric in 4 and j.

The coefficients in this system are polynomials in ¢q. The highest powers of ¢
cancel in each coefficient, so that the coefficient at 0,,K is in general of degree
three, at 0, K of degree two, and at K of degree one.

The fundamental equations are antisymmetric not only with respect to ¢ and
J, but also under swapping of corresponding parameters with and without_tilde.
This means that the fundamental equations associated with the pair (G, G) are
the same as the fundamental equations for (G G), or even for any linear combina-
tion (A G + A, w G+ MQG) Consequently, we might say that the fundamental
equations are associated with the linear span of the matrices G and G. The fol-
lowing theorem shows the intimate connection between cofactor pair systems and
the corresponding fundamental equations.

Theorem 6.2 (Fundamental equatlons) For a cofactor pair system with in-
tegrals of motion E = qTAq + k and E = qTAq + k where A = cof G and
A = cof G, the functions

k(q) and K”(q) _ %(Q)

Ko = det G(q) det G(q)’
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although in general different, both satisfy the fundamental equations associated with
the pair of matrices (G, G).
Conversely, for each solution K of the fundamental equations the two different

QLN systems

0:(5+E, where E:qTEQ—l—E, E:Kdeté,
0=06"F, where F=¢TA¢+1, |=KdetG

are both cofactor pair systems. Ezxplicitly, there exist extra integrals of motion
E=¢TA¢+k and F=¢TA¢g+1
for the first and second system respectively.

Proof. The cofactor pair system can be written § = f%A*Vk = félflv% =M
This means that the vector field AM = —%Vk satisfies the integrability conditions

Da[AM]y — 0y[AM], =0

for all a, b. As shown in the proof of theorem 4.1, these conditions are equivalent
to the equations

0 = P,; — Pj;,where P;j = 3N;M; + Z GO M;. (6.2)
k=1

Expressing M = f%ﬁflv’l; in terms of K = K" = E/ det G yields
—2M = A"'Vk = A" (VK det G + KV det G) = GVK + 2K N,

where we have used equation (3.5) (with tildes attached) and the relation GA =
(det G)I. Substituting this into (6.2) we obtain after a short calculation the fun-
damental equations (6.1), which thus are satisfied by K = K”. Exchanging the
roles of E and E, we find that K = K’ = k/det G satisfies the corresponding
equations with coefficients with and without tilde interchanged. But this is in fact
the same system, since (6.1) is completely antisymmetric under that operation.
The second part of the theorem follows easily by doing the same calcula-
tions backwards. Indeed, if K satisfies the fundamental equations and we let
k = K det G, then the vector field —2AM = A(GVK +2K N) = AA~'Vk satisfies
the integrability conditions, so there exists a function & such that Vk = Ag’lvflg.
Thus, § = 1A7'Vk = $A'Vk is the cofactor pair system 67 E =0 =40"FE. Sim-
ilarly, if we let [ = K det G, then, because of the antisymmetry, the fundamental
equations are also equivalent to the integrability conditions for the vector field
AA~1VI, so that we obtain the cofactor pair system §tF =0 = 6+ F. O

Corollary 6.3. K(q) = 1/det G(q) and K(q) = 1/det G(q) are solutions of the
fundamental equations (6.1).

Proof. The Newton system ¢ = 0 is trivially a cofactor pair systems for any pair
(G, G) and any constant k£ and k so we just take kK = k = 1 in the preceding
theorem. O
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Remark 6.4. Since A™'Vk = —2§ = E—lvié, the first part of the theorem can
be expressed by saying that the equation

AT'WV(K' det G) = A7'V(K" det G)

is an auto-Bécklund transformation between solutions K’ and K" of the funda-
mental equations. For example, when G = (§ % ) and G = ({}) this reproduces
the Cauchy—Riemann equations, a well-known auto-Bécklund transformation for
the Laplace equation, which is the fundamental equation in this case (when n = 2,
there is just one fundamental equation).

Theorem 6.2 opens up the possibility of recursively constructing families of
solutions to the fundamental equations, or, equivalently, constructing families of
cofactor pair systems whose integrals of motion all have the same “kinetic” parts
¢T AW, determined by cof (G + uG) = Zgil A@ i but different “potential”
parts k(). We can combine the two statements of the theorem as the following
diagram illustrates:

Cofactor pair K=k Solution K| =K det € Cofactor pair
system §TE = 0. system 6T F = 0.

Le., starting with a cofactor pair system STE=0= 5*@, we obtain another
cofactor pair system §tF = 0 = §TF by defining [ = K det G = (k/det G) det G
and determining ! from

Vi=AA"'VI. (6.3)

That this integration is possible is precisely what theorem 6.2 says. Then we can
repeat the procedure to find yet another cofactor pair system 6tG = 0 = §+G,
and so on. We can also go to the left, thereby producing a bi-infinite sequence of
cofactor pair systems

e STE =0 §TF =0 — TG =0 — --.

The next theorem shows that there is a purely algebraic relation between the
integrals of motion of adjacent systems in this sequence. This means that we can
get from one system to the next without having to integrate (6.3), but instead we
need to keep track of all n integrals of motion of each system.

Theorem 6.5 (Recursion formula). Let 0 = §tE and 67 F = 0 be cofactor
pair systems related as in the second part of theorem 6.2. Let, as usual, E() =
GTAD G 4 k@ andNF(i) =qTADG+1W 4 =0,...,n — 1 denote their integrals
of motion, where k = kY and I = 1, and let ky, = Z?;OI EDut and l, =
Z?;OI 1Dyt Then, up to an arbitrary additive constant in each 11,

det(G + uG) ~
=——— "k — uk,, 6.4
: det G Hin (6.4)
with the inverse relationship
1 [ det(G + uG)
k,=———x5—21-1,]. .
B < det G “) (6.5)
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Proof. This proof is quite technical and has therefore been put in the appendix. [

Remark 6.6. Setting

n

det G -
we can write (6.4) as
1(0) 0 X 1(0)
(1) -1 0 x @) L(1)
: - . : : ) (6.6)
l(n72) -1 0 X(n72) k(n72)
[(n—1) —1 Xx-1 L(n—=1)

which is sometimes convenient. We note that the matrix is (minus) what is known
as the companion matrix of the polynomial p™ + X ™=V pn=1 ... 4 X(0),

Remark 6.7 (Families of cofactor pair systems). With the help of the re-
cursion theorem we can easily construct a bi-infinite family of cofactor pair systems
for any given pair (G,G). Namely, we observe that any k, which is independent
of ¢ gives rise to the trivial cofactor pair system ¢ = 0, which can be used as a
starting point for the recursion. For example, we can take k,, = 1"~ and iterate
(6.4) to obtain the “upwards” part of the family, or start with [, = 1 and iterate
(6.5) to obtain the “downwards” part. (Starting with other choices of constant
k, or I, will only lead to systems which are linear combinations of the systems
in this family.) For systems § = M(q) obtained in this way, Mi(q),..., M,(q)
will always be a rational functions. However, if we find some cofactor pair system
which does not depend rationally on ¢, then we can use the recursion formula in
both directions to obtain another bi-infinite family, associated with this system,
whose members will all be non-rational. This is illustrated in example 7.7.

Example 6.8. To illustrate the procedure in the case n = 3, define elliptic coor-
dinates matrices G and G by

0 1 0 0 _ 0 1 0 0
a=1,p=[0],7={0 2 0]; a=08=[0],5=(0 1 0
0 0 0 3 1 0 0 O
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Then

cof (G + puG) =
@+l e g 1 0 ¢
= cof e G2 qqs | +p |0 1 g
q193 @295 ¢35 +3 g G2 2q3
3¢3+2¢3+6  —3q1qe —2q1g3
= —3q1G2 3¢ +¢3+3 —q2q3
—2q1q3 —q243 2¢3 +q3+2
@ +4q3+3 0 —q1q3 — 2q1
+ 1 0 G+203+3  —qq3 — @
—q1q3 — 21 —Q2q3 — @2 qi+q3+3
—q3 +2q3 0142 —q1
+ q192 —G 4293 —q
—q1 —q2 1

= A 4, AM 424G

and

det(G + pG) = (667 + 362 +2¢2 + 6) + (3¢7 + 3¢3 + 3¢3 + 4qs + 9I)u
+(—2q7 — 65 + ¢3 + 6q3 + 3)i® + (—qf — @3 + 2q3)18°.

An application of the “upwards” recursion formula (6.4) with k, = p gives [, =
1000 1 1MWy 4+ 132 where

j0) _ 69% + 343 +243 46
—q7 — 5 + 2g3
(1) _ 348 + 365 + 303 + 495 + 9
—af — & + 243
@) _ —267 — 45 +q5 +6g3 +3
a - — a5 +2q3

b

l

This corresponds to the nontrivial Newton system

1 0493 +q1

4293 + 2q2 (6.7)
—a? — a2 +2¢2)2
(=g — a3 + 2gs) g2 — 3

j= _%[A(i)]*lv[(i) —

with integrals of motion ¢7” AW ¢ +1@) (i =0,1,2).
Applying the “downwards” recursion formula (6.5) with [, = 1 gives k, =
EO 4+ kMW + k@) 2 where

1) — 3¢7 +3¢3 +3¢3 +4g3 + 9
67 +3¢3+2¢2+6
() _ 20t — a3 +45 +6q3 +3
67 +3¢3+2¢2+6

5@ — —q7 — 45 + 23
6¢7 + 3¢5 +2¢3 + 6’
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corresponding to the Newton system

1 2q1q3 + 641
2q2q3 + 3¢2 (6.8)
2¢3 — 6

1 . .
j=——[AO1"1yE® =
9 2[ ) (6¢7 + 343 + 2¢% + 6)?

with integrals of motion ¢7 AW ¢ + k@) (i =0,1,2).

The systems (6.7) and (6.8) are integrable in the sense described in the previous
section, but it is not known if they admit, for example, any kind of variable
separation. Further systems in the recursive sequence are easily computed with
the help of symbolic algebra software, but the expressions quickly become rather
long.

7 Identifying cofactor pair system

There is a straightforward way of testing if a given Newton system § = M (q) is a
cofactor pair system.

Theorem 7.1. The Newton system § = M(q) admits an integral of motion E =
q* cof G(q) ¢ + k(q) of cofactor type if and only if the equations

0=PF,; — Pji, where Pij = 3N1Mj + ZGkiaij7 (71)
k=1

viewed as a linear system for the parameters o, 3, v in G = aqq” +qB8" + B3q¢7 +~
and N = aq + B, has a nontrivial solution with G nonsingular. It is a cofactor
pair system if and only if there is a two-parameter family of solutions G = sG' +
tG", from which it is possible to choose G = s1G’ + t1G" and G = s2G’ + t2G”
nonsingular and linearly independent.

Proof. These equations occurred previously as equations (4.5). The claim follows
immediately from the statement in theorem 4.1 connecting equations (4.5) and
(4.6). O

Example 7.2 (Harry Dym stationary flow). As a simple example, let us ap-
ply this test to the system (1.4) from example 1.1. Inserting M (g) from (1.4) into
(7.1) (with i =1, j = 2) yields 0 = —aq; °q5 — 581 47 °¢3 +v2247° — 5712 45 Cqa +
(polynomial terms). Since different powers are linearly independent we must have
a = 1 = y12 = 722 = 0, and with these values the polynomial terms cancel as
well, leaving O and ;1 free to attain any values. Thus

(0 ¢ 10
G—s(ql 2q2)+t(0 O)

is the general solution of (7.1) in this case. The matrices at s and ¢ correspond
to the two known quadratic integrals of motion E and F' from example 1.1. If
we want both G and G to be nonsingular, we can take for example ( 0 a ) and

1 q1 2q2
q
(Ql 211112 )
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Example 7.3 (KdV stationary flow). For a three-dimensional example, con-
sider the Newton system (3.8) from example 3.8. If we apply theorem 7.1 to this
system, we obtain first 0 = Py — Py; = 60a ¢} + 9051 g3 + (lower order terms),
from which it follows that « = 1 = 0. This simplifies the expressions consider-
ably. What remains is 0 = Pya — Po1 = (30711 + 3452) ¢ +4(B3 +v12)q1 — (2082 +
16711)g2 +4(713 — 722), which forces B2 = 711 = 0, 83 = —7y12 and 713 = 22 Tak-
ing this into account, we find P13 — P31 = —4’)/23 and P23 — P32 = —4"}/23 q1 — 4’)/33,
which gives 723 = 733 = 0. Consequently, the most general matrix G for which
the system has an integral of motion of the form ¢7 (cof G)q + k(q) is

0 -1 q 00 1
G=s|-1 0 g |+tlo 1 0
a1 q2  2q3 100

In this way we recover the matrices G and G from example 3.8.

The system (3.8) has an indefinite Lagrangian ¢14s +d3/2 — V (q) +d q1, where
—2V(q) = k? using our notation from (3.9). This gives a canonical Hamiltonian
formulation via the Legendre transformation to momenta s; = ¢z, s3 = ¢o, S3 =
¢1, and there is also a second, non-canonical, Hamiltonian formulation given in
[5]. Except for naming the momenta in the reverse order, this bi-Hamiltonian
formulation is just a special case of the one in theorem 5.6. The system was
shown in [11] to be separable in the Hamilton—Jacobi sense, using results about
so-called quasi-bi-Hamiltonian systems [12]. The same can be shown to hold for
any cofactor pair system where one of the matrices G or G (say G, as in this case)
is independent of ¢. Briefly, when changing to momenta s = é‘lp instead of p, our
bi-Hamiltonian formulation of theorem 5.6 takes the form required for the methods
used in [11] to apply. However, it is not known if general cofactor pair system,
with both G and G depending on ¢, can be solved through separation of variables.
A separation procedure not using the Hamilton—Jacobi equation was given in [2]
for a special class of two-dimensional cofactor pair systems, the so-called driven
systems. Similar results have been found also for n > 2 and will be published in a
separate paper.

Finally, the fundamental equations (6.1) for K = k@ /detG = —k® = 2V
associated with the pair (G, é) reduce to precisely the system (4.20) for V in [5],
found there as the conditions for the Jacobi identity of the non-canonical Poisson
matrix to be fulfilled. The authors note that any V satisfying these equations
gives rise to a completely integrable bi-Hamiltonian system, but do not address
the question of finding such V. Our recursion formula (6.4), which in this case can
be written

k© 0 0 2qug¢+2¢\ (k¥
KV — -1 0 ¢ +2¢ kW
k2 0 -1 2¢1 e

immediately provides us with an infinite family of solutions, one of which cor-
responds to the Newton system (3.8). In fact, starting with k() = k(1) = 0,
k() = —1, and iterating, we obtain the k(*) of (3.9) after five steps.
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Separable potentials

There is an interesting special case of theorem 7.1 that deserves mentioning. The
Newton system § = M(q) is conservative when G = I (identity matrix) is a
solution of (7.1). A two-parameter solution sG +¢I with G non-constant indicates
a special kind of cofactor pair system, namely a conservative system with separable
potential (in the Hamilton—Jacobi sense). Indeed, I being a solution implies that
M = —VYV for some potential V', and inserting this into (7.1) shows that G and
V satisfy the equations (cf. remark 4.2)

0= Z(GW aer — Gjr 6T1V) + 3(N18JV — NJGZV)

r=1

= Z <(C“qur + ﬂiQT + ﬂrQi + ’Yir) arjv - (QQjQT + /Bj%“ + 5rqj + 'er) arzv>

r=1
+ 3((0&%‘ + ﬂi)BjV — (Oé(]j + 6])61‘/),

(7.2)
which have been found before in various forms [13, 14, 15, 16, 3] as a criterion
for the potential V' to be separable in generalized elliptic coordinates or some de-
generation thereof. The matrix G determines in which coordinates the separation
takes place, in a way which we will now describe briefly. The proofs of the follow-

ing three propositions, which finally justify the terminology “elliptic coordinates
matrix,” can be found in the appendix.

Proposition 7.4 (Standard form). Let G(q) = aqq’ + ¢87 + B¢ + v be an
elliptic coordinates matriz with « and 8 not both zero. Any (G,I) cofactor pair
system can be transformed by an orthogonal change of reference frame ¢ — Sq+v,
S € S0(n), ve R", to an equivalent system where G has the standard form

G(q) = —qq* + diag(\i, ..., \n), (7.3)
if « #£0, or
G(q) = enq” + gel +diag(\1, ..., A\n_1,0), (7.4)
where e, = (0,...,0,)T, ifa =0, 3#0.
Proposition 7.5 (Elliptic coordinates). If
G(q) = —qq" + diag(\1, ..., \n),

then the eigenvalues u1(q), ..., u,(q) of G satisfy
n

n n 2
H(z — uy) H(z - ) =1+ Z @om (7.5)
j=1 m=1

b
z—A
i=1 m

which, when all \; are distinct, is the defining equation for generalized elliptic
coordinates u with parameters (A1, ..., An).

Proposition 7.6 (Parabolic coordinates). Let e, = (0,...,0,1)T. If

G(Q) = ean + qeg + diag()‘la R )‘nflv O)a
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then the eigenvalues u1(q), - .., un(q) of G satisfy

e-w [TIE- 2= = ten-2 o
i=1 =1 m=1 m

which, when all \; are distinct, is the defining equation for generalized parabolic
coordinates u with parameters (A1,..., An—1)-

Now, to find the separation coordinates, first change Euclidean reference frame
so as to transform G to standard form. Then change to the elliptic or parabolic
coordinates defined by the eigenvalues of GG, and the Hamilton—Jacobi equation
separates. See for example [16] for a nice summary of the theory. (There are some
technicalities concerning degenerate cases; see [13].)

The equations (7.2) are precisely the fundamental equations (6.1) for the special
case G = I (and with V instead of K). Thus, the recursion theorem 6.5 provides an
easy way of producing separable potentials for any elliptic coordinates matrix G. In
fact, when G takes one of the standard forms above, the recursion formula reduces
to known recursion formulas [15] for elliptic and parabolic separable potentials
respectively.

Example 7.7. When n = 2 and G = I, the matrix form (6.6) of the recursion

formula reduces to
L (0 det@ Zg
1) \-1 G k)’

with k corresponding to the potential V' and k£ occurring in the second quadratic
integral of motion. We can solve the recursion explicitly by computing the powers
of the matrix. For example, with

G = (;1 2qu> (7.7)

it is not hard to show that we recover the combinatorial potentials
L fm ok 2k m—2k
EDY (") F)aream w0 (79
found in [17], as well as the accompanying downwards family

—1)m™
V—m = (qgn),l Vm—ly m > 1. (79)
1

These potentials are all separable in the parabolic coordinates u; o2 = ga++/¢? + ¢3

defined by the eigenvalues of G, and in fact constitute the two-dimensional case

of a more general family of parabolic separable potentials in n dimensions [15].
The two-dimensional Kepler potential

Wolq) = —(qf +¢3)"'/? (7.10)

(which is not rational in ¢) is also separable in these same parabolic coordinates,
with second integral Fy = ¢ (cof G)§ + 2¢2Wo(q) = 2q24? — 2q1G41G2 + 2¢2Wo(q)-
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Starting the recursion with &k, = (g2 + p)Wo(q), we obtain what might be called
the Kepler family of parabolic separable potentials:

Wi = (=@2Vim—1+ Vin)Wo, m >0, (7.11)
and
W*m = (qQV*m - V—(m—l))WO7) m Z ]-7 (712)

where the V; are given by (7.8) and (7.9).

8 Conclusions

We have introduced the class of cofactor pair Newton systems in n dimensions, and
explained their integrability properties through embedding into bi-Hamiltonian
systems in extended phase space. As well as providing many new integrable sys-
tems, this gives a framework into which several previously known systems fit, such
as separable potentials and some integrable Newton systems derived from soliton
theory. Perhaps the most remarkable feature of cofactor pair systems is the alge-
braic structure of their integrals of motion; namely, that a Newton system with
two integrals of motion of cofactor type must have an entire “cofactor chain” con-
sisting of n quadratic integrals of motion. We have shown how to construct infinite
families of cofactor pair systems, and how to determine if a given Newton system
is a cofactor pair system. Whether all cofactor pair systems can be integrated
through some kind of variable separation is an interesting open question, but only
partial results are known yet.
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A Appendix

This appendix contains the missing part of the proof of the Poisson matrix the-
orem 4.1 as well as the proofs of the recursion theorem 6.5 and propositions 7.4,
7.5, and 7.6.

n

Proof of theorem 4.1. It remains to show that the (2) equations (1 <i<j <
n)

0=PF;; — Pji, where ,Pij = 3N1Mj + ZGikaij> (Al)
k=1
are equivalent to the (") equations (1 <a <b<n)

2

0= 0,|AM], — 8y[AM],, where A(q) = cof G(q), det G(q) # 0. (A.2)
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Consider the following linear combination of equations (A.2):

> (GiaGip — GjaGin)(0a[AM],, — Dp[AM],)

a<b

1
=3 Z(Gianb — GaGiv) (0u[AM]y — Op[AM],)
a,b

= (GiaGjp — GjaGiv)a[ AM],

a,b
= Qij — Qjs,
where
Qij =Y GiaGip0aAM],
a,b
= 0a(GiaGip[AM]y) = > 0a(GiaG o) [AM],,

a,b

a,b
=" 0a(GialGAM];) = Y (0.Gia)[GAM];

a

- Z Gia (00 Np + 00 N; ) [AM],,
a,b

= Gia0a(M; det G) — Gi;NTAM — N,;[GAM];
:(det G) (Z Giaaan - N]‘Mi> + Mj [G QAN]l - G”NTAM

:(det G) (Z Giaaan - N]Mz + 2MjN1> - G”NTAM

Here we have made use of (3.3) and (3.5), as well as the fact GA = (det G)I. It
follows that

Qij — Qji = (det G)(Py; — Pyy)

so that (A.2) implies (A.1). The opposite implication follows from the fact that
equations (A.1) can be linearly combined to yield (A.2). Explicitly, the inverse
transformation of the linear combination above is obtained by multiplying (A.1)
by the algebraic complement of GG — GG in det G and summing over ¢ < j.
This completes the proof. (It can be noted, for completeness, that the implication
(A.1) = (A.2) does not require det G # 0.) O

Before turning to the proof of theorem 6.5 we need some preliminaries. From
(3.5) we know that Vdet G = 2AN, or, since 2N = VtrG and GA = (det G)I,

GV detG = (det G)V tr G. (A.3)
This can be generalized in the following way.

Lemma A.1. If X = C:‘*lG, where G and G are elliptic coordinates matrices,
then

XV det X = (det X)V tr X. (A.4)
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Moreover,

XVdet X (X + pl)Vdet(X + pl)
det X det(X + pl)

Proof. Multiplying (A.4) by é, we see that it is equivalent to

v (detG) _ 4G A wGa).
detG det G

Using (A.3) we find that the left-hand side equals

i ul (VtrG—Gé—lwré).
(det )2

G Vdet~G CdetC VdetG _ det G
det G det G

We are done if we can show that the expression in parentheses equals G V tr(G~1@).
Let us temporarily use the notation H = G~!. Then the general formula for the
derivative of an inverse matrix, together with (3.3), yields

Oy Hy,s = —[H(0xG)H|s = —Hy, [HN), — Hy,s[HN,.
Now we can compute

GV (GG = Y Gk (HrsGor)

k,r,s
= Z émk(_ﬁkr[f[ﬁ]s - ﬁks[ﬁj\?]r)Gsr
k,r,s
+ Z émkﬁrs(aksNr + 6krNs)
k,r,s

=~ 2 [GH]pme[HN],Gyr + 2[GHN],p,

= — 2[GHN],, 4+ 2N,
=[VtrG — GG 'V tr G)pn.
This establishes (A.4).
To prove (A.5), observe that (A.4) can be applied with X +ul = G=YG + uG)

instead of X, since G+ uG is an elliptic coordinates matrix. This shows that (A.5)
is just a restatement of the identity V tr(X + ul) = Vtr X. O

Proof of theorem 6.5. We remind the reader that [ = 1), k= k=1 A =
A and A = A=Y If § = M(q) is the cofactor pair system 6t E =0 = 6+ E,
then we know that it is generated by any of its integrals of motions, so that
—2A,M = Vk,. In particular, M = —%A*Vk, which shows that

Vk, = A, A 'VE. (A.6)

Similarly, {,, is determined up to integration constant by

Vi, =A,A"'VI. (A7)

42



The relationship between k and [ is by construction given by K = E/ det G =
1/ det G, where K is some solution of the fundamental equations. This is in agree-
ment with the recursion formula (6.4) that we are trying to prove. What needs
to be verified is consequently that the expression (6.4) for I, as a function of k&,
satisfies (A.7), given that k, satisfies (A.6). Rewriting this in terms of X = Gla,
we have to verify that

_det(X + ul)

v [det(X + uDk = ik, | = == (X )XY [(det X)%] (A.8)

when
Vk,, = det(X + ul)(X + pl) "' Vk.
With the help of lemma A.1, we find

_det(X + pul) ~

(X + ul) x [RHS of (A8)] = = ——F=xV [(det X)k]
XV det X ~ _
= det(X + ul)% k+det(X + pl)(X + pl — pI)VEk

= (X + pI)Vdet(X + pl)k + (X + pI) det(X + pl)Vk — (X + pI)Vk,
= (X + pul) x [LHS of (A.8)].

This completes the proof of (6.4). The inverse formula (6.5) follows immediately,
since k("1 = 1) det G/ det G. O

Proof of proposition 7.4. We need to study how the velocity-dependent parts
of the integrals of motion transform under the stated change of variables. Clearly,
¢T1¢ in E does not change, while ¢7 (cof G(q)) ¢ in E goes to (S¢)” (cof G(Sq +
v))(Sq) = ¢7 cof(STG(Sq + v) S)q, since ST = cof S if S € SO(n). Thus, we
must show that we can choose S and v such that STG(Sq + v) S takes the stated
standard form.

Consider first the case a # 0. Dividing G by —a and adjusting the cofactor
chain accordingly, we can assume o = —1 without loss of generality. If we then
take v = (3 and choose S so as to diagonalize the symmetric matrix v + 3387,
ie., ST(y+ pBT)S = diag(\i, ..., \n), it is easily verified that STG(Sq +v) S =
_qu + diag()‘la AR )‘n)

Similarly, in the case & = 0 we can assume that the vector § is normalized.
Direct calculation shows that STG(Sq +v)S = (STB)qT + q(STB)T + ST (v +
BuT 4+ vBT)S, which, if the last column in the orthogonal matrix S equals 3,
equals e,q” +qel + ST~vS +e,vT +vel. Now, to choose the remaining columns of
S, let R be any orthogonal matrix with last column 3, and let P be an orthogonal
(n—1) x (n — 1) matrix which diagonalizes the upper left (n — 1) x (n — 1) block
Q in RTyR, ie., PTQP = diag(\1, ..., A\n_1). Setting

P 0
S=n ( f 1) ,
we find ST = diag(Ai,..., A\n_1,0) +enct + cez for some vector c. Finally we

complete the proof by taking v = —c, which gives STG(Sq+v) S = e,q" + qel +
diag()\l,...,)\n,l,O). O]
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Proof of proposition 7.5. We have [[/_,(z — u;) = det(2] — G) = det(qq” +
diag(z — A1,...,2 — An)), so the statement follows from taking p; = z — A; in the
identity

det(qq" + diag(pr, o)) = [ [+ D @i | [T 1
=omE N (A.9)

n 2 n
(32 ) {1
1 Pm ) i

which can be proved by induction on the dimension n, as follows. It is obviously
true for n = 1. Let A(q) = cof(qq’ + diag(u1,...,pn)). The diagonal entries
Agq are determinants of the same form as the one we are computing, so they are
Ava = [iza i + Y20 G5 (it 144) by the induction hypothesis. From them
the off-diagonal entries are found, using the cyclic conditions 9, A., = —%81714,1,1
(theorem 3.4), to be Ay = —qaqs H#a’b i (there can be no constant term since
all entries from row a in G that occur in the determinant A,; contain the factor
da)- A cofactor expansion along any row or column now yields (A.9). O

Proof of proposition 7.6. This is similar to the elliptic case, but easier. The
proposition follows quickly once we prove

det(eng” + gey, + diag(ua, ..., 1))

n—1 n—1 n—1
= (H m) g +pn) = Y am | [T 1
=1 m=1 =1

i#Em

() (o)

1 Hm

(A.10)

The elements in the cofactor matrix which correspond to nonzero elements in the
first column are A17, which by induction is given by (A.10) with sum and product
indices starting from 2 instead of 1, and A,; = —q1 H?;; ;. Cofactor expansion

along the first column completes the proof. O
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Driven Newton equations and separable
time-dependent potentials

Hans Lundmark
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Abstract
We present a class of time-dependent potentials in R™ that can be inte-
grated by separation of variables: by embedding them into so-called cofactor
pair systems of higher dimension, we are led to a time-dependent change of
coordinates that allows the time variable to be separated off, leaving the
remaining part in separable Stackel form.

1 Introduction

Newton’s law of force in mechanics leads to second order ordinary differential
equations § = M(q,q,t), where ¢ = (¢',...,q") are coordinates on some manifold
@, the configuration space of the system. Often the force M is derived from a
potential V (g, t) and the equations can be written in Lagrangian form

oL _d oL
dq¢t  dtogt

. I
L(q,q,t) = 29344 — Vg, 1),

or, via the Legendre transformation, in Hamiltonian form

_om . oH
- apZ I pl - 3(]% ’

3

q

H(q,p,t) = %g”pipj + V(g 1).
Here g;; is the metric tensor on @, with inverse ¢, and (¢, p;) are (adapted)
coordinates on the cotangent bundle T*Q.

Powerful techniques have been developed for solving such equations; in partic-
ular the well-known Hamilton—Jacobi method, where one tries to find new coordi-
nates u = u(q) on @, in terms of which the Hamilton—-Jacobi equation correspond-
ing to H can be solved by separation of variables. If this succeeds, the mechanical
system can be integrated by quadratures.

We will restrict ourselves to Euclidean n-space, i.e., Q@ = R" and g¢;; = ;.
The coordinates will be written with lower indices in this case, and regarded as a

column vector ¢ = (q1,...,qn)T, the T denoting matrix transposition.
Consider a Newton system which does not contain time ¢ or velocity ¢ explicitly:
G = M(q).
If there is a potential, the system takes the form
d d a\"
qd=-VViqg), sz(,...,) ,
@ dq oq O,
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and then the energy E = 3¢7¢ + V(q) is conserved (E = 0). The separability
theory for such time-independent potentials in Euclidean space is highly developed.
It is known that separation of the corresponding Hamilton—Jacobi equation can
only take place in so-called generalized elliptic coordinates or some degeneration
thereof [1]. There even exists an effective algorithm for determining whether or
not a given potential V(q), expressed in Cartesian coordinates, is separable, and
if so, in which coordinate system [2].

Less is known in the time-dependent case. One of the aims of this paper is
to show how certain Newton systems in R™ with time-dependent potential can be
integrated by viewing them as driven systems in R, with N > n, as the following
example illustrates.

Example 1.1. Consider the time-dependent potential

1
\% t) = ——— 1.1
(1, 22,1) L12g — 1 (1.1)
and the corresponding Newton system in R?:

Foo= V@

te 8%1 N (1‘11‘2 — t)27 (1 2)
. ov 1 ’
To = =

_Tm B ((Ell'g — t)2.

In order to integrate this system, we introduce the following auxiliary Newton
system in R3, where the first equation drives the other two:

41 =0,

. g

© = (gs — 0)? (13
_ q2
B (CI2(J3 - Q1)2.

We think of the g coordinates as partitioned into driving coordinates y and driven
coordinates x:

q1 Yy
2 =21
g3 T2

The particular solution y(t) = ¢1(t) = t clearly gives rise to the system (1.2) under
the identification z; = g2, 72 = ¢3. The Newton system (1.3) in R? is what we
call a cofactor system (see section 2), which means that it has the form

i =~ A" VW) = ~ G G TW )

where A = cof G = (det G)G™! is the cofactor matrix of a symmetric matrix G(q)
of the form

Gi;(q) = aqiq; + Bigj + Bijdi + 7vij-

Equivalently, %QTA(q)q + W(q) is an integral of motion (of cofactor type) for the
system.
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In this specific case, as is easily verified, the system (1.3) can be written as
i =—-GVW/(det G) with

21 @2 @3 2, 2

Q%+ q
Ga)=|a 0 1|, W(@=-——"2".
1 0 q293 — q1

According to the general theory to be developed in this paper, such a driven
cofactor system can be integrated using a time-dependent change of coordinates

uy = )\1(75, 331,.%2),

up = Ao(t, 1, x2),

where A1(q) and Ay(g) are the roots of the equation det(G(q) — AG) = 0, with
G = diag(0,1,1).

It turns out that by defining corresponding momenta s; and s, appropriately,
the equations of motion for (uj,us) can be put in Hamiltonian form with a time-
dependent separable Hamiltonian. Consequently, ui(t) and us(f) can be found
using a variant of the Hamilton—Jacobi method. Changing back to old coordinates,
we find z1(¢) and x2(t), and the problem is solved.

We will fill in the details of this example after explaining the method in general.

2 Quasi-potential Newton systems of cofactor type

The general framework in which we are working was developed in [3] and [4]. We
will now quote the definitions and results needed here, some of which have already
been hinted at above.

We use the shorthand 9; = 9/d¢;. The notation cof X means the cofactor
matrix of a square matrix X. If X is nonsingular, then cof X = (det X)X 1.

Proposition 2.1. The “energy-like” function

= % _ZZI Aij(@)did; + W(g) = %QTA(q) q+Wi(q), (2.1)

E(q.q4) =
with A(q) a symmetric n X n matriz, is an integral of motion of the Newton system
G = M(q) in R"™ if and only if

1. The matriz entries A;;(q) satisfy the cyclic conditions
aiAjk +8jAki —i—(“)kAij =0, 4j5k=1,...,n. (2.2)

(The general solution of these equations is a subspace, of dimension 1—12n(n—|—
1)2(n+2), of the vector space of symmetric matrices whose entries are poly-
nomials of degree at most two in qi,...,qn.)

2. The force M(q) satisfies A(q)M(q) + VW (q) = 0.

Definition 2.2 (Quasi-potential system). A Newton system of the form

i=—Alq)"'VW(q),
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where the matrix A satisfies the cyclic conditions (2.2), is called a quasi-potential
system. By the proposition above, E = 147 A+ W is an integral of motion for
the system, and it is said to generate the system, since the system is completely
determined by A(q) and W (q), and hence by E. (Special case: if A = I is the
identity matrix, then W is a potential for the system and E' is the usual energy.)

Definition 2.3 (Elliptic coordinates matrix G). A symmetric matrix of the
form

Gij(q) = aqiq; + Bigj + B + 7Vijs ,j=1,...,n, (2.3)

is called an elliptic coordinates matriz. Using matrix multiplication, G(q) can be
written

G(q) = aqq” + Bq" +qB" +, (2.4)
with « a scalar, ¢ and 8 column vectors, and v a symmetric matrix.

Put briefly, the eigenvalues u1(q), ..., un(q) of G(q) give the change of coordi-
nates from Cartesian coordinates ¢ to elliptic coordinates v = u(gq). See [4] for a
more detailed explanation.

Definition 2.4 (Associated vector N). To a given elliptic coordinates matrix
G we associate the column vector N = ag+ § = %V trG.

Proposition 2.5. If G is an elliptic coordinates matriz, N the associated vector,
and A = cof G, then

VdetG =2 AN. (2.5)

The preceding proposition is frequently useful. It implies, for example, that
A = cof GG satisfies

(det G)akA” = 2[AN}]€A” - [AN]ZAkJ - [AN]]AZ;C, (26)

from which the following remarkable property of elliptic coordinates matrices fol-
lows.

Proposition 2.6. If G(q) is an elliptic coordinates matriz, then A(q) = cof G(q)
satisfies the cyclic conditions (2.2).

Corollary 2.7. If G(q) and 6((]) are elliptic coordinates matrices, then the ma-
trices A©)(q),..., A=V (q) defined by the generating function

n—1

cof (G + pG) =Y AWy (2.7)
k=0

all satisfy the cyclic conditions (2.2).
Remark 2.8. Note that A = cof G and A1) = cof G.
We will also need a proposition that does not occur in [4].

Proposition 2.9. With G, N and A = cof G as above,
V(NTAN)=2a AN. (2.8)
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Proof. Equation (2.6) implies that -, ;(OxAi;)N;N; = 0, from which the state-
ment follows easily. O

Definition 2.10 (Cofactor system). A cofactor system is a quasi-potential New-
ton system of the special form

1
i=—A(q)'VW(q) = ————G(q)"'VW
q (q) (@) =~ G (9) (q),
where A = cof G, and G is a nonsingular elliptic coordinates matrix. The integral
of motion F = %qTA(j +W = %QT(COf G) ¢+ W is said to be of cofactor type.

Definition 2.11 (Cofactor pair system). A cofactor pair system is a Newton
system which has two independent integrals of motion of cofactor type,

1 ~ 1 ~ ~
E:iqT(cofG)q+W and E=§q'T(cofG)q‘+W.

Equivalently, it is a system which can be written as
j=—-A"'YW =—A"'VIV, (2.9)

where A = cof G and A = cof G.

Theorem 2.12 (Two implies n). A cofactor pair system ¢ = M(q) in R™ has
n integrals of motion

1
E®) = ZgTA®) g 4wk, k=0,...,n—1, (2.10)
2

where the matrices A% are given by (2.7) and the quasi-potentials W*) are de-
termined (up to irrelevant additive constants) by VW ®) = —AF) AL,

Remark 2.13. Note that the original integrals of motion E = E(© and E =
E(=1) of cofactor type sit at either end of this “cofactor chain” of integrals.

Remark 2.14. It is sometimes convenient to handle the integrals of motion using
a generating function

n—1
1 ~
By =Y E®ut = 24" cof(G + uG)g + W, (2.11)
k=0

where W, = Y720 Wk b,

Remark 2.15. For W to be well defined by VW = —AM, the compatibility
conditions 0;[AM]; = 0;[AM]; have to be satisfied for all ¢ and j. This, of course,
is the reason that not every Newton system ¢ = M(q) has a potential V', and also
that not every Newton system has a quasi-potential W, even though by allowing
A(q) # I we enlarge the class of systems under consideration.

Now, for ¢ = M(q) to be a cofactor pair system, two sets of compatibility
conditions need to be satisfied simultaneously; 0;[AM]; = 0,;[AM]; and 0; [AM] =
0 [KM Ji. For given G and G, this is a rather strong restriction on M. In fact,
according to the theorem, it is so strong that if 9;[A*) M]; = 9;[A*) M]; holds for
A® = 4 = cof G and A"V = A = cof (77, then it must hold for all the matrices
Ak,
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Definition 2.16 (Fundamental equations). The fundamental equations asso-
ciated to a pair (G, G) of elliptic coordinates matrices is the following set of (g)
second order linear PDEs:

n

0= Z (Giréjs - Gjré'is)arsK

r,s=1

n ~ ~ ~ ~ 2.12
+ BZ(GirNj + GjTNi — Geri — GiTNj)a,«K ( )

r=1

+6(N1NJ—NJNL)K, i,j:l,...,n.

Here N = aq + (3 is the vector associated to G, with the same parameters o and
B asin G = aqq” + BqT + qBT + ~, and similarly for N.

Theorem 2.17. Let

= —(cof G)'VW = —(cof G)"'VIW (2.13)

be a cofactor pair system. Then the functions K1 = W/ det G and Ky = W/ det é,
while in general different, both satisfy the fundamental equations (2.12) associated
to the pair (G, G).

Conversely, if K satisfies (2.12) and we set W = K det G, then there is a
function W such that (2.13) holds. And if we set W = Kdet é, then there is
a function W such that (2.13) holds (but these W and W are in general not the
same as those in the previous sentence!).

Remark 2.18. Once again, this is all about compatibility conditions. If G, (~¥,
and W are given, then W is well defined by (2.13) if and only if

8; [(cof G)(cof G) VW] . = 9;[(cof G)(cof G) VW]

J %

for all ¢ and j. This is a system of (g) second order linear PDEs for W, with

coefficients depending in a complicated way on G and G. Substituting K =
W/ det G and forming suitable linear combinations of the equations simplifies this
system to precisely the fundamental equations (2.12). These being completely
antisymmetric with respect to coefficients with and without tilde, the result is the
same if we go the other way around, interchanging the roles of W and W.

Remark 2.19. This theorem leads to a recursive procedure for explicitly con-
structing infinite families of cofactor pair systems. See [4] for details.

In [4] it was shown, using the theory of bi-Hamiltonian systems, that cofactor
pair systems generically are completely integrable, but it was not clear if they
admit some kind of separation of variables. The special case G = I corresponds
to conservative systems with an extra integral of motion of cofactor type. Such
systems are precisely those with potentials separable in the elliptic (or parabolic)
coordinates given by the eigenvalues of G(g), so in that case we have a concrete
method of integration. A recent preprint [5], which appeared during the work on
this paper, deals with separation of variables for generic cofactor pair systems,
with both G and G nonsingular (and nonconstant, in general). Here, we study
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the very degenerate case of cofactor pair systems with G= diag(0,...,0,1,...,1).
As we will see in the next section, these systems admit a somewhat nonstandard
integration by separation of variables, and there is a surprising connection with
time-dependent potentials.

3 Driven systems

From now on we fix positive integers m and n, and let N = m + n. (Hopefully
there is no risk of confusing this N with the vector N associated to an elliptic
coordinates matrix G.) Let us begin by defining some notation.

Definition 3.1 (Block notation). If X is an N x N matrix, with N = m +n,
then we use arrow subscripts to denote blocks in X, as follows:

(X X . . mxXm mXn
X_(X/ X\> with sizes {nxm nxn] (3.1)

Similarly, if Y is a column vector in R", then

(Y s m
Y = <Y1) with sizes [n] . (3.2)

So, for instance, [X .]ij = Xi m+j-

We will consider driven Newton systems in RY, where N = m + n. By this
we mean that the first m equations depend only on the first m variables, so that
they form a Newton system in R™ on their own:

‘jl = Ml(qla cee 7Qm)7

d’m = M’rﬂ(le s 7q’m)a
(jerl — Mm+1(Q1, e dms 9met1y - 7Qm+n)a

dm+n = Mern((hv e dmy dm1s - - - ,Qm+n)‘

Definition 3.2 (Vectors = and y). Since we will consider the time evolution of
q; and q, separately, we write y = ¢; and = = ¢, to simplify the notation.

With this definition, the system (3.3) can be written as

i = M.(1),
y 1 (1) (3.4)
Tr = Ml (yv .1?)

As in example 1.1, (y1,...,ym) are called driving variables and (z1,...,2,) are

called driven variables. The system § = M, (y) is called the driving system, since
its solution y = y(¢), when fed into & = M, (y(t),x), drives the evolution of the x
variables.

An important observation is that if

G =aqq" +Bq" +q8" +~
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is an IV x N elliptic coordinates matrix, then

G =ayy” +By" +y(B)T + 7,

so that G~_(y) is an m x m elliptic coordinates matrix in the y variables. (Similarly
for G- (), but we will not use that here.)
The major part of this paper is devoted to proving the following theorem.

Theorem 3.3 (Driven cofactor systems). Suppose that a driven Newton sys-
tem in R™™ is of cofactor type:

. Mi(y) '\ _ 1 0W
= <Ml(y,x)) = —(cof G(q)) Tq(Q) (3.5a)

Suppose also that G is not constant (i.e., that o and B are not both zero), that
det G- # 0, and that there is a potential V (y,x), with y occuring parametrically,
such that

M (y. ) = 9 (.. (3.5b)

Then the driving system is a cofactor system in R™. Namely, there is a function
w(y) such that

—10w

§=—(cof G~ (1)) 87/(1/) (3.6)

Moreover, for any given solution y = y(t) of the driving system §j = M, (y), the
system

ov

& =M (y(t),2) = —5-(y(t),2), (3.7)

given by the time-dependent potential V (y(t),x), has n (time-dependent) integrals
of motion. Under some technical assumptions, stated in definition 3.8, its solution
z(t) can be found by quadratures.

The main idea is to recognize systems of the form (3.5) as a degenerate form
of cofactor pair systems, with G= diag(0,...,0,1,...,1). Separation coordinates
are provided by the roots of the equation det(G(q) — uG) = 0. In these new
coordinates, the system (3.7) takes Hamiltonian form (although not with V' as the
potential), so the Hamilton—Jacobi method can be applied. The time variable can
be separated off, after which the Stackel conditions are satisfied, so that the space
variables separate as well.

We now proceed stepwise with the proof, in sections 3.1 through 3.6.

3.1 Driven cofactor systems as cofactor pair systems
Definition 3.4 (Matrix J). Let J denote the N x N diagonal matrix
J = diag(0,...,0,1,...,1), (3.8)

with m zeros and n ones along the diagonal (N = m + n).
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Proposition 3.5. A system of the form (3.5) is a cofactor pair system with
G(q) = AG(q) + J =: Ga(a), (3.9)

for any X\ such that det CNT')\ # 0. Conversely, any such cofactor pair system has the
form (3.5).

We note that since G is assumed nonsingular by the definition of cofactor
system, det(A G(q)+J) cannot vanish identically, so there are A such that det G #
0. The reason for taking G=0G » instead of just G = J is that the theorems we use
about cofactor pair systems require both G and G to be nonsingular. However,
many of the results will be the same as if applying the theorems formally with
G = J directly, so we will regard such systems as cofactor pair systems associated
with the pair (G, J).

The proof of proposition 3.5 uses the following lemma [4], which follows from
the algebraic properties of an elliptic coordinates matrix G.

Lemma 3.6. If M = —(det G)"'GVW, then

N
—0;M; =Y Gir 0K + 3N; 9; K,

r=1
where K(q) = W(q)/ det G(q).

Proof of proposition 3.5. By construction, the given cofactor system
j=M(q) = —(cof G)'VW = —(det G) " 'GVW,

has an integral of motion of cofactor type E = £¢” (cof G)¢ + W. Now fix some
constant A such that det G\ # 0. Theorem 2.17 says that the system is a cofactor
pair system with G = G, i.e., admits an additional integral of motion of cofactor
type

~ 1 ~ —~
E)\ = iqT(COf G)\)q + W)n

if and only if K = W/ det G satisfies the fundamental equations (2.12) associated
to the pair (G, G)).

The antisymmetry of the fundamental equations shows that any pair (G, A G+
J) gives rise to the same fundamental equations as the pair (G, J), so we simply
plug G = J into the fundamental equations (2.12) (with n replaced by m+n). To
begin with, since J is diagonal and constant (so that N = 0), we obtain

m-+n m-+n
0= Z GirJ;;0rj K — Z GjrJiiOri K
r=1 r=1

+ 3(Jijz-8jK - JiiNjé?iK), ,7=1,....m+n.

(3.10)

Now J;; =0 or 1 as i < m and 7 > m, respectively. From this it is immediate that
(3.10) is identically satisfied if 7, 7 < m. Using lemma 3.6 to express the remaining
equations (3.10) for K in terms of M = —(det G) "'GV(K det G) gives 0 = 9;M;
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for i <m < j, and 0 = 0; M; — 0;M; for m < i,j. Clearly, these equations are
equivalent to M having the block structure

v = (ar (s

and (at least locally) a “partial potential” V' such that M, = —9V/0x. O

3.2 Integrals of motion

Proposition 3.7. The system (3.5) has n + 1 integrals of motion E©) ... E™
given by the generating function

FE, =

" E(k'),uk

M=

k

Il
=]

I
M=

(;qTA(k)q_’_ W(k)) Nk (3.11)

=

=0

q* cof (G +pJ) g+ W,

N |

for some functions W), The integral E™ has the form
() [ 1.7 .
E™(y,9) = 54" cof G (y) g + w(y), (3.12)

and is an integral of motion of the driving system § = M, (y), of cofactor type in
the y variables.

Proof. According to theorem 2.12, our cofactor pair system should have a chain
of N = m + n integrals of motion. Here, however, that number is reduced since
some of them will be linearly dependent. More specifically, for arbitrary A\ such
that det G # 0, theorem 2.12 gives us integrals EE\O), e E;Nfl) which we write
using a generating function

m—+n—1

1. ~ \.
Bvu= Y B\ = 5d" cof (G4 uGh)i+ Wi, (3.13)
k=0

as in (2.11). By construction, E/\,u = 0 for all values of p and all A such that
det G # 0. But E) , depends polynomially on X and p, since cof(G + ,u(N?)\) =
cof (G + (NG + J)) = cof (1 + pA)G + pJ)) does. Hence, Ey , = 0 identically. In
particular, if we set A = 0 we extract the constant term with respect to A, which is
just the £, of (3.11), a polynomial in ; whose coefficients are integrals of motion.

The reason why E,, is only of degree n (instead of m+n —1) is that the matrix
J has so few nonzero elements that the expansion of cof(G + p.J) in powers of i
terminates “prematurely” (the details in this expansion are explained below, after
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the proof):
cof (G + pJ) =cof G+ -+ +

A(\n_l) —(cof GG\ na
+ T 1%
—((cof G )G )" (det G- ) pxn
+ cof G« Omxn un (3.14)
OnXm OnX'ﬂ
=: Z A(k),uk.
k=0
All the coefficients in the generating function E} , in (3.13) are linear combinations
of these n + 1 basic integrals E© ... E( 5o even though one can obtain a

seemingly longer chain (with N = m + n integrals) by taking A # 0, it would not
contain any essentially new integrals of motion. (Note also that the polynomial
E,, is what we would have obtained by applying theorem 2.12 formally with the
singular matrix G = J instead of G A-)

The integral E(™ has the form

po _ 1 (T &) <cof G- (y) Om><n> (y> W (g, 2)

? Onxcm Onxn X (3.15>
= S ol G )i+ (),

where clearly W) = w(y) cannot depend on z if E(™ is to be an integral of
motion. Consequently, E(™ (y,¥) must be an integral of motion of the driving
system § = M, (y), and it is of cofactor type in the y variables. O

In (3.14) we have written out some blocks in the matrices A=Y and A(™ for
future reference (in the proof of proposition 3.16). These can be found either by
analyzing the cofactor expansion directly or by writing the identity

(G + pJ) cof (G + puJ) = det(G + puJ) Inxn

as

JAM 4 (JACTD 4 gAML
= (0p" ™" + (det G- )p" +...) INxn

and identifying coefficients block-wise at p"*! and p”, using that the matrices
A® are symmetric. The block A(\n Y does not enter into this identity until at
the power 1"~ !, and depends on G in a more complicated way. Fortunately, the
only information about A(\n ~U that we will need is that A=1) satisfies the cyclic

conditions (2.2) which connect derivatives of A(\n ~Y to derivatives of the other
blocks, which are known explicitly.

We have now completed the proof of the first statement of theorem 3.3, namely,
that the driving system is a cofactor system in the y variables.

Moreover, for any given solution y = y(t) of the driving system, we can consider
E©) . E®=1 as functions of (z, 4, t), and these constitute n time-dependent in-
tegrals of motion of the driven system (3.7) given by the time-dependent potential
V(y(t), z). These are the integrals referred to at the end of theorem 3.3.
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3.3 Separation coordinates

Our remaining task (which is much more complicated) is to show how to integrate
the driven system Z = —%(y(t),x), given a solution y(t) of the driving system
i = M, (y). This will be accomplished using a change of variables (y,z) — (v, u)

on R™*T™ defined as follows:

Definition 3.8 (Variables v and v, roots ). Let v; = y; for i = 1,...,m.
Let u; = Xj(y,x) for j = 1,...,n, where Ay,...,\, are the roots of the n-th
degree polynomial equation

det(G(y,z) — AJ) = 0. (3.16)

(We assume that this really defines a coordinate system. This requires, to begin
with, that all the roots A; are non-constant as functions of ¢g. Moreover, the
gradients of the v; and u; must be linearly independent. Because of lemma 3.11
below, this holds at least in a neighbourhood of any point where all \;(q) are
distinct.)

Definition 3.9 (Polynomial U(u)). Let
Up) = (ur — p)(ug — p) - (tn — ). (3.17)

It follows from the definition of the wuy as roots of the polynomial det(G — uJ),
which has the leading term (—u)™ det G, that

det(G — puJ) = U(u) det G-_. (3.18)

Our aim is to express the integrals of motion E© ... E( in terms of the
new coordinates v and u, and likewise for the equations of motion for the system
(although for that purpose we view z — u = A(y(t),z), where y(t) is a given
solution of the driving system, as a time-dependent change of variables in R™; more
about that later). The remainder of this subsection contains technical preparations
for these tasks.

Definition 3.10 (Matrix V). Let ¥ denote the N x N matrix of partial deriva-
tives of v and w with respect to y and x, arranged so that the columns of U are
the gradients of v and u with respect to ¢ = (g)

v=|Vv; ... Vv, Vu ... Vu,
(3.19)
= €1 ... E€m V)\l e V)\n s

where e; is the column vector with 1 in position ¢ and 0 elsewhere. (In the block
notation of (3.1), U = Lyxm and ¥_ = Opxpm.)

With this definition we have

(i) =¥ 0= g o (3) (3.20)
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and also

_(0/0oy\ _ 9/0v
V= (8/8x> _W<8/8u>' (3.21)
(Note that 9/0y # 9/0v even though y = v, hence the need for the different
names. )

The following lemma will give us information about the last n columns in the
matrix ¥ (or, equivalently, about the blocks ¥ . and ¥ ).

Lemma 3.11 (Eigenvalues and eigenvectors). Let G(q) and G(q) be elliptic
coordinates matrices. If X = X(q) is a simple root of det(G —AG) = 0, then VA(q)
is the corresponding “eigenvector”:

(60~ x@ G vr@ = 0. (322)
If A1 and Xy are two different such roots, then
(VA)TG VA, = 0. (3.23)

Proof. Let G, = G — rG and p(r) = det G,.. For each r, G, is an elliptic coor-
dinates matrix, with associated vector N, = N — rJ\N/', where N = aq + ( and
N = aqg+ B. If we apply proposition 2.5 to G, we get Vp(r) = 2(cof G,.)N,.. Now
compute the gradient of p(A(g)) = 0:

0= (Vp)(A(@) + 2 (A\(2)) VAqg) (3.24)

= 2cof (G = A(g) G) (N = A(q) N) + /(M) VA(q) '
Multiplying this by G — A\(q) G yields, since det (G - Ag) é) = 0 by definition of
)\7

0= (@) (G Ma) G)VA(9).

But p’(A(g)) # 0 since A\(¢) is assumed to be a simple root of p. The first statement
follows. B

The second statement comes from the simple observation that if GX; = A} GX;
and GXo = Ay GX5, then, since G and G are symmetric,

0=(GX1)TXy — XT(GX3) = (A — M) XT GXs.

O
Lemma 3.11, with G= J, says that
GVuy = ug JVuy, (3.25)
and that Vuy, ..., Vu, (which are the last n columns of ¥) are “J-orthogonal,”
(Vuj))'J (Vu) =0,  ifj #k. (3.26)
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Thus, the columns (Vu;), of the lower right n x n block ¥._ in ¥ are orthogonal

in R™ in the ordinary FEuclidean sense, with squared lengths Ay, ..., A,,, where
T n
Ay = ((v”k)i) (Vug), = Z(‘I’n+i,n+k)2- (3.27)
i=1
Consequently, since the first m columns in ¥ are just ey, ..., e, the interpretation
of an n X n determinant as a volume in R™ shows that
(det ¥)? = AjAq--- A, (3.28)
It also follows that, with A = diag(Ay,...,A,) and U = diag(uq,. .., un),
T _ O'm><rn O77’L><n
U Ju = <0nxm A (3.29)
and
G 0
T o N mxn
U GV = (Onxm UA > . (3.30)

3.4 Integrals of motion in separation coordinates

Now we will transform the integrals of motion E(©), ... E() given by (3.11) to
the new coordinates (v, u).

Kinetic part

We begin with the “kinetic” part ¢7 cof(G + uJ)g. Write G, = G + pJ for
simplicity. Equation (3.20) gives

. . 1 . . )

¢ (cof G,) ¢ = et ) (o7 aT) cof (TG, ) <u> .

Equations (3.29) and (3.30) show that

\I/TG”\I’ _ ( G\ 0m><n)

Onxm ULA
where
U, =U~+ plpy, = diag(urs + 1, ..., un + 1). (3.31)
This, together with (3.28), gives
1 T _ (detU,, cof G~ Omxn
(det )2 cof (V1 G, T) = < Onxcm (det G- )A~tcofU), )

Sandwiching this between (07 a”) and (Z), we finally obtain

q" (cof G,) ¢ = (detU,,) ¥ (cof G- ) ¥

3.32

+ (det G- ) @' (A~ cofUy,) . (3.32)
Note that detl,, = []}(u; + u) is the generating function for the elementary
symmetric polynomials in the n variables {u1,...,u,}, while the kth entry in the

diagonal matrix coff,, generates the elementary symmetric polynomials in the
n — 1 variables {uy,...,u,} \ {ux}
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Structure of Ay

Next we prove a statement about how Ay, defined by (3.27), depends on u and v.
This result is important for showing separability later.

Proposition 3.12. The quantities Ay, ..., A, satisfy
Ay (u,v) U'(uy) det G (v) = fi(ug), k=1,...,n, (3.33)

where each of the functions f1,..., fn depends on one variable only, as indicated.
(But U’ (ug,), which is just the derivative of U(u) = [[(u; — p) evaluated at p = uy,
depends on all the variables u;.)

Proof. Recall that A = diag(Aq,...,A,) = (¥ )TW, by (3.29). Since the
columns Vuy make up the blocks ¥ . and ¥, the “upper part” of (3.25) shows
that

G VY . +G V. =0mxn. (3.34)
Recall from (3.18) that
det(G — pJ) = U(p) det G~
= det G- ((u)" + (=) )+ )
By proposition 2.5,
Vdet(G — pJ) =2 cof (G — uJ) N
=2 <(p)"A(”) + (—p)n Tt ACD > N.
(Note that N is the vector associated to G—pJ as well as to G, since J is constant.)
Hence, in particular,
2A"DN = V((det G- ) X" ;).
Now, (V det G-), = 0 since G._depends only on the y variables, and consequently
2(A"YUN) | = (det G- ) 32 (Vuy), = (det G- ) U1,

where 1,, € R" is the column vector with all ones. If we use what we know from
(3.14) about the block structure of A=Y and divide by det G-~_, this takes the
form

Inxn

—¢lg \"
2 ( G G/) N=w_1,. (3.35)
Combining (3.34) and (the transpose of) (3.35), we find

2 NT (‘I'/) —oNT (G\;G/‘I’\>

\I/\ N
= (\I/\ln)T\II\
=1TA
=(A1 Ay . Ay
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In other words,
A =2NTVuy, k=1,...,n. (3.36)

As a special case of (3.24), with G = J, N = 0, p(u) = det(G—p.J) = U(p) det G-,
and A\ = ug, we have

U'(ug) (det G~ ) Vug, = —2 cof (G — ugJ) N, (3.37)
which, because of (3.36), when multiplied from the left by 2 N7 yields
U'(ug) (det G- ) Ay = =4 NT cof (G — uyJ) N, (3.38)

The left hand side here is what we claim depends on wu only, and we will prove
this by showing that the gradient of the right hand side is proportional to Vuy.
(Clearly, a function f(v,u) depends on uy alone iff %Vuk is the only contribution
when computing V f with the chain rule.)

Proposition 2.9, applied to G — uJ (which has the same o and N as G), shows
that

V(NT cof(G — pJ)N) =2 cof (G — pJ) N.
Hence, by the chain rule,
V(NT cof (G — ug J)N)

d
=2« cof(G—ukJ)N—i—d— NT cof (G — pJ)N Vuy.
K H=Uf
It is manifest that the second term is proportional to Vuy, and so is in fact also
the first term, because of (3.37). This finishes the proof of proposition 3.12. [

Remark 3.13. In all the examples we have computed, it turns out that f;(¢;) =
f(g;) for a single function f, but we have no proof that this is always true. In any
case, it is not needed for proving separability here.

Solution of the fundamental equations

We previously (in the proof of proposition 3.5) investigated the fundamental equa-
tions associated to the pair (G, J):

OM;
0= - fori <m < j, 3.39
0, < J (3.39)
oM; OM; .
= — for m < 1,7, 3.40
T j (3.40)
where
B GV (K detG)

M =
det G

is the right-hand side in the cofactor pair system ¢ = M(q) generated by EO =
17 (cof G)g+ K det G.
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Proposition 3.14. In terms of the separations coordinates (v,u), the general so-
lution of the fundamental equations (3.39) and (3.40) is

B 1 ~ g (u) /up
K(’U,U) = m <'U}('U) + 2 W) 5 (341)

where g1(u1), ..., gn(uy) are arbitrary functions of one variable, and U’ (ug) is as
in proposition 3.12.

Proof. Recall from (3.21) that

_ (9 _ g (O
SORI)
while (3.18) shows that det G = uy ... u, det G- (v). Hence,

_ 0y (K det G)
-M =GV (au(KdetG)) /detG

G- 0 Uy ... Uy Oy (K det G-)
C\G. B U) \(det G- )0y (ur ... up K)

Uy ... Uy det G

G Oy(K det G-)
det G
= 81/«1 (ulK)
G _0,(K detG-) L ) ’
det G > :
Ou,, (U K)

where GU was computed using (3.25). Equation (3.39) says that the upper part

G- 0y(K det G-)
det G~

M, =

depends only on the y (or v) variables, which happens if and only if
K det G = w(v) + F(u).

The function w(y) here is the same as in theorem 3.3, since the driving system
§j = M, is generated by E™ = Ly7(cof G- )§ + w(y).

The function F(u) is then determined by (3.40), which obviously is only inter-
esting if ¢ # j. In this case, if we set ¢ = m + k and j = m + [, the first term
in

O, (U1 K)
(G Jrow 1 Ou (K det G) .

M; = My p = —
th det G

- [\I/\]row k :
O, (un K)

does not depend on ¢; = z;, since row k of G depends on ) and y only. Then,
since by the definition of ¥

Our - Jup Oun
afk 8:ck 8$k ’

(U Jrow & = (
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OM; 9 = Ou,
a9 - u sK
Jq; ox; SZ:; &rka (s )
Oy, (u1 K
=3 P g, ()~ [V ke e
_ al'lal'k us \Us \Jrow k axl :
s=1 O, (un K)

In the second term we substitute K = (w(v) + F(u))/det G- (v) and plug what
we have into (3.40). The first term cancels out in the subtraction, leaving
0= OM;  OM;
dq; Oy

Ouy (W1 ' Ou, (W1 F
) 5 (1{1 ) 5 (7_11 )
= [‘I'\]row k5 : - [\P\]row l (97

detG d :
e "\ ow, (unF) "\ B (un F)

n n

Now, since 0, = W 0,, this shows that

0= [\I]\]row l Q [\Ijz}column k — [\I/\]row k Q [qu]column s

where  (temporarily) denotes the n x n matrix with entries Qqp = 9y, Oy, (upF).
In other words, 0 = ¥ (Q — QT)UT | or, finally,

2
8u88ub <(ua . ub)F(u)> =0, ab=1,...,n (3.42)

This equation occurs in classical separability theory in connection with separation
in elliptic and parabolic coordinates. It is known to have the general solution

n

Fk (uk)
Flu)=3 5",
= ] Cun — )
j=1
Tk
with arbitrary functions Fj(u1),..., Fp(u,) depending on one variable each (see
Lemma 1 and Lemma 2 in [6]). Hence, we have the general solution

SR S S _ Blu)
" a6 | " 2 T - )
i#k

K(v,u) (3.43)

For our purposes, it turns out to be most convenient to write this in the form
(3.41). O

Potential part

It remains to investigate the form of the “potential” parts W, ... W (™) in the
(v,u) coordinates.
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Proposition 3.15. The functions W©) ... W "=1 take the following form when
expressed in the (v,u) coordinates:

W@ (0,1) = _al +ZJ" o= 1? )g( k) (3.44)

where op(u) denotes the elementary symmetric polynomial of degree b in the n
variables {u1,...,un}, and op(iy) denotes the elementary symmetric polynomial
of degree b in the n —1 variables {uq, ... ,un}\{ur}. As above, g1(u1),..., gn(un)
are functions of one variable, and U'(uy) is as in proposition 3.12.

In particular, the function W) depends on the v coordinates only:

W = w(v). (3.45)

Proof. We have seen that W™ = w(y) depends only on y in the original coordi-
nates, hence also W™ = w(v). We also know that K = W (%) /det G is a solution
of the fundamental equations, so according to (3.41)

_ det G(v, u) < gr(uk)/uk
WO (v, u) = TG (0) (w(v) + U () )
k=1 | (3.46)
_ w
- )+ Z ) )

With M determined by W (| the remaining W(*) are determined (up to irrel-
evant additive constants) by the relation VW@ = —A@ M or

. a a - a a G
W, =) VW@t =— (ZA( m ) = cof (G + ul) = GVW<0>.
a=0

a=0

We multiply by (det G)¥T (G + pJ) from the left and use (3.21), (3.29) and (3.30)
to obtain the equivalent condition

G~ 0 WL\ G. 0 [o,WO

It is a tedious but fairly straightforward calculation, which we omit, to verify that
this is satisfied by

(T gr(ug)
o= ([T ot | Bl o | 55
J7#k
from which W(® can be read off as the coefficient of u°. O

Summary

We have now determined the form of the integrals of motion in separation coordi-
nates (v,u). We have seen that

EM = %@T (cof G- (v))d + w(v) (3.47)

67



depends only on v, while the form of E(®) ... E("=1 is obtained from (3.32) and
(3.44):

a) _ WL\ (1 9 (ur)
E( ) — O'n—a(u) E( )J,-kz:lo’n_a_1(uk) (2(detG )A —|— U/( )> . (348)

If we let sy = ty/A and use proposition 3.12, we can write this as

an a—1(0 1
E@ =g, 4 )+ Z 1 & (ka(uk)si +9k(uk)) : (3.49)

Note in particular that

(e £ ()

k=1

3.5 The equations of motion are Hamiltonian

Given some solution y = y(¢) (or v = v(t)) of the driving system, we now consider
u = u(y(t), z) as a time-dependent change of variables in R™. We want to express
the driven system & = —%—Z(y(t),x) in terms of the u variables. Note that since
E(™) is an integral of motion for the driving system, it can from now on be treated
as simply a constant, the value of which is determined by which solution y(¢) is

taken.

Proposition 3.16. The equations of motion for the u variables can be put into
canonical Hamiltonian form

oh
U= g(u,s,t),
oh
§= —%(u,s,t),
with momenta S1,...,Sy, defined by
U,
— .51

(A; as in proposition 3.12), and with the time-dependent Hamiltonian

ot (e 5 (). o

k=1

Proof. First we see from (3.50) that h is simply E("~1)/ det G-_, expressed in terms
of u, s, and t. Now, with p = @ the system & = —2Y(y(t),z) has a canonical
Hamiltonian formulation

- 37]{( t)
T = ap Z,p,s1t),
. H
p——%(ﬂﬁ,p,t),
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where H(z,p,t) = $p"p+ V(y(t),z). Consider the extended phase space R?"T!
with coordinates (z,p,t). With T = ¢, the variables (u, s, T') constitute a different
coordinate system on this space. The vector field in extended phase space that
corresponds to the canonical phase flow is encoded in the 1-form pTdx — H dt
(by spanning the kernel of its exterior derivative). It follows that the equations
of motion are canonical in the new coordinates, with Hamiltonian h, if the two
1-forms

plde — Hdt and sTdu— hdT

have the same exterior derivative [7, sec. 45]. (Here we view dz and du as column
vectors of 1-forms dz; and du;, in order to be consistent with our previous matrix
notation.) Since here we have dT = dt, the proof amounts to showing that

d(p"dx — s"du+ (h — H) dt) = 0. (3.53)

The computations will be performed in the (x,p,t) coordinates, and whenever we
write y we mean the given function y(¢). Note also that since G~_ depends only
on the y variables, it too will be a function of ¢ only. In particular, det G-_is a
function of t only.

We need to express s'du and h in terms of the (z,p,t) coordinates. Recall
that by the definition 3.10 of the matrix ¥ we have

_ (Y
(Vul,...,Vun) = <\I!\)

Since
" Ou " ou
du; = ]; a—ykyk dt + ; %dajk
we obtain
du= (¥ )Tydt+ (v ) de,
that is,

= (0 )"y + (T )i
If we transpose and multiply from the right by A=! = diag(A;l), we get
st =ygTw A+ pTw AL

Now we define an m X n matrix = by

(1]

=V (v )L (3.54)
Since A = (¥ )W, it follows that

v ATH )T
voATH W )T

(1]

|
(1]
(1]
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Consequently,
stdu =pTde + (JT2ETy + T =p)dt + 9T Z da. (3.55)

Furthermore, (3.34) shows that G . = —G< =, so that the expression for the
block A(/n*l) from (3.14) can be written as

A" = _(cof G. )G = (det G- )=. (3.56)

Hence, since from (3.14) we also have A(\n_l) = (det G~ )1, we find the following
expression for h:

E(n—1)
~ det G-
1 Lor o (Y -
= (= A(n 1) W(n 1)
wa (20" A (0)+ 57)
1. (n—1) . (n—1)
_ 17 T éyTA\ y+w
=P Pty Pt det G '

So far we have

plde — sTdu+ (h— H)dt =

(gt A g e wy
det G

-V —-y'= ETy> dt —yT=dx,

and the exterior derivative of this is zero iff

9 %QTA(\R_UQ + Wb T= =T 9 1.
(ARG v gz ) <o

Now 2 (273) = 22245 + 74, and from § = —[A™=D]=1VW 1) it follows that

ox

oW (n—1) 8V
g A=) (n—=1\T (n—1)
o [A g, =—(A> ) + AL e
ov
T PR
(det G )( eram),

so it remains to show that

. nfl —_
Ox det G« ’

To simplify the notation for this final computation, write
det G\ =D, A(n b (aw) and A(j_l) = (bij).

Then (b;;) = —(cof G~ )G . = DE, by (3.56). In this notation, what we must show
is

1 &9 i by . m g b .
5 2 i g3 3 3= 3 0 () i=0. @
’L,]: i—

1,j=1 =1
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To begin with, since G~_1is independent of x and G _- is linear in xz, we see that b;;
is linear in x. More precisely, since

a[G/‘]Tj _ aGT,m+j = 5..N.
Oy, Ok IR

applying proposition 2.5 with y instead of ¢ gives

8[)1-' m 6"16 0D
&T; = ;[cof G-Jir(6jxN,) = =0k [(cof G- )N, ]; = _JT B
Furthermore,

0 (i) . = O (b)) . .
;&f(D)yz_Zayj<D>yzy]'

i,j=1
Finally, since A1) satisfies the cyclic conditions,

daij _ 6‘48‘1_1) _ _8‘4;‘?:7;)1@ 6‘45:1:;)@ _ Obj, bk

Oxy, O¢m+k 0¢; 0q; dy; Oy,

Plugging all this into (3.58), it is easy to verify that everything cancels out, which
completes the proof. O

3.6 Separation of the time-dependent Hamilton—Jacobi equa-
tion

The time-dependent Hamilton—Jacobi equation corresponding to the Hamiltonian
h(u,s,t) of proposition 3.16 is

oF OF
h(u, —,t) + — = 0. 3.59
(w50 0)+ 5 (3.59)
A complete solution F(u,«,t) can be obtained by separation of variables, as we
will now show. We number the parameters «y, ..., a,_1 since they will in fact be
just the values of the integrals of motion E(©, ...  E=1  as will be clear from by

comparing (3.62) below with (3.49).

To begin with, since the time variable ¢t appears in K only in the overall
multiplicative factor 1/(det G- ), it can be separated off by assuming a solution
for F' of the form

F(u,a,t) = S(u,a) — ap_1 / m dt. (3.60)

With the explicit expression for h from proposition 3.16 we get the following
equation for S(u,a):

" n ((em) (25) + artun)

(Z uk>E(”) +y ) = . (3.61)

k=1 k=1
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In order to find a complete solution, depending on all the parameters «;, we will
use Stéackel’s method. Consider the n equations

n

5 2
Z W (;fk<uk) (gi) +gk(uk)> =g — Op_q(u) E™, (3.62)

k=1
where a = 0,...,n—1. If we can find a solution of this system, it will be a complete
solution of (3.61), since it will depend on all «;. (Of course it will solve (3.61)
which is just the last equation of the system, corresponding to a =n — 1).

Now (3.62) is a linear system of equations for the expression in parentheses,
and the matrix of coefficients is the inverse of a Stéckel matrix (similar to the one
occuring when separating in elliptic or parabolic coordinates). In fact, the matrix
can be inverted using known properties of symmetric polynomials, resulting in

2
%fk(uk) (;i) + gr(ug) = —P(—uy), k=1,...,n, (3.63)

where the polynomial P is given by
Pz)=as+arz+---+ Qn_12" 1+ EM™ . (3.64)
It is now clear that the additive Ansatz
S(u, ) = S1(u1, @) + -+ + Sy (un, @)

yields a separated solution, provided that each function Sy satisfies the separation
ODE

<dsk>2 _ —gr(we) = P(-wr) (3.65)

fr(u)
Consequently,

w(ur) + P(—u 1
F(u,a,t) = /\/ Folan) uk—an,l/mdt (3.66)

is a complete solutlon and in the usual way it generates a canonical transformation
to variables (0, ), where §; = ‘95 These new variables will be constant during
the motion, with values determined by the initial condition. One can then (at
least in pr1n01ple) solve for u = u(0, a, t), and hence = z(8, a, t). This finishes
the proof of theorem 3.3.

4 The case of one driven equation

The case when only the last equation is driven by the other ones is easier to
handle, since it does not require the Hamilton—Jacobi method, as we shall soon
see. Specializing our previous results to this case by setting n = 1, we find the
following. If a system of the form

Y1 = Ml(yla"'7ym)7

Ym = Mm(yla ce. 7ym)a

- 8(E yl)"'ay’ﬂla
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has an integral of motion E(®) of cofactor type, then it must have an extra integral
of motion E(M) = 197 cof G- (y) § + w(y) depending only on the variables y. We
change to new coordinates (v1,...,Um,u), where v = y and u is the zero of the
first degree polynomial det(G — AJ). Here J = diag(0,...,0,1), so det(G —AJ) =
det G — Adet G-, hence

_ detG(y, x)
Y7 et G (y)’

In the new variables, E(!) remains unchanged (with v instead of y), while E©
takes the form given by (3.48),

N ldet G~ (v) .o

O )

where, according to (3.27) and proposition 3.12,

A= (gi)z B detfc(;i)(v)

for some function f(u). Hence,

2
;(detf@)@) ) g(w). (4.2)

Now, for a given solution v(t) = y(¢) of the driving system, we write this as

EO — 4g® 4

(det G- (v(t)) Cf;:) =2f(u) (E(O) —uEM — g(u)),

du _ dt
V2 F@)(BO —uBO —g(u) 0G0

which can be integrated by quadrature, since u and t are separated.

This procedure can be applied recursively to “triangular” systems, as in the
following proposition. Note that for an arbitrary triangular system all we can do
in general is to solve the first equation for ¢1(¢). It is quite surprising that the
existence of an integral of motion of cofactor type is enough to allow us to solve
the system completely.

Proposition 4.1 (Triangular cofactor systems). Suppose that the “triangu-
lar” Newton system

G1 = Mi(q1),
Go = M>(q1, q2),
(.j?) = M3(q1aq27q3)v (43)

ijN = MN(qlaq27Q3a"'an)7

is of cofactor type. Suppose also that no upper left k x k block in G is constant or
singular (k=1,...,N —1). Then the system can be integrated by quadratures.
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Proof. The whole system is of the type considered above (driven, with n = 1), so
it can be integrated provided that the driving system, consisting of the N — 1 first
equations, can be integrated. By what we said above, the driving system must
have an integral of motion of cofactor type, so it is itself a triangular cofactor
system, of one dimension less. Since the first equation can be integrated (being
one-dimensional), the statement follows by induction. O

In each step of the integration procedure one new variable u = uy, is introduced.
Denoting the determinant of the upper left k x k block in G by Dy(q1,- .., qx), we

can write the separation variables (uy,...,uy) as
D,
= d e ! 5 ) = 27 PP ,N.
up = q1 an U Do i
5 Examples

Example 5.1 (Example 1.1 continued). We can now fill in the missing details
in our first example. We had

1 0
M(q)=—-5 | a3
(9293 — q1) ¢
With
21 ¢ g3 0 00
Gg=|q@ 0 1|, J=(0 1 0],
¢ 1 0 00 1
we find from A, = cof(G + uJ) that
-1 q3 7
A = cof G = | g3 -3 9293 —2q1 | ,
92 9293 — 21 45
0 —q -—g3 100
AV = [ —¢o 2¢¢ 0 |, AP =10 0 0
-3 0 2¢q 0 00
The relation VIW®*) = —A®) M then yields
2, 2
wo - 2G4 e g
4243 — q1 4243 — q1

We introduce new variables (v, uy, us), where v = ¢; and u; 2 are the roots of
0 =det(G —uJ) = 2(q2q3 — @1) + (g3 + a3 u + (2q1)u’.

With (y,z1,22) instead of (q1,q2,q3), we see that uy + uy = — (2% + 23)/2y and
uiug = 2(z1w9 — y)/2y, so that

<x1 + x2>2 = o1 —u)(1 — ug),

>

(3’1;;2; = —o(1 + u1)(1 + us).
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Except for the factor v, the new variables (uy,us) are elliptic coordinates aligned
along axes that are rotated /4 relative to the Cartesian coordinates (x1, z2). With
u; < —1 < ug < 1, the coordinate curves are ellipses (for u;) and hyperbolas (for
ugz). The example (1.2) is obtained by taking the particular solution y(t) = v(t) =
q1(t) = t of the driving equation ¢; = 0, and in this case we get a factor ¢ with the
effect of expanding the entire coordinate web as time increases, so these coordinates
might be called “expanding elliptic coordinates.”
We can express (ug,us) in terms of (y,x1,x2) as

Uy = T <33% + a4+ \/(ac% + 23)? — 16y(z122 — y)> ,

and then a straightforward computation gives the quantities

a 2 a 2 1 2 2\2 _ 8
Arp = ( u172) + ( u1’2> =32 2422+ 2($1 —|—2x22) YT1T2 .
Y \/(Il + 23)? — 16y(z122 — y)

With U(u) = (u1 — p)(ug — p) we find that (det G- )U' (u1)A1 = 2y(u; —ug)Ay =
4(1—wu?) and (det G- )U' (u2) Az = 2y(uz —u1)A; = 4(1 —u3) depend only on one
variable, as predicted by Proposition 3.12. So in this case we have f; = fo = f,
where f(u) = 4(1 — u?).

The functions W) expressed in the new variables, take the form

0 U1 + usg —2/u1 —2/’LL2
W( ) =2 Ui1U = U’(ul) b (]/(’UQ)7
W(l) _ 2 _ —2/U1 n —2/U2

U1Ug U/(ul) Uv/(uz)7
w® =o,

in accordance with Proposition 3.15.
We can now write down the integrals of motion E®) = 14TA® ¢ + W) in
terms of the variables (v, u1,ug). With s; = 14;/A;, we find

p@ _
2 )
2 2
-wf -2 a0-Bg-2
E(l) — E(2) 2 w1l 2 Uo
(uy + ug) + U/ (u) U (us)
2 2
- -2 g -2
B0 _ £E®) 2w 2w
Ui1U2 + u U/(u1) “+ uy U’(’LLQ)

The new Hamiltonian is h = EM /det G- (v(t)), or, with v(t) = t,

2 2
(e A0-@DF-2 a0-w@)E-2

_— _|_ 2
2t 2 U'(uy) U’ (us)

h(u,s,t) =

The time-dependent Hamilton—Jacobi equation h(u, 0F/du,t)+0F /0t = 0 admits
a separated complete solution of the form

a
F(ui,ug, o, an,t) = S1(u1, a, o) + Sa(ug, ap, 1) — 71 Inlt[,
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where S; and Ss satisfy the separation equations

2
1 <d51>2 & —ag o —

2 \ du; 4(1 —u?) ’

2 2 _ _u
1(dsa)*_ im0t -
2 \duy ) 4(1 — ud)

From (3 = OF/0ay, we finally obtain

U1 U2 1
ﬁl(ul,UQ,t, aOval) = / id‘r +/ id.’t — 5 ln‘t|a

2R 2R
uq _1 U _1
ﬂO(ulaubtaO‘Oval):/ ﬁdeJr/ ﬁd%

where

2 x?
R(z,a1,a9) = 4/2(1 — 22) E—ao—i—alx—? .

This gives the solution u(8, a, t) in implicit form.

Example 5.2 (A triangular system). An interesting example of a triangular
cofactor system appears when applying the recursive method for constructing co-
factor pair systems given in [4] to the matrices

0 -1 q /0001
G=[-1 0 @|. G=|0o1 0
g g2 2q3 1 00

Starting with W(©) = W) = 0 and W = —1, one obtains after four steps the
system

G1 = —4qu,
G2 = 6g7 — 4qa, (5.2)
43 = —10g} + 12g1g2 — 43,

which is a cofactor pair system with respect to the given matrices G and G. Since
the third equation is driven by the first two, the system is also a cofactor pair
system with respect to G and J = diag(0,0,1). In fact, the most general matrix
G for which the system has an integral of motion of the form 3¢ (cof G)g+ W (q)
is

0 -1 ¢ 001 000 00 0
al-1 0 ¢ |+el0 1 0)+c|0 0 1]+ef0 0 0],
o @ 2 10 0 010 00 1

so it might be called a “cofactor quadruple system.” (The third matrix comes
from the fact that there is a function U(q) such that My = 03U and M3 = 0.U.)
Anyway, we know from section 4 that the driving system is a cofactor system with

respect to
0 -1
o -(% )
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Since this matrix is constant, we cannot use it for integrating the driving system,
but it so happens that the driving system is a cofactor system with respect to any

matrix of the form
-1 q1 0 1 0 0
(o a)+oli o) o (o 9):

So, forgetting about (5.2) for the moment, we consider the two-dimensional driving

system
.. —4q gVw
= —_ - 5-3
e (661% - 46]2) det g’ (5.3)

where now

-1 ¢ 3 4 2 2
= , w=—¢qg; + 2 — 2q5.
g <q1 21]2) 2q1 a192 a2

(In this example, we use lowercase letters for quantities referring to the two-
dimensional system (5.3).) In the new variables v = ¢; and v = det g/ det g =
@ + 2g2, we have the integrals of motion

1 1
e = §q§ +2¢% = 5@2 + 202
from the first equation, and (after a short calculation)

0) 1 (1) ’I:LQ U2

=~ (cof ) = B
2q (cof 9)g + w(q) = ue 3 5

The function v(t) = ¢1(¢) is just a harmonic oscillation, whose amplitude deter-
mines the numerical value of e(!) (or the other way around):

oD
ai(t) = |/ S sin2(t — ). (5.4)

The value of e(®) is determined by the initial conditions for ¢; and go. Then u(t),
and hence ga(t) = (u(t) — v(¢)?)/2, can be found from the separable ODE

d 2
)

el

This gives
u(t) = 1/ (eM)2 — 2 sin 2(t — to) + e,
so that
1 . (1) Lo
q@(t) = 3 (eM)2 — 2¢O sin2(t — t5) + eV (1 — 5 sin 2(t—t1) ) ). (5.5)
Having found ¢; (¢) and ¢a(t), we return to the three-dimensional system (5.2):
, aGvw
4= 6g7 — 4o = T et

—10¢? + 12¢1¢2 — 4q3
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where

0 -1 @
G=|-1 0 g, W = 64745 — 441 q2 + 4q192q5 — 245 — 4qigs.
g 92 2q3

Here we take new variables v1 = q1, vo = ¢o, and u = det G/ det G~ = 2(q1q2+¢3)-
The integrals of motion turn out to be

1 i
B — 51’;T cof (_01 01) v+ 4vvy — 2“%

and

0 _Lyr - w_ @
EY =S¢ (cof G)g+ W(q) =uE" — — — —,
2 8 2
so the equation for u(t) can again be separated (in exactly the same way as above).
After finding u(t), we finally obtain ¢3(¢) = u(t)/2 — ¢1(t)q2(t), that is

gs(t) = % (\/E(l) —2EO) sin2(t — t3) + E<1>) — q1(t)g2(2). (5.6)

By inserting the expressions for ¢; (t) and gz (t) into the expression for E(!) we find
that it depends on the previous integration constants e(9), eV, ¢;, ¢, through the
equation

E® = /20 /e() —2¢0) cos 2(ty —t1).

On the other hand, E(® and t5 are independend of the previous integration con-
stants.

Example 5.3 (Construction of driven systems). Given a cofactor system

—10w

=M, (y) = —(cof g(y)) afy(y),

how can it be extended to a driven system

. M (y) \ _ —10W
q= (MA:Z/,IE)) = _(COf G(Q)) Tq(Q)

of the type considered in this paper? First of all, the restriction that the elliptic
coordinates matrix G(¢q) must have g(y) = G« (y) as its upper left block fixes «,
B, and v~ . The remaining entries of 3 and v can be chosen at will (as long as G is
nonsingular). Then we want to find some extension M, of the right-hand side which
is compatible with the chosen matrix G (i.e., so that W (q) exists). In separation
coordinates, this amounts to specifying the functions g (ux) in the corresponding
solution of the fundamental equations (proposition 3.14), the function w(v) = w(y)
already being determined by the driving system. One can find a family of possible
M, in Cartesian coordinates directly by using the recursion formula from [4]. As
it stands, this formula requires G to be nonsingular, but taking G = J can be
justified like in the proof of proposition 3.7 (however, it only makes sense in the
“downwards” recursion formula). We then find that if a driven system has integrals
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of motion given by the generating function E, = $¢” A,q+ W), as in (3.11), then
we obtain another driven system with integrals of motion 3¢” A,,g+ U, by setting

Up=" (detG WO —w, ). (5.7)

It is clear that U, is a polynomial in u of degree n — 1, not n, which means that
the new system (and any system obtained by iterating this process) is driven in
the trivial way (§j = 0). They correspond to solutions (3.41) of the fundamental
equations with w(y) = 0. Adding

det(G + pJ)

det G~ w(y)

to U, gives a system with any w(y) desired.

As an example, consider the two-dimensional Garnier potential V = (¢% +
a3)? — (M@? + X2q3). We will demonstrate how to find G and M3 such that the
system

(.jl = _81V(q17q2)a
G2 = =02V (q1,q2), (5.8)
4z = M3(q1, g2, 93)

is of cofactor type ¢ = f&VW. With G- = (}9), corresponding to w =V,

we have a = 1 = B2 = 0, so we choose for example 3 = 1 and extend v with
zeros to get

1 0 q1
G= 0 1 q2
a1 G2 2¢3

Applying (5.7) with W, = 1+ Op and J = diag(0,0,1) gives U, = (det G)~*,
corresponding to the trivially driven system

. G 1 2 X
4= - v = 52 (Y
det G det G (23 — 47 — ¢3) 1

To keep things simple we stop the recursion after this first step, and let

det(G + uJ)

detG\ V(q1aQZ)7

1
E, = qu cof (G + pJ)q + (det G) ™' +

which then generates an extended system of the desired form,
-0V

V ((detG)™' + (det G)V) = —0V . (5.9)
2(2q3 —¢f —q3) > -2V

G

1= et G

Since the Garnier potential is separable in elliptic coordinates it admits an
extra integral of motion of cofactor type. This gives us the possibility to instead

take
G _ (M—d —ae
b —q1q2 A2 — q% ’
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corresponding to
w = Xagt + A1gs + (M + A2)aias — Mda(df + a3).
Here a = —1 and 3, = 0, and we can for example extend G~_to

M—4 a2 —qugs
G=| —q1¢2 X —@ —qq
—q1q3 —@2q3 A3 — 43

In a similar way as above we get in this case (after some computation) the extended
system

i= G v(detG\ det G )

“dete Y \aetg Tawae”
—0V (5.10)
9,V
o 2w(qi,g2) 2 n q1(01V)/ M+ q2(02V) /A2 |7
2B\ et G )2~ (det G)2 det G

where det G = M\ Ao A3(1— g2 /A1 — q3 /A2 — q3/)3) and det G = M Ao(1—qF /A —
2
%/ X2)-
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Multiplicative structure of cofactor pair systems in
Riemannian spaces
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Abstract

This paper deals with the explicit construction of cofactor pair system
on Riemannian manifolds, as introduced by Crampin and Sarlet. We show
that the recursion formula known in the Euclidean case holds in this more
general setting as well. This is then generalized to a “multiplication” formula
mapping two cofactor pair systems to a third one. As a special case, this
formula contains the fact that the product of two holomorphic functions is
again holomorphic.

1 Introduction

Cofactor systems and cofactor pair systems were introduced in Euclidean space R"™
by the author [1], extending previous work in the two-dimensional case [2]. They
were generalized to Riemannian manifolds @ by Crampin and Sarlet [3], who at
the same time contributed a better geometric understanding of these systems,
which are mechanical systems given by the “non-conservative” form of Lagrange’s

equations,
d (0T oT
— - | — — = M; 1.1
i (55) ~ 52 =160 (1)

with force M = M;(q) dg* of a particular form; see definitions 2.10 and 2.11 below.
(Summation over repeated indices is understood, as usual.) Here

. 1
T(a,4) = 59i54'¢’ (1.2)
is the kinetic energy, with g;; denoting the metric tensor on (). Recall that in the
“conservative” case M; = —0V (q)/dq' the equations take the form

d (0L OL
— =) - — = 1.
dt (8(?) g 0 (1.3)

with L = T — V, and the total energy E = T + V is conserved. In the case
considered here, the M; have a different form, which nevertheless guarantees the
existence of an “energy-like” integral of motion (quadratic in the velocity ¢). Con-
sequently, the systems are in fact conservative in a sense, despite the terminology.

The system (1.1) can be written in the equivalent form §° + F;kq'jqk = M?,
where M* = ¢"/ M;, and F;k is the the Christoffel symbol. In the Euclidean case
this reduces to the vector equation § = M(q), which was considered in [2, 1].
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2 Preliminaries

This section contains all the background material needed to state and prove our
new results. We define cofactor systems and cofactor pair systems, and quote
without proof some known facts [1, 3]. We will mostly follow the notation of [3].
Throughout, @ denotes an n-dimensional Riemannian manifold with coordinates
¢' and metric g;;. We raise and lower indices freely using the metric, so that we
consider for example A4;;, A;- and A% as different version of the same tensor A.

2.1 Quadratic integrals of motion

We are interested in integrals of motion of the system (1.1) which are quadratic
in the velocity components ¢*. The basic fact is the following.

Proposition 2.1. A function E on the tangent bundle T'Q, of the form

LA + W (a), (2.)

E(q,q) =
with A;j = Aj;, is an integral of motion of the system (1.1) if and only if
1. The tensor A is a Killing tensor.
2. The force components M; and the “quasi-potential” W are connected by
ow

a2
AM; + 55 =0 (2.2)

(Note that if A is nonsingular, then the integral of motion E determines the force
M uniquely.)

We remind the reader that a (rank two) Killing tensor (with respect to the
metric g) is a symmetric tensor A;; such that

Vl'Ajk + VkAij + VjAM =0 (23)

for all 4, j, k. The symbol V denotes the covariant derivative associated to the
Levi-Civita connection of g. Equivalently, A is a Killing tensor iff {H4, Hy} = 0,
where Hy = $A%p;p;, Hy = $9”p;p;, and {-,-} denotes the canonical Poisson
bracket between functions on the cotangent bundle 7*Q. (That is, H4 is an
integral of motion for the geodesic equations, which are the canonical equations
generated by the Hamiltonian H,.)

2.2 SCK tensors and associated operators

Of special importance to us are Killing tensors “of cofactor type,” which are con-
structed using so-called SCK tensors [3, 4].

Definition 2.2 (Special conformal Killing (SCK) tensor). A symmetric ten-
sor J;; satisfying

1
Vidij = i(aigjk + ajgix) (2.4)

for some 1-form a = ay, dg* is called a special conformal Killing tensor (SCK
tensor for short). We say that o is the 1-form associated to the SCK tensor J.

84



Recall that a symmetric tensor B;; on Q) is called a conformal Killing tensor if
Vq;Bjk + VkBij + VjBki = Ci9jk + CLGij + Cjgki (2.5)

for some 1-form ¢ = ¢, dg. If ¢ = df for some function f, then B is called
a conformal Killing tensor of gradient type. It is easily verified that an SCK
tensor J is indeed a conformal Killing tensor, and that it is of gradient type with
c=a=d{trJ)=d(J}).

Proposition 2.3. Let J be an SCK tensor. Then the identity J*d(detJ) =
(det J)a holds. The Nijenhuis torsion Ny is zero. If J is nonsingular, its co-
factor tensor A = cof J is a Killing tensor. (Such a Killing tensor is said to be of
cofactor type.)

Remark 2.4. Proposition 2.3 involves the following concepts, which are well de-
fined for (1,1) tensors J J’ on any manifold:

1. The determinant det J; it is just the determinant of the matrix of components
J; in any coordinate system.

2. The cofactor tensor A = cof J; it is defined by letting A;- be the usual
cofactor matrix of J7, such that A}.J5 = (det J)d%.

3. The adjoint (or transpose) .J *. While J acts on vectors so that JX is the
vector with components (JX)' = J: X7, the adjoint J* acts on 1-forms so
that J*a is the 1-form with components (J*a); = Jja.

4. The Nijenhuis torsion Ny; this is the (1,2) tensor defined by
Nyj(X,Y)=[JX,JY] - J([JX, Y]+ [X,JY] - J[X,Y]),

for vectors X and Y (the bracket is the usual Lie bracket of vector fields
on Q).

Since we are on a Riemannian manifold, we can compute the determinant, cofactor
tensor, adjoint, and Nijenhuis torsion of any rank 2 tensor by first raising or
lowering an index if necessary. In the case of the cofactor tensor, we often lower or
raise that index back afterwards. If J;; is symmetric, then the tensor A;; obtained
in this way (raising an index on J;;, computing A% = cof .J}, and lowering an index
on A’) is also symmetric.

Remark 2.5. Any Riemannian manifold admits a trivial SCK tensor, namely the
metric J = g. A cofactor system with J = g is nothing but a conservative system
(1.3) with W coinciding with the usual potential V. Further SCK tensors may or
may not exist, depending on the metric g. In the Euclidean case (with Cartesian
coordinates, so that we need not bother about upper indices), an SCK tensor has
the form

Jij = aqiqj + big; + bjqi + cij

for arbitrary constants a, b;, ¢;; = c;ji, so at least R™ admits plenty of SCK tensors.
(In [1] such a tensor J;; was called an elliptic coordinates matriz and denoted by
Gj. The associated 1-form o = 2(ag; + b;)dq", was denoted by 2N and written as
a column vector.)
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Next, following Crampin and Sarlet, we define two useful linear operators as-
sociated to an SCK tensor: dj, which is a “derivation of type d,. in the sense
of Frolicher—Nijenhuis theory,” and a related operator D ;. Both of these act on
the exterior algebra of differential forms on @, although here we will only need to
apply them to functions and 1-forms.

Definition 2.6 (Operator d;). Let J be a nonsingular SCK tensor. The oper-
ator d; is defined by the following properties:

1. It is a graded derivation of degree 1, i.e., it takes k-forms to (k + 1)-forms,
and

dy(anpB) = (dsa) AB+ (=1)Fa A (dspB) (2:6)
when « is a k-form.

2. It anti-commutes with the exterior derivative d,

djd+ddy = 0. (27)

3. It acts on functions (0-forms) according to

djf =J*df = J;%dqj. (2.8)

Using these properties one easily derives the action of d; on a 1-form 3, which
we write down here for the reader’s convenience:

0B, OJ}

dJ(ﬁadq ) = (Ja aqi dqe

@-) dg® A dg".

Proposition 2.7. The operator d; satisfies d% = 0 (since Ny = 0). The condition
dy0 = 0 for a k-form 0 is necessary and sufficient for the local existence of a (k—1)-
form ¢ such that 0 = dj¢ (in other words, “dj-closed” is equivalent to “locally
dj-exact”).

Definition 2.8 (Operator D). Let J be a nonsingular SCK tensor. The oper-
ator D is defined by

d((det J)8)

D ;0 =
7 det J

=dj0+and. (29)
Here « is the 1-form associated with J, and the equality of the two expressions
follows from the property J*d(det J) = (det J)« in proposition 2.3.

Proposition 2.9. The operator D; is not a derivation, but D% = 0 and “D;-
closed” is equivalent to “locally D j-exact.”

2.3 Cofactor systems

Let A be a Killing tensor. Recall from proposition 2.1 that if A;M, + g—?j =0,
or in other words, if A*M + dW = 0, then F = %Aijqiq'j + W is an integral of

motion of the system (1.1). Restricting attention to Killing tensors of cofactor
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type, where A = cof J for a nonsingular SCK tensor J, this condition takes the
form

M= (A" W = -

*d d
JdW AW J<W). (2.10)

detJ  detJ det J

Given M, the condition D;M = 0 is sufficient for a function W’ = W/ det J to
exist (locally), such that M = —D;W’. This leads us to the following definition.

Definition 2.10 (Cofactor system). A cofactor system is a system of the form
(1.1) where the 1-form M = M, dg* satisfies D ;M = 0 for some nonsingular SCK
tensor J.

So a cofactor system has a force M of the form (2.10), and it always admits
an integral of motion of cofactor type, i.e., of the following form:

Blg,) = 3 (cof J(a)),,d'4 + W(a). (211)

The force M is uniquely determined by E according to (2.10).

2.4 Cofactor pair systems

A cofactor pair system is a system which is a cofactor system in two different ways,
or, equivalently, which admits two independent integrals of motion of cofactor type.
Somewhat surprisingly, this implies the existence of n integrals of motion, as we
will see below. As one may suspect from this, cofactor pair systems are indeed
completely integrable (but in a slightly nonstandard sense, see [1, 3]).

Definition 2.11 (Cofactor pair system). A cofactor pair system is a system
of the form (1.1) where the 1-form M = M, dq* satisfies D;M = DM = 0 for

two independent nonsingular SCK tensors J and J.

Remark 2.12. Cofactor pair systems with either J or J equal to the metric,
say J = g, have a potential W = V (cf. remark 2.5) which is separable in the
Hamilton—Jacobi sense. The separation coordinates are given by the eigenvalues of
the nontrivial SCK tensor J, at least if these are all distinct. Coinciding eigenvalues
in J indicates partial separability of V. This is discussed in detail in the Euclidean
case in [5].

Cofactor pair systems are best analyzed using properties of the differential
operator Dy, as in [3]. This powerful formalism gives much simpler proofs of
many of the statements in [1]. To begin with, J, = J+ pJ is again an SCK tensor
for any constant p, with corresponding 1-form «, = o + pa. Moreover, since

Dy = (dy+ aA) and D% = D% = Di_wj = 0, it follows that
D;, = Dy +uDjy (2.12)
and
DyDj+ D3Dy = 0. (2.13)
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Since Dy;M = D3M = 0, there are functions W and W such that

W W
M=-D — | =-D> - 2.14
J(detj) J(detJ>7 ( )

so a cofactor system admits two integrals of motion of cofactor type,

1 o ~ 1 -
E = i(COf 9)ijd'¢ +Wiq) and E = i(COf Dijd'¢ +Wig). (2.15)

Theorem 2.13 (Fundamental equatlon) With the notation above, the two
functions W/ det J and W/ det J both satisfy the fundamental equation associ-
ated to the pair (J,.J),

D;Dj¢ = 0. (2.16)

Conversely, to a given solution ¢ of the fundamental equation there corresponds
two cofactor pair systems, one with M = —D ;¢ and another with M = —D5¢.

Proof. This follows immediately from (2.14), (2.13) and the property D% = D% =
0.

Theorem 2.14 (Two implies n). A cofactor pair system admits n integrals of
motion

E®) — 2A(k) i@ +w®(g),  k=01,...,n—1, (2.17)

where the Killing tensors A ... A=Y qgre defined by the generating function

n—1
A, = ZA(’“),uk = cof (J + pJ) = cof J,. (2.18)
k=0

Proof. For any p such that J, is nonsingular, the following holds. Since D;, M =
DyM + uD57M = 0, there exists W, such that

W
M=-D p 2.1
N (dew), (2.19)
or (cf. (2.10))
AW, = —A7 M. (2.20)

Since A, = cof J, depends polynomially on u, so does W,. Moreover, E, =
1(A,)i;d*@ + W, is an integral of motion. It follows that the coefficients E(*) at
different powers p* all are integrals of motion. O

This proof, which closely follows [3], is reproduced here since the polynomial
W, which is the generating function of the “quasi-potentials” W® | will be im-
portant in what follows. N

It is worth pointing out that E(® = E and E("~Y = E, at the ends of the
“cofactor chain” E,, of integrals, are the two integrals of motion of cofactor type
whose existence are immediately implied by the definition of a cofactor pair system.
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3 Multiplicative structure

This section contains our new results.

Crampin and Sarlet do not discuss the construction, or even existence, of co-
factor pair systems. However, they hint at the fact that the operators D; and
D35 constitute a “gauged bi-differential calculus” (in the terminology of [6]), which
makes it possible to recursively construct families of cofactor pair systems. This
was actually done in the Euclidean case in [1], although with a less transparent
notation and not using that terminology.

3.1 Recursive construction of cofactor pair systems

Suppose the manifold @@ admits two independent SCK tensors J and J. We will
construct a bi-infinite family of cofactor pair systems, all with the same SCK
tensors J and J, but with different forces M,, (m = 0,£1,£2,...). (In special
cases the sequence may be periodic, as we will see below, but generically all M,,
are different.)

For readers familiar with the bi-differential calculi introduced by Dimakis and
Miiller-Hoissen [6], it might be helpful to note that our M,,, and ¢,, correspond to
their x(™ and J(™) respectively. A curious feature here is that we are using the
bi-differential calculus for jumping between different integrable systems, whereas
in [6] it is used for jumping between different integrals of motion (or conservation
laws) of one single integrable system.

We want to find sequences of functions W, and Wm such that

Wi Wi
M, =—-D;|—=|=-D5 = =0,£1,£2,...). d
m J (detJ) J (detj) (m Oa ) ’ ) (3 )

To begin with, there exists a trivial cofactor pair system, namely the system of
geodesic equations, obtained by taking M = 0 in (1.1). So we let My = 0, which
is accomplished by taking Wy and Wy constant, for instance

Wo =W, = 1.
Now we define W; so that the relation

Wi W
detJ  detJ

holds, i.e., we set W; = 33;%. Then

Wi WO Wo
oo ()| = -pom () = 2o (i) =0

so there exists a function W/ such that D () = Dj(WN/{) Setting Wy =

W/ det J we obtain
Wi Wi
D =D5 = | =: =M.
J(det*]> J(detJ) !
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Similarly, we define Wy = 32'; § Wl and so on, and obtain the upper part (M, )m>0

of the sequence. Simply by reversing the roles of W and W we can go backwards
as well, obtaining the lower part (M., )m<o of the sequence. Explicitly, we define

W_l through the relation

W_ W,
L0 (3.3)
det J det J
or W,l = git 5 Wo, and determine W_; from the relation
w_ w_
DJ L = Dj L =: —Mfl.
det J det J
Then we set /V\V/_Q = ggigW_h ete.

We can also think of this procedure as producing an infinite sequence of so-
lutions ¢,, = dW%"ZJ of the fundamental equation. Adjacent solutions are related
through

Dyom = D5omi1 (= —My,). (3.4)

3.2 The recursion formula

In the procedure described above, Wy, 1 was obtained algebraically from Wk, but it
was necessary to perform an integration to obtain qurl. In [1] it was shown, in the
Euclidean case, how this integration can be avoided by in each step keeping track
of all the “quasi-potentials” W(O)JV.. L, W=D from theorem 2.14, and not just the
outermost ones W = W and W = W1 _ As we will show here, exactly the
same formula (3.5) is still valid in the more general Riemannian setting. Actually,
it is just a special case of theorem 3.4 below, but we give a separate proof for
comparison with the proof in [1]. It is remarkable how much simpler the proof
becomes with the use of the operator D ;.

From now on, we think of a cofactor pair system as given by its integrals of
motion (encoded in the polynomial W, = Z?:_Ol W@ ) rather than by the force
M. The SCK tensors J and J are fixed throughout. There is a purely algebraic
relation between polynomials (W,,), and (W),)r41 corresponding to adjacent co-
factor pair systems M} and My in the above sequence, as the following theorem
shows.

Theorem 3.1 (Recursion formula). Adjacent cofactor pair systems in the se-
quence defined above are related through

det(J+ MJ)W
— ' W,.

Wkr1 = —p (Wy)r + g

(3.5)
Since Wk = W,gn_l) is the highest coeffiecient in (W,), the right hand side
of (3.5) can — and should, as we will see below — be viewed as multiplication by

—pu, followed by reduction modulo the nth degree polynomial det(J + uj )/ det J
in order to obtain a polynomial of degree n — 1 in pu.
For the proof, we need the following lemma.
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Lemma 3.2. The functions WO WD appear in the integrals of motion of
a given (J, J) cofactor pair system (as in theorem 2.14) if and only if the polynomial
W, =>", YW@ i satisfies

w,
M =-D B .
N ( - Ju> , (3.6)

where J, = J + uj.
Proof. This is clear from the proof of theorem 2.14; see in particular (2.19). O

Proof of theorem 3.1. To begin with, identifying the coeflicient at the lowest power
w10 in (3.5) we see that Wy11 = dCt J Wk, which agrees with the recursive definition

of the sequence (Wm,Wm); cf. (32) Moreover, applying lemma 3.2 to My we
obtain

(W) k41 (Wo)k 1 detJ, ~
—D 2 PR ) =D THREY D ~
Ju < det J, Ju \ P det T, Tu \ et T et Wy

Wi Wi
= —uM;, — D ~ | —uD~ -
HE J(detJ) H J(detJ)

Wit1
= —uM; — D — u(—M
Wik J <detJ) #( k)

= Mj41.

Using lemma 3.2 in the opposite direction, we conclude that the remaining coeffi-
cients in (W,)g41 are correct as well. O

3.3 The multiplication formula

The following example was given in [2], where the present theory was first devel-
oped in R2.

Example 3.3. Let Q = R? with coordinates (x,y), and define the SCK tensors

= 5) =0

The corresponding cofactor pair systems take the usual form (2.14), which here
translates into the following condition for the functions W and W:

10\ [ow/oz\ _ (0 1\ (oW /ox
(0 —1) <6W/8y> - <1 0) ey
This is nothing but the Cauchy—Riemann equations, so W + iW is a holomorphic
function. In other words, cofactor pair systems with this choice of J and J are
in one-to-one correspondence with holomorphic functions. The recursion formula
(3.5) takes W + iW to W — iW, so it corresponds to multiplying a holomorphic

function by i. Consequently, the recursively constructed sequence of cofactor pair
systems has period 4 in this case.
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Inspired by this example, one might wonder if it is possible to “multiply” two
different cofactor pair systems, just as the product of two holomorphic functions
is a holomorphic function. It turns out that this is the case, and the formula is
very simple. We need only multiply the corresponding polynomials and reduce
modulo a certain nth degree polynomial so that we obtain a new polynomial of
degree n — 1.

Theorem 3.4 (Multiplication formula). If U, and V,, are polynomials asso-

ciated (as in lemma 3.2) to cofactor pair systems with the same pair (J,J), then
S0 8

W, = U,V, mod P,, (3.7)

where P, = det J,,/ det Jisa polynomial in p of degree n, and F,, mod P, denotes
the remainder in the polynomial division F,/P,.

Proof. The condition in lemma 3.2 for W, to correspond to a cofactor pair system
can be reformulated as M = —ﬁd 7, Wy, or
"

dy, W, = —(det J)P, M, for some M.
This, in turn, is equivalent to
d;,Wy,=0 (mod P,), (3.8)

since d;, W,, and P, are both of degree n in p.

So it suffices to show that W, defined by (3.7), satisfies (3.8) whenever U, and
V. do. We have W, =U,V,, — Q. FP,, where @), is the quotient in the polynomial
division (U,V,)/P,. Hence, assuming that U, and V,, satisfy (3.8), and applying
the formula d;(det J) = (det J)a (from proposition 2.3) to J,, we find

dJuWH = (dJMUM)VM + UM(dJuVM) - (dJMQu)Pu - Qu(de]upu)

det
=0V, +U,0-0-Q,dy, < ° J“)

det J
det J a dy, (det J
— _Q,u, ( € M)(a~+ /,LCY) _ (det J/,L) Ju( 2e~ )
det J det” J
_dy, (det J)
Quty ( : det J

=0 (mod P,),
as was to be shown. O
4 Examples
Example 4.1. In example 3.3 we have P, = —p? — 1, which means that multi-

plication of first degree polynomials modulo P, is equivalent to multiplication of
complex numbers. Multiplying two cofactor pair systems using (3.7) is in this case
equivalent to multiplying two holomorphic functions.
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Example 4.2 (Parabolic separable potentials). Consider Q = R?® with coor-
dinates (z,y, z), and choose the SCK tensors

/\1 0 x " 1 0 0
J=10 X y and J=(0 1 0
x Yy 2z 0 01

The corresponding Killing tensors are given by A, = cof(J + pJ), i.e.,

2oz — 4 xy -2
A0 = Ty 20z — 22 —y | =cofJ,
oz —y A1A2
Ao+ 22z 0 —x
AD = 0 AL+ 22 -y ,
-z -y At A
1 00 B
AP =10 1 0| =cof J.
0 0 1

Since J is the identity matrix, £ is just the usual energy and W ®) is a potential,
which is separable in the coordinates given by the eigenvalues of J (which can
be shown to be parabolic coordinates on R® with parameters A\; and Ay). The
recursion and multiplication formulas make it trivial to produce such separable
potentials. First we compute
p_ det(J + )

g det J
= (201 02— Ax? = X\ y?) F (M Ao +2( A1+ X))z — 22 —y) F p2 (A 4+ Ao +22) .

With W, = (1 + M) (i + A2) as starting point, we multiply modulo P, by p for
going upwards, and by its inverse

21 e 200 + A0)z — 22 — 2) + (A 4 Ao+ 22) + 42
H n 2/\1/\22 — )\2.232 - )\1y2

for going downwards. In this way we reconstruct the family of parabolic separable
potentials V;, found in [7], whose lowest-order members are

Vo = 422 + (x2 + y2)a
Va = =82 — 4z(2® + y?) + (\iz? + \ay?).
The potential V,,, is the coefficient at the highest power of p in the polynomial

u™W, mod P,. This example extends immediately to an arbitary number of di-
mensions.
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Example 4.3 (Kepler potential). Consider the two-dimensional case of the pre-
vious example. The Kepler potential Vi = —(z24y2)~/? is separable in parabolic
coordinates, with second integral of motion &(y& — xy) + yVk, corresponding to

0 =z ~ 1 0
J<x Qy) and J(O 1).

So W, = uVk +yVi for the Kepler system, and P, = p? + 2yu + z2. “Squaring”
W,, with the multiplication formula yields

1
(1 +y)* Vg mod Py = (=(2yp = 2%) + 2y p+y°) il

In other words: the Kepler system is its own inverse under this multiplication!
This means that no new interesting potentials arise by multiplying it by itself. On
the other hand, we can of course multiply it by powers of u, resulting in a “Kepler
family” of separable systems given by the polynomials p™ (i + y)Vx mod P, (an
equivalent construction was done already in [1] using the recursion formula).

Example 4.4 (Potentials separable on the sphere). For an example in curved
space, consider the unit sphere S? in R3: 22 + y? + 22 = 1. The potential

ax? 4 by? + c2?

(4.1)

on R3 (where a, b, c are distinct) is one in a “Neumann family” of potentials [7], all
separable in the spherical-conical coordinates (7, u1, u) defined by r? = x24+y?+ 22
and

z y = 2 (u—w)(u—uy)
u—a u—b wu-—c (u—a)(u—">b)(u—c)

In terms of these coordinates we have

b —uy — b 1 u? —u?
Viru,uy) = SR GRS

r r2uy — Uy’
which agrees with the general form of a potential separable in spherical-conical

coordinates: V = f(r) + g(u1,u2)r =2, where g = 7gl(u;3:iz(u2)

What is usually called the Neumann potential is the restriction of V to S2,
2 2
uy — U
View = (aa® + by + ¢2%)|g, =a+b+c— 1—2,
Uy — U2

which is also integrable since it is separable in (u1,us) (elliptic coordinates on the
sphere).

The system § = —VV in R? has three quadratic integrals of motion E*) =
%Agf)q'i(jj + W(k)(q)7 where the Killing tensors A®) associated with separability
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in spherical-conical coordinates [8], are

cy? + bz? —cxy —bxz
A0 = —cxy cx? + az? —ayz ,
—bzrz —ayz bx? + ay?
y2 + 22 -y -z
AW = —xy 22+ 22 —yz ,
—Tz —Yz % + y2
1 00
AP =10 1 of,
0 0 1

and the quasi-potentials W) are

bex? + acy? + abz?

0
wo = x? +y? + 22
W ax2+by2+cz2
22+ Y2+ 22
WO — - az? + by? + cz?

(IQ +y2 —|—Z2)2 !

We now consider the Neumann system on 52, and use coordinates X = 22,

Y = y? (on a patchz > 0,y >0, 2 = V/1—X —Y > 0 for example). This is
inspired by [9], where also the tensor J below was given (as a block in a Poisson
operator). The metric in these coordinates is

g9 =4 (X(_l);YX) y(_l)iyy)> .

If we view A© and A®M as (1,1)-tensors, i.e., as linear operators on tangent
vectors, it is easy to see that the restriction of A to S? is the identity mapping,
while the restriction of A(®) to S? (call it B) is found by computing:

9 1/2x
B— = A 0
0X ~1/22
1/2x 0
= ((c —b)y* + b) 0 +(a—c)y* | 1/2y
—-1/2z —-1/2z

= ((c— b)Y—&-b)aiX + (a— c)Ya%,

and similarly for B %. We get

i [(c=bY +b (b—c)X
Bj_( (a—c)Y (c—a)X—i—a)’

and consequently B = cof J with the SCK tensor

i [((c—a)X+a (c—b)X
Jj_( (c—a)Y (c—b)Y+b>'

95



The two quadratic integrals of motion of the Neumann system on S? can now easily
be written down by restricting the functions W(® and W) to §? and expressing
them in terms of (X,Y):

1 . . . .

FO = 5(BHX? +2B12XY + BY?) — (ab+b(c — a)X + a(c - b)Y),
(4.2)

1 . .. .

F = 5(911X2 + 2912 XY + g22Y?) + (c+(a—c)X +(b—c)Y).

So far nothing new, but we can now use the recursion and multiplication formulas
to produce new separable potentials, expressed directly in the coordinates (X,Y).
We have, since g; is the identity and hence detg =1,

det(J + pg) 2
Phb=—""=D+T 4.3
i dotg +Tp+ p, (4.3)
where

D =detJ =ab+b(c—a)X + a(c—D)Y, (4.4)

T=trJ=a+b+ (c—a)X + (c—b)Y. )
Starting with W, = 1 for instance, we find a family of separable potentials
Va(X,Y) as the coefficient of p in the first degree polynomial y™ mod P,. The
first nontrivial one is V5 = —T', which is the Neumann potential (minus the irrele-

vant constant a + b+ c¢). In fact, the family obtained in this way is essentially the
Neumann family mentioned above (but restricted to S? and expressed in terms of
X and V).

We can also find a “self-inverse” system like the Kepler system in the previous
example, namely W, = (T'+2u)/v/T? — 4D, since it is immediate that (W,)? mod
(D + Ty + p?) = 1. The potential in this case is

2 2
VT2 —4D  uj —uy’

since the separation coordinates u; 2 are the roots of the polynomial D + Ty + p?.
We can of course construct a family "W, mod P, based on this potential as
well. The potential V' can also be extended to a potential on R3 separable in
spherical-conical coordinates, namely

V:

2
V=—o—"""=2[b-0c2"+(a— )" + (a—b)*" +

r2 (up — ug)

+2(a — ¢)(b— )2®y? +2(a — b)(c — b)a?2? +2(a — b)(a — )y .

5 Addendum

After this work was finished another preprint [10] by Crampin and Sarlet appeared,
which (among other things) contained material more or less equivalent to our
sections 3.1 and 3.2. These results are all straightforward generalizations of results
previously known for the Euclidean case. However, the main new result of this
paper (the multiplication theorem 3.4) appears only here.
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