
Journal of Nonlinear Mathematical Physics 2001, V.8, Supplement, 195–199 Proceedings: NEEDS’99

A New Class of Integrable Newton Systems

Hans LUNDMARK
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Abstract

A new class of integrable Newton systems in Rn is presented. They are characterized
by the existence of two quadratic integrals of motion of so-called cofactor type, and are
therefore called cofactor pair systems. This class includes as special cases conservative
systems separable in elliptic or parabolic coordinates, as well as many Newton systems
previously derived as reductions of soliton hierarchies.

1 Introduction

Throughout this note, elements of Rn are written as column vectors. The superscript T
denotes transpose of a matrix. By a Newton system we shall mean a system of ODEs of
the form

q̈ =M(q), q = (q1, . . . , qn)T ∈ Rn, (1)

which for example arises as the equations of motion of a unit mass particle moving in Rn

under the influence of a (velocity-independent) force fieldM(q). As a special case we have
the conservative systems

q̈ = −∇V (q), (2)

which of course are very well known from classical mechanics. In fact, the powerful tools
of Lagrangian and Hamiltonian mechanics are directly applicable to conservative systems,
while less is known about general (nonconservative) Newton systems.
In this note we present a new class of completely integrable Newton systems which are,

in general, not conservative in the sense of (2) (although they are of course conservative
in the sense of having many integrals of motion).

2 Background

For a two-dimensional conservative system the energy E = 1
2

(
q̇21 + q̇

2
2

)
+V (q) is conserved.

If there exists a second integral of motion F as well, then E and F are in involution (if
we switch to the Hamiltonian viewpoint by setting p = q̇), and the system is completely
integrable. If F depends quadratically on q̇,

F = A11(q) q̇21+2A12(q) q̇1q̇2+A22(q) q̇22+k(q), (3)

then the following holds:
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• The coefficients Aij(q) satisfy the cyclic equations

∂iAjk+∂jAki+∂kAij = 0 (4)

for all i, j, k (let A12 = A21, so that the Aij form the entries of a symmetric
matrix A). The general solution to these equations is

A11 = αq22 + 2β2q2 + γ22,
A12 = −(αq1q2 + β1q2 + β2q1 + γ12),
A22 = αq21 + 2β1q1 + γ11.

(5)

• The Newton system q̈ = −∇V (q) can be recovered not only from E (i.e., from the
potential V ), but also from the second integral of motion F (if detA �= 0):

q̈ = −1
2
A(q)−1∇k(q). (6)

This, incidentally, is equivalent to the “quasi-Lagrangian” equations

0 = δ+i F ≡ ∂F

∂qi
+
d

dt

∂F

∂q̇i
, i = 1, 2. (7)

• V satisfies the Bertrand–Darboux equation [1, sec. 152] associated with the matrix A:

0 = (αq1q2 + β1q2 + β2q1 + γ12)(∂22V − ∂11V )
+

(
α

(
q21 − q22

)
+ 2β1q1 − 2β2q2 + γ11 − γ22

)
∂12V

− 3(αq2 + β2)∂1V + 3(αq1 + β1)∂2V,

(8)

the characteristic coordinates of which are either elliptic, parabolic or cartesian,
depending on the parameters α, βi, γij . The potential V is separable in these
coordinates (in the Hamilton–Jacobi sense).

The fact that the Newton system is completely determined by F makes it natural
to dispense with E and consider in their own right (nonconservative) Newton systems
generated through (6) by any quadratic integral of motion of the form given by (3) and (5).
This was done in [2], where it was shown that two-dimensional Newton systems with two
independent quadratic integrals of motion of this kind are in fact completely integrable
(although in a slightly nonstandard sense; see below). This new class of integrable systems
constitutes a very natural extension of the class of separable conservative systems, and is
significantly larger.
We will not spend more time on the results in [2] here, since more general statements

follow below (for arbitrary n). The details of these new results can be found in [3].

3 Cofactor pair systems

Now let n ≥ 2 be arbitrary. Consider a function E quadratic in q̇:

E(q, q̇) = q̇TA(q) q̇+k(q) =
n∑

i,j=1

Aij(q) q̇iq̇j+k(q), (9)
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where A(q) is a symmetric n × n matrix. If E is an integral of motion for the Newton
system q̈ =M(q), then it is easy to show that (4) and (6) hold, just like in the case n = 2.
However, the general solution of the cyclic equations (4) is quite intricate if n > 2. The
following concept provides a useful subclass of solutions.

Definition 3.1 (Elliptic coordinates matrix). A symmetric n×n-matrix G(q) whose
entries are quadratic polynomials in q of the form

Gij(q) = αqiqj+βiqj+βjqi+γij (10)

will be called an elliptic coordinates matrix. Using matrix multiplication, G(q) can be
written

G(q) = αqqT+qβT+βqT+γ, where α ∈ R, β ∈ Rn, γ = γT ∈ Rn×n. (11)

The reason for the terminology is that the eigenvalues u1(q), . . . , un(q) of an elliptic co-
ordinates matrix (under some assumptions) determine a change of variables from Cartesian
coordinates q to generalized elliptic coordinates u.

Theorem 3.2 (Cofactor matrix). If G(q) is an elliptic coordinates matrix, then its
cofactor matrix (also called the adjoint matrix) A(q) = cof G(q) satisfies the cyclic condi-
tions (4).

Notice that for n = 2, this gives the general solution (5). For n > 2, however, not all
solutions to (4) are of this form.
If detG �= 0, then E = q̇T (cof G)q̇+k generates a Newton system q̈ = −1

2(cof G)
−1∇k,

which has E as an integral of motion “of cofactor type”. Consider now two nonsingular
elliptic coordinates matrices, G(q) = αqqT+qβT+βqT+γ and G̃(q) = α̃qqT+qβ̃T+β̃qT+γ̃,
and let E = q̇T (cof G)q̇ + k and Ẽ = q̇T (cof G̃)q̇ + k̃.

Definition 3.3. If a Newton system is generated by both E and Ẽ,

q̈ = −1
2
(cof G)−1∇k = −1

2
(cof G̃)−1∇k̃, (12)

then it is called a cofactor pair system.

For a given pair (G, G̃) it is not obvious that there exist functions k and k̃ such that (12)
holds. We will see in the next section that there in fact are many such functions.
A cofactor pair system has, by definition, two integrals of motion E and Ẽ of cofactor

type. The following theorem says that such a system must in fact have at least n integrals
of motion.

Theorem 3.4 (“2 implies n”). The cofactor pair system (12) has n quadratic integrals
of motion

E(i) = q̇TA(i) q̇+k(i), i = 0, . . . , n−1, (13)

where the matrices A(0), . . . , A(n−1) are defined by

Aµ = cof (G+µG̃) =
n−1∑
i=0

A(i)µi. (14)
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Note that E(0) = E and E(n−1) = Ẽ, so the two integrals of motion of cofactor type
sit at either end of this “cofactor chain” of integrals of motion. This theorem indicates
that cofactor pair systems might have interesting integrability properties. Indeed, in [3]
it is shown that for a given cofactor pair system there is a corresponding completely
integrable bi-Hamiltonian system, in (n+n+1)-dimensional phase space with coordinates
(q, p, d), whose trajectories in the hyperplane (q, p, 0) agree up to reparametrization with
the trajectories of the cofactor pair system in the (q, q̇) plane. In this sense, cofactor pair
systems can be considered completely integrable. Lack of space prevents us from entering
into details here.

4 The fundamental equations

Let G(q) and G̃(q) as above be given, and take any function k(q). We wish to find another
function k̃(q) such that (12) holds, i.e.,

∇k̃ = (cof G̃)(cof G)−1∇k. (15)

This is possible provided that the integrability conditions ∂i∂j k̃ = ∂j∂ik̃ are satisfied. This
yields a system of second order PDEs for k, which turns out to take a much simpler form
after the substitution k(q) = K(q) detG(q). The system for K obtained in this way is
called the fundamental equations associated with the pair (G, G̃). Setting N = αq+β and
Ñ = α̃q + β̃, it reads

0 =
n∑

r,s=1

(
GirG̃js −GjrG̃is

)
∂rsK

+ 3
n∑

r=1

(
GirÑj + G̃jrNi −GjrÑi − G̃irNj

)
∂rK

+ 6
(
NiÑj −NjÑi

)
K, i, j = 1, . . . , n.

(16)

The number of independent equations is (at most)
(
n
2

)
since the equations (by construction)

are antisymmetric in i and j.
What is remarkable is that the fundamental equations are also antisymmetric with

respect to the interchange of coefficients with and without tilde. This means that if
we have a cofactor pair system, then the fundamental equations are not only satisfied
by K = k/detG, but also by K = k̃/det G̃ (these two solutions are in general different).
Conversely, given a solutionK it is possible to construct two different cofactor pair systems.
Combining these two facts, it is easy to recursively construct infinite families of cofactor
pair systems for any given pair (G, G̃), since the trivial cofactor pair system q̈ = 0 (k and k̃
constant) provides a system with which to start. The following theorem gives the precise
relationship between adjacent systems in the recursion.

Theorem 4.1 (Recursion formula). Consider a cofactor pair system with integrals of
motion E(i) = q̇TA(i) q̇ + k(i) as in Theorem 3.4. Then we obtain another cofactor pair
system with integrals of motion F (i) = q̇TA(i) q̇ + l(i) through the formula

lµ =
det(G+ µG̃)

det G̃
k̃−µkµ, (17)
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where kµ =
n−1∑
i=0
k(i)µi and lµ =

n−1∑
i=0
l(i)µi. The inverse relationship is

kµ =
1
µ

(
det(G+ µG̃)

detG
l − lµ

)
. (18)

5 Special cases

A cofactor pair system with G̃ = I (identity matrix) is the same as an ordinary conservative
Newton system, with an extra integral of motion of cofactor type. In this case, the
fundamental equations (with V instead of K) reduce to a known criterion (if n = 2, the
Bertrand–Darboux equation (8)) for V to be separable in generalized elliptic coordinates
or some degeneration thereof [4, 5, 6]. In fact, the separation coordinates are given by
the eigenvalues of the elliptic coordinates matrix G(q). The recursion formula reduces to
known recursion formulas for separable potentials [7].
In the more general (but far from most general) case that G̃ is a constant matrix,

the cofactor pair systems can be shown to be Pfaffian quasi-bi-Hamiltonian, and thus
solvable by variable separation in a suitable Hamilton–Jacobi equation [8, 9]. Several
known integrable Newton systems derived as reductions of soliton equations belong to
this category.
The question of separability for general cofactor pair systems is still open. It is believed

that this can lead to new interesting results in the theory of separability (see [2] for some
developments in this direction).
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