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Systems of Newton equations of the formq̈52 1
2A

21(q)¹k with an integral of
motion quadratic in velocities are studied. These equations generalize the potential
case~whenA5I , the identity matrix! and they admit a curious quasi-Lagrangian
formulation which differs from the standard Lagrange equations by the plus sign
between terms. A theory of such quasi-Lagrangian Newton~qLN! systems having
two functionally independent integrals of motion is developed with focus on two-
dimensional systems. Such systems admit a bi-Hamiltonian formulation and are
proved to be completely integrable by embedding into five-dimensional integrable
systems. They are characterized by a linear, second-order partial differential equa-
tion PDE which we call the fundamental equation. Fundamental equations are
classified through linear pencils of matrices associated with qLN systems. The
theory is illustrated by two classes of systems: separable potential systems and
driven systems. New separation variables for driven systems are found. These
variables are based on sets of nonconfocal conics. An effective criterion for exis-
tence of a qLN formulation of a given system is formulated and applied to dynami-
cal systems of the He´non–Heiles type. ©1999 American Institute of Physics.
@S0022-2488~99!00912-3#

I. INTRODUCTION

In this paper we introduce and study such systems of Newton equationsq̈5M (q) that can be
generated as equations of the form

05
d

dx

]E

]q̇
1

]E

]q
[d1E ~1.1!

by an energylike function quadratic inq̇,

E~q,q̇!5 (
i , j 51

n

Ai j ~q!q̇i q̇ j1k~q![q̇tAq̇1k~q!, ~1.2!

whereA(q) is ann3n symmetric matrix with real entriesAi j (q). Here and in what follows we
use the standard mechanical notationq5(q1 ,...,qn) t, q̇5(q̇1 ,...,q̇n) t, for position and velocity
vectors~the superscriptt denotes the transpose of a matrix!, whereq̇k5(]/]x)qk , k51,...,n, with
xPR being the independent~time! variable. By Newton equations we mean second-order ordin
differential equations~ODEs! of the form: accelerationq̈ is equal to the velocity independent forc
M (q). The forceM may be potential or not.
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b!On leave of absence from Department of Physics, A. Mickiewicz University, Poznan´, Poland. Electronic mail:
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The equations in~1.1! are called herequasi-Lagrangian~qL! equations since they differ from
the Lagrange equations forE(q,q̇) by sign between terms only. These equations are sho
denoted 05d1E5(d1

1E,...,dn
1E) t where

dk
1E5

d

dx

]E

]q̇k
1

]E

]qk
.

The qL equations are not invariant with respect to arbitrary point transformation, but it c
easily shown that they remain invariant with respect to the affine change of variablesq5SQ
1h whereQ5(Q1 ,...,Qn) t are the new variables andSPGL(n),hPRn.

In the present article we shall mainly discuss quasi-Lagrangian sets of Newton equ
~qLN! generated by a functionE of the form ~1.2! in the two-dimensional space of variablesq
5(q1 ,q2)5(r ,w). This class of equations~which seems to be completely new! is a very inter-
esting class because of its rich differential-algebraic structure and also because it conta~as
special cases! the well understood class of point-separable potential Newton equationq̈
52]V(q)/]q and the class of nonpotential Newton equations of the triangular formr̈
5M1(r ,w), ẅ5M2(w) which we shall calldrivensystems. The qLN systems are not necessa
Lagrangian and thus they do not have any straightforward Hamiltonian formulation.

In this paper we develop a theory of completely integrable sets of qLN equations char
ized by the existence of two functionally independent integrals of motion quadratic in veloc
E as above andF5q̇tB(q)q̇1 l (q). The existence of a second integral of motion has far-reach
consequences; it eventually leads to wide classes of completely integrable qLN systems.

Example 1.1:The functionE5r ṙ ẇ2wṙ22awr21 1
2dr21(w2/2r 4) when inserted into~1.1!

gives rise to

05F d

dx

]E

] ṙ
1

]E

]r

d

dx

]E

]ẇ
1

]E

]w

G5F 22wS r̈ 2ar 1
w

r 5D1r ~ẅ24aw1d!

r S r̈ 2ar 1
w

r 5D G
5F22w r

r 0GF r̈ 2M1~r ,w!

ẅ2M2~w!
G , ~1.3!

which is equivalent to a set of two Newton equations

r̈ 5ar 2
w

r 5 [M1~r ,w!,

ẅ54aw2d[M2~w!, ~1.4!

since the matrix

F22w r

r 0G
is nonsingular. We see that the operation 05d1E generateslinear combinationsof the Newton
equations~1.4!.

Equations~1.4! were discovered accidentally as a Newton parametrization of the se
stationary flow of the Harry Dym hierarchy:1

05~ 1
4]

32a]!~au23/22 5
16u̇

2u27/21 1
4üu25/2!5~ 1

4]
32a]!~2r 5r̈ 2ar 6!
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~here]5]/]x), where we substitutedu5r 24. The substitutionw52r 5r̈ 1ar 6 gives the system
~1.4!. The particular feature of~1.4! is that it is a driven system: the equation forw can be solved
independently and then the solutionw(x) drives the equation forr.

II. GENERAL PROPERTIES OF QUASI-LAGRANGIAN NEWTON SYSTEMS

Let us consider ann-dimensional qL system 05d1E with ~quadratic in velocities! energylike
function

E~q,q̇!5 (
i , j 51

n

Ai j ~q!q̇i q̇ j1k~q! ~2.1!

with a symmetric~which can be assumed without loss of generality! matrix A(q)5At(q). We
shall formulate the necessary and sufficient condition for the matrixA(q) to make the equations
05d1E equivalent to the set of equations

05q̈2M ~q! ~2.2!

with a velocity independent forceM (q)5„M1(q),...,Mn(q)…t.
Theorem 2.1:For the function E given by (2.1) with a nonsingular matrix A(q) the following

conditions are equivalent:

~1! The equations05d1E are equivalent to the set of Newton equations q¨ 5M (q) with velocity
independent forces M52 1

2A
21(q)¹k(q).

~2! The function E is an integral of motion for the qL system05d1E.
~3! The matrix elements Ai j (q) satisfy the following set of ‘‘cyclic’’ differential equations:

05] iAjk~q!1] jAki~q!1]kAi j ~q! for all i , j ,k51,...,n. ~2.3!

Throughout the whole article the symbol¹ denotes the gradient operator and] i5]/]qi . Later on
we will also use the notation] i j 5]2/]qi]qj .

Statement~2! of the above theorem explains the name ‘‘energylike’’ for the functionE.
Proof: Let us calculate thei th equation in 05d1E:

05d i
1E5

d

dx

]E

]q̇i
1

]E

]qi
5

d

dx S 2(
j

Ai j ~q!q̇ j D 1(
j ,k

] iAjk~q!q̇ j q̇k1] ik

52(
j

Ai j ~q!q̈ j1] ik1(
j ,k

„] iAjk~q!1] jAki~q!1]kAi j ~q!…q̇ j q̇k .

~2.4!

The last equality in~2.4! is due to the symmetry ofA(q). Thus, clearly, 2Aq̈1¹k50 if and only
if the equations~2.3! are satisfied and the equivalence of~1! and ~3! is established.

Let us now calculate the total derivative ofE with respect tox:

Ė5(
i

S 2(
j

Ai j q̈ j1] ikD q̇i1(
i , j ,k

]kAi j q̇i q̇ j q̇k

5(
i

S 2(
j

Ai j q̈ j1] ikD q̇i1
1

3 (
i , j ,k

~] iAjk1] jAki1]kAi j !q̇i q̇ j q̇k . ~2.5!

The second term on the right-hand side of the above equation has been rewritten by ren
indices. It contains precisely the cyclic conditions~2.3!. So, if one~and thus both! of the state-
ments~1! and ~3! are satisfied, then both terms in~2.5! vanish. On the other hand, ifĖ50, then
terms at different powers ofq̇i in ~2.5! must be equal to zero, which implies both 1 and 3.

Remark 2.2:For n52 the general solution of equations~2.3! can easily be found. It is
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A11~w!5aw21bw1a,

2A12~r ,w!522arw2br2cw1b, ~2.6!

A22~r !5ar21cr1g,

with some real constantsa,b,c,a,b,g. The corresponding qLN equations read explicitly as

05F d

dx

]E

] ṙ
1

]E

]r

d

dx

]E

]ẇ
1

]E

]w

G52FA11 A12

A12 A22
GF r̈ 2M1~r ,w!

ẅ2M2~r ,w!
G ,

where

M1~r ,w!5
1

2 det~A! S A12

]k

]w
2A22

]k

]r D ,

M2~r ,w!5
1

2 det~A! S A12

]k

]r
2A11

]k

]wD .

The remaining part of this work is mostly devoted to the case when qLN equatioq̈
52 1

2A
21¹k generated byE admit asecond~quadratic in velocities! integral of motionF(q,q̇)

5( i , j 51
n Bi j (q)q̇i q̇ j1 l (q)[q̇tB(q)q̇1 l (q) which is linearly, and therefore functionally, indepe

dent ofE.
Theorem 2.3„qLN systems with two integrals…: Let the qLN system of Newton equation,

05d1E52A~ q̈1 1
2A

21¹k!, ~2.7!

generated by the function E(q,q̇)5q̇tA(q)q̇1k(q), admit a second, functionally independe
quadratic integral of motion F(q,q̇)5q̇tB(q)q̇1 l (q). Then we have the following.

(1) The matrix B(q) has the same structure as the matrix A(q) in the sense that the coeffi
cients Bi j (q) of B(q) satisfy the set of cyclic differential equations (2.3).

~2! If det(B)Þ0, then

A21¹k5B21¹ l , ~2.8!

and so the qLN system05d1F52B(q̈1 1
2B

21¹ l ) generates the same Newton equations as.
~3! Any differentiable function f(E,F) generates the same system of Newton equations

05d1 f (E,F)] as E does. In particular, any linear combination, lE1mF generates the sam
system of Newton equations.

The statement~2! shows one of the peculiar features of qLN systems: all quadratic~in ve-
locities! integrals of motion of a qLN system generate the same system~see also Sec. 151 in Re
2!.

Proof: The requirementḂ50 yields @cf. ~2.5!#

05(
i

S 2(
j

Bi j ~q!q̈ j1] i l D q̇i1(
i , j ,k

]kBi j q̇i q̇ j q̇k

5(
i

q̇iX2BS 2
1

2
A21¹kD1¹ l C

i

1(
i , j ,k

]kBi j q̇i q̇ j q̇k , ~2.9!



ely

he

heory
riven

ients
iven
in the

the
ext

e
,

of qLN

6370 J. Math. Phys., Vol. 40, No. 12, December 1999 Rauch-Wojciechowski, Marciniak, and Lundmark
where the indexi at the vector expression containing matricesB andA21 denotes itsi th compo-
nent. The equality is satisfied identically with respect toq̇ and so both sums must be separat
equal to zero. It follows thatBi j satisfy the cyclic conditions] iBjk1cycl50 and that
2B(2 1

2A
21¹k)1¹ l 50. The latter yields precisely the equation~2.8! since we assumed det(B)

Þ0. So the statements~1! and ~2! are proved.
The operatord1 acts as differentiation on the algebra of constants of motion, so that

05d1 f ~E,F !5
] f

]E
d1E1

] f

]F
d1F52S ] f

]E
A1

] f

]F
BD ~ q̈2M !

~whereM52 1
2A

21¹k52 1
2B

21¹ l ), which proves the statement~3! of the theorem. Q.E.D.
It is important to stress that the equation~2.8! is the necessary and sufficient condition for t

equivalence of the qLN system~2.7! and the qLN system generated byF5q̇tB(q)q̇1 l (q). This
condition will be used later.

III. qLN EQUATIONS IN TWO DIMENSIONS

We shall from now on restrict our considerations to the casen52. We will use the notation
q5(q1 ,q2) t5(r ,w) t. The case of arbitraryn is studied in a separate paper.3

For n52 Theorem 2.3 contains two special cases which explain the connection of our t
with classical results2 about separable potential Newton equations and with the class of d
systems where one of the Newton equations depends only on a single variabler or w and can be
solved on its own.

Corollary 3.1: Assume that the Newton equations

r̈ 5M1~r ,w!, ẅ5M2~r ,w! ~3.1!

generated by the integral E5q̇tA(q)q̇1k(q) [with the matrix A given by (2.6)] as05d1E have
a potential force: M152]V/]r , M252]V/]w. Then the potential V(r ,w) satisfies the
Bertrand–Darboux equation2

05~Vww2Vrr !~22arw2br2cw1b!12Vrw~aw22ar21bw2cr1a2g!

13Vr~2aw1b!23Vw~2ar1c! ~3.2!

(where the indices at V denote partial derivatives with respect to r and w) with the coeffic
a,b,c,a,b,g being exactly the coefficients of the polynomials in entries of the matrix A as g
by (2.6). This means that the Newton system (3.1) can be solved by separating variables
related Hamilton–Jacobi equation (see Ref. 2).

Proof: If M is potential, then, according to Theorem 2.3,M52 1
2A

21¹k52¹V and so¹k
52A¹V. The potentialV exists provided that]2k/]r ]w5]2k/]w]r . This yields exactly the
Bertrand–Darboux equation~3.2! for V. Q.E.D.

Remark 3.2:The quantityk(r ,w)/det(A) satisfies the same Bertrand–Darboux equation as
potentialV. This result can be verified directly but it also follows from Theorem 4.1 in the n
section.

Remark 3.3:Let us emphasize that the Hamiltonian system

ṙ 5s, ẇ5z, ṡ52
]V

]r
, ż52

]V

]w

generated by a separable natural Hamiltonian H5 1
2(s

21z2)1V(r ,w) can be reconstructed as th
qLN system 05d1E52A(q̈1 1

2A
21¹k) from its second integral of motionE. This is easy to see

since the above Hamilton equations are equivalent tor̈ 52]V/]r ,ẅ52]V/]w.
The second class of equations satisfying the assumptions of Theorem 2.3 is the class

systems of the form
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r̈ 5M1~r ,w!, ẅ5M2~w!, ~3.3!

which naturally generalizes the system in Example 1.1. Such systems are calleddriven since the
equation forw can be solved independently and thenw(x) can be substituted into the equation f
r. Observe that the second equation~and thus the whole system! admits an extra integral of motion
of the formF(w,ẇ)5ẇ2/22*M2(w) dw. The qLN system 05d1E attains the form~3.3! if and
only if the second componentM2 of the force2 1

2A
21¹k does not depend onr:

]

]r
~A21¹k!250. ~3.4!

Example 3.4:The qLN equations generated by the function

E5r ṙ ẇ2wṙ21k~r ,w!

are driven@i.e., have the form~3.3!# provided thatk(r ,w) satisfies the following second-orde
PDE:

05
]

]r S 1

r
kr1

2w

r 2 kwD ,

which is a specialization of~3.4!. The general solution of the above equation is

k~r ,w!5 f S r 2

w D1r 2g~w!

with arbitrary twice differentiable functionsf and g. The corresponding qLN system attains t
form

r̈ 52rg8~w!1
r

w2 f 8S r 2

w D , ẅ522
d

dw
„wg~w!…

and can be solved by quadratures~see Sec. VII!. The second integral of motion of our system
F5ẇ2/22*M2(w) dw5ẇ2/212wg(w), yields the matrixB

B5F0 0

0 1
2
G ,

which is singular soF does not generate our system. However, any linear combinationlE
1mF of E andF ~with bothl andmÞ0) is another integral of motion with a nonsingular matr
B85lA1mB and thus it generates the same driven system asE.

Existence of two functionally independent constants of motion does not automatically i
Liouville integrability since we also need a Hamiltonian formulation for our equations of mo
Our systems usually do not have a Lagrangian formulation and so they do not have the st
Hamiltonian formulation. On the other hand, the special system discussed in Example 1.1,
a stationary flow of the Harry Dym hierarchy, is expected to be integrable. The question
arises if/when our qLN systems possess a nonstandard Hamiltonian formulation. In Sec.
shall demonstrate the existence of new Poisson structures for qLN systems and their clos
tionship with Poisson pencils for separable potentials. We shall also explain there when
what sense our qLN systems are integrable.
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IV. FUNDAMENTAL EQUATION

We shall now characterize those two-dimensional qLN systems which admit two~quadratic in
velocities! functionally independent integrals of motionE and F, with the forceM52 1

2A
21¹k

52 1
2B

21¹ l . We remind the reader that forn52 we use the notationq5(q1 ,q2) t5(r ,w) t.
Let us consider two symmetric 232 matricesA(r ,w) andB(r ,w) both satisfying the cyclic

conditions~2.3!. According to Remark 2.2 they must have the following structure,

A5FA11 A12

A12 A22
G , B5FB11 B12

B12 B22
G ~4.1!

with the polynomial entries given by@cf. ~2.6!#

A11~w!5a1w21b1w1a1 ,

2A12~r ,w!522a1rw2b1r 2c1w1b1 , ~4.2!

A22~r !5a1r 21c1r 1g1 ,

and

B11~w!5a2w21b2w1a2 ,

2B12~r ,w!522a2rw2b2r 2c2w1b2 , ~4.3!

B22~r !5a2r 21c2r 1g2 ,

with some arbitrary real constantsa1 ,...,g2 .
Theorem 4.1„fundamental equation…: Let

F r̈
ẅG52

1

2
A21¹k52

1

2
B21¹ l , ~4.4!

with nonsingular232 matrices A, B given by (4.1), (4.2), and (4.3), be a set of qLN equati
Then the functions K15k/det(A) and K25 l /det(B) both satisfy the same linear, second-orde
partial differential equation

052~A12B222A22B12!Krr 22~A11B222A22B11!Krw12~A11B122A12B11!Kww

13~A12] rB222B12] rA221A22]wB112B22]wA11!Kr23~A11] rB222B11] rA22

1A12]wB112B12]wA11!Kw13~] rA22]wB112] rB22]wA11!K, ~4.5!

which explicitly reads

052Krr @g2b12g1b21~b2g12g2b11b1c22c1b2!r 1~g1c22g2c1!w1~b2c12c2b11a2b1

2a1b2!r 212~g1a22g2a1!wr1~a1b22a2b1!r 31~a2c12c2a1!wr2#14Krw@a2g12a1g2

1~a2c12a1c2!r 1~b2g12g2b1!w1~a2a12a1a2!r 21~g1a22g2a1!w21~b2c12c2b1!rw

1~a1b22a2b1!wr21~a2c12c2a1!rw2#12Kww@a1b22a2b11~a2b12a1b2!r

1~a2c12a1c21b1b22b2b1!w1~a1b22a2b11b2c12c2b1!w212~a2a12a1a2!wr

1~a2c12c2a1!w31~a1b22a2b1!rw2#13Kr@2b2g122g2b11b1c22c1b2

1~3b2c123c2b112a2b122a1b2!r 14~g1a22g2a1!w14~a1b22a2b1!r 2
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14~a2c12c2a1!rw#13Kw@2a2c122a1c21b1b22b2b11~2a1b222a2b1

13b2c123c2b1!w14~a2a12a1a2!r 14~a2c12c2a1!w214~a1b22a2b1!rw#

16K@b2c12c2b112~a1b22a2b1!r 12~a2c12c2a1!w# ~4.6!

with K denoting either K1 or K2 and Kr5]K/]r , Krr 5]2K/]r 2 and so on.
Conversely, any solution K2(q) of the equation (4.5) generates two different systems of

equations q¨ 52 1
2A

21¹k152 1
2B

21¹ l 1 and q̈52 1
2A

21¹k252 1
2B

21¹ l 2 , where the functions
k1 ,k2 ,l 1 ,l 2 are determined by the equations

l 15K2 det~B!, ¹k15AB21¹„K2 det~B!…,
~4.7!

k25K2 det~A!, ¹ l 25BA21¹„K2 det~A!….

We will call the equation~4.5! the fundamental equationassociated with the matricesA and
B.

The fundamental equation plays a crucial role in our theory of qLN systems. Observe
is invariant with respect to the transformationA°lA1mB, B°l8A1m8B, (l,l8,m,m8PR)
since the coefficients at every monomial in this equation are skew-symmetric inA andB. This is
consistent with statement~3! of Theorem 2.3, which asserts that if any pairE,F of functions
generates a qLN system, then the linear combinationslE1mF andl8E1m8F also generate the
same system. This explains that the assumption of nonsingularity for bothA andB is nonessential
since if det(A)Þ0, a singular matrixB can always be substituted by an invertible matrixB8
5lA1mB. We shall investigate further properties of the fundamental equation in the next
rem.

Notice that in the second part of Theorem 4.1 one has to reconstructl 2 andk1 by integrating
the expressions for¹ l 2 and for¹k1 . This can always be done, as the above theorem implic
states. Also, notice that in the fundamental equation~4.6! all terms of degree 4 and higher canc
so that the polynomial degree of coefficients in this equation is less than or equal to 3.

Proof (of Theorem 4.1):Our qLN system~4.4! is generated by either of the two function
E(q,q̇)5q̇tAq̇1k andF(q,q̇)5q̇tBq̇1 l and so the condition~2.8!, i.e., A21¹k5B21¹ l , must
be satisfied. This implies that¹ l 5BA21¹k. This equation for the functionl has solutions if and
only if its compatibility conditionl rw5 l wr is satisfied. This yields a PDE for the functionk which,
after the substitutionk5K1 det(A) and with use of the cyclic conditions~2.3!, yields thatK1

satisfies equation~4.5!. By inserting into this equation the explicit form of the polynomia
A11,...,B22 we obtain~4.6!. On the other hand, the condition~2.8! implies also¹k5AB21¹ l , and
its compatibility conditionkrw5kwr gives a PDE which in terms ofK25 l /det(B) must attain the
form ~4.5! with interchanged entries ofA and B ~since the equation¹k5AB21¹ l becomes¹ l
5BA21¹k when one exchangesA,k and B,l!. Due to the skew-symmetry of coefficients of th
equation forK1 with respect to the entries of matricesA,B @clearly seen from the form of~4.5!#,
the obtained equation forK2 differs from the equation forK1 by a minus sign on the right-han
side only. This proves thatK1 andK2 both satisfy~4.5! ~notice, however, that this doesnot imply
K15K2).

The existence ofk1 @i.e., the possibility of integrating the equations~4.7! in order to obtaink1#
follows from the fact that the condition]2k1 /]r ]w5]2k1 /]w] l together with ¹k1

5AB21¹„K2 det(B)… yields precisely the fundamental equation forK2 which is satisfied due to
assumptions. One can similarly prove the existence ofl 2 . The second statement of the theore
can now be proved by checking that both pairsk1 ,l 1 andk2 ,l 2 given by~4.7! satisfy the condition
~2.8! and thus give rise to two systems of qLN equations. Q.E

Remark 4.2:For B(q)5 1
2I ~a 232 identity matrix! the equation~4.5! becomes the Bertrand–

Darboux equation~3.2! characterizing all separable potentials since in this caseq̈52 1
2B

21¹ l
52¹ l is a potential equation.
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The next theorem shows that there exists a recursive relation between two differen
systems constructed from a given solutionK2(q) of the fundamental equation~4.5!. This makes it
possible to construct a doubly infinite sequence of qLN systems corresponding to a given
mental equation.

Theorem 4.3„recursion theorem…: Let k1 ,l 1 and k2 ,l 2 be two pairs of functions determine
by a given solution K2 of the fundamental equation (4.5) as in (4.7). Then these functions
related by the following linear algebraic equations:

k25 l 1 det~AB21!, l 25 l 1 Tr ~AB21!2k1 ~4.8!

(whereTr denotes trace of matrix). Moreover, in the infinite sequence

k0 k1 k2

↗ ↗ ↗
¯ ↓ K1 ↓ K2 ↓ K3 ¯

↗ ↗ ↗
l 0 l 1 l 2

~4.9!

of triples (Km ,km ,l m),mPZ, defined recursively by

km5 l m21 det~AB21!, l m5 l m21 Tr ~AB21!2km21 ~4.10!

and by

Km5km /det~A!5 l m21 /det~B!,

the functions km and lm satisfy A21¹km5B21¹ l m and thus they both determine the same (fo
given m) qLN system q¨ 52 1

2A
21¹km52 1

2B
21¹ l m . All functions Km satisfy the fundamenta

equation (4.5) and are related through the following two-step recursion:

Km115Km Tr ~AB21!2Km21 det~AB21!. ~4.11!

The above recursion is reversible. The solutionKm placed betweenl m21 andkm determines both
l m21 andkm . The recursion~4.11! is soluble. Namely, if we denote the eigenvalues of the ma
AB21 by l1 andl2 , then it can be proved that for the casel1Þl2 the solution of~4.11! is

Km5
1

l12l2
~K12l2K0!l1

m1
1

l12l2
~K0l12K1!l2

m ,

while in the casel15l2 the solution of~4.11! becomes

Km5K0l1
m1S K1

l1
2K0Dml1

m .

In both casesK0 andK1 are two subsequent solutions of the fundamental equation in the sequ
~4.9! which are related by

¹„K1 det~B!…5BA21¹„K0 det~A!….

In order to prove the recursion theorem we need the following lemma.
Lemma 4.4: Let X5AB21 with matrices A,Bas above. Then

X21¹„det~X!…5¹„Tr ~X!….
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This lemma follows from the cyclic properties~2.3! of matricesA andB by a lengthy but straight-
forward calculation.

Proof (of the recursion theorem):Consider a solutionK2 of the fundamental equation and th
functionsk1 ,l 1 ;k2 ,l 2 defined by~4.7!. Then obviouslyk2 /det(A)5l1 /det(B), which immediately
implies k25 l 1 det(AB21). Let X5AB21. Then

¹ l 22¹„l 1 Tr ~X!2k1…5X21¹„K2 det~A!…2¹„K2 det~B! Tr ~X!…1X¹„K2 det~B!…

5X21¹„K2 det~A!…2~Tr ~X!I 2X…¹„K2 det~B!…2K2 det~B!¹„Tr ~X!…

5X21¹„K2 det~A!…2X21 det~X!¹„K2 det~B!…2K2 det~B!¹„Tr ~X!…

5K2 det~B!~X21¹„det~X!…2¹„Tr ~X!…!50,

where we used thatX22Tr (X)X1det(X)I50 as follows from the Cayley–Hamilton theorem. Th
last equality is due to Lemma 4.4 above. Thusl 25 l 1 Tr (X)2k1 up to a nonessential additiv
constant. This proves the first assertion of the theorem.

If we now define the sequence$(km ,l m)% via the recursive procedure~4.10!, then a simple
induction argument shows that each pair (km ,l m) satisfies the condition~2.8! and thus bothkm and
l m determine the same qLN system. Moreover, eachKm5km /det(A)5lm21 /det(B) is a solution of
the fundamental equation as theorem~4.1! states. Finally, to obtain~4.11! it is enough to insert the
formula Km5km /det(A)5lm21 /det(B) into the second equation in~4.10!. Q.E.D.

Example 4.5 (cf. Remark 4.2):For B5 1
2I ~the potential case! the recursion~4.8! takes the form

k254V1 det~A!, V252 Tr ~A!V12k1

with V15 l 1 . This is the separable case when~4.5! reduces to the Bertrand–Darboux equation.
the generic case, i.e., whenaÞ0 in ~2.6!, the matrixA(q) can be reduced@with the use of affine
transformationsq5SQ1h with SPGL (2,R),hPR2, see also Sec. V# to the form

A~q!5F2q2
21l2 q1q2

q1q2 2q1
21l1

G .

If we now start with the harmonic oscillator potentialV15 1
2(q1

21q2
2), then the condition¹V1

5 1
2A

21¹k1 givesk15l2q1
21l1q2

2 and the recursion formulas specify to

k252~q1
21q2

2!~l1l22l2q1
22l1q2

2!,

V25l1q1
21l2q2

22~q1
21q2

2!2,

thus reproducing the potential of the Garnier system.4 It can be shown that the above formula
prolongate to then52 case of the recursion for the Jacobi family of elliptic separable potenti5

In order to explain the character of the recursion~4.9! more completely, let us consider instea
of the pair~A,B! of cyclic matrices another pair (A1mB,B) with mPR. As it can be shown~see
below!, this pair determines the same fundamental equation as the pair~A,B! does. By choosing a
solution K2 of the fundamental equation and the pair (A1mB,B) we arrive at a different qLN
system q̈5Mm(q)52 1

2(A1mB)21¹„K2 det(A1mB)…. It turns out that the forceMm(q) is a
linear combination of two neighboring forces in the sequence~4.9! generated byK2 .

Lemma 4.6: Let A and B be two232 matrices satisfying the cyclic conditions (2.3) and let
be a solution of the fundamental equation associated with A and B. Let alsomPR. Then

~A1mB!21¹„K det~A1mB!…5A21¹„K det~A!…1mB21¹„K det~B!….

This lemma is a consequence of Lemma 4.4. It says that a solution of a given fundam
equation determines the forceM ~and so the system of qLN equations! up to linear combinations
of two consecutive systems in the recursion~4.9!.
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As we have mentioned, the matricesA andB uniquely determine the fundamental equatio
The choice ofA,B which generate a given fundamental equation is, however, not unique sinc
pair A85aA1bB, B85gA1dB determines the same equation. One can also ask to what e
a given fundamental equation determines the pair~A,B!. The precise relationship between pa
~A,B! and the fundamental equation is explained in the following theorem.

Theorem 4.7:Let ~A,B! be a pair of linearly independent matrices A, B satisfying the cy
conditions (2.3). Then there is a 1–1 relationship between the linear span$lA1mB:l,mPR% of
A and B and the fundamental equation (4.5), i.e.,

~1! any two linearly independent matrices A85aA1bB, B85gA1dB determine the same fun
damental equation as (A, B) does.

~2! If the pair (A8,B8) determines the same fundamental equation as~A,B! does, then the matri-
ces A8 and B8 belong to the linear span$lA1mB% of A andB.

Proof: An easy calculation shows that the fundamental equation associated with the ma
A85aA1bB and B85gA1dB differs from the fundamental equation associated with the m
trices A and B by the multiplicative factorad2bg on the right-hand side, i.e., by the nonze
determinant of the transformation between~A,B! and (A8,B8), and so it is, in fact, the sam
equation. This shows assertion~1! of the theorem.

Assume now that the equation~4.5! is associated with a pair~A,B!. Consider the vectorXW

5(X1 ,X2 ,X3) tPR3 of the coefficients of~4.5! at the highest derivativesKrr ,Krw ,Kww , respec-
tively. Then

X15A12B222A22B12,

X25A22B112A11B22,

X35A11B122A12B11, ~4.12!

or

XW 5AW 3BW , ~4.13!

whereAW 5(A11,A12,A22)
t andBW 5(B11,B12,B22)

t are three-dimensional vectors depending or

andw. Hence, for a fixed~r,w! both vectorsAW andBW are orthogonal toXW . The coefficients atKr ,
Kw , and K yield equations which are differential consequences of~4.12! and so they do not
impose any additional restrictions on~A,B!. Suppose now that there exist matricesA8 and B8
satisfying the cyclic condition~2.3! and associated with the same fundamental equation.
means that the equation~4.13! has another solution, i.e., thatXW 5AW 83BW 8, so that the vectorsAW 8

and BW 8 are orthogonal toXW and, in consequence, they are linear combinations ofAW and BW : AW 8

5aAW 1bBW , BW 85gAW 1dBW with some coefficients that may depend onr and w. For the corre-
sponding matrices it immediately follows that

A85aA1bB, B85gA1dB.

It remains to show that the coefficientsa, b, g, d in fact do not depend onr nor w. This can be
shown by inserting the explicit form~4.2! and ~4.3! of entries of matricesA,B, A8 and B8 into
~4.12!. This shows assertion~2! of the theorem. Q.E.D.

V. AFFINE INEQUIVALENT FORMS OF FUNDAMENTAL EQUATION

In this section we are interested in characterizing all different types of two-dimensional
systems admitting two functionally independent integrals of motionE andF which are quadratic
in velocities, i.e., systems of the form
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q̈5M52 1
2A

21¹k52 1
2B

21¹ l , ~5.1!

where M is the force of the system. Every such system is described by a pair of ma
A(q),B(q) satisfying the cyclic conditions~2.3! and by a pair of functionsk(q), l (q) satisfying
A21¹k5B21¹ l . We remind the reader that the functionsk/det(A) and l /det(B) satisfy the same
fundamental equation with the coefficients completely determined by the matrix elements ofA and
B.

Let us first consider how the qLN system 05d1E52A(q̈1 1
2A

21¹k) transforms under the
affine transformation of coordinates

q5SQ1h, SPGL~2,R!, heR2, ~5.2!

whereQ5(Q1 ,...,Qn) t. It is easy to see that, under the affine transformation~5.2!, the generating
function E transforms as

E„q~Q!,q̇~Q̇!…5Q̇tStA„q~Q!…SQ1k„q~Q!…, ~5.3!

whereq(Q)5SQ1h and soq̇(Q̇)5SQ̇. It can be shown by a direct verification that the tran
formed matrix

AQ~Q!5StA„q~Q!…S ~5.4!

in ~5.3! also satisfies the cyclic conditions~2.3! and therefore~5.3! generates a qLN system. Th
means that the qLN system 052A(q̈1 1

2A
21¹k) is indeedinvariant with respect to the affine

change of coordinates~5.2!.
Let us now consider the system~5.1!. Using~5.4! one can prove that the fundamental equat

associated with the pair~A,B! of matrices is also invariant with respect to the affine transform
tions ~5.2!. This means that we can simplify this fundamental equation by performing an a
priate affine change of coordinates. However, Theorem 4.7 makes it possible to classify
mental equations, and therefore the corresponding qLN systems, by classifyingpairs of matrices
~A,B!. Instead of working with the coefficients of the fundamental equation we can thus work
linear spans$lA1mB% of A andB. Since the affine transformations do not change the polynom
degree of matricesA,B, the set of all linear spans ofA andB can be divided into affine inequiva
lent classes corresponding to different polynomial degree ofA andB. Each equivalence class wi
be represented by the algebraically simplest pair of matrices obtained by the use of affine
formations and linear combining of matrices~since the latter leave the fundamental equat
unchanged, see above!.

In order to be more precise we shall introduce some notation. ByA( i ) ( i 50,1,2) we will
denote all matricesA which satisfy the cyclic conditions~2.3! and have the highest degree
polynomial entries equal toi. So, for example, the general form of matrices in the classA(1) is

Fbq11a 2 1
2bq12 1

2cq21 1
2b

* cq11g
G

with arbitrary constants~parameters! b,c,a,b,g. We will use the symbol* to denote matrix
elements determined by the symmetry of a given matrix. Moreover, by@A( i ), B( j )# ( i , j 50,1,2) we
will denote the class of~nonordered! pairs ~A,B! of linearly independent matricesA,B such that
one of the matrices belongs toA( i ) and the other toB( j ). We have, of course,@A( i ), B( j )#
5@A( j ), B( i )# and so we have precisely six such classes. Obviously, all classes@A( i ), B( j )# are
invariant with respect to the affine transformations~5.2!. Notice that if (A,B)P@A(2), B(2)#, we
can kill the coefficient a2 at the second degree monomials inB by subtraction B°B
2(a2 /a1)A so every element of this class can be reduced to an element in@A(2), B(1)#. Thus we
have to consider only five classes. It is easy to realize that the five classes@A( i ), B( j )# with i
> j , j ,2 are invariant with respect to the affine transformations~5.2! and with respect to taking
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linear combinations of pairs~A,B!. These two operations can now be used to find for every c
a simple representing pair~A,B! which has a minimal number of free parameters~a simple repre-
sentative!. Consider, for example, the class@A(2), B(0)#. The general form of matrices belongin
to this class is

A5Fa1q2
21b1b21a1 2a1q1q22 1

2b1q12 1
2c1q21b1/2

* a1q1
21c1q11g1

G ,

~5.5!

B5F a2
b2

2

b2

2
g2

G .

Translation by the vectorh52(1/2a1)(c1 ,b1) t kills b1 andc1 in the matrixA. Since translations
obviously preserve the form ofB the above pair of matrices attains the form

A5F a1q2
21a1 2a1q1q21

b1

2

* a1q1
21g1

G , B5F a2
b2

2

b2

2
g2

G
with some new constants denoted by the same letters as in~5.5!. Further, the transformation
A°A2(b1 /b2)B kills the coefficientb1 in A. In the case whenb250 we can still kill b1 in A
by the linear transformationq5SQ with

S5F 2tg12b1/2

a11tb1/2
1

1 t
G ,

where tPR must be chosen so thata11tb1/2Þ0 and det(S)Þ0, which can be always done
Finally, we can divide both matrices bya1 and 2a2 , respectively. So, a simple representative
the class@A(2), B(0)# has the form

A5Fq2
21a1 2q1q2

* q1
21g1

G , B5F 1

2

b2

2

b2

2
g2

G ~5.6!

with four essential parameters. Both separable and driven systems belong to this class sB

5 1
2I for separable systems andB5diag (12,0) for driven systems.

We perform a similar reduction for each class@A( i ), B( j )#,i> j , j ,2. The results are presente
below.

It is also easy to see that one can pass from one invariant class@A( i ), B( j )# to another by
specifying values of free parameters. For example, by settinga150 we obtain@A(1), B(1)# from
@A(2), B(1)#; by settingb25c250 we get@A(1), B(0)# and so on as shown in Fig. 1. This figu
presents—for all classes@A( i ), B( j )#—complete results of simplification of a generic pair~A,B!
belonging to each class with the use of linear combinations and affine transformations.

Below we list the form of the fundamental equation~4.6! corresponding to the simple repre
sentative pair~A,B! of each class as given in Fig. 1. We use the notationKi5]K/]qi , Ki j

5]2K/]qj]qi .
~a! For @A(2), B(1)#,
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05K11~2g1b21g1q222g2q1q22b2q1
22q1

2q2!12K12~a2g12a1g22a1q12g2q2
21a2q1

2

2q1q2
2!1K22~a1b22a1q212a2q1q21b2q2

22q2
3!13K1~2b2q122g2q222q1q2!

13K2~2a112a2q11b2q222q2
2!26q2K.

~b! For @A(2), B(0)#,

05K11~2g1b222g2q1q22b2q1
2!12K12~g12a1g22g2q2

21q1
2!

1K22~a1b212q1q21b2q2
2!13K1~2b2q122g2q2!13K2~2q11b2w!. ~5.7!

~c! For @A(1), B(1)#,

052K11~g2b12g1b21~2g21b1!q11q22q1
2!

14K12~a2g12a1g22a1q12g2q22q1q2!

12K22~a1b22a2b11a2q11~b22a1!q22q2
2!

13K1~22g21b123q1!13K2~22a11b223q2!26K.

~d! For @A(1), B(0)#,

052g2q1K1114g2q2K1222~q1/21b2q2!K2216g2K123b2K2 . ~5.8!

~e! For @A(0), B(0)#,

05g1b2K1112~a1g22a2g1!K122a1b2K22. ~5.9!

FIG. 1. Classification diagram.
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What we present here is an illustrative characterization of different types of fundam
equations in terms of matrix pairs~A,B!. This provides a good intuitive description of the world
qLN equations and helps to specify where two particular classes—separable potentials and
systems—belong. An alternative way of classifying qLN equations with two quadratic integra
motion is to simplify the fundamental equation~4.5! with the use of affine transformations as h
been done for the Bertrand–Darboux equation2 ~see Example 5.1 below!. This may amount to a
similar picture as we have presented above, but the principles of simplification of the third-
polynomials atKrr , Krw , andKww are more difficult to discern. This is yet to be done.

Example 5.1:The classification of types of the Bertrand–Darboux equation with respe
Euclidean transformations leads to three forms of this equation which are separable in
elliptic, parabolic, or Cartesian coordinates. According to Corollary 3.1, if a potential
dimensional Newton system

q̈152
]V

]q1
, q̈252

]V

]q2

with V5V(q1 ,q2) possesses a second integral of motion of the formE5q̇tAq̇1k(q) with A
PA(2), then it has the qLN formq̈52 1

2A
21¹k52 1

2B
21¹V with B5 1

2I whereI is 232 identity
matrix. Moreover, the potentialV must satisfy the Bertrand–Darboux equation~3.2!. This system
belongs to the class@A(2), B(0)# with b250 and witha25g25 1

2. The corresponding fundamenta
equation is exactly the Bertrand–Darboux equation since in this caseK5V/det(B)54V. The
simplification procedure described above does not alter the form of the matrixB5 1

2I and so the
corresponding fundamental equation~5.7! attains the form

05~V222V11!q1q21V12~q1
22q2

21g12a1!26q2V116q1V2 , ~5.10!

which has only one essential parameterg12a1 . This form of the Bertrand–Darboux equatio
separates in the elliptic coordinates.2 The specificationa150 reduces the class@A(2), B(0)# to
@A(1), B(0)#. The corresponding fundamental equation after the simplification procedure a
the form~5.8!. In the case whenB5 1

2I , the final form ofB ~after simplification! will be exactly the
same~i.e., with b250, a25g25 1

2), and so the fundamental equation~5.8! reads

05q1~V112V22!12q2V1213V1 .

It does not contain any parameters now. This equation separates in the parabolic coord2

Further specificationb15c150 leads to the class@A(0), B(0)# of constant symmetric matrices. Th
corresponding fundamental equation in the course of simplification attains the form~5.9! which in
the caseB5 1

2I ~again, this form ofB survives the simplification procedure—in this case just
diagonalization ofA by a rotation! yieldsVjh50, wherej,h are coordinates which originate by
rotation of the Cartesian coordinatesx,y. This is the case of the Bertrand–Darboux equat
separable in~rotated! Cartesian coordinates.

The above example indicates that the fundamental equation plays the same role in the
of qLN equations as the Bertrand–Darboux equation does in the theory of separable po
forces M52]V/]q. For separable potentials the characteristic coordinates of the Bertr
Darboux equation determine the coordinates of separation which makes it possible to so
corresponding Newton equations by quadratures. In Sec. VII we prove a similar result for the
of two-dimensional driven systems by showing that the characteristic coordinates of the f
mental equation associated with a given driven system separate this system, i.e., that i
coordinates it is possible to integrate the system by quadratures. The question whether th
acteristic coordinates of the fundamental equation separate general qLN systems admitti
integrals of motion remains to be investigated. We have here to do with a much broader
depending on five essential parameters while the Bertrand–Darboux equation depends
parameter only.
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VI. HAMILTONIAN STRUCTURES AND COMPLETE INTEGRABILITY

In this section we will establish a Hamiltonian formulation of two-dimensional qLN syst
and discuss their complete integrability. Let us consider first the qLN system 05d1E52A„q̈
1 1

2A
21¹k(q)… generated by the functionE5q̇tA(q)q̇1k(q), q5(q1 ,q2) t with the 232 matrix

A(q) satisfying the cyclic conditions~2.3!. This system usually does not have any Lagrang
formulation and thus it does not have the standard Hamiltonian formulation. However, w
always embed this system in a Hamiltonian qLN system in the five-dimensional phase sp
variables (q1 ,q2 ,p1 ,p2 ,d) as the following theorem states.

Theorem 6.1„Hamiltonian form of qLN systems…: Let

05q̈1 1
2A

21~q!¹~k~q!1dl det„A~q!…! ~6.1!

with q5(q1 ,q2) t be the qLN system generated by

Ê5q̇tA~q!q̇1k~q!1dl det„A~q!…[E1dl det~A!

with some constantl and with dPR. Let alsoM be the extended five-dimensional phase spac
variables(q1 ,q2 ,p1 ,p2 ,d) with pi5q̇i , i 51,2. Then the system~6.1! is equivalent to

F q̇
ṗ

ḋ
G5F 0 2~l/2!G~q! p

~l/2!Gt~q! 2~l/2!F~q,p! M̂ ~q,d!

2pt
2M̂ t~q,d! 0

G¹Md[PA¹Md, ~6.2!

where¹M5(]/]q1 ,]/]q2 ,]/]p1 ,]/]p2 ,]/]d) t is the gradient operator inM and where the2
32 matrices G and F and the vector Mˆ are given by

G~q!5det~A!A215F A22 2A12

2A12 A11
G ,

F12~q,p!5
1

2 S ]A22

]q1
p22

]A11

]q2
p1D , F52Ft,

M̂ ~q,d!5M ~q!2 1
2dlA21¹„det~A!…

with M(q)52 1
2A

21¹k being the force of the qLN system05d1E. Moreover, the antisymmetric
matrix PA is Poisson and so~6.2! is the Hamiltonian formulation of (6.1).

Notice that the matrixG obtained above is symmetric due to the symmetry ofA.
Proof: Since ¹Md5(0,0,0,0,1)t, the equation~6.2! yields q̇5p, ṗ5M̂52 1

2A
21¹„k

1dl det(A)…, ḋ50, i.e., it reproduces~6.1!. The matrixPA is antisymmetric and it is straightfor
ward to verify that it satisfies the Jacobi identity in the phase spaceM. Q.E.D.

We remind the reader that the operatorP:T* M→TM mapping fiberwise the cotangen
bundle T* M of M into the tangent bundleTM is Poisson if the bilinear mapping
$•,•%P :C`(M)3C`(M)→C`(M) defined for any pair of functionsf ,g:M→R by

$ f ,g%P5^¹Mf ,P¹Mg&

~where^•,•& is the dual map between cotangent and tangent spaces ofM! is a Poisson bracket.
Remark 6.2:In the hyperplaned50 the solutions of~6.2! coincide with the solutions ofq̈

52 1
2A

21¹k. Thus our original qLN systemq̈52 1
2A

21¹k is in a natural way embedded in th
Hamiltonian system~6.2!.
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Proposition 6.3: The function

Ê5ptA~q!p1k~q!1dl det„A~q!…

is a Casimir function for the Poisson operatorPA in ~6.2!, that is, PA¹MÊ50.
One can check this proposition by a direct verification.
A statement converse to the second statement of Theorem 6.1 also holds.
Theorem 6.4:Let the antisymmetric matrix

P5F 0 2~l/2!G~q! p

~l/2!Gt~q! 2~l/2!F~q,p! M̂ ~q,d!

2pt
2M̂ t~q,d! 0

G ~6.3!

be a Poisson operator in the space of variables~q,p,d!. Then
~1! G(q) must have the form

G~q!5F aq1
21cq11g aq1q21

b

2
q11

c

2
q22

b

2

* aq2
21bq21a

G ~6.4!

(thus it is symmetric) with some constants a,b,c,a,b,g and so

G5F A22 2A12

2A21 A11
G ~6.5!

for some symmetric matrix A(q) satisfying the cyclic conditions (2.3). In other words, P5PA

with PA defined in (6.2) and with

A5F G22 2G12

2G21 G11
G .

~2! F(q,p) must have the form

F12~q,p!5
1

2 S ]A22

]q1
p22

]A11

]q2
p1D , F52Ft. ~6.6!

~3! M̂ (q,d) must have the form

M̂ ~q,d!5M ~q!1dlN~q!,

where 22AM(q)5¹k for some function k(q), so if det(G)Þ0, then M(q)52 1
2A

21¹k, and
where N(q)52 1

2A
21¹„det(A)….

Proof: The conditions $$qi ,qj%P ,qk%P1cycl50 and $$qi ,qj%P ,pk%P1cycl50 ~where
‘‘cycl’’ means the cyclic permutation of expressions! hold identically due to the block structure o
P. The condition$$qi ,qj%P ,d%P1cycl50 yields the symmetry ofG: G5Gt. Further,

05$$qi ,pj%P ,d%P1cycl52
l

2 S p1

]Gi j

]q1
1p2

]Gi j

]q2
D1

l

2
Fi j 2pi

]M̂ j

]d
.
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Let us denote the right-hand side of the above equality by2(l/2)Ri j . Notice that]M̂ j /]d cannot
depend ond, and so we have]M̂ j /]d5lNj (q) for some vectorN(q)5„N1(q),N2(q)…t which
yields M̂ (q,d)5M (q)1dlN(q) for some vectorM (q). By taking linear combinations of the
conditionsRi j 50 and using the symmetry ofG and the antisymmetry ofF we get the following
sets of equations:

]G11

]q2
5

]G22

]q1
50,

]G11

]q1
52N1 ,

]G22

]q2
52N2 , ~6.7!

]G12

]q1
5N2 ,

]G12

]q2
5N1 , ~6.8!

F125p2N12p1N2 . ~6.9!

The equations~6.7! show thatG11 andN1 depend only onq1 and thatG22 andN2 depend only on
q2 . The equations~6.8! give ]N1 /]q15]2G12/]q1]q25]N2 /]q2 and so all terms in this expres
sion must be equal to a constanta. Integration yields

N15aq11c/2, N25aq21b/2, ~6.10!

whereb andc are integration constants. Substituting~6.10! into ~6.7! and~6.8! and integrating we
get~6.4!. If we now introduce the symmetric matrixA by the equality~6.5! and use~6.7! then~6.9!
will attain the form~6.6!.

It is straightforward to check that with the above forms ofF and G the conditions
$$pi ,pj%P ,pk%P1cycl50 and$$qi ,pj%P ,pk%P1cycl50 are satisfied identically.

Further, the condition$$p1 ,p2%P ,d%P1cycl50 after some calculations attains the form

05
]

]q1
~G11M22G21M1!2

]

]q2
~G22M12G12M2!,

which means that in the vector

F G22M12G12M2

2G21M11G11M2
G5F G22 2G12

2G21 G11
G FM1

M2
G5AM,

the mixed derivatives of its components are equal and so this vector is equal to the grad
some function2 1

2k(q), that is,AM52 1
2¹k or M52 1

2A
21¹k.

Finally, by direct calculation we verify thatN52 1
2A

21¹„det(A)… and so statement~3! of the
theorem is proved. Q.E.D

Remark 6.5:This theorem generalizes the result of Ref. 6. In particular, if we assumM
52¹V(q), then we recover the known second Poisson operator for separable potential sys7

Notice thatM̂ is the force of the two-dimensional qLN system~6.1!. This means that every
Poisson operator of the form~6.3! is a Poisson operator for some qLN system of the form~6.1!.

We are now in position to investigate complete integrability of qLN systems admitting
quadratic, functionally independent integrals of motion. Notice first that Theorem 6.4 provid
with an alternative way of characterizing qLN systems generated by a quadratic integral of m
E: by starting with a Poisson operator of the form~6.3! we arrive at qLN systems generated by t
Hamiltonian H(q,p,d)5d which admit a quadratic integralE. In a similar way the following
theorem characterizes all qLN systems admitting two independent quadratic integralsE,F.

Theorem 6.6„Poisson pencil…: Consider the antisymmetric operator
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Pm5F 0 2~l/2!Gm~q! p

~l/2!Gm
t ~q! 2~l/2!Fm~q,p! M ~q!1dlNm~q!

2pt 2Mt~q!2dlNm
t ~q! 0

G , ~6.11!

where

Gm5F A22 2A12

2A21 A11
G2mF B22 2B12

2B21 B11
G[GA2mGB ,

with both matrices A and B satisfying the cyclic conditions (2.3),

@Fm#125
1

2 S ]~A222mB22!

]q1
p22

]~A112mB11!

]q2
p1D[@FA#122m@FB#12

~with F52Ft, FA52FA
t , FB52FB

t ) and

Nm52 1
2A

21¹„det~A!…1 1
2mB21¹„det~B!…[NA2mNB .

ThenPm is Poisson if and only if

M ~q!52 1
2A

21¹k52 1
2 B21¹ l ~6.12!

for some functions k(q) and l(q). Moreover, if we let

Pm5P12mP2[F 0 2~l/2!GA p

~l/2!GA
t 2~l/2!FA M1dlNA

2pt 2Mt2dlNA
t 0

G2mF 0 2~l/2!GB 0

~l/2!GB
t 2~l/2!FB dlNB

0 2dlNB
t 0

G ,

then both operatorsP1 and P2 are Poisson and soPm5P12mP2 is a Poisson pencil.
Proof: According to the proof of Theorem 6.4 the matrixPm satisfies all the Jacobi identitie

except possibly for̂$p1 ,p2%Pm
,d‰Pm

1cycl50, sincePm differs fromPA2mB5PA2mPB by the
form of M (q) only. Like in the proof of Theorem 6.4 we find thatˆ$p1 ,p2%Pm

,d‰Pm
1cycl50

yields that the mixed derivatives of the components of the vector22(A2mB)M are equal and so
22(A2mB)M5¹(k2m l ) for some functionsk(q) and l (q). By comparing coefficients at dif-
ferent powers ofm we get22AM5¹k and22BM5¹ l and thusM52 1

2A
21¹k52 1

2B
21¹ l .

Further,P15PA in the notation of Theorem 6.4 so it is Poisson. Easy calculation shows
P2 is Poisson, too. Q.E.D

The above theorem states that ifM (q) is the force of a qLN system admitting two function
ally independent integrals of motion, then the matrixPm is a Poisson pencil. We will establish it
Casimir function, which will be a polynomial inm. This will lead to a bi-Hamiltonian chain
containing the qLN system~6.1!. We will prove that this chain is completely integrable. In th
way we will show that our original qLN systemq̈52 1

2A
21¹k52 1

2B
21¹ l can be naturally

embedded in a completely integrable bi-Hamiltonian system.
Proposition 6.7: Suppose thatPm is Poisson, i.e., that (6.12) is satisfied. Then the functio

Hm5pt~A2mB!p1k2m l 1dl det~A2mB! ~6.13!

is a Casimir function forPm , i.e., Pm¹Hm50.
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Proof: This proposition is a consequence of Proposition 6.3. If we modify the matrixPA by
substituting the matrixA by A2mB and substitutingk with k2m l we obtain the matrix

F 0 2
l

2
Gm p

l

2
Gm

t 2
l

2
Fm M̃m

2pt 2M̃m
t 0

G , ~6.14!

where

M̃m52 1
2~A2mB!21¹~k2m l !2 1

2dl~A2mB!21¹„det~A2mB!….

Due to Proposition 6.3 the function~6.13! is the Casimir of~6.14!. However,~6.14! is, in fact,
equal toPm since it can be verified that2 1

2(A2mB)21¹(k2m l )52 1
2A

21¹k52 1
2B

21¹ l and
that (A2mB)21¹„det(A2mB)…5A21¹„det(A)…2mB21¹„det(B)…. Q.E.D.

Let us collect terms inHm at different powers ofm:

Hm5ptAp1k1dl det~A!1m~2ptBp2 l 2dlY!1m2
„dl det~B!…[Ê1mF̂1m2Ĥ

with Y5B11A221B22A1122B12A12. Then the above proposition gives

05Pm¹Hm5~P12mP2!¹~Ê1mF̂1m2Ĥ !

5P1¹Ê1m~P1¹F̂2P2¹Ê!1m2~P1¹Ĥ2P2¹F̂ !2m3P2¹Ĥ.

By equating to zero the coefficients at different powers ofm we obtain the following bi-
Hamiltonian chain:

P1¹Ê50,

P1¹F̂5P2¹Ê,
~6.15!

P1¹Ĥ5P2¹F̂,

05P2¹Ĥ.

Theorem 6.8:The bi-Hamiltonian chain (6.15) is completely integrable, i.e., both nontriv
bi-Hamiltonian vector fields,

V15P1¹F̂5P2¹Ê, V25P1¹Ĥ5P2¹F̂,

in (6.15) are completely integrable.
Proof (modification of the proof of Liouville–Arnold theorem8): Consider the two-dimensiona

manifold N5$xPM:Ê(x)5E0 ,F̂(x)5F0 ,Ĥ(x)5H0% in M. Poisson brackets of all pairs o
Ê,F̂,Ĥ induced by both structuresP0 and P1 are equal to zero, since the functionsÊ,F̂,Ĥ all
belong to the same bi-Hamiltonian chain. For instance,$F̂,Ĥ%P1

5^¹F̂,P1¹Ĥ&5^¹F̂,P2¹F̂&

5$F̂,F̂%P2
50 with the second equality being a consequence of the bi-Hamiltonian structu

V2 . It follows that the Lie bracket@V1 , V2# of both vector fieldsV1 and V2 is equal to zero,

@V1 , V2#5@P1¹F̂, P1¹Ĥ#50, since the mappingsP i¹ ( i 51,2) are Lie algebra homomor
phisms between the Lie algebra of vector fields onM and the Lie algebra of all smooth function
on M with the Lie bracket defined by@ f 1 , f 2#5$ f 1 , f 2%P i

. Moreover,^¹Ê,V1&5^¹Ê,P2¹Ê&
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5$Ê,Ê%P2
50 and similarly^¹F̂,V1&5^¹Ĥ,V2&50, which proves thatV1 is tangent toN. In the

same way one can show thatV2 is also tangent toN. Direct verification shows thatV1 andV2 are
linearly independent. We thus have a two-dimensional submanifoldN in M equipped with a pair
of linearly independent, commuting vector fieldsV1 andV2 . We can now apply the constructio
of Liouville-Arnold8 and conclude that bothV1 andV2 are completely integrable. Q.E.D

Corollary 6.9: The qLN system q¨ 5M52 1
2A

21¹k52 1
2B

21¹ l with two linearly independent
matrices A and B satisfying the cyclic conditions (2.3) is completely integrable in the sens
the trajectories of the system

F q̇ṗG5F p
M G ~6.16!

coincide on the hyperplane d50 with the trajectories of the completely integrable fiv
dimensional system

F q̇
ṗ

ḋ
G5V25P1¹Ĥ5P2¹F̂. ~6.17!

Proof: Consider the vector fieldV2 from ~6.15!. Obviously

V25P1¹Ĥ5l det~B!P1¹d1ldP1¹„det~B!…

and so in the hyperplaned50 we have

V2ud505l det~B!F p
M
0
G , ~6.18!

which means that the hyperplaned50 is invariant with respect to the action of the vector fie
V2 . The formula~6.18! also shows that in the hyperplaned50 the vector field of the system
~6.17! is parallel to the vector field of the system~6.16! and so their trajectories mus
coincide. Q.E.D.

Thus we have shown that the system~6.16! is embedded in the completely integrable b
Hamiltonian system~6.17!. The trajectories of~6.16! stay on the intersection of invariant man
folds for ~6.17! with the hyperplaned50. Also, since we can now solve the system~6.17! by
quadratures the time evolution of the coefficientl det(B) in ~6.18! can be calculated which make
it possible to solve the system~6.16! by quadratures too.

VII. NEW TYPES OF SEPARATION VARIABLES FOR DRIVEN qLN SYSTEMS

In this section we study an important class of two-dimensional qLN equations called d
systems. We find for all such systems their separation variables and prove their integrabi
quadratures. The variables of separation are of a completely new type: they consist of fam
conics which are non-confocal in contrast with the classical separability theory for pote
systems.

We remind the reader that we call a two-dimensional Newton systemdriven if one of the two
differential equations depends on one variable only. By renaming the variables if necessa
can always arrange for such a system to take the form

q̈15M1~q1 ,q2!,
~7.1!

q̈25M2~q2!.
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The second equation can be solved on its own and its solutionq2(x) then determines the equatio
for q1 , which explains the name ‘‘driven.’’ A driven system always has one integral of mo
F5q̇2

2/22*M2 dq2 , obtained by integrating the second equation once, but, in general, there
not exist any others.

Here we shall consider driven systems that admit a quasi-Lagrangian formulatiq̈
52 1

2A
21¹k(q). Here, as usual,A(q) is a nondegenerate 232 matrix satisfying the cyclic

conditions~2.3!, i.e., a matrix of the form

A5F aq2
21bq21a 2aq1q22

b

2
q12

c

2
q21

b

2

2aq1q22
b

2
q12

c

2
q21

b

2
aq1

21cq11g
G . ~7.2!

Such a system always hastwo functionally independent integrals of motionE5q̇tAq̇1k(q) and
F5q̇2

2/22*M2 dq2 .
By examining the second component of the equationq̈52 1

2A
21¹k(q), we immediately see

that a qLN system is driven iff

A12]1k2A11]2k52 det~A!M2~q2!, ~7.3!

for some functionM2(q2) depending onq2 only. We can produce driven qLN systems with a
given M2(q2) andA(q) by solving fork(q) in this equation. The caseA1150 is degenerate and
will be treated separately later~see Remark 7.6!, so we assume from now on thatA11Þ0.

We start by introducing separation variables for~7.1! as characteristic coordinates for~7.3!.
Definition 7.1: Define curvilinear coordinates (u,v)5„u(q),v(q)… as follows. Letu be a

parameter indexing the family of characteristic curves of~7.3! given by

q̇~x!5F A12„q~x!…

2A11„q~x!…G , ~7.4!

and letv5q2 .
In other words, the curves given by~7.4! are the coordinate curves of constantu. For a given

matrix A these curves can be explicitly calculated. In Theorem 7.7 we will describe these c
more explicitly. Let us just note for the moment that they are not parallel to the curves of con
v, because of the assumptionA11Þ0. Thus the above description really defines a coordin
system~at least locally!. There is some freedom in the choice ofu, but this will not affect our
results. By abuse of notation we will writef (q1 ,q2) and f (u,v) for the same functionf expressed
in different coordinate systems.

Lemma 7.2: The general solution of (7.3) is

k~u,v !5 f ~u!1D~u,v !g~v !, ~7.5!

where f is an arbitrary function, D5det(A), and

g~q2!5
22

A11~q2!
E M2~q2! dq2 .

Proof: Along each characteristic curveq(x) given by~7.4! we can consider~7.3! as an ODE

d

dx
k„q~x!…52D„q~x!…M2„q2~x!…,

with general solution
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k~q~x!!5D„q~x!…g„q2~x!…1 f ,

where f is a constant of integration. This can be verified by direct differentiation; the cy
conditions imply that

d

dx
D„q~x!…5]1Dq̇11]2Dq̇25]1DA121]2D~2A11!52D]2A11,

and thus

d

dx
k~q!5

d

dx
„D~q!g~q2!1 f …5

dD

dx
g1D]2gq̇2

52D]2A11g1D]2g~2A11!

52D]2~A11g!52DM2 .

The constant of integrationf can be different for different characteristic curves, so when
express the result in terms ofu andv, f will depend onu ~but not onv). Q.E.D.

Lemma 7.3: Equation (7.3) is equivalent, under the substitution k5K det(A), to the equation

A12]11K2A11]12K2 3
2]2A11]1K50, ~7.6!

which is the fundamental equation (4.5) associated with the matrices A and

B5F0 0

0 1
2
G .

Proof: Equation~7.3! implies

]1S 2A12]1k1A11]2k

det~A! D50.

Conversely, this expression can be integrated to give~7.3!, whereM2(q2) is an arbitrary function
of integration. By substitutingk5K det(A) and simplifying the resulting expression using t
cyclic conditions one obtains~7.6!. Comparison with the general expression for the fundame
equation in Theorem 4.1 proves the second statement of the lemma. Q

Remarks 7.4:The fundamental equation~7.6! is hyperbolic. Its characteristic coordinates a
precisely the coordinates (u,v) of Definition ~7.1!. The general solution isK(u,v)
5 f (u)/D(u,v)1g(v), as can be seen by combining the above lemmas.

Let us turn to the question of how to integrate a driven qLN system. The solutionq2(x) of the
second equation can be found by quadrature fromF5q̇2

2/22*M2 dq2 :

E dq2

A2F12*M2dq2

56E dx. ~7.7!

Insertingq2(x) and q̇2(x) into

E5A11~q2!q̇1
212A12~q1 ,q2!q̇1q̇21A22~q1!q̇2

21k~q1 ,q2!

would give a first-order ODE forq1(x), but there is no obvious way to solve this equation sin
the variablesq1 andx do not separate. We will now show how to proceed instead.

Theorem 7.5:Every driven qLN system can be integrated by quadratures using the ch
teristic coordinates(u,v) of the fundamental equation (7.6) as separation variables.
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Proof: We use the notation of Lemma 7.2. Let the system be generated byE5q̇tAq̇1k(q)
with k(u,v)5 f (u)1D(u,v)g(v). Sincev5q2 , we can expressF asF5 1

2„v̇
21A11(v)g(v)… and

calculatev(x) by quadrature, as above. Now note that since the curves of constantu by definition
have tangentq̇5(A12,2A11)

t, we must have¹u5r(q)(A11,A12)
t for some functionr(q),

whose exact form depends on the choice ofu. This gives u̇5]1uq̇11]2uq̇25r(q)(A11q̇1

1A12q̇2), and thus

u̇25r2A11S A11q̇1
212A12q̇1q̇21

A12
2

A11
q̇2

2D 5r2A11S E2A22q̇2
22k~q!1

A12
2

A11
q̇2

2D
5r2A11S E2S A222

A12
2

A11
D v̇22 f ~u!2Dg~v ! D

5r2A11S E2
D

A11
„2F2A11g~v !…2 f ~u!2Dg~v ! D

5r2A11S E2
2D

A11
F2 f ~u! D .

In order to complete the proof, we will show thatr(u,v)5f(u)uA11(v)u23/2 and
D(u,v)/A11(v)5c(u) for some functionsf andc, since this implies that the variablesu andx
separate. Explicitly, we can then findu(x) from the quadrature

E du

f~u!AE22c~u!F2 f ~u!
56E dx

A11„v~x!…
, ~7.8!

after which the inverse coordinate transformation gives usq1(x). Notice that for a given matrixA,
the characteristic coordinates (u,v) can be calculated explicitly so that the functionr and thusf
and c can be easily calculated and used in the quadrature~7.8! above. The theorem covers
however, all the cases at once without any need of calculatingr explicitly.

To see thatr(u,v)5f(u)uA11(v)u23/2, note that]12u5]21u implies thatr(q) satisfies the
PDE

05]1~rA12!2]2~rA11!5A12]1r2A11]2r2 3
2]2A11r,

which has the same characteristic curves~7.4! as Eq.~7.3!. Along such a curve we determiner by
integrating

d

dx
r„q~x!…5

3

2
]2A11„q2~x!…r„q~x!…,

which, taking into accountq̇2(x)52A11„q2(x)…, gives

r„q~x!…5fuA11„q2~x!…u23/2.

The integration constantf can be different on different characteristic curves, so changing to (u,v)
coordinates we obtain

r~u,v !5f~u!uA11~v !u23/2,

as desired.
Finally, we calculate the total derivative of the functionc(q)5D(q)/A11(q2) along a char-

acteristic curve:
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d

dx
c„q~x!…5]1S A222

A12
2

A11
DA122]2S A222

A12
2

A11
DA11.

Using the cyclic conditions, we find that this expression is identically zero. This implies thatc is
constant along the coordinate curves of constantu, i.e., c5c(u). This completes the proof.

Q.E.D.
Remark 7.6:The degenerate caseA1150 can be treated as follows. Sincea5b5a50, the

expression~7.2! for A reduces to

A5F 0 2
c

2
q21

b

2

2
c

2
q21

b

2
cq11g

G ~7.9!

and Eq.~7.3! reduces to

A12]1k52~2A12
2 !M2~q2!,

with the general solution

k~q!522A12~q2!M2~q2!q11k2~q2!.

We calculateq2(x) by quadrature as before. Insertingq2(x) and q̇2(x) into E52A12q̇1q̇2

1A22q̇2
21k(q1 ,q2) yields in this case an equation of the formq̇1(x)1j(x)q1(x)5h(x), from

which we can findq1(x) by quadrature.
Theorem 7.7: The separation coordinates for driven qLN systems, i.e., the characte

coordinates(u,v) of the fundamental equation (7.6), are of one of the following types, determ
by the coefficients in the matrix A:

~1! fanlike hyperbolic, if aÞ0 and b2/42aa50;
~2! axial hyperbolic, if aÞ0 and b2/42aa,0;
~3! two-point elliptic-hyperbolic, if aÞ0 and b2/42aa.0;
~4! one-point parabolic, if a50 and bÞ0; and
~5! parallel parabolic, if a50 and b50.

Proof: We will compute explicitly the curves given by~7.4!, which constitute the curves o
constantu. ~The curves of constantv are just horizontal lines, sincev5q2 .) Inserting the explicit
expression~7.2! for the matrixA into ~7.4!, we obtain

F q̇1

q̇2
G52F aq1q21

b

2
q11

c

2
q22

b

2

aq2
21bq21a

G . ~7.10!

When solving these equations, we distinguish four different cases, depending on the values
parameters inA.
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The case aÞ0. By settingr 15aq11c/2 andr 25aq21b/2, which is just rescaling of the axe
and translation of the origin, we transform~7.10! into

F ṙ 1

ṙ 2
G5F2r 1r 21C1

2r 2
21C2

G , whereHC15bc/41ab/2,
C25b2/42aa. ~7.11!

Subcase C250 (type 1). Either r 250, or r 25(x1D1)21 and r 15C1(x1D1)/2
1D2(x1D1)21, where D1 and D2 are constants of integration. Eliminatingx and writing u
instead ofD2 , we obtain

r 15
C1

2r 2
1ur2 , ~7.12!

which represents a family of hyperbolas, each with asymptotesr 250 andr 25r 1 /u. The solution
r 250 found above corresponds to the limiting casesu→6` ~see Fig. 2!.

Subcase C2Þ0 (type 2 and 3). The substitutions15r 12C1r 2 /C2 , s25r 2 yields

F ṡ1

ṡ2
G5F 2s1s2

2s2
21C2

G , ~7.13!

and thus

ds1

ds2
5

ṡ1

ṡ2
5

s2

s2
22C2

s1 ,

resulting in

s1
25u2us2

22C2u. ~7.14!

If C2,0 ~type 2!, this represents in thes plane a family of hyperbolas centered around thes1 axis,
with asymptotess256s1 /u and vertices (6uA2C2,0) @Fig. 3~a!#.

If C2.0 ~type 3!, we obtain in the regionus2u.AC2 a family of hyperbolas with asymptote
s256s1 /u and vertices (0,6AC2), and in the regionus2u,AC2 a family of ellipses with vertices

FIG. 2. Fan-like hyperbolic.
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(0,6AC2) and (0,6uAC2). The corresponding curves in ther plane are obtained by a shear
thes1 direction with factorC1 /C2 @Figs. 3~b! and 4~b!#. They are still hyperbolas and ellipses, b
not aligned parallel with ther axes.

The case a50. Subcase bÞ0 (type 4). Translating the origin byr 15q12(ac/b21b/b) and
r 25q21a/b, we obtain

F ṙ 1

ṙ 2
G5F 2

b

2
r 12

c

2
r 2

2br2

G , ~7.15!

which yields

FIG. 3. ~a! Axial-hyperbolic in thes-plane.~b! Axial-hyperbolic in ther-plane.
FIG. 4. ~a! Two-point elliptic-hyperbolic in thes-plane.~b! Two-point elliptic-hyperbolic in ther-plane.
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S r 12
c

b
r 2D 2

5ur2 . ~7.16!

With s15r 12cr2 /b, s25r 2 , we obtain in thes plane a family of parabolass25s1
2/u @Fig. 5~a!#.

The corresponding curves in ther plane are parabolas obtained by a shear in thes1 direction with
factor c/b @Fig. 5~b!#.

Subcase b50 (type 5). Here we can assume thataÞ0, or else we get the degenerate cas
A1150. A simple calculation shows that

q152
c

4a
q2

21
b

2a
q21u, ~7.17!

which is a family of translated parabolas seen in Fig. 6~or straight lines, ifc50). Q.E.D.

FIG. 5. ~a! One-point parabolic in thes-plane.~b! One-point parabolic in ther plane.

FIG. 6. Parallel-parabolic.
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VIII. EXAMPLES AND APPLICATIONS

The notion of a qLN forceM (q)52 1
2A

21(q)¹k(q) naturally generalizes the concept of
potential forceM (q)52¹k(q), which is a special case. The qLN forces admit an integra
motion quadratic in velocities, which in the potential case becomes the energy integra
function k(q) may be called a ‘‘quasi-potential’’ of the forceM (q).

A given force is easy to test for the existence of a qLN formulation, provided that one k
the general form of the matrixA(q) solving the cyclic condition~2.3!. In two dimensionsA(q),
given by

A~r ,w!5F aw21bw1a 2arw2
b

2
r 2

c

2
w1

b

2

2arw2
b

2
r 2

c

2
w1

b

2
ar21cr1g

G ,

depends on six arbitrary parameters, and a qLN formulation exists provided that the mixe
rivatives of¹k(r ,w)522A(r ,w)M (r ,w) are equal for some nonzero values of the parame
a,b,c,a,b,g. We thus have the following lemma:

Lemma 8.1: A given force M(r ,w)5„M1(r ,w),M2(r ,w)…t admits a qLN formulation
M (r ,w)52 1

2A
21(r ,w)¹k(r ,w) if and only if there is a nontrivial solution A, withdet(A)Þ0, of

the equation

05
]

]w
X~aw21bw1a!M11S 2arw2

b

2
r 2

c

2
w1

b

2 D M2C
2

]

]r
XS 2arw2

b

2
r 2

c

2
w1

b

2 D M11~ar21cr1g!M2C. ~8.1!

Lemma 8.2 (Criterion of integrability, n52): Equation (8.1) has a two-parameter family o
solutions for A(r ,w) if and only if q̈5M (q) admits two functionally independent integrals
motion E and F quadratic in velocities.

Proof: If such E5q̇tAq̇1k and F5q̇tBq̇1 l exist, thenlE1mF5q̇t(lA1mB)q̇1(lk
1m l ) is an integral of motion for alll andm, and thuslA1mB is a two-parameter solution o
~8.1!.

Conversely, if there is a two-parameter solutionD(l,m) of ~8.1!, then there are linearly
independent integralsE andF with A5D(1,0) andB5D(0,1). Q.E.D.

These two lemmas make it simple to test a given two-dimensional force for the existen
a qLN formulation, and to show integrability if a two-parameter family of solutions forA exists.

Example 8.3 (gH-H system):The generalized He´non–Heiles~gH-H! system9 is defined by the
potential

V~q1 ,q2!5c1q1q2
22

c2q1
3

3
1

c0

2q2
2 , c1 ,c2Þ0.

It is known to be integrable in three cases: the Korteweg–de Vries~KdV! case 6c11c250, the
Sawada–Kotera~S-K! casec11c250, and the Kaup–Kupershmidt~K-K ! case 16c11c250. In
the KdV case, and also in the S-K case, ifc050, the second integral of motion is quadratic
velocities, in the other cases it is quartic. The system appears naturally when integrati

equation 05( 1
4]

312c1u]1c1ux)(
1
4uxx2

1
4c2u2), which for the above cases corresponds to

stationary flow of the fifth-order KdV, S-K, and K-K soliton equations. This observa
explained10 the remarkable connection of the integrable cases of the gH-H system with s
hierarchies.
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We shall apply our criterion for existence of a qLN formulation to two Newton represe
tions of the gH-H system; the original system inq variables

q̈152
]V

]q1
52c1q2

21c2q1
2,

~8.2!

q̈252
]V

]q2
522c1q1q21

c0

q2
3 ,

and another system inr variables

r̈ 15r 21~c11c2!r 1
2,

~8.3!

r̈ 25c3210c1r 1r 2210c1S c11
c2

3 D r 1
3,

which is equivalent11 to theq system under the mapr 15q1 , r 252c1(q1
21q2

2), c524c1@ 1
2(q̇1

2

1q̇2
2)1V(q1 ,q2)#. The r system does not have any natural Lagrangian or Hamiltonian form

tion and its integrability has previously been studied only through its equivalence with the or
gH-H system. We will show here a more direct approach based on the qLN theory.

Beginning with theq system, we insert the right-hand sideM from ~8.2! into ~8.1!, identifying
(q1 ,q2) with ~r,w! as usual. Since the powersr iwj are linearly independent, the coefficients
different powers must be individually zero. This gives, after some simplification, thata5b50,
a5g arbitrary, (6c11c2)c50, (c11c2)b50 andc0b50. This means that we always have
solutionA5tI ~of course, corresponding to the energy integral, since the system has a pote!.
Moreover, in two cases there exists a two-parameter solution; when 6c11c250,

A5tF1 0

0 1G1sF 0 2q2

2q2 2q1
G ,

and, whenc11c25c050,

A5tF1 0

0 1G1sF0 1

1 0G .
So in this way we have recovered the KdV and S-K (c050) cases, while the K-K and S-K (c0

Þ0) cases, with a quartic extra integral, fall outside of the qLN theory.
Performing the same procedure for ther system ~8.3!, we find that a50, 4c1g1b50,

(31c11c2)c5(3c1
21c1c2)c50, 2a23c3c50, and (6c11c2)b50. Since we have excluded th

trivial casec150, it follows thatc5a50, so that the solution is

A5tF22r 2 r 1

r 1 1/2c1
G

except for the KdV case 6c11c250 which admits a two-parameter solution

A5tF 22r 2 r 1

r 1
1

c1

G1sF0 1

1 0G .
This agrees with the known fact11 that for ther system the second integral is quartic in velociti
in the S-K and K-K cases and thus cannot be found by this method.



e other
ility,

t

rces

LN
tructed

f
-

e

of

6396 J. Math. Phys., Vol. 40, No. 12, December 1999 Rauch-Wojciechowski, Marciniak, and Lundmark
Suppose, however, that we had found the second integral in these cases by som
method. Then we would still have use for the qLN theory in proving the system’s integrab
since ther parametrization admits the nonstandard Hamiltonian formulation~6.2! with l51 and
c3 playing the role of the fifth variabled. ~This coincides with the Hamiltonian formulation tha
was found in Ref. 11 by transferring the standard Hamiltonian formulation from theq parametri-
zation, except for naming the momenta in reverse order; herepi5 ṙ i , while in that papers1

5 ṙ 2 , s25 ṙ 1 .)
For example, in the S-K case (c152c25 1

2) we have

F ṙ 1

ṙ 2

ṗ1

ṗ2

ċ3

G5F 0 0 21/2 2r 1/2 p1

0 2r 1/2 r 2 p2

* 0 2p1/2 r 2

* * 0 c325r 1r 22~5/3!r 1
3

* * * * 0

G¹Mc3,

with the commuting integrals of motionE522r 2p1
212r 1p1p21p2

214r 1r 2
21 2

3r 1
3(r 1

215r 2)
1c3(2r 1

222r 2), which is a Casimir, the Hamiltonianc3 , and F5 3
2p1

426r 1r 2p1
21(3r 1

2

2r 2)p1p21r 1p2
21 7

2r 1
2r 2

21 10
3 r 1

4r 21 5
6r 1

61 1
3r 2

31(22r 1r 22r 1
31 3

2p1
2)c3 , which is quartic in mo-

menta.
In order to give an impression of the wealth of different types of nonpotential Newton fo

belonging to our theory, we will now examine solutions of the fundamental equation~4.5! for
some specified pairs of matricesA and B. Any such solution corresponds to an integrable q
system, and once one solution has been found, a whole family of solutions can be cons
using the recursion theorem 4.3.

Example 8.4 (One-dimensional complex motion):If we takeA andB as

A5F1 0

0 21G , B5F0 1

1 0G ,
then the fundamental equation reduces to the Laplace equationKrr 1Kww50. Given a solution
K(r ,w), i.e., a harmonic function, we havek5K det(A)52K, sok is also harmonic. We find the
correspondingl from the relation

¹ l 5BA21¹k5F0 21

1 0 G¹k,

which is nothing but the Cauchy–Riemann equations fork andl, so l is the harmonic conjugate o
k. The corresponding qLN systemr̈ 52kr /2, ẅ5kw/2 can be integrated by introducing the com
plex variablez5r 1 iw and the complex integral of motionE5E1 iF 5( ṙ 22ẇ21k)1 i (2ṙ ẇ
1 l )5( ṙ 1 iẇ)21(k1 i l )5 ż21 f (z), wheref (z)5k(z)1 i l (z) is analytic. We can now determin
z, and thusr andw, from ż56AE2 f (z) by one complex quadrature.

Repeated application of the recursion formula~4.10! yields in this case the standard cycle
conjugate harmonic pairs (k,l )→( l ,2k)→(2k,2 l )→(2 l ,k)→(k,l ).

Example 8.5 (Fundamental equation separable in polar coordinates):Let

A5F22w r

r 0G , B5F 0 w

w 22r G .
Then the fundamental equation becomes 052(r 2Krr 12rwKrw1w2Kww)19(rK r1wKw)16K,
which in polar coordinates (r 5R cosf, w5R sinf) transforms into 052R2KRR19RKR16K.
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The general solution of this equation isK(R,f)5 f 0(f)R221g0(f)R23/2, for some arbitrary
functions f 0 and g0 . Changing back tor and w, we find that the general solution of the fund
mental equation in this case is

K~r ,w!5 f 0S arctan
w

r D r 22

11~w/r !2 1g0S arctan
w

r D r 23

„11~w/r !2
…

3/25 f S w

r D r 221gS w

r D r 23,

wheref andg are arbitrary functions.
Finally, let us conclude with an example of a three-dimensional qLN system. A det

treatment of higher-dimensional qLN systems is presented in a separate article.3

Example 8.6:The Newton system

r̈ 15210r 1
214r 2 ,

r̈ 25216r 1r 2110r 1
314r 3 ,

r̈ 35220r 1r 328r 2
2130r 1

2r 2215r 1
41d

was found in Ref. 12 as a parametrization of the seventh-order stationary KdV flow. It has
integrals of motion

E15 ṙ 1ṙ 31
ṙ 2

2

2
110r 1

2r 324r 2r 318r 1r 2
2210r 1

3r 213r 1
52dr1 ,

E25r 3ṙ 1
22r 1ṙ 2

21r 2ṙ 1ṙ 22 ṙ 2ṙ 32r 1ṙ 1ṙ 314r 1
2r 2

215r 1
4r 22

5

2
r 1

6

24r 2
312r 3

2212r 1r 2r 31
dr1

2

2
1dr2 ,

E35
1

8
„r 2

2ṙ 1
21r 1

2ṙ 2
21 ṙ 3

22~2r 1r 214r 3! ṙ 1ṙ 212r 1ṙ 2ṙ 312r 2ṙ 1ṙ 3…1r 1r 2
323r 1

3r 2
2

1
5

4
r 1

5r 212r 1r 3
21

5

4
r 1

4r 32r 1
2r 2r 31r 2

2r 32
d

4
~r 1r 22r 3!,

which all are quadratic in velocities. This means that the system is generated by any of
through the quasi-Lagrangian equations. From the velocity-dependent parts we find

F 0 0 1

0 1 0

1 0 0
G , F 2r 3 r 2 2r 1

r 2 22r 1 21

2r 1 21 0
G , F r 2

2 2r 1r 222r 3 r 2

2r 1r 222r 3 r 1
2 r 1

r 2 r 1 1
G

as examples of 333-matrices satisfying the cyclic conditions~2.3!.

IX. CONCLUSIONS

In this article we have developed a new theory—the theory of quasi-Lagrangian Ne
equations. It was originally inspired by interesting properties of the second stationary flow
Harry Dym hierarchy, which led us to a broad theory which encompasses the classical sepa
theory but goes far beyond the classical results—the classical Bertrand–Darboux theory o
rability for two-dimensional potential forces depends on one essential free parameter whi
theory depends on five parameters.
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The main part of this work has been focused on two-dimensional qLN systems which
two integrals of motionE andF quadratic in velocities. These systems have only a nonstan
Hamiltonian formulation and are completely integrable by embedding into five-dimensional
ville integrable systems. All such qLN systems are characterized by a single PDE called he
fundamental equation. We have shown that there is a one-to-one correspondence betwee
mental equations and linear pencilslA1mB of matricesA andB. These linear pencils have bee
classified in Sec. V. In Sec. VII the class of driven systems has been studied in detail an
types of separation variables~non-confocal conics! have been found. We have also shown that a
given force can be effectively tested for the existence of qLN formulation, which can furth
used for unveiling its complete integrability and for solving the corresponding Newton equa
We have illustrated this by several examples including the generalized He´non-Heiles system~Sec.
VIII !.

There are several natural directions of development of the theory of qLN systems
n-dimensional versions of our main theorems on fundamental equation and on complete in
bility have already been formulated and proved in Ref. 3.

The great wealth of different types of integrable Newton equations contained in the fu
mental equation remains to be studied. Here we have only discussed two special cases: s
systems and driven systems. However, one of the most challenging questions yet to be an
is the existence of separation variables for the fundamental equation in its most general f
can lead to new and interesting connections with the classical theory of separability o
Hamilton–Jacobi equation and of linear PDEs.
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