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Quasi-Lagrangian systems of Newton equations
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Systems of Newton equations of the forim= —3A~1(q) Vk with an integral of
motion quadratic in velocities are studied. These equations generalize the potential
case(whenA=1, the identity matrix and they admit a curious quasi-Lagrangian
formulation which differs from the standard Lagrange equations by the plus sign
between terms. A theory of such quasi-Lagrangian NewtN) systems having

two functionally independent integrals of motion is developed with focus on two-
dimensional systems. Such systems admit a bi-Hamiltonian formulation and are
proved to be completely integrable by embedding into five-dimensional integrable
systems. They are characterized by a linear, second-order partial differential equa-
tion PDE which we call the fundamental equation. Fundamental equations are
classified through linear pencils of matrices associated with qLN systems. The
theory is illustrated by two classes of systems: separable potential systems and
driven systems. New separation variables for driven systems are found. These
variables are based on sets of nonconfocal conics. An effective criterion for exis-
tence of a gLN formulation of a given system is formulated and applied to dynami-
cal systems of the H®n—Heiles type. ©1999 American Institute of Physics.
[S0022-248809)00912-3

[. INTRODUCTION

In this paper we introduce and study such systems of Newton equétiohs(q) that can be
generated as equations of the form

0=— —+-—=6"E (1.1)

by an energylike function quadratic

n

E(q"“):i% A ()G + k(@) =a'Ag+k(q), (1.2)

whereA(q) is annXn symmetric matrix with real entried;;(q). Here and in what follows we
use the standard mechanical notatepa (q,,...,0,)" 4=(q1,....0,)", for position and velocity
vectors(the superscript denotes the transpose of a majriwhereq,= (d/9x)q,, k=1,...n, with

x € R being the independeitime) variable. By Newton equations we mean second-order ordinary
differential equation$ODES of the form: acceleratiofj is equal to the velocity independent force
M(q). The forceM may be potential or not.
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The equations iril.1) are called herguasi-LagrangiangL) equations since they differ from
the Lagrange equations fd(q,q) by sign between terms only. These equations are shortly
denoted & 5"E= (5 E,...,8, E)" where

. d JE JE
% E= g% aqk+ A

The gL equations are not invariant with respect to arbitrary point transformation, but it can be
easily shown that they remain invariant with respect to the affine change of varigbl8€)
+h whereQ=(Q4,...,Q,)" are the new variables ar GL(n),heR".

In the present article we shall mainly discuss quasi-Lagrangian sets of Newton equations
(qLN) generated by a functiok of the form (1.2 in the two-dimensional space of variables
=(q4,9,) = (r,w). This class of equation@vhich seems to be completely ngig a very inter-
esting class because of its rich differential-algebraic structure and also because it c@sains
special casgsthe well understood class of point-separable potential Newton equatjons
=-0V(q)/dq and the class of nonpotential Newton equations of the triangular form
=M4(r,w), W= M,(w) which we shall caldrivensystems. The qLN systems are not necessarily
Lagrangian and thus they do not have any straightforward Hamiltonian formulation.

In this paper we develop a theory of completely integrable sets of LN equations character-
ized by the existence of two functionally independent integrals of motion quadratic in velocities:
E as above an& ='B(q)g+1(q). The existence of a second integral of motion has far-reaching
consequences; it eventually leads to wide classes of completely integrable LN systems.

Example 1.1The functionE=riw—wi?— awr?+ dr?+ (w?/2r% when inserted intd1.1)
gives rise to

daE+aE 2w i +W+ W—4aw+d
axa T —2w|f—art g r(w—4aw+d)
=1 4 7E  IE a W
&m m i rr—ar r—5
[—2w  r][f=Mq(r,w)
= o (1.3
r 0] W—My(w)
which is equivalent to a set of two Newton equations
w
fzar—r—5£M1(r,w),
W=4aw—d=M,(w), (1.4

since the matrix

2w T
r 0

is nonsingular. We see that the operation & E generatedinear combinationsof the Newton
equationg1.4).

Equations(1.4) were discovered accidentally as a Newton parametrization of the second
stationary flow of the Harry Dym hierarcHy:

0= (33— ad)(au™ 3= 20%u~ "2+ tuu=5%) = (3% — ad)(—r° — ar®)
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(hered=al9x), where we substituted=r ~4. The substitutiorw= —r°f + ar® gives the system
(1.4). The particular feature dfL.4) is that it is a driven system: the equation feican be solved
independently and then the solutiar{x) drives the equation for.

II. GENERAL PROPERTIES OF QUASI-LAGRANGIAN NEWTON SYSTEMS

Let us consider an-dimensional gL system9 6" E with (quadratic in velocitiesenergylike
function

E(q,q>=”2:1 A (a)§ia;+k(a) (2.2)

with a symmetric(which can be assumed without loss of generalityatrix A(q) =A'(q). We
shall formulate the necessary and sufficient condition for the maff@ to make the equations
0=6"E equivalent to the set of equations

0=§-M(aq) (2.2

with a velocity independent forck! (q) =(M(q),...,.My(q))".
Theorem 2.1:For the function E given by (2.1) with a nonsingular matrigd the following
conditions are equivalent:

(1) The equation®=6"E are equivalent to the set of Newton equatiémsh(q) with velocity
independent forces M — 3A~1(q) Vk(q).

(2) The function E is an integral of motion for the qL syst@ms'E.

(3) The matrix elements;Xq) satisfy the following set of “cyclic” differential equations:

Throughout the whole article the symbdldenotes the gradient operator aher d/dq; . Later on
we will also use the notation;; = aZ/aqi&qj .
Statement(?2) of the above theorem explains the name “energylike” for the funcion
Proof: Let us calculate théth equation in G= 5" E:

d dE JE d

—StF= 1 — - of
0= E=4x a6, * 7a, dx(@ Ai ()4

+ % diAjK(q)Q;qx+ dik

22; Aij(9)g; +‘9ik+% (0iAK(Q) + J;A(9) + diAi; (A)) DAk -
(2.4

The last equality in2.4) is due to the symmetry o&(q). Thus, clearly, 2§+ Vk=0 if and only
if the equationg2.3) are satisfied and the equivalence(bf and (3) is established.
Let us now calculate the total derivative Bfwith respect tox:

E=2

2§j: A+ dik

Qi+i§j:k A 41950k

i i

- 1 - . .
‘“5% (3iAKF AT I 8- 2.5

The second term on the right-hand side of the above equation has been rewritten by renaming
indices. It contains precisely the cyclic conditiof&3). So, if one(and thus bothof the state-
ments(1) and (3) are satisfied, then both terms (2.5) vanish. On the other hand, =0, then
terms at different powers dj; in (2.5 must be equal to zero, which implies both 1 and 3.

Remark 2.2For n=2 the general solution of equatiof.3) can easily be found. It is
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Aj(w)=aw?+bw+a,
2A5(r,w)=—2arw—br—cw+ g, (2.6
Ayfr)=ar?+cr+vy,

with some real constantsb,c,«,3,y. The corresponding qLN equations read explicitly as

d &E+&E
0 dx ar ' or 2A11 Al T=My(r,w)
| d aE+aE AL Anl|W—My(r,w) ]
dx ow  Jdw
where
M B 1 ok ok
(N W)= 5 aar Ay detA) | Mz~ Aazgr |

M B 1 A ok A ok
Z(r’w)_ZdetA) 125 o]

The remaining part of this work is mostly devoted to the case when LN equafions
=—31A"1Vk generated byE admit asecond(quadratic in velocitiesintegral of motionF (q,)
=Eﬂj:18ij(q)qiqj+I(q)eqB(q)q+I(q) which is linearly, and therefore functionally, indepen-
dent of E.

Theorem 2.3(qLN systems with two integral9: Let the qLN system of Newton equations

0=38"E=2A(g+ 1A 1Vk), (2.7

generated by the function (§,0)=g'A(q)q+k(q), admit a second, functionally independent
quadratic integral of motion Fq,q)=q'B(q)g+1(q). Then we have the following.

(1) The matrix Bq) has the same structure as the matrixgh in the sense that the coeffi-
cients B;(q) of B(q) satisfy the set of cyclic differential equations (2.3)

(2) If det®)+#0, then

A lVk=B VI, (2.9

and so the LN systefh= 6" F=2B({+ 3B 1VI) generates the same Newton equations as E

(3) Any differentiable function (E,F) generates the same system of Newton equations [by
0=656"%f(E,F)] as E does. In particular, any linear combinatiphE+ uF generates the same
system of Newton equations

The statemen(2) shows one of the peculiar features of gLN systems: all quad(ative-
locities) integrals of motion of a LN system generate the same sy&emalso Sec. 151 in Ref.
2).

Proof: The requiremenB=0 yields[cf. (2.5)]

OZEi (22 Bij(@)q; + 4l Qi"'ijzk 9Bi; i q;qx

) 1 o
:Z qi(ZB(—EA 1Vk)+VI) +i]2k kB 61116l (2.9
i 1)
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where the index at the vector expression containing matri@andA ™! denotes itsth compo-
nent. The equality is satisfied identically with respecfjtand so both sums must be separately
equal to zero. It follows thatB;; satisfy the cyclic conditionss;Bj+cycl=0 and that
2B(—3A"1VK)+VI=0. The latter yields precisely the equatith8) since we assumed dBi(
#0. So the statement4) and (2) are proved.

The operatos™ acts as differentiation on the algebra of constants of motion, so that

af o
—A+—B)(q—|v|)

of af
— st — st _ StTE=
0=6"1(E,F) o E+(9 0'F=2 °E oF

JE F
(whereM = — 2A~1Vk=— 1B~ 1VI), which proves the stateme(8) of the theorem.  Q.E.D.
It is important to stress that the equati@h8) is the necessary and sufficient condition for the
equivalence of the qLN systef®.7) and the gLN system generated By= q'B(q)g-+1(q). This
condition will be used later.

[ll. gLN EQUATIONS IN TWO DIMENSIONS

We shall from now on restrict our considerations to the aas®. We will use the notation
q=(q;,9,)'=(r,w)!. The case of arbitrarp is studied in a separate paper.

Forn=2 Theorem 2.3 contains two special cases which explain the connection of our theory
with classical resulfsabout separable potential Newton equations and with the class of driven
systems where one of the Newton equations depends only on a single vartableand can be
solved on its own.

Corollary 3.1: Assume that the Newton equations

F=Mq(r,w), W=M,(r,w) (3.2

generated by the integral £¢'A(q)g+k(q) [with the matrix A given by (2.6)] a8=6"E have
a potential force: M=-9V/dr, M,=—9V/dw. Then the potential ¥,w) satisfies the
Bertrand-Darboux equatiof

0=(Vyu—V,/)(—2arw—br—cw+ B)+2V,,(aw’—ar?>+bw—cr+a—1y)
+3V,(2aw+b)—3V,,(2ar+c) 3.2

(where the indices at V denote partial derivatives with respect to r and w) with the coefficients
a,b,c,a, B,y being exactly the coefficients of the polynomials in entries of the matrix A as given
by (2.6). This means that the Newton system (3.1) can be solved by separating variables in the
related Hamiltor-Jacobi equation (see Ref..2)

Proof: If M is potential, then, according to Theorem 2= — A~ 1Vk=—VV and soVk
=2AVV. The potentialV exists provided thav?k/dr gw=d°k/awdr. This yields exactly the
Bertrand—Darboux equatiof3.2) for V. Q.E.D.

Remark 3.2The quantityk(r,w)/det(A) satisfies the same Bertrand—Darboux equation as the
potentialVV. This result can be verified directly but it also follows from Theorem 4.1 in the next
section.

Remark 3.3Let us emphasize that the Hamiltonian system

. . NV
f=s, w=z, §=-—- Zz=--
generated by a separable natural Hamiltonian¥s?+ z2) + V(r,w) can be reconstructed as the
gLN system G= 6" E=2A(§+ A~ 1VKk) from its second integral of motioB. This is easy to see,
since the above Hamilton equations are equivaletitto- dV/dr ,Ww= — dV/ow.
The second class of equations satisfying the assumptions of Theorem 2.3 is the class of qLN
systems of the form
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F=Mq(r,w), W=M,(w), (3.3

which naturally generalizes the system in Example 1.1. Such systems aredralledsince the
equation forw can be solved independently and thvefx) can be substituted into the equation for
r. Observe that the second equat{and thus the whole systgradmits an extra integral of motion
of the formF (w,w) =Ww?/2— [M,(w) dw. The gLN system & 5" E attains the forn(3.3) if and
only if the second componeM , of the force— A~ 1Vk does not depend on

i A~1Vk),=0 3.4
o ( )2=0. (3.9
Example 3.4The LN equations generated by the function
E=riw—wi?+Kk(r,w)
are driven[i.e., have the form(3.3)] provided thatk(r,w) satisfies the following second-order

PDE:

SETENE N

R P
or\r ™ 2w

which is a specialization of3.4). The general solution of the above equation is

2

k(r,w)=f +r2g(w)

r
w

with arbitrary twice differentiable functionsandg. The corresponding gLN system attains the
form

2 d
P=-rg’(w)+ W—rzf’<w), W=—2d—W(Wg(W))

and can be solved by quadratuiegse Sec. VIl The second integral of motion of our system,
F=w?/2— [M,(w) dw=wW?/2+ 2wg(w), yields the matrixB

0 O

which is singular soF does not generate our system. However, any linear combination
+ uF of E andF (with both\ andu# 0) is another integral of motion with a nonsingular matrix
B’=NA+ uB and thus it generates the same driven systei. as

Existence of two functionally independent constants of motion does not automatically imply
Liouville integrability since we also need a Hamiltonian formulation for our equations of motion.
Our systems usually do not have a Lagrangian formulation and so they do not have the standard
Hamiltonian formulation. On the other hand, the special system discussed in Example 1.1, being
a stationary flow of the Harry Dym hierarchy, is expected to be integrable. The question thus
arises if/when our gLN systems possess a nhonstandard Hamiltonian formulation. In Sec. VI we
shall demonstrate the existence of new Poisson structures for gLN systems and their close rela-
tionship with Poisson pencils for separable potentials. We shall also explain there when and in
what sense our gLN systems are integrable.
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IV. FUNDAMENTAL EQUATION

We shall now characterize those two-dimensional gLN systems which admigtvealratic in
velocities functionally independent integrals of moti@handF, with the forceM = — 2A~1Vk
=—1B 1VI. We remind the reader that for=2 we use the notatiog=(q;,0,)'=(r,w)".

Let us consider two symmetricX22 matricesA(r,w) andB(r,w) both satisfying the cyclic

conditions(2.3). According to Remark 2.2 they must have the following structure,

Air Ar Bi1 B
= , B= (4.9)
A12 A22 BlZ B22
with the polynomial entries given bicf. (2.6)]
All(W)=a1W2+ b1W+ aq,
2A(r,w)=—2a;rw—br —cqw+ B4, 4.2
Agdr)=asr?+cqr+ vy,
and
Bll(W):a2W2+ b2W+ as,
2Blz(r,W):_2a2rW_b2r_C2W+B2, (43)
BoAr)=a,r’+cor + 2,
with some arbitrary real constards,...,y,.
Theorem 4.1(fundamental equation): Let
r}_ LA VK= 2By 4.4
w2 2 ' “4

with nonsingular2 X 2 matrices A, B given by (4.1), (4.2), and (4.3), be a set of gLN equations.
Then the functions K=k/det(®) and K,=I/det®) both satisfy the same linear, second-order,
partial differential equation

0=2(A12B22— A2oB12) Kyt = 2(A11B2o— A2oB1) Kiw + 2(A11B 12— A1oB1) Ky
+3(A120B2p— B129r Agat AgpdwB 11— Boodw A1) Ky — 3(A119;Boo— B11d: Agz
+A1200WB11— B120wA11) Kyt 3(0,A20,B11— 9, Bo2d /A1) K, (4.5
which explicitly reads
0=2K [ y2B81= v1B2+ (D2y1— ¥2D1+ B1Ca—C182)1 + (7¥1C2— ¥2C1)W+ (bCy — Cobs + 2281
—a1B8)r%+2(y18,— y,a1)Wr + (a1h, —apb)r3+ (8,6, — Coa) Wr] + 4K [ apy1 — a1 v2
+(@pCy— a1C)r +(byyy— ¥ob )W+ (apa; — ag@p)r?+ (y18,— ya1) W+ (Do — Coby ) rw
+ (@b —asby)WrP+ (ac, — Coay) rw?]+ 2K [ a1 Bo— apB1+ (aghy — ayby)r
+ (@1~ @1t by By~ bpB1)WH (8182~ 82811 boCy — Coby )W+ 2( apay — agap)wr
+ (@€~ Coa )W+ (810, — @by ) rw?]+ 3K, [ 2,7, — 27,0, + B1C,— €18,

+(3bycy—3Coby + 23,81 — 28, B)r +4(y18,— ¥281) W+ 4(a;by—aphy)r?
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+4(acy—Cap)rw]+ 3K [2a,C;— 2a1C+ by B~ by B +(2218,— 28,8,
+3b,C;— 3C,0)W+ 4(apa; — aqa,)r +4(a,c,— Crap )W+ 4(agh,—ashy ) rw]

+6K[byci—cCobi+2(a;by,—ashy)r+2(a,cy—craq)w] (4.6)

with K denoting either K or K, and K,=dK/dr, K, =d°K/dr? and so on

Conversely, any solution #q) of the equation (4.5) generates two different systems of qLN
equations g — A~ Vk,=— 3B VI, and 4=— 1A Vk,=—3B VIl,, where the functions
kq,ks,l4,l, are determined by the equations

l,=K,de(B), Vk;=AB 'V(K,de(B)),
(4.7)
k,=K,det(A), VI,=BA 1V(K,de(A)).

We will call the equation4.5) the fundamental equatioassociated with the matricésand
B.

The fundamental equation plays a crucial role in our theory of gLN systems. Observe that it
is invariant with respect to the transformatidm>NA+ uB, B—N'A+u’'B, (AN, u,u’ €R)
since the coefficients at every monomial in this equation are skew-symme#tiais B. This is
consistent with statemeri8) of Theorem 2.3, which asserts that if any pEifF of functions
generates a LN system, then the linear combinatidahs uF and\’'E+ u'F also generate the
same system. This explains that the assumption of nonsingularity forAbarid B is nonessential
since if detp)#0, a singular matrixB can always be substituted by an invertible matBk
=\NA+ uB. We shall investigate further properties of the fundamental equation in the next theo-
rem.

Notice that in the second part of Theorem 4.1 one has to reconsjrantdk; by integrating
the expressions fovl, and forVk,. This can always be done, as the above theorem implicitly
states. Also, notice that in the fundamental equatib6) all terms of degree 4 and higher cancel
so that the polynomial degree of coefficients in this equation is less than or equal to 3.

Proof (of Theorem 4.1)0Our LN system(4.4) is generated by either of the two functions
E(q,q)='Ag+k andF(q,8)=q'Bg+| and so the conditioi2.9), i.e., A" *Vk=B~1VI, must
be satisfied. This implies thatl=BA~Vk. This equation for the functiohhas solutions if and
only if its compatibility conditionl ., =1,,, is satisfied. This yields a PDE for the functiknvhich,
after the substitutiork=K; det(d) and with use of the cyclic condition&.3), yields thatK;
satisfies equatiori4.5). By inserting into this equation the explicit form of the polynomials
Ai11,...,By, We obtain(4.6). On the other hand, the conditi¢®.8) implies alsoVk=AB~ VI, and
its compatibility conditionk,,,=k,,, gives a PDE which in terms df,=1/det(B) must attain the
form (4.5) with interchanged entries gk and B (since the equatioWk=AB VI becomesV|
=BA 1Vk when one exchanges,k andB,l). Due to the skew-symmetry of coefficients of the
equation forK; with respect to the entries of matricAsB [clearly seen from the form d#.5)],
the obtained equation fd¢, differs from the equation foK; by a minus sign on the right-hand
side only. This proves tha¢; andK, both satisfy(4.5 (notice, however, that this doestimply
K]_: K2) .

The existence df, [i.e., the possibility of integrating the equatiois?) in order to obtairk; ]
follows from the fact that the conditiong?k,/drow=a%k,/dwadl together with Vk;
=AB 1V (K, det@®)) yields precisely the fundamental equation Foy which is satisfied due to
assumptions. One can similarly prove the existenck, ofThe second statement of the theorem
can now be proved by checking that both p&iysl; andk,,l, given by(4.7) satisfy the condition
(2.8) and thus give rise to two systems of qLN equations. Q.E.D.

Remark 4.2For B(q) = 3l (a 2x 2 identity matriy the equatior(4.5) becomes the Bertrand—
Darboux equatior(3.2) characterizing all separable potentials since in this ¢pse- 2B~ VI
=—VI is a potential equation.
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The next theorem shows that there exists a recursive relation between two different gLN
systems constructed from a given solutkog(q) of the fundamental equatidd.5). This makes it
possible to construct a doubly infinite sequence of gLN systems corresponding to a given funda-
mental equation.

Theorem 4.3(recursion theorem): Let k;,1; and k|, be two pairs of functions determined
by a given solution K of the fundamental equation (4.5) as in (4.7). Then these functions are
related by the following linear algebraic equations:

k,=1,def{AB™Y), |,=I,Tr(AB 1) —k; (4.8

(whereTr denotes trace of matrix). Moreover, in the infinite sequence

Ko ki ks
/ / /
| Ky 1 K2 1 Ks (4.9
/ /! /
lo l1 2

of triples (K, K1), me Z, defined recursively by

Kn=Im_1detAB™ 1), 1,=l,_1Tr(AB Y —ky_; (4.10
and by

Kn=kn/detA)=1,_,/de(B),
the functions k and |, satisfy A 'Vk,=B~ VI, and thus they both determine the same (for a
given m) gLN systeri=g— A~ 1Vk,=— 2B 1VI,,. All functions K, satisfy the fundamental
equation (4.5) and are related through the following two-step recursion:
Kmn+1=Kn Tr(AB 1) —K,,_; def AB™1). (4.1

The above recursion is reversible. The solutiop placed betweeh,,_, andk,, determines both

Im—1 andk,,. The recursioni4.1]) is soluble. Namely, if we denote the eigenvalues of the matrix
AB~ 1 by N, and\,, then it can be proved that for the casg# \, the solution of(4.11) is

1
K (K1 —=NoKo)A T+ ——— (KA — KNS,
A=A

while in the case\;=\, the solution of(4.11) becomes
K1
Km: Ko)\T"‘ )\__ KO m)\lm .
1

In both case¥, andK; are two subsequent solutions of the fundamental equation in the sequence
(4.9 which are related by
V(K,de(B))=BA 1V (K, detA)).

In order to prove the recursion theorem we need the following lemma.
Lemma 4.4: Let X AB~! with matrices A,Bas above. Then

X~V (de(X))=V(Tr (X)).
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This lemma follows from the cyclic properti€8.3) of matricesA andB by a lengthy but straight-
forward calculation.

Proof (of the recursion theoremEonsider a solutioiK, of the fundamental equation and the
functionsky,l4;k,,l, defined by(4.7). Then obviouslyk, /detd)=I,/detB), which immediately
impliesk,=1, det@AB™ ). Let X=AB™L. Then

VI,— V(I Tr(X)—k;)=X"1V(K,dei{A))— V(K, de(B) Tr(X))+ XV (K, de(B))
=X"1V(K,de(A))—(Tr(X)I —X)V(K, de(B))—K, de{B)V(Tr (X))
=X"1V(K,de(A))— X 1de(X)V(K,det(B))—K,de(B)V(Tr (X))
=K, de(B)(X 1V (detX))— V(Tr(X)))=0,

where we used that?— Tr (X) X+ det(X)| =0 as follows from the Cayley—Hamilton theorem. The
last equality is due to Lemma 4.4 above. THys |, Tr(X)—Kk; up to a nonessential additive
constant. This proves the first assertion of the theorem.
If we now define the sequendé¢k,,,l )} via the recursive procedurd.10, then a simple
induction argument shows that each paig, (I ,,,) satisfies the conditio(2.8) and thus bottk,, and
| » determine the same LN system. Moreover, déghk,/det®)=I,,_,/detB) is a solution of
the fundamental equation as theorétrl) states. Finally, to obtaif#.11) it is enough to insert the
formulaK,,=k,/det@)=I,_,/det®) into the second equation i@.10. Q.E.D.
Example 4.5 (cf. Remark 4.For B= 3| (the potential cagehe recursiori4.8) takes the form

k2:4V1 de(A), V2=2Tr(A)V1—k1

with V;=1,. This is the separable case wh@n5) reduces to the Bertrand—Darboux equation. In
the generic case, i.e., whar# 0 in (2.6), the matrixA(q) can be reduceflvith the use of affine
transformationg)= SQ+ h with Se GL (2,R),he R?, see also Sec. Mo the form

—g5+\, 4102

A(q)= .
S Pep! —qi+ N

If we now start with the harmonic oscillator potentMLzé(qinL qg), then the conditiorVV,
=1A"1Vk, givesk;=\,q2+\;q3 and the recursion formulas specify to

ko=2(0%+03) (A 1ho— NG5 —N103),
Vo=N105+ 05— (a3 +03)?,

thus reproducing the potential of the Garnier sysfelincan be shown that the above formulas
prolongate to the=2 case of the recursion for the Jacobi family of elliptic separable potentials.

In order to explain the character of the recursiér®) more completely, let us consider instead
of the pair(A,B) of cyclic matrices another paiA(+ «B,B) with u e R. As it can be showiisee
below), this pair determines the same fundamental equation as thé¥Birdoes. By choosing a
solutionK, of the fundamental equation and the pait{ «B,B) we arrive at a different qLN
systemd=M ,(q)= — A+ uB) V(K, det(A+uB)). It turns out that the forcM ,(q) is a
linear combination of two neighboring forces in the sequeidc® generated by,.

Lemma 4.6: Let A and B be twbx 2 matrices satisfying the cyclic conditions (2.3) and let K
be a solution of the fundamental equation associated with A and B. Lefuatd®. Then

(A+uB) V(K detl A+ uB))=A"1V(K de(A))+ uB V(K de(B)).

This lemma is a consequence of Lemma 4.4. It says that a solution of a given fundamental
equation determines the forté (and so the system of gLN equationg tolinear combinations
of two consecutive systems in the recursid).
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As we have mentioned, the matricAsand B uniquely determine the fundamental equation.
The choice ofA,Bwhich generate a given fundamental equation is, however, not unique since the
pair A’ = aA+ BB, B’ = yA+ 6B determines the same equation. One can also ask to what extent
a given fundamental equation determines the p&jB). The precise relationship between pairs
(A,B) and the fundamental equation is explained in the following theorem.

Theorem 4.7: Let (A,B) be a pair of linearly independent matrices A, B satisfying the cyclic
conditions (2.3). Then there is a1 relationship between the linear sp@nA+ uB:\,u e R} of
A and B and the fundamental equation (4.5),,i.e.

(1) any two linearly independent matrices AaA+ BB, B’ = yA+ 6B determine the same fun-
damental equation as (A, B) does

(2) If the pair (A’,B") determines the same fundamental equatio®gB) does, then the matri-
ces A and B’ belong to the linear spafhNA+ uB} of AandB.

Proof: An easy calculation shows that the fundamental equation associated with the matrices
A'=aA+ BB andB’' = yA+ 6B differs from the fundamental equation associated with the ma-
trices A and B by the multiplicative factoraé— By on the right-hand side, i.e., by the nonzero
determinant of the transformation betwee®B) and (A’,B’), and so it is, in fact, the same
equation. This shows asserti¢h) of the theorem.

Assume now that the equatidd.5) is associated with a paiA,B). Consider the vectoX
=(X1,X5,X3) e R® of the coefficients of4.5) at the highest derivativels,, ,K,,, ,Kyw, respec-
tively. Then

X1=ABor—AB1o,
Xo=AB11—A11B2,
X3=A11B1o—A1B11, (4.12

or

>

X=AXB, (4.13

where,&=(A11,A12,A22)t and I§>:(Bll,812,822)t are three-dimensional vectors dependingron
andw. Hence, for a fixedr,w) both vectorsA andB are orthogonal tX. The coefficients aK, ,

Ky, andK yield equations which are differential consequences4oi?2 and so they do not
impose any additional restrictions dA,B). Suppose now that there exist matrioks and B’
satisfying the cyclic conditior{2.3) and associated with the same fundamental equation. This
means that the equatiqd.13 has another solution, i.e., thit=A’ X B’, so that the vectora’
andB’ are orthogonal tX and, in consequence, they are linear combinationd ahd B: A’
=aA+ ﬁé, B'= y,&+ 5B with some coefficients that may depend omand w. For the corre-
sponding matrices it immediately follows that

A'=aA+BB, B'=yA+SB.

It remains to show that the coefficients 3, y, §in fact do not depend onnor w. This can be
shown by inserting the explicit forn4.2) and (4.3) of entries of matrice®\,B, A’ andB’ into
(4.12. This shows assertiof2) of the theorem. Q.E.D.

V. AFFINE INEQUIVALENT FORMS OF FUNDAMENTAL EQUATION

In this section we are interested in characterizing all different types of two-dimensional qLN
systems admitting two functionally independent integrals of moicand F which are quadratic
in velocities, i.e., systems of the form
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g=M=—3IA"1vk=-1iB VI, (5.1

where M is the force of the system. Every such system is described by a pair of matrices
A(q),B(q) satisfying the cyclic condition&.3) and by a pair of function&(q), 1(q) satisfying
A~ Vk=B~1VI. We remind the reader that the functickislet(d) andl/det@®) satisfy the same
fundamental equation with the coefficients completely determined by the matrix eleménanof
B.

Let us first consider how the qLN system=@"E=2A({+ 3A1Vk) transforms under the
affine transformation of coordinates

q=SQ+h, SeGL(2R), heR? (5.2

whereQ=(Q;,...,Q,)". Itis easy to see that, under the affine transformatod, the generating
function E transforms as

E(9(Q),q(Q))=Q'S'A(q(Q))SQ+k(q(Q)), (5.3

whereq(Q)=SQ+h and sod(Q)=SQ It can be shown by a direct verification that the trans-
formed matrix

Aq(Q)=S'A@(Q))S (5.4

in (5.3 also satisfies the cyclic conditiori8.3) and thereforg5.3) generates a qLN system. This
means that the gLN system=RA(§+ 2A~1Vk) is indeedinvariant with respect to the affine
change of coordinate$.2).

Let us now consider the systei®.1). Using(5.4) one can prove that the fundamental equation
associated with the pai{A,B) of matrices is also invariant with respect to the affine transforma-
tions (5.2). This means that we can simplify this fundamental equation by performing an appro-
priate affine change of coordinates. However, Theorem 4.7 makes it possible to classify funda-
mental equations, and therefore the corresponding gLN systems, by clasgp@ie@f matrices
(A,B). Instead of working with the coefficients of the fundamental equation we can thus work with
linear spang\ A+ B} of A andB. Since the affine transformations do not change the polynomial
degree of matriced\,B, the set of all linear spans & andB can be divided into affine inequiva-
lent classes corresponding to different polynomial degre& afidB. Each equivalence class will
be represented by the algebraically simplest pair of matrices obtained by the use of affine trans-
formations and linear combining of matricésince the latter leave the fundamental equation
unchanged, see abgve

In order to be more precise we shall introduce some notationABy(i=0,1,2) we will
denote all matrice®\ which satisfy the cyclic condition§2.3) and have the highest degree of
polynomial entries equal tb So, for example, the general form of matrices in the ckSs is

ba;+a  —3bg;—3c0,+ 38
* cOi+vy

with arbitrary constantgparametersb,c,«,8,y. We will use the symbok to denote matrix
elements determined by the symmetry of a given matrix. MoreoverABY, B(4] (i,j=0,1,2) we
will denote the class ofnonordered pairs (A,B) of linearly independent matrice’,B such that
one of the matrices belongs #&(") and the other tdBY). We have, of coursefA("), B()]
=[AD), BM)] and so we have precisely six such classes. Obviously, all clf#éBsB()] are
invariant with respect to the affine transformatidbs?). Notice that if (A,B) e[A®), B®)], we
can kill the coefficienta, at the second degree monomials B by subtractionB—B
—(a,/a;)A so every element of this class can be reduced to an elemgatih B(V]. Thus we
have to consider only five classes. It is easy to realize that the five clpaS&sB()] with i
=],j<2 are invariant with respect to the affine transformati@®®) and with respect to taking
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linear combinations of pairéA,B). These two operations can now be used to find for every class
a simple representing paiA,B) which has a minimal number of free paramet@simple repre-
sentative. Consider, for example, the claga®, B(®)]. The general form of matrices belonging
to this class is

B a95+biby+a; — 10102~ 3010~ 5C102+ B1/2

* 105+ 101+ y1 7
(5.9
B2

2

an

B:
5,
2 2
Translation by the vectdr= — (1/2a,)(c,,b,)! kills b; andc; in the matrixA. Since translations
obviously preserve the form @ the above pair of matrices attains the form

B
2, _ B1 a o
Al a;xra; alqlq2+? B
’ B
* a5+ » 72 Y2

with some new constants denoted by the same letters @5.5n Further, the transformation
A—A—(B1/B,)B Kills the coefficient3; in A. In the case whe,=0 we can still kill 81 in A
by the linear transformatiog=SQ with

—ty1—B1/2
S: a’l+t,81/2
1 t
wherete R must be chosen so that;+tB,/2#0 and detf+#0, which can be always done.

Finally, we can divide both matrices ka4 and 2x,, respectively. So, a simple representative of
the clas§ A®®, B(9)] has the form

1 kB
B PGt+a, —0i0; B 2 2 5.6
* Qs+ 1)’ B2 '
7 Y2

with four essential parameters. Both separable and driven systems belong to this clag since

= 1| for separable systems ald=diag (,0) for driven systems.

We perform a similar reduction for each clggs’), B1)],i=j,j<2. The results are presented
below.

It is also easy to see that one can pass from one invariant [od8sB(’] to another by
specifying values of free parameters. For example, by se#tirg0 we obtainf A®Y), B(M] from
[A®) B by settingb,=c,=0 we getl A, BO] and so on as shown in Fig. 1. This figure
presents—for all classdA(", B)]—complete results of simplification of a generic pél,B)
belonging to each class with the use of linear combinations and affine transformations.

Below we list the form of the fundamental equati@h6) corresponding to the simple repre-
sentative pair(A,B) of each class as given in Fig. 1. We use the notatigr JK/dq;, K;;
= 9%K/dq;dq; .

(a) For[A®), B,
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2 - _1
[A(Q)’B(l)] 2+ 192 ) =73 3G2 + P2/2
-ag: @M * a -+
a; = 0 b‘z =Cy =
5 - 1/2 2
[A® BO)] g+ q192 7 /2 s/
a2 ¢G+m B2/2 72
a = 0
[A®, BO) ©ten —ia+ih | 5@+ 50
* T * ¢+ 72
by =cy =
[4), BO] @ T30 /2 f:/2
—30 0 B2/2
bh=c =90
[A®, BO)] 10 ; 12 B2
0 m B2/2 7

FIG. 1. Classification diagram.

0=Ku1(— 7182+ 7102— 2¥20102~ B207— 4502) + 2K 1 apy1 — @12~ @101~ Y205+ @27
—0105) + Ko a1 B~ a10p+ 20,0105+ 8205~ G3) + 3K (— B201— 27202~ 2010,)
+ 3Ky — g+ 2a0; + Bo0, — 203) — 60,K.
(b) For [A®®), B(O)],
0=Kyy(— y182— 2720102~ B205) + 2K 1o y1— a1 72— 7205+ )
+ Koo @185+ 20105+ B203) + 3K1(— B0~ 27202) + 3Ko(20:+ BoW).  (5.7)
(c) For[AW, BV,
0=2K4( 281~ ¥1B2+ (— 2+ B1)d1+ 02— qF)
+4K(azy1— ary2— 101~ ¥202— d102)
+ 2K oo 182~ ap By + Qs+ (Bo— 1) Gp—05)
+3Ky(=2y,+ B1—301) +3Ky(—2a;+ B,—30,) —6K.
(d) For[A®), BO)],
0=27,0:K11+4y20:K 15— 2(01/2+ B205) Koo+ 67,K; = 365K, (5.8
(e) For [A©), B(O)],

0=y1B:K11+2( a1y, — azy1)Kio— a1 82K ;. (5.9
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What we present here is an illustrative characterization of different types of fundamental
equations in terms of matrix paité,B). This provides a good intuitive description of the world of
gLN equations and helps to specify where two particular classes—separable potentials and driven
systems—belong. An alternative way of classifying qLN equations with two quadratic integrals of
motion is to simplify the fundamental equati¢h5) with the use of affine transformations as has
been done for the Bertrand—Darboux equétitsee Example 5.1 belowThis may amount to a
similar picture as we have presented above, but the principles of simplification of the third-order
polynomials aK,, , K,,,, andK,,, are more difficult to discern. This is yet to be done.

Example 5.1:The classification of types of the Bertrand—Darboux equation with respect to
Euclidean transformations leads to three forms of this equation which are separable in either
elliptic, parabolic, or Cartesian coordinates. According to Corollary 3.1, if a potential two-
dimensional Newton system

N v

with V=V(q,,9,) possesses a second integral of motion of the f&mq'Ag+k(q) with A

e A@, then it has the gLN fornij= — 3A~*Vk= — 3B~ VV with B= I wherel is 2x 2 identity
matrix. Moreover, the potentidl must satisfy the Bertrand—Darboux equat{B®). This system
belongs to the clagA(®, B(9] with 8,=0 and witha,= y,= 3. The corresponding fundamental
equation is exactly the Bertrand—Darboux equation since in this Kas¥/detB)=4V. The
simplification procedure described above does not alter the form of the nBatrit and so the
corresponding fundamental equatim?) attains the form

0=(Vao— V11)U10a+ Vi 07— G5+ y1— @) — 60,V + 60, V3, (5.10

which has only one essential paramejgr- «,. This form of the Bertrand—Darboux equation
separates in the elliptic coordinatedhe specificatiora; =0 reduces the clagsA®, B(9] to

[AM) B, The corresponding fundamental equation after the simplification procedure attains
the form(5.8). In the case wheB= 3|, the final form ofB (after simplification will be exactly the
same(i.e., with 8,=0, a,=v,=13), and so the fundamental equatith8) reads

0=01(V11— V22 + 20,V 1o+ 3V;.

It does not contain any parameters now. This equation separates in the parabolic coofdinates.
Further specificatioh; =c,=0 leads to the clagA(®), B(9)] of constant symmetric matrices. The
corresponding fundamental equation in the course of simplification attains thé3@mvhich in

the caseB= 3| (again, this form o8 survives the simplification procedure—in this case just the
diagonalization ofA by a rotation yields V,,, =0, whereé, » are coordinates which originate by a
rotation of the Cartesian coordinat@g/. This is the case of the Bertrand—Darboux equation
separable inrotated Cartesian coordinates.

The above example indicates that the fundamental equation plays the same role in the theory
of gLN equations as the Bertrand—Darboux equation does in the theory of separable potential
forces M= —9V/dq. For separable potentials the characteristic coordinates of the Bertrand—
Darboux equation determine the coordinates of separation which makes it possible to solve the
corresponding Newton equations by quadratures. In Sec. VII we prove a similar result for the class
of two-dimensional driven systems by showing that the characteristic coordinates of the funda-
mental equation associated with a given driven system separate this system, i.e., that in these
coordinates it is possible to integrate the system by quadratures. The question whether the char-
acteristic coordinates of the fundamental equation separate general gLN systems admitting two
integrals of motion remains to be investigated. We have here to do with a much broader theory
depending on five essential parameters while the Bertrand—Darboux equation depends on one
parameter only.
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VI. HAMILTONIAN STRUCTURES AND COMPLETE INTEGRABILITY

In this section we will establish a Hamiltonian formulation of two-dimensional gLN systems
and discuss their complete integrability. Let us consider first the gLN systei" & =2A({
+1A~1VK(q)) generated by the functioB=g'A(q)g+k(q), g=(0g;,0,)" with the 2x 2 matrix
A(q) satisfying the cyclic condition$2.3). This system usually does not have any Lagrangian
formulation and thus it does not have the standard Hamiltonian formulation. However, we can
always embed this system in a Hamiltonian gLN system in the five-dimensional phase space of
variables §1,d,,p1,p2,d) as the following theorem states.

Theorem 6.1 (Hamiltonian form of gLN systems): Let

0=§+3A" (@) V(k(q)+d\ de(A(q))) (6.2)
with q=(q;,q,)" be the gLN system generated by
E=q'A(q)g+k(qg)+d\ defA(q))=E+d\ de(A)

with some constant and with de R. Let alsoM be the extended five-dimensional phase space of
variables(qq,0,,p1,P2,d) with p;=¢;, i=1,2. Then the systert6.1) is equivalent to

4 0 ~(M2)G() | p
pl=| W2)G(q) —(M2)F(a,p) | M(q,d) |V, d=II,V ud, (6.2
d —p' ~Miqd) | O

whereV = (d/994,9/3q,,d1 dp,dl Ip,,d/ad)" is the gradient operator in1 and where the
X 2 matrices G and F and the vector ldre given by

G(q)=de(A)A" =

A22 - AlZ}
- A12 All ’

1 ( Ao AL,

= | —fp, — —— N )
FidP) =31 74, P2 Jq, pl). F=-F,

M(q,d)=M(q)— 30NA~1V (det A))

with M(qg) = — 2A~1Vk being the force of the qLN systéhs 6" E. Moreover, the antisymmetric
matrix Il is Poisson and s@6.2) is the Hamiltonian formulation of (6.1)

Notice that the matridG obtained above is symmetric due to the symmetnAof

Proof: Since V,,d=(0,0,0,0,1}, the equation(6.2) yields g=p, p=M=—3iA"1V(k
+d\ det)), d=0, i.e., it reproduces.1). The matrixIl is antisymmetric and it is straightfor-
ward to verify that it satisfies the Jacobi identity in the phase spdce Q.E.D.

We remind the reader that the operaldrT* M—TM mapping fiberwise the cotangent
bundle T* M of M into the tangent bundleTM is Poisson if the bilinear mapping
{-, }11:C*(M)XC*(M)—C*(M) defined for any pair of functions,g: M—R by

1.9 =(Vuf IV y9)

(where(-,-) is the dual map between cotangent and tangent spacé$)a§ a Poisson bracket.
Remark 6.21n the hyperplanel=0 the solutions 0f6.2) coincide with the solutions of
=—1A"1Vk. Thus our original qLN systerfj= —3A~1Vk is in a natural way embedded in the

Hamiltonian systent6.2).
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Proposition 6.3: The function
E=p'A(q)p-+k(q)+d\ det(A(q))

is a Casimir function for the Poisson operathlr, in (6.2), that is HAVME=O.
One can check this proposition by a direct verification.
A statement converse to the second statement of Theorem 6.1 also holds.
Theorem 6.4: Let the antisymmetric matrix

0 —(NM2)G(q) p
I=| (\2)GY(a) —(N2)F(q,p) | M(q,d) (6.3
—p' ~Miqd) | O

be a Poisson operator in the space of variablgp,d. Then
(1) G(q) must have the form

aqi+cqy+ + gt Sgp- P
1 1TY atilr 51T 502~ o
G(g)= 27 27" 2 (6.4)
* ags+bg+a
(thus it is symmetric) with some constant® &, «, B,y and so
o A22 _A12 (6 5)
_AZl All .

for some symmetric matrix () satisfying the cyclic conditions (2.3). In other word$=1I,
with T, defined in (6.2) and with

[ G22 _G121|
_GZl Gll .

(2) F(g,p) must have the form

1 ( A5 AL,
dd1

Flz(q,p)=§ P2=——

0 pl), F=-F. (6.6)

(3) M(q,d) must have the form

M(g,d)=M(q)+d\N(q),

where —2AM(q)=Vk for some function (q), so if detG)+0, then M(q)=— A" 1Vk, and
where Ng) = — 3A~ 1V (det@®)).

Proof: The conditions {{q; ,qj}i,dfn+cycl=0 and {{d;,dj}m,Pfn+cycl=0 (where
“cycl” means the cyclic permutation of expressigri®ld identically due to the block structure of
I1. The condition{{d; ,q;}; ,d}+cycl=0 yields the symmetry o6: G=G". Further,

o0 dresoveie - M PG, 9Gu) N M,
={{0;,pj}n.d}+cycl= 5 plW1 pzaqz 2 i piW-
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Let us denote the right-hand side of the above equality-ix/2)R;; . Notice thatal\?lj /dd cannot
depend ord, and so we hav@l\?lj /ad=X\N;(q) for some vectoiN(q)=(N;(q),N2(q))' which

yields I\7I(q,d):M(q)+d)\N(q) for some vectoM (q). By taking linear combinations of the
conditionsR;; =0 and using the symmetry @ and the antisymmetry df we get the following
sets of equations:

G G G JG
u_%z_, u_, N 22=2N2, 6.7
dd,  d0; dq; P
Gy 3Gy
=N,, =N,, 6.8
o 2 a, 1 (6.9
F1o=p2N1—piN;. (6.9

The equation$6.7) show thatG;; andN,; depend only omj; and thatG,, andN, depend only on
,. The equation$6.8) give dN, /90, = 9°G1,/3q,99,= IN, /30, and so all terms in this expres-
sion must be equal to a constamtintegration yields

N;=aq;+c/2, N,=ag,+b/2, (6.10

whereb andc are integration constants. Substitutif®g10 into (6.7) and(6.8) and integrating we
get(6.4). If we now introduce the symmetric matrixby the equality(6.5) and us€6.7) then(6.9)
will attain the form(6.6).

It is straightforward to check that with the above forms Bfand G the conditions
Upipjin Pt +cycl=0 and{{q;,p;}n P+ cycl=0 are satisfied identically.

Further, the conditiod{p,,p,},d}+ cycl=0 after some calculations attains the form

J J
0=——(GMy—GzM;) — ——(GzM;—GyM)y),
(9Q1( 1112 21 1) (9qZ( 22V 1 12 2)

which means that in the vector

G22 _G12
_G21 Gll

GooM1—G oM }
—GyM 1+ G M,

M
[MJ —AM.
the mixed derivatives of its components are equal and so this vector is equal to the gradient of
some function— 2k(q), that is,AM=—31Vk or M= — A" 1Vk.
Finally, by direct calculation we verify thad = — A~ 1V (det(d)) and so statemer(8) of the
theorem is proved. Q.E.D.
Remark 6.5:This theorem generalizes the result of Ref. 6. In particular, if we asddme
=—VV(q), then we recover the known second Poisson operator for separable potential Systems.

Notice thatM is the force of the two-dimensional qLN systeéf1). This means that every
Poisson operator of the for®.3) is a Poisson operator for some gLN system of the fo8m).

We are now in position to investigate complete integrability of gLN systems admitting two
quadratic, functionally independent integrals of motion. Notice first that Theorem 6.4 provides us
with an alternative way of characterizing gLN systems generated by a quadratic integral of motion
E: by starting with a Poisson operator of the fo{@?3) we arrive at gLN systems generated by the
Hamiltonian H@,p,d)=d which admit a quadratic integr&. In a similar way the following
theorem characterizes all gLN systems admitting two independent quadratic integtals

Theorem 6.6 (Poisson pencil: Consider the antisymmetric operator
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0 ~(\2)G,(q) p
M,=| (M2)G,(@)  —(M2)F,(a,p) |[M(@)+dA\N,(a) |, (6.11)
-pt —MYq)-dAN () | 0
where
A22 - Alz} BZZ - BlZ
G,= - =Gp— uGg,
“lAn A FlBa By AR
with both matrices A and B satisfying the cyclic conditions (2.3),
1[3(Az—uB2) (A1~ uB11)
[FM]lZZE( 99, P2— aq, P1|=[Falio— #[Fgli2
(with F=—F', Fa=—F}4, Fg=—Fg) and
N,=—3A"1V(de(A))+3uB~*V(de(B))=Na— uNs.
Thenll, is Poisson if and only if
M(q)=—3A"'Vk=— 3B~ VI (6.12
for some functions (g) and I(q). Moreover, if we let
0 —(N2)Gp4 p 0 —(\2)Gg 0
M=, ull,=| (\M2)Gy  —(M2)Fy | M+dA\Na|—ul (M2)Gy  —(M2)Fg | dANg |,
-pt —M-d\N,| 0O 0 —d\Ng | 0

then both operatordl; andII, are Poisson and sbl ,=II,— ull, is a Poisson pencil

Proof: According to the proof of Theorem 6.4 the matfix, satisfies all the Jacobi identities
except possibly fof{p,, pz}nﬂ,d}H#Jr cycl=0, sincell , differs fromIl_ ,g=11,— ullg by the
form of M(q) only. Like in the proof of Theorem 6.4 we find the{tpl,pz}nﬂ,d}HMﬂL cycl=0
yields that the mixed derivatives of the components of the vee®d(A— wB)M are equal and so
—2(A—uB)M=V(k—ul) for some functionk(q) andl(q). By comparing coefficients at dif-
ferent powers ofx we get—2AM=Vk and —2BM=VI and thusM = — A~ 1Vk=—1B"1V]|.

Further,IT,=11I, in the notation of Theorem 6.4 so it is Poisson. Easy calculation shows that
IT, is Poisson, too. Q.E.D.

The above theorem states thaMf(q) is the force of a LN system admitting two function-
ally independent integrals of motion, then the matiix is a Poisson pencil. We will establish its
Casimir function, which will be a polynomial im. This will lead to a bi-Hamiltonian chain
containing the gLN systen6.1). We will prove that this chain is completely integrable. In this
way we will show that our original gLN systerfj= —3A~1Vk=—3B~1VI can be naturally
embedded in a completely integrable bi-Hamiltonian system.

Proposition 6.7: Suppose thét, is Poisson, i.e., that (6.12) is satisfied. Then the function

H,=p'(A—uB)p+k—pul+d\ de(A—uB) 13

is a Casimir function fodI ,, i.e., 11 ,VH ,=0.

m
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Proof: This proposition is a consequence of Proposition 6.3. If we modify the mHtxidy
substituting the matriXA by A— uB and substitutin with k— «|I we obtain the matrix

) N ]
0 -5G,| P
A ~ (6.19
t y .
56, ~5Fu| M,
_nt it
L P -M, | 0]

where

M,=—3(A—uB) V(k—ul)—3d\(A—uB) 1V (de(A—uB)).
Due to Proposition 6.3 the functioi®.13 is the Casimir of(6.14). However,(6.14) is, in fact,
equal toll,, since it can be verified that 3(A— uB) 'V(k—pul)=—3A"'Vk=—3B VI and

that (A— uB) "1V (det(dA— uB))=A"1V(det@))— uB~ 1V (det@®)). Q.E.D.
Let us collect terms iH , at different powers ofu:

H,=p'Ap+k+d\ de(A)+ u(—p'Bp—1—drY)+ u?(d\ de(B))=E+ uF + u?H
with Y=B1;A,,+ByA1;—2B1,A15. Then the above proposition gives
0=TI,VH,=(I1;— uIl,)V(E+ uF+u2H)
=I1,VE+ u(II,VF—II,VE)+ u?(I1,VA—II,VF)— x3I1,VH.

By equating to zero the coefficients at different powersofwe obtain the following bi-
Hamiltonian chain:

I1,VE=0,

II,VF=II,VE,

) ) (6.19
H]_VH :H2VF,

0=II,VH.

Theorem 6.8: The bi-Hamiltonian chain (6.15) is completely integrable, i.e., both nontrivial
bi-Hamiltonian vector fields

V,=I1,VF=II,VE, V,=II,VA=II,VF,

in (6.15) are completely integrahle
Proof (modification of the proof of LiouvilléArnold theorerf): Consider the two-dimensional

manifold N'={xe M:E(x)=E,,F(x)=Fg,H(X)=H} in M. Poisson brackets of all pairs of
E,F.H induced by both structured, andII, are equal to zero, since the functiobs-,H all
belong to the same bi-Hamiltonian chain. For insta{éef}y =(VF,I1;VH)=(VF,II,VF)
={|3,|3}H2=0 with the second equality being a consequence of the bi-Hamiltonian structure of
V,. It follows that the Lie brackefV,, V,] of both vector fieldsv, andV, is equal to zero,
[V1,V,]=[II,VF, II,VH]=0, since the mappingsl,V (i=1,2) are Lie algebra homomor-
phisms between the Lie algebra of vector fields'ehand the Lie algebra of all smooth functions

on M with the Lie bracket defined blfy, f]={f,f5}y;,. Moreover,(VE,Vy)=(VE,II,VE)
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={E,E}H2=0 and similarly(VF,V;)=(VH,V,)=0, which proves thaY¥, is tangent taV. In the

same way one can show théj is also tangent t@dV. Direct verification shows that; andV, are
linearly independent. We thus have a two-dimensional submanifdld M equipped with a pair
of linearly independent, commuting vector fiels andV,. We can now apply the construction
of Liouville-Arnold® and conclude that botk{; andV, are completely integrable. Q.E.D.
Corollary 6.9: The gLN systern=gM = — 3A~1Vk= — 1B~ VI with two linearly independent

matrices A and B satisfying the cyclic conditions (2.3) is completely integrable in the sense that
the trajectories of the system

[q _[ p

p| |M

coincide on the hyperplane =0 with the trajectories of the completely integrable five-
dimensional system

(6.1

q
P
d

=V,=I1,VA=II,VF. (6.17)

Proof: Consider the vector fieltf, from (6.15. Obviously
V,=I1,VA=\ de{B)II,Vd+\dII,V(de(B))
and so in the hyperplang=0 we have

p
Vilg—o=A\ de(B)| M |, (6.18
0

which means that the hyperplade=0 is invariant with respect to the action of the vector field
V,. The formula(6.18 also shows that in the hyperplade=0 the vector field of the system
(6.17 is parallel to the vector field of the systel®.16 and so their trajectories must
coincide. Q.E.D.

Thus we have shown that the syst€l6) is embedded in the completely integrable bi-
Hamiltonian system{6.17). The trajectories 0f6.16 stay on the intersection of invariant mani-
folds for (6.17) with the hyperplanal=0. Also, since we can now solve the systéél?) by
quadratures the time evolution of the coefficiardet®) in (6.18 can be calculated which makes
it possible to solve the syste(f.16) by quadratures too.

VII. NEW TYPES OF SEPARATION VARIABLES FOR DRIVEN gLN SYSTEMS

In this section we study an important class of two-dimensional gLN equations called driven
systems. We find for all such systems their separation variables and prove their integrability by
quadratures. The variables of separation are of a completely new type: they consist of families of
conics which are non-confocal in contrast with the classical separability theory for potential
systems.

We remind the reader that we call a two-dimensional Newton sydtaranif one of the two
differential equations depends on one variable only. By renaming the variables if necessary, we
can always arrange for such a system to take the form

4:1=M1(91,92),
(7.2)
G2=My(0p).
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The second equation can be solved on its own and its solgipr) then determines the equation
for g;, which explains the name “driven.” A driven system always has one integral of motion
F=q§/2—fM2 dqg,, obtained by integrating the second equation once, but, in general, there need
not exist any others.

Here we shall consider driven systems that admit a quasi-Lagrangian formul@tion
=—2IA"1VKk(q). Here, as usualA(q) is a nondegenerateX22 matrix satisfying the cyclic
conditions(2.3), i.e., a matrix of the form

b c B
adg+ba+ —agt— 50— 502t
A= . (7.2)
At 2 qi— St 2 agi+ca+y
0142 2(311 2Q2 2 1

Such a system always hago functionally independent integrals of motid= g*'Ag+k(q) and
F=g5/2— [M,dg,.

By examining the second component of the equatjen— A~ 1Vk(q), we immediately see
that a gLN system is driven iff

A12d1K—A119.k=2 detA)My(qy), (7.3

for some functionM,(q,) depending org, only. We can produce driven qLN systems with any
given M,(q,) andA(q) by solving fork(q) in this equation. The cask;;=0 is degenerate and
will be treated separately latésee Remark 7)6 so we assume from now on thag;# 0.
We start by introducing separation variables érl) as characteristic coordinates fat.3).
Definition 7.1: Define curvilinear coordinatesu(v)=(u(q),v(q)) as follows. Letu be a
parameter indexing the family of characteristic curve$78) given by

A1(q(x))

a0 = —Ap(q(x))]’ (7.4

and letv=q,.

In other words, the curves given l§y.4) are the coordinate curves of constanfor a given
matrix A these curves can be explicitly calculated. In Theorem 7.7 we will describe these curves
more explicitly. Let us just note for the moment that they are not parallel to the curves of constant
v, because of the assumptigxy;# 0. Thus the above description really defines a coordinate
system(at least locally. There is some freedom in the choicewpfbut this will not affect our
results. By abuse of notation we will wrif€q,,q,) andf(u,v) for the same functiofiexpressed
in different coordinate systems.

Lemma 7.2: The general solution of (7.3) is

k(u,v)=f(u)+D(u,v)g(v), (7.5

where f is an arbitrary functionD = det(A), and

)——ZJ M )d
g(q; _All(qZ) 2(02) dqy.

Proof: Along each characteristic cunggx) given by(7.4) we can considef7.3) as an ODE

d
xK(@00)=2D@(0)M (o),

with general solution
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k(q(x))=D(a(x))g(a2(x)) +f,

wheref is a constant of integration. This can be verified by direct differentiation; the cyclic
conditions imply that

d . .
dx D(Q(x))=0:Dq1+ 9,D0,=31DA 15+ 9,D(— A1) = — DA,

and thus

d (q) = d b ; _dD b )

dx (q)—d—x( (1)g(gz) + )_&9“ 3,90
=-Dd,A11.9+Ddg(—Aq)
=—Ddy(A119)=2DM,.

The constant of integratioh can be different for different characteristic curves, so when we
express the result in terms ofandv, f will depend onu (but not onv). Q.E.D.
Lemma 7.3: Equation (7.3) is equivalent, under the substitutiefKldet(d), to the equation

A12011K — Ag1d1K — 39,A119,K =0, (7.6)
which is the fundamental equation (4.5) associated with the matrices A and

0 0

B= :
0 3

Proof: Equation(7.3) implies

! def(A) -

Conversely, this expression can be integrated to giv@, whereM,(q5,) is an arbitrary function
of integration. By substitutink=K det(d) and simplifying the resulting expression using the
cyclic conditions one obtain&.6). Comparison with the general expression for the fundamental
equation in Theorem 4.1 proves the second statement of the lemma. Q.E.D.
Remarks 7.4The fundamental equatiai7.6) is hyperbolic. Its characteristic coordinates are
precisely the coordinatesufv) of Definition (7.1). The general solution isK(u,v)
=f(u)/D(u,v)+g(v), as can be seen by combining the above lemmas.
Let us turn to the question of how to integrate a driven LN system. The soly{on of the
second equation can be found by quadrature fFomqglz—sz dg,:

dq; .
f m‘—f"* 7.7

Insertingg,(x) and{,(x) into

E=A11(02) 83+ 2A15(01,02) 8282+ Aga(d1) 95+ K(d1,02)

would give a first-order ODE fog,(x), but there is no obvious way to solve this equation since
the variablegy; andx do not separate. We will now show how to proceed instead.

Theorem 7.5: Every driven qLN system can be integrated by quadratures using the charac-
teristic coordinatequ,v) of the fundamental equation (7.6) as separation variables
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Proof: We use the notation of Lemma 7.2. Let the system be generat&=i}Aq+k(q)
with k(u,v) = f(u)+D(u,v)g(v). Sincev=qs,, we can expresE asF = 3(v2+A;;(v)g(v)) and
calculatev(x) by quadrature, as above. Now note that since the curves of condbgrdefinition
have tangenty=(A;,,—A;;)"!, we must haveVu=p(q)(A;;,A;5)" for some functionp(q),
whose exact form depends on the choice wfThis gives U=ad,uq;+d,ud,=p(q)(A1101
+A150,), and thus

A2
u?=p?Al A11Q1+2A12Q1QZ+A Q2) p?Ags| E—Agptis— k(Q)+_Q2>

=p®Ay| E- (2F A119(v))—f(u)—Dg(v)

=p All(E (Azz )V —f(u)—Dg(v)

E- —f(u))

In order to complete the proof, we will show thap(u,v)=@(u)|Ap(v)|~*? and
D (u,v)/A(v)=¢(u) for some functionsp and ¢, since this implies that the variablesand x
separate. Explicitly, we can then fingx) from the quadrature

f du :+J’ dx 78
H(WVE—2gp(WF—f(u)  J Aulv(x)’ '

after which the inverse coordinate transformation giveg(g). Notice that for a given matriR,
the characteristic coordinates,{) can be calculated explicitly so that the functiprand thuse
and ¢ can be easily calculated and used in the quadratts® above. The theorem covers,
however, all the cases at once without any need of calculatiexplicitly.

To see thafp(u,v)=¢(u)|A;1(v)| ~*2 note thatd;u=d,u implies thatp(q) satisfies the
PDE

0=01(pA12) = 95(pA11) = Ar201p — A11d2p — 50,A11p,
which has the same characteristic cur¢gd) as Eq.(7.3). Along such a curve we determipedy

integrating

d 3
dXP(Q(X)) 5 92A11(02(X))p(q(X)),

which, taking into accoundj,;(x) = —A11(q»(X)), gives

p(A(x)=B| Agx(a2(x))| =2

The integration constars can be different on different characteristic curves, so changing,to (
coordinates we obtain

p(u,v) = (u)|Asy(v)| 32,
as desired.

Finally, we calculate the total derivative of the functigiiq) =D(q)/A11(g,) along a char-
acteristic curve:
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d P(q(x))=2 (A Aiz)A d (A A%Z)A
—_— X f— —_—— —_ —_—— .
dx q 1| A22 A 127 d2| A2z AL 11

Using the cyclic conditions, we find that this expression is identically zero. This implieg/tisat
constant along the coordinate curves of constaie., = ¢(u). This completes the proof.
Q.E.D.
Remark 7.6:The degenerate cage,=0 can be treated as follows. Sinee=b=« =0, the
expression(7.2) for A reduces to

c B
0 Ta%t;
A=l . (7.9
- §q2+ - COitvy

and Eq.(7.3) reduces to

Ar201k=2(—AZ)M,(qy),

with the general solution

K(q)=—2A102)M,(02)d; T Ka(0d2).

We calculateq,(x) by quadrature as before. Insertimg(x) and g,(x) into E=2A.59.0,
+A22q§+ k(q1,d,) yields in this case an equation of the foam(x) + £(x)q.(X) = n(x), from
which we can findy,(x) by quadrature.

Theorem 7.7: The separation coordinates for driven LN systems, i.e., the characteristic
coordinateq(u,v) of the fundamental equation (7.6), are of one of the following types, determined
by the coefficients in the matrix A:

(1) fanlike hyperbolic, if &0 and b?/4—aa=0;

(2) axial hyperbolic, if &0 and K*/4—aa<O0;

(3) two-point elliptic-hyperbolic, if &0 and b*/4—aa>0;
(4) one-point parabolic, if &0 and b+#0; and

(5) parallel parabolic, if =0 and b=0.

Proof: We will compute explicitly the curves given ky.4), which constitute the curves of
constantu. (The curves of constant are just horizontal lines, since=(q5.) Inserting the explicit
expression(7.2) for the matrixA into (7.4), we obtain

( + b + ¢ '8
q agiQe 5015025
- corn e (719

aga+bo,+a

When solving these equations, we distinguish four different cases, depending on the values of the
parameters ir.
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The case & 0. By settingr,=agq,; +c¢/2 andr,=adq,+ b/2, which is just rescaling of the axes
and translation of the origin, we transfor(h.10 into

F1

—I’ll’z-‘r Cl
o]

_[ —153+C,

C,=bcl/4+apl2,
, Where ¢ _p2/4-aa. (7.1

Subcase €=0 (type 1) Either r,=0, or r,=(x+D;) ! and r;=Cy(x+D;)/2
+D,(x+D;) "%, whereD, and D, are constants of integration. Eliminatingand writing u
instead ofD,, we obtain

S, 7.1
r1—2r2 urs,, (7.12

which represents a family of hyperbolas, each with asymptote® andr,=r,/u. The solution
r,=0 found above corresponds to the limiting cases == (see Fig. 2
Subcase ¢#0 (type 2 and 3) The substitutiors;=r;—C4r,/C,, S,=r, yields

¢ —S4S
2 - —s%—lkéz ’ (7.13
and thus
ds; §; S,
O 5 9 G
resulting in
s?=u?|s5—C,|. (7.14

If C,<<0 (type 2, this represents in theplane a family of hyperbolas centered aroundshaexis,
with asymptotes,= *s; /u and vertices u+/—C,,0) [Fig. 3a)].

If C,>0 (type 3, we obtain in the regiofs,|>\/C, a family of hyperbolas with asymptotes
s,=*+s,;/u and vertices (@ \/C,), and in the regions,|< \/C, a family of ellipses with vertices

FIG. 2. Fan-like hyperbolic.



6392 J. Math. Phys., Vol. 40, No. 12, December 1999  Rauch-Wojciechowski, Marciniak, and Lundmark

2T 22 \\x

—4- -4

(a) (b)

FIG. 3. (a) Axial-hyperbolic in thes-plane.(b) Axial-hyperbolic in ther-plane.

(0,+/C,) and (0;+u./C,). The corresponding curves in theplane are obtained by a shear in
the s, direction with factorC, /C, [Figs. 3b) and 4b)]. They are still hyperbolas and ellipses, but
not aligned parallel with the axes.

The case & 0. Subcase k0 (type 4) Translating the origin by;=q;— (ac/b?+ B/b) and
r,=q,+ a/b, we obtain

[wz T2 | (7.15

which yields

(a) (b)

FIG. 4. (a) Two-point elliptic-hyperbolic in thes-plane.(b) Two-point elliptic-hyperbolic in the-plane.
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21

2 1 2
(b)
FIG. 5. (a) One-point parabolic in the-plane.(b) One-point parabolic in the plane.
c 2
= prz| =urz. (7.16

With s;=r,;—cr,/b, s,=r,, we obtain in thes plane a family of parabolatszzsflu [Fig. 5@)].
The corresponding curves in thelane are parabolas obtained by a shear irsihgirection with
factor c/b [Fig. 5(b)].

Subcase b0 (type 5) Here we can assume that~0, or else we get the degenerate case
A;,=0. A simple calculation shows that

Q= G+ gyt (7.1
L 4o 2 2a 72" '
which is a family of translated parabolas seen in Figo6straight lines, ift=0). Q.E.D.

\\3-

7

A\

Nk

————

FIG. 6. Parallel-parabolic.
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VIIl. EXAMPLES AND APPLICATIONS

The notion of a qLN forceM (q) = — 2A~1(q) Vk(q) naturally generalizes the concept of a
potential forceM(q) = —Vk(q), which is a special case. The gLN forces admit an integral of
motion quadratic in velocities, which in the potential case becomes the energy integral. The
functionk(q) may be called a “quasi-potential” of the fordd (q).

A given force is easy to test for the existence of a gLN formulation, provided that one knows
the general form of the matri&(q) solving the cyclic conditior(2.3). In two dimensionsA(q),
given by

b ¢ B
aw?+bw+ - —Sr—swW+t o
w+a arw—r 2w+2
A(r,w)= b ¢ 8 :
2
_ Cr——w+ I arc+cr+
arw—r 2w+2 0%

depends on six arbitrary parameters, and a gLN formulation exists provided that the mixed de-
rivatives of Vk(r,w)=—2A(r,w)M(r,w) are equal for some nonzero values of the parameters
a,b,c,a,B,y. We thus have the following lemma:

Lemma 8.1: A given force M,w)=(M(r,w),M,(r,w))! admits a qLN formulation
M (r,w)=—3A"1(r,w) Vk(r,w) if and only if there is a nontrivial solution A, wittet(A)#0, of
the equation

Lemma 8.2 (Criterion of integrabilityn=2): Equation (8.1) has a two-parameter family of
solutions for Ar,w) if and only if g=M(q) admits two functionally independent integrals of
motion E and F quadratic in velocities

Proof: If such E=q'Ag+k and F=g'Bg+| exist, then\E+ uF=§'(AA+ uB)q+ (\k
+ wl) is an integral of motion for al\ and «, and thus\A+ B is a two-parameter solution of
(8.1.

Conversely, if there is a two-parameter solutibif\,«) of (8.1, then there are linearly
independent integralg andF with A=D(1,0) andB=D(0,1). Q.E.D.

These two lemmas make it simple to test a given two-dimensional force for the existence of
a qLN formulation, and to show integrability if a two-parameter family of solutionsAf@xists.

Example 8.3 (gH-H system)he generalized Hon—HeilesgH-H) systend is defined by the
potential

3
C201  Co

V(Ql,%):Cl%qg_ T+ 2_(:]2’ C1,C,#0.
2

It is known to be integrable in three cases: the Korteweg—de \(Ke¥/) case &€,+c,=0, the
Sawada—KotergS-K) casec;+c,=0, and the Kaup—Kupershmidk-K) case 16;+c,=0. In

the KdV case, and also in the S-K casecjf=0, the second integral of motion is quadratic in
velocities, in the other cases it is quartic. The system appears naturally when integrating the
equation G=(29%+2c ud+ciuy) (3u,,— 3c,u?), which for the above cases corresponds to the
stationary flow of the fifth-order KdV, S-K, and K-K soliton equations. This observation
explained® the remarkable connection of the integrable cases of the gH-H system with soliton
hierarchies.
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We shall apply our criterion for existence of a qLN formulation to two Newton representa-
tions of the gH-H system; the original systemdrvariables

. oV B 2, o g?
01= 5_%— C102TC2Qy,
(8.2
. oV 5 N Co
= — — = — C —,
a2 aq, 19192 qg
and another system invariables
F1=r,+(ci+cy)rs,
(8.3
" Co 3
I’2= C3_ 1001I’1r2— 1&1 C1+ E I’l,

which is equivalert to the q system under the map=q;, r,=—c,(q5+q3), c=—4c, [ X(§?
+q§)+V(q1,q2)]. Ther system does not have any natural Lagrangian or Hamiltonian formula-
tion and its integrability has previously been studied only through its equivalence with the original
gH-H system. We will show here a more direct approach based on the qLN theory.

Beginning with theg system, we insert the right-hand siklefrom (8.2) into (8.1), identifying
(941,9,) with (r,w) as usual. Since the powersy! are linearly independent, the coefficients at
different powers must be individually zero. This gives, after some simplification,atidt=0,
a= vy arbitrary, (&,+c,)c=0, (c;+c,)B=0 andcyB=0. This means that we always have a
solutionA=tl (of course, corresponding to the energy integral, since the system has a pptential
Moreover, in two cases there exists a two-parameter solution; whbei &,=0,

1 0 0 -0
A=t +s ,
0 1 -0 20;
and, whenc,+c,=cy=0,
1 0 0 1
= + .
Ao 11791 o

So in this way we have recovered the KdV and Sd§=0) cases, while the K-K and S-Kc
#0) cases, with a quartic extra integral, fall outside of the qLN theory.

Performing the same procedure for thesystem(8.3), we find thata=0, 4c,y+b=0,
(31c,+ cz)c:(305+ €1C5)Cc=0, 2a—3c3c=0, and (&, +c,) B=0. Since we have excluded the
trivial casec,=0, it follows thatc= «=0, so that the solution is

—2r, rq
r{ 1/2c,

s

except for the KdV case@d + c,=0 which admits a two-parameter solution

—2r,
A 2 11 01
=t + :
r{ — S 1 0

C1

This agrees with the known fd¢tthat for ther system the second integral is quartic in velocities
in the S-K and K-K cases and thus cannot be found by this method.
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Suppose, however, that we had found the second integral in these cases by some other
method. Then we would still have use for the qLN theory in proving the system’s integrability,
since ther parametrization admits the nonstandard Hamiltonian formuld8a?) with A\=1 and
c3 playing the role of the fifth variabld. (This coincides with the Hamiltonian formulation that
was found in Ref. 11 by transferring the standard Hamiltonian formulation fromy freametri-
zation, except for naming the momenta in reverse order; pgra;, while in that papers;
=fy, Sp=F1.)

For example, in the S-K case(= —c,=3) we have

y 0 0 —1/2 —ry/2 Py 7

P 0 —ry/2 ro o)

o] * 0 —p1/2 ) V mCa,
P2 o x 0 | c3—5rir,—(5/3)r3

Cs * * * 0

with the commuting integrals of motioE= —2r,p2+2r,p;p,+ p3+4r ra+2r3(ri+5r,)
+c3(—r2—-2r,), which is a Casimir, the Hamiltoniarc;, and F=3pj—6rrpi+(3r2
—1o)P1PatT1Ppa+ 2r2ra+Lrdr,+ 28+ i3+ (= 2rir,—r3+ 2p?)cs, which is quartic in mo-
menta.

In order to give an impression of the wealth of different types of nonpotential Newton forces
belonging to our theory, we will now examine solutions of the fundamental equétiénfor
some specified pairs of matricédsand B. Any such solution corresponds to an integrable qLN
system, and once one solution has been found, a whole family of solutions can be constructed
using the recursion theorem 4.3.

Example 8.4 (One-dimensional complex motidhe take A andB as

0 1
1 0

’

1 0
0 -1

o

then the fundamental equation reduces to the Laplace equatjornK,,,=0. Given a solution
K(r,w), i.e., a harmonic function, we hake=K det(d)=—K, sok is also harmonic. We find the
corresponding from the relation

0 -1
VI=BA Vk=

1 OVk’

which is nothing but the Cauchy—Riemann equationskfandl, sol is the harmonic conjugate of
k. The corresponding gLN systein —k,/2, W=k, /2 can be integrated by introducing the com-
plex variablez=r+iw and the complex integral of motiofi=E+iF = (i2—w?+k)+i(2fw
+1)=(F +iw)2+ (k+il)=z?+f(z), wheref(z) =k(z) +il () is analytic. We can now determine
z, and thusr andw, from z= * \/£—f(z) by one complex quadrature.

Repeated application of the recursion form(#al0 yields in this case the standard cycle of
conjugate harmonic pairk()—(I,—k)—(—=k,—D)—(—=1,k)—(k,I).

Example 8.5 (Fundamental equation separable in polar coordinates):

—2wW T 0 w

0

A= = .

w —2r

Then the fundamental equation becomesqr?K,, +2rwK,,, + w?K,,,) + 9(rK, + wK,,) + 6K,
which in polar coordinatesr &R cos¢, w=Rsin¢) transforms into 6 2R?Kgg+ 9RKr+ 6K.
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The general solution of this equation KR, ¢) = fo()R 2+ go(p)R™ 2 for some arbitrary
functionsfy andgy. Changing back t@ andw, we find that the general solution of the funda-
mental equation in this case is

-2 r=3

r 3 (w
1+ (wir)?) =1 T

T+ (winz 9

w

arctan—

K(r,w)="f, ;

r2+g

w w|
arctan— —|r,
r r
wheref andg are arbitrary functions.
Finally, let us conclude with an example of a three-dimensional gLN system. A detailed
treatment of higher-dimensional qLN systems is presented in a separateZarticle.
Example 8.6The Newton system

Fi=—10r7+4r,,

Fo=—16rr,+10r3+4rg,
F3=—20r;r;—8r5+30rr,— 15 +d

was found in Ref. 12 as a parametrization of the seventh-order stationary KdV flow. It has three
integrals of motion
3

E =13+
1 1'3 2

+10rfry—A4r,rg+8rors—10r3r,+3r3—dry,

E2=r3r§—r1r§+r2r1r2—r2r3—r1r1r3+4rfr§+5r‘1‘r2—Erfl3
s o dr?
—4r2+2r3—12rlr2r3+7+dr2,

E =l(r2'r2+r2'r2+'r2—(2r [ o+ Ar )i F o+ 21 1 of g+ 20 oF 1P 3) 1115 —3r3r2
3=g (rafi+rira+rs 1Mo FAr3) T4 o+ 20 F of 3+ 2051 17 3) + 1415 =3r7r5

S 5 2 5 4 2 2 d
+Zr1r2+2r1r3+Zrlrs—r1r2r3+r2r3—Z(rlrz—r3),

which all are quadratic in velocities. This means that the system is generated by any of them
through the quasi-Lagrangian equations. From the velocity-dependent parts we find

0 0 1 AR ro -y r% —Iqf,—2r3 Iy
0 1 o0f, r, —2r; —1|, | —rqrp,—2rs re r
1 00 -r; -1 0 Iy ri 1

as examples of 3 3-matrices satisfying the cyclic conditio2.3).

IX. CONCLUSIONS

In this article we have developed a new theory—the theory of quasi-Lagrangian Newton
equations. It was originally inspired by interesting properties of the second stationary flow of the
Harry Dym hierarchy, which led us to a broad theory which encompasses the classical separability
theory but goes far beyond the classical results—the classical Bertrand—Darboux theory of sepa-
rability for two-dimensional potential forces depends on one essential free parameter while our
theory depends on five parameters.
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The main part of this work has been focused on two-dimensional gLN systems which admit
two integrals of motiorE and F quadratic in velocities. These systems have only a nonstandard
Hamiltonian formulation and are completely integrable by embedding into five-dimensional Liou-
ville integrable systems. All such gLN systems are characterized by a single PDE called here the
fundamental equation. We have shown that there is a one-to-one correspondence between funda-
mental equations and linear pencild+ uB of matricesA andB. These linear pencils have been
classified in Sec. V. In Sec. VIl the class of driven systems has been studied in detail and new
types of separation variabléson-confocal conigshave been found. We have also shown that any
given force can be effectively tested for the existence of qLN formulation, which can further be
used for unveiling its complete integrability and for solving the corresponding Newton equation.
We have illustrated this by several examples including the generalizedriHdeiles systernfSec.

VII).

There are several natural directions of development of the theory of gLN systems. The
n-dimensional versions of our main theorems on fundamental equation and on complete integra-
bility have already been formulated and proved in Ref. 3.

The great wealth of different types of integrable Newton equations contained in the funda-
mental equation remains to be studied. Here we have only discussed two special cases: separable
systems and driven systems. However, one of the most challenging questions yet to be answered
is the existence of separation variables for the fundamental equation in its most general form. It
can lead to new and interesting connections with the classical theory of separability of the
Hamilton—Jacobi equation and of linear PDEs.
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