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The Canada Day Theorem:

X = any symmetric n× n matrix

T =




1 0 0 0 0 · · ·
2 1 0 0 0
2 2 1 0 0
2 2 2 1 0
2 2 2 2 1
... . . .




(size n× n)

The sum of the principal k× k minors of TX

equals

the sum of all k× k minors of X
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Example: n = 2

X =

(
a b

b c

)

TX =

(
1 0

2 1

) (
a b

b c

)
=

(
a b

2a + b 2b + c

)

All 1× 1 minors of X a + b + b + c

Principal 1× 1 minors of TX a + (2b + c)

All 2× 2 minors of X det X

Principal 2× 2 minors of TX det TX

(det TX = det X, since det T = 1)
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Example: n = 3

X =




a b c
b d e
c e f





TX =




1 0 0
2 1 0
2 2 1







a b c
b d e
c e f


 =




a b c
2a + b 2b + d 2c + e

2a + 2b + c 2b + 2d + e 2c + 2e + f




Easy cases:

{
k = 1

k = 3
(Like previous page.)

Less obvious case: k = 2

∣∣∣∣
a b
b d

∣∣∣∣ +

∣∣∣∣
a c
c f

∣∣∣∣ +

∣∣∣∣
d e
e f

∣∣∣∣ + 2

∣∣∣∣
a c
b e

∣∣∣∣ + 2

∣∣∣∣
b c
d e

∣∣∣∣ + 2

∣∣∣∣
b c
e f

∣∣∣∣ =

∣∣∣∣
a b

2a + b 2b + d

∣∣∣∣ +

∣∣∣∣
a c

2a + 2b + c 2c + 2e + f

∣∣∣∣ +

∣∣∣∣
2b + d 2c + e

2b + 2d + e 2c + 2e + f

∣∣∣∣
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That was still quite easy to check.

But for n ≥ 4 it gets more complicated!

(As we will see.)
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Background: Why “Canada Day”?

The theorem appears in the paper

Explicit multipeakon solutions of Novikov’s cubically

nonlinear integrable Camassa–Holm type equation

by Andy Hone, Hans Lundmark, Jacek Szmigielski

There we study a certain 2n-dimensional integrable

Hamiltonian system

q̇k = . . .

ṗk = . . .

with constants of motion H1(q, p), . . . , Hn(q, p).

6



Example: the case n = 3

H1 = p2
1 + p2

2 + p2
3 + 2p1p2E12 + 2p1p3E13 + 2p2p3E23

H2 = (1− E2
12) p2

1 p2
2 + (1− E2

13) p2
1 p2

3 + (1− E2
23) p2

2 p2
3

+ 2(E23− E12E13) p2
1 p2 p3 + 2(E12− E13E23) p1 p2 p2

3

H3 = (1− E2
12)(1− E2

23) p2
1 p2

2 p2
3

(Abbreviation: Eij = e−|qi−qj|)

Question: What’s the pattern (for general n)?
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Early conjecture (Hans):

X =




p2
1 p1p2E12 p1p3E13

p1p2E12 p2
2 p2p3E23

p1p3E13 p2p3E23 p2
3




Hk = sum of all k× k minors of the n× n matrix X

whose entries are Xij = pi pj e−|qi−qj|

Later theorem (Jacek):

Hk = sum of the principal k× k minors of TX

Does the theorem agree with the conjecture?

If so, does the particular form of X play any role?
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Date: Sun, 29 Jun 2008 23:18:54 +0200 (MEST)

From: Hans Lundmark <halun@mai.liu.se>

To: Jacek Szmigielski <szmigiel@math.usask.ca>

Subject: Re: imaginary spectrum and other stuff

[...]

In fact, the following more general result seems to be

true (I know it is true up to size 6x6 by brute force

checking on the computer):

[...]

At first, I thought that it could be proved by just a

routine application of Binet-Cauchy again, but it

appears that it’s more subtle than that.
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Date: Tue, 01 Jul 2008 01:09:22 -0600

From: Jacek Szmigielski <szmigiel@math.usask.ca>

To: Hans Lundmark <halun@mai.liu.se>

Subject: unfinished computation

Dear Hans,

I did not have enough time to finish the computation.

I checked low (in j) dimensional cases, so I have a

rough idea what to try. Tomorrow is Canada Day (July 1)

so I will be in a festive mood and hopefully your

conjecture will turn into a little theorem in honour

of that day. I agree that this theorem will be valid

for any symmetric matrix. I’ll report later in the day.

Bye for now,

Jacek
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Jacek in a festive mood
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Date: Tue, 01 Jul 2008 23:08:06 +0200 (MEST)

From: Hans Lundmark <halun@mai.liu.se>

To: Jacek Szmigielski <szmigiel@math.usask.ca>

Subject: Re: unfinished computation

Well, July 1 is almost past over here, and I still

haven’t quite managed to prove the Canada Day

Theorem, although I’m getting closer, so I hope

your luck is better. The main thing that’s missing

for my idea to work is a proof of the following

identity:

[...]

12



Date: Tue, 01 Jul 2008 16:04:53 -0600

From: Jacek Szmigielski <szmigiel@math.usask.ca>

To: Hans Lundmark <halun@mai.liu.se>

Subject: Re: unfinished computation

Hi,

I am struggling here too. It is beautiful outside,

perhaps I should take a walk.

Jacek
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Eventually we did find a proof, which uses:

• The Cauchy–Binet formula

(minors of a matrix product)

• Lindström’s Lemma

(for computing minors of T)

• Relations among minors of a symmetric matrix

(the most technical part of the proof)
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The Cauchy–Binet formula

For n × n matrices X and Y, and index sets I and J

with k elements each:

det(XY)I J = ∑
M

det XIM det YMJ

XI J = (Xir js)
k
r,s=1 denotes the k× k submatrix of X formed from

rows indexed by I and columns indexed by J.

I = {i1 < i2 < · · · < ik} ⊂ {1, 2, . . . , n}

J = {j1 < j2 < · · · < jk} ⊂ {1, 2, . . . , n}

In the sum, M runs over all index sets with k elements (so there
are (n

k) terms).
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Sketch of proof:

det(XY)I J = det(
n

∑
m=1

XirmYmjs)
k
r,s=1

=
n

∑
m1=1

· · ·
n

∑
mk=1

det(XirmrYmr js)
k
r,s=1

=
n

∑
m1=1

· · ·
n

∑
mk=1

(Xi1m1
. . . Xikmk

) det(Ymr js)
k
r,s=1︸ ︷︷ ︸

=0 or ±det YMK

= . . .

= ∑
M

det XIM det YMJ

Remark: More abstractly, the formula says that
∧k(X ◦ Y) = (

∧k X) ◦ (
∧k Y)

for linear transformations X and Y on an n-dimensional vector space.
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Lindström’s Lemma
(Gessel–Viennot Theorem, Karlin–McGregor Theorem)

Planar network = planar acyclic directed graph with

• source nodes numbered 1, 2, . . . , n on the left,

• sink nodes numbered 1, 2, . . . , n on the right,

• all arrows pointing towards the right.

Path matrix Ω:

Ωij = number of paths from source i to sink j

Then the minor det ΩI J is equal to the number of non-

intersecting (= node-disjoint) families of paths from the
sources in the set I to the sinks in the set J.
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Example:

1

2

3

1

2

3

Ω =




2 1 1

3 2 3

1 1 3




Some ways of connecting sources {2, 3} to sinks {1, 3}:

non-intersecting intersecting

If Lindström was right, there
should be

det Ω23,13 =

∣∣∣∣∣∣

· · ·
3 · 3
1 · 3

∣∣∣∣∣∣
= 6

non-intersecting ways to
connect them. Do you agree?
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det Ω23,13 =

∣∣∣∣
Ω21 Ω23

Ω31 Ω33

∣∣∣∣ =

∣∣∣∣
3 3
1 3

∣∣∣∣ = 3 · 3− 1 · 3 = 6

The term Ω21Ω33 = 3 · 3 counts all ways of connecting 2→ 1 and 3→ 3:

non-intersecting intersecting

. . . and seven others.

The term Ω31Ω23 = 1 · 3 counts the ways to connect 3 → 1 and 2 → 3
(necessarily with intersections):

intersecting

. . . and two others. They can-
cel all intersecting contribu-
tions above in pairs. (Pairing:
swap the colors to the left of
the first intersection.) Only the
non-intersecting ones remain!
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The proof in the general case is similar:

Each term in the minor counts some path families; think of it as
±(1 + 1 + · · · + 1), where each 1 corresponds to a path family.
Each path family from I to J appears exactly once in this expan-
sion, contributing either +1 or −1 depending on the sign of the
permutation of J naturally associated with it.

[Adjust the graph so that all nodes lie on different vertical lines.]

For each intersecting path family, find the leftmost intersection
node, and from the paths that intersect there, pick the two with
the lowest numbered source nodes, and swap the parts of those
two paths that lie to the left of the intersection.

This defines a sign-reversing bijection on the set of intersecting
path families, which causes all their contributions to cancel out
in pairs. This leaves us with the contributions from the non-

intersecting path families; each of them gives +1, since they are
among the families counted by the main diagonal product.
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Lindström’s Lemma also works for networks with weights:

1

2

3

1

2

3

c

a

i

f

l

b

k

h

e

g

d

m

j

Ω =




lm + l jk ljh lje
f gk + ijk + im f gh + ijh f db + f ge + ije

cgk cgh ab + cdb + cge




For example, when I = J = {1, 2, 3} there is only one non-intersecting path
family in this network, so in det Ω all terms but one cancel out:

1

2

3

1

2

3
a

f

l

b

hg

m

det Ω = ab f ghlm
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Remark:

If the weights are nonnegative, then the weighted path

matrix will be totally nonnegative (all minors ≥ 0),

which implies, among other things, that all its eigen-

values are nonnegative.

In fact, the converse is also true: every totally non-

negative matrix is the weighted path matrix of some

planar network.
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Proof of the Canada Day Theorem

The statement to be proved is that

∑
J

det(TX)J J = ∑
I

∑
J

det XI J

when X is symmetric, and Tij = 1 + sgn(i− j).

The matrix size n and the minor size k are fixed.

Sums run over k-subsets of {1, 2, . . . , n} if nothing else is said.

Members of index sets will be numbered in increasing order:

I = {i1 < i2 < · · · < ik}
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By Cauchy–Binet, the statement is the same as

∑
I

∑
J

det TJ I det XI J = ∑
I

∑
J

det XI J

If det TJ I were 1 for all I and J we would be done

already. But that is false for all matrices (except the

1× 1 matrix T = (1) which is not very interesting).

Can it be that det TJ I only assumes the values 0, 1, 2?

Then maybe we could use the symmetry of X like

this:

det XI J + det XJ I = 2 det XI J.

Alas, it’s not that simple either (unless n ≤ 3). . .
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What are the minors det TJ I then?

We can compute them using Lindström’s Lemma, since

T is the path matrix of a network like this (illustrated

for n = 4):

1

2

3

4

1

2

3

4 Number of paths from
source a to sink b:

Tab =






2, if a > b

1, if a = b

0, if a < b
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1

2

3

4

1

2

3

4

The result is:

det TJ I =

{
2p(I,J), if I ≤ J

0, otherwise

Notation:

I ≤ J ⇐⇒ i1 ≤ j1 ≤ . . . ≤ ik ≤ jk (“interlacing”)

I < J ⇐⇒ i1 < j1 < . . . < ik < jk (“strictly interlacing”)

p(I, J) = |I ′| = |J′|, where I ′ = I \ (I ∩ J), J′ = J \ (I ∩ J)

(“removal of shared elements”; note that I ≤ J ⇐⇒ I ′ < J′)
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det TJ I =

{
2p(I,J), if I ≤ J

0, otherwise

Proof: Obvious if I and J are disjoint, since then it is only a mat-
ter of whether they are strictly interlacing (I < J) or not. And
if there are shared elements, then they can be removed (one at a
time, in the way illustrated below) without affecting the number
of non-intersecting path families, so that we can apply the result
from the disjoint case to I ′ and J′.

J = {3, 4} I = {1, 3}

1

2

3j1

4j2

1 i1

2

3 i2

4

←→

J′ = {4} I′ = {1}

1

2

3

4j′1

1 i′1

2

3

4
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Now what we have to prove is that

∑
I≤J

2p(I,J) det XI J = ∑
A,B

det XAB

(If we want to actually compute the sum, we should stop here
and just use the sum on the left-hand side. But if we want the
“sum of all minors” statement, we have more work to do!)

To begin with, how many terms are there?

Right-hand side: (n
k)

2

Left-hand side: not as obvious, but it’s
k

∑
p=0

(n
p)(

n−p
2(k−p)

)

We’d better look at an example!
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Example: n = 5, k = 3 (3× 3 minors in a 5× 5 matrix)

∑
A,B

det XAB has (5
3)

2
= 100 terms.

∑
I≤J

2p(I,J) det XI J turns out to have 45 terms:

20
(
|X123,123|+ |X124,124|+ · · ·+ |X345,345|

)

10 terms

+ 21
(
|X123,124|+ |X123,125|+ |X124,125|+ . . .

+ |X124,234|+ |X124,245|+ |X234,245|+ . . .

+ |X145,245|+ |X145,345|+ |X245,345|
)

30 terms

+ 22
(
|X124,135|) + |X124,325|+ |X134,235|+ |X134,245|+ |X135,245|

)

5 terms
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Idea: Each term 2p(I,J) det XI J (with I ≤ J) corresponds

to its own group of terms in ∑A,B det XAB, namely

those with the same shared elements (I ∩ J = A ∩ B),

and also the same set of non-shared elements but in

any order (I ∪ J = A∪ B, but A � B unless A = I and

B = J). For example:

21 |X123,124| = |X123,124|+ |X124,123|

22 |X124,135| = |X123,145|+ |X124,135|+ |X125,134|

+ |X134,125|+ |X135,124|+ |X145,123|

First equation: clearly true, since XAB = XBA when X = Xt.

Second equation: not obvious (but in fact true; see below).
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The grouping of terms indicated on the previous page

indeed works in general:

Technical Lemma. Assume that X is symmetric.

For given interlacing k-sets I ≤ J the identity

2p(I,J) det XI J = ∑
A,B

det XAB

holds, where the sum runs over all k-sets A and B

such that A ∩ B = I ∩ J and A ∪ B = I ∪ J.

Proving this will finish the proof of the Canada Day Theorem.
To get a feeling for what needs to be done, let us write out the
second equation from the previous page in all its gory details. . .
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I = {1, 2, 4} J = {1, 3, 5} (interlacing)

I ′ = {2, 4} J′ = {3, 5} (strictly interlacing)

I ∩ J = {1} I ∪ J = {1, 2, 3, 4, 5} p(I, J) = 2

|X123,145| = X11X24X35 + X15X21X34 + X14X25X31 − X11X25X34 − X14X21X35 − X15X24X31

|X124,135| = X11X23X45 + X15X21X43 + X13X25X41 − X11X25X43 − X13X21X45 − X15X23X41

|X125,134| = X11X23X54 + X14X21X53 + X13X24X51 − X11X24X53 − X13X21X54 − X14X23X51

|X134,125| = X11X32X45 + X15X31X42 + X12X35X41 − X11X35X42 − X12X31X45 − X15X32X41

|X135,124| = X11X32X54 + X14X31X52 + X12X34X51 − X11X34X52 − X12X31X54 − X14X32X51

+ |X145,123| = X11X42X53 + X13X41X52 + X12X43X51 − X11X43X52 − X12X41X53 − X13X42X51

∑
A∩B={1}

A∪B={1,2,3,4,5}

det XAB = 4 det X124,135 = 2p(I,J) det XI J

Some terms cancel in pairs (as indicated by the colors).

(Mechanism, explained below: Terms are of two kinds – some terms contain
a “hostile pair of indices”, some don’t. Sign-reversing bijection on terms of
the first kind: “flip the lowest hostile pair”.)

The remaining ones (boldface) add up to the desired result.
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Here’s how it works:

b b b b b

I: 1 2 4

The elements in I ′ hate each other!

J: 1 3 5

The elements in J′ also hate each other!

The first of the determinants det XAB from the previous page:

det X123,145 = X11X24X35 + · · · − X11X25X34 − X14X21X35− . . .

A B Hostile pairs Friendly pairs Hostile pairs

Shared elements act as links: X21X14 means that 2 is linked with 4, forming
a hostile pair.

More generally: a ∈ A \ (I ∩ J) is said to be linked with b ∈ B \ (I ∩ J)
in a term if that term contains either the factor Xab or a chain of factors
Xam1 Xm1m2 . . . Xms−1ms

Xmsb with m1, . . . , ms ∈ I ∩ J.
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Flipping a linked pair (a, b) in a term means swap-

ping the indices in all factors involved in the linking:

Xab → Xba or Xam1
Xm1m2

. . . Xms−1ms
Xmsb →

Xbms
Xmsms−1

. . . Xm2m1
Xm1a

Since X is symmetric, this gives a new term with the same nu-
merical value, but appearing somewhere else (and possibly with
a different sign) in the expansion of ∑A,B det XAB.

Facts (to be proved shortly):

Flipping a friendly pair gives another term appearing

with the same sign in the expansion of ∑A,B det XAB.

Flipping a hostile pair gives another term appearing

with the opposite sign in the expansion of ∑A,B det XAB.
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Given this, we can prove the Technical Lemma:

“Flip the hostile pair that contains the smallest number” is a sign-
reversing involution on the set of terms in the expansion

∑
A,B

det XAB = ∑
A,B

∑
σ

(−1)σXa1b
σ(1)

Xa2b
σ(2)

. . .

that contain at least one hostile pair. Thus those terms will cancel
in pairs.

The remaining terms contain only friendly pairs. There are p(I, J)
pairs in each term, and each can be flipped either way without
changing the term’s value or sign. Exactly one way of flipping
the pairs will give a term appearing in the expansion of det XI J ,
so the friendly terms add up to 2p(I,J) det XI J .

Now it remains to prove the sign rules for flipping. . .
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Again, the ideas are best seen in an example, but our previous
example is too small.

Here is a bigger example (n ≥ 8, k = 6, four elements shared):

b b b b b b b b

I: 1 62 4 5 8

J: 3 72 4 5 8

The sum ∑A,B det XAB contains (4
2) = 6 terms, each of which ex-

pands into k! = 720 terms. Let’s focus on a single term in the

expansion of one particular det XAB:

det X234568,124578 = · · · − X28X34X42X55X61X87 + . . .

The term chosen as an example here contains two hostile pairs:
(6, 1) because of the factor X61

(3, 7) because of the factors X34X42X28X87
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Let’s see what happens when we flip the pair (3, 7)!

Term before flipping:

X28X34X42X55X61X87

Appears with negative sign
in det X234568,124578, since the
crossing number is 9 (odd).

1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Flip: X34X42X28X87 → X78X82X24X43

Term after flipping:

X24X43X55X61X78X82

Appears with positive sign
in det X245678,123458, since the
crossing number is 8 (even).

1 2 3 4 5 6 7 8 Ã

1 2 3 4 5 6 7 8 B̃
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 9

Before flip

Flipping the pair (3, 7) involves reflecting the thick

edges in the figure (ց toւ and vice versa).

By breaking this process down into small steps, we

can keep track of how the crossing number changes.
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 9

Stage I, step 1
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 4

Stage I, step 2
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 3

Stage I, step 3
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 3

Stage I, done
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 3

Stage II, step 1
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 4

Stage II, step 2
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 8

Stage II, step 3
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1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

Crossings: 8

Stage II, done

The flip is completed. How did the crossing number change?

The crossing number changes parity whenever we move the end of an edge
past some node that has an edge attached to it (= past a circled node).

The thick edges have the same intersections among themselves before and
after the flip, so we need not count how many times we pass their nodes.

Other nodes with shared elements are passed the same number of times in
Stage I as in Stage II, so they don’t cause any net change in parity. Therefore
we need not count how many times we pass those nodes either.
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With irrelevant edges removed, here are the moves that we made:

1 2 3 4 5 6 7 8 A

1 2 3 4 5 6 7 8 B

We see that we really only passed one node that made a change
to the parity of the crossing number (node 6, during Stage I).

In general, we count the number of times we pass a node lying
in A \ (I ∩ J) (during Stage I) or in B \ (I ∩ J) (during Stage II),
except that we don’t count passing the two nodes that are being
flipped.
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[Again: We count the number of times we pass a node lying in A \ (I ∩ J)
(during Stage I) or in B \ (I ∩ J) (during Stage II), except that we don’t count
passing the two nodes that are being flipped.]

Such nodes will be passed an odd number of times if they lie
between the two being flipped, and an even number of times
otherwise.

So the parity of the crossing number changes iff an odd number
of nodes in the set

(A ∪ B) \ (I ∩ J) = (I ∪ J) \ (I ∩ J)

lie between the two nodes that are being flipped.

And since I ′ and J′ are strictly interlacing, this is exactly the case
when the two nodes being flipped both belong to I ′ or both to J′;
in other words, when they form a hostile pair.

QED (phew!)
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