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Terms to be explained:
1. Ordinary (quadratic) string
2. Cubic string
3. Peakon (peaked soliton)
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Ordinary string = vibrating cord,
linear wave equation:

(%) v = Vyy

v(x,t) = amplitude
2(x) = mass density
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Separation of variables:

{g(x) Ut = Uxx
v(x,t) = X(x)T(t)

T//<t> _ X//(x)
T(t)  g(x) X(x)

= constant =
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The string equation:

X"(x) = —2g(x) X(x)

Classical eigenvalue problem for X (x).
Boundary conditions

X(—1)=0= X(1)
if attached at x = +1. Selfadjoint.
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The cubic string equation:

X"(x) = —zg(x) X(x)

Third order.
Typical boundary conditions:

X(=1) = X'(-1)=0=X(1)

Not selfadjoint.
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Peakons = peaked solitons

Some PDEs have multisoliton solutions
looking like this:

u(x,t) 4

_~

= > X
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Main example: Camassa—Holm
shallow water equation (1993)

my + myu + 2mu, = 0
m:u_uxx

(Integrable PDE. Bi-Hamiltonian for-
mulation, Lax pair, solitons, etc.)
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u(x,t)

I
™=
—_

m;(t) e~ lx=xi(t)]

X1

X2

X3
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Peakon Ansatz satisfies CH eqn iff

n
xk — Z m; e_|xk_xi‘
i=1

n

i=1

ti = ka m; sgn(xx — x;)

e~ 1—xil

(Geodesics for metric ¢/ = e kil )
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Shorthand notation:

5Ck — u(xk)

it = — iy (uy(xk) )

Speed of peakon number k
= wave height at that point.
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Derivatives of peakons
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\

—

+e*, x <0
undefined, x =0
—e ¥, x>0
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A

Uey = e ¥ —25(x)

(In the sense of distributions.)
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Thus, u = e~ 1*l implies that
M=1U— Uy =20

For multipeakons, m = u — uy,
is a linear combination of Dirac
deltas:

ol ) = zfl;mi(t) A=)
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u(x,t)

—
=
L=
o=

~m(x,t)
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The Camassa—Holm peakon ODEs are
explicitly solvable using inverse spec-
tral methods.

(R. Beals, D. Sattinger, J. Szmigielski 2000)

Starting point: the CH Lax pair

(0 — D =—3zmy
atl/):
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Liouville transformation:
y=tanh3 < (-1,1)

- W

(1 —y*)’g(y) = m(x)
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Lax equation for ¢(x)
(i =)y = —3zmy

transforms into string equation

for ¢(y):

0= —zg¢
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For multipeakons:
Discrete momentum

M=1U— Uy = ZZmiéxi
corresponds to discrete string

8= Zgiéyi
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Discrete string: Point masses g;
at the points y = y;, with

—-1l<y<--- <y, <1
Boundary conditions:
$(£1) =0

(Compatible with CH evolution.)
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Such a string has n vibrational
modes:

z=A,..., A, €ER

The eigenfunctions ¢y, . . ., ¢, are
piecewise linear in y.

(Since 92 ,¢ = 0 between point masses.)
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The spectral information for a given

mass distribution g(y) is encoded in
the Weyl function W(z):

W 1,z 1 L

(Z) — y‘P( ) — = Z k

z zp(l;z) 2z z— Ag

CH time evolution for peakons induces:

Ak =0 br = b/ My
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Now solve inverse spectral problem:
Reconstruct the point mass distribution
from the known spectral data.

Map the reconstructed string data v (t),
gk(t) back to the real line.

This gives the explicit general solution
xi(t), m(t) to the CH peakon ODEs.
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Many connections to classical topics in
mathematics:

o Stieltjes continued fractions
e orthogonal polynomials

e the moment problem

e Padé approximation

and so on (but no time for details here).
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Example. CH peakons, n = 3
Solution formulas on next page.
A1, Ay, Az are constants.

The time dependence is hidden in

bk(t) = bk(O) et/Ak
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(Aq —-Ag)z(Aq —‘AG)Z(AQ —-A3)2b1b2b3
Lj<k AFAR(A) — Ak)2bjby
Yick(Aj — Ax)?biby
xX(t) = 5 7 5
A1b14—A2b2%—A3b3
X3(t) = ln(b1 + by + b3)

x1(t) =In
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Ljek AFAR(A) — Ae)?bjbi

) —
m(t) MAAZ i AjAk(Aj — Ag)2bjby
" (t) B ()\%lﬂ + )\%bz + A%bg) Z]<k(/\] — )\k)zb]‘bk
2 - (Albl + Axby + A3b3) Zj<k A]AkOL] = /\k)2b]'bk
m(t)— by + by + b3
T b+ Agby + Asbs

29/73



Next:

Overview of integrable
equations with peakon
(or similar) solutions
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Related to ordinary string:

Camassa—Holm 1993

My +myu +2mu, =0 M = U — Uy,

Hunter-Saxton 1991
me+ myu +2mu, =0 M = Uyy
(Nematic liquid crystals. Piecewise linear solu-

tions.)
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Related to cubic string:

Degasperis—Procesi 1998

mi+mu—+3mu, =0 mM=1U— Uy,

“Linearly forced inviscid Burgers”
mi+myu +3mu, =0 M = Uyy

— (ut+uux)xx :O

(cont.)
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V. Novikov 2008

my+ (mau+3mu)u =0 M = U — Uyy

Geng—Xue 2009

my + (myu +3muy)v =0 M = U — Uy
i+ (N0 + 30 )u =0 1 =70— 0y
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Degasperis—Procesi equation

my+mu+ 3 mu, =0

m:u_uxx

Found by searching for integrable PDEs
similar to Camassa—Holm. Later de-
rived as a water wave model.
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ODE:s for DP peakons:
Xk = u(xk)
M = — 2 my <ux(xk)>

Explicitly solvable by inverse spectral
methods.
(H. Lundmark, J. Szmigielski 2003, 2005)
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Degasperis—Procesi Lax pair:

Liouville trf gives cubic string:

0yp=—z8¢
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Cubic string:

9,0(y) = —z28(y) ¢(v)

Boundary conditions consistent with
the DP time evolution:

¢(=1) = 9dyp(=1) =0 = ¢(1)
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For peakons: discrete cubic string

8 = ng5yk

k=1

Eigenvalues z = Aq,..., Ay

Real (positive) eigenvalues if all g > 0.
(Total positivity, Krein-Gantmacher theory.)
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Weyl functions:

"= s
99 (1;2)

22) = i)
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Time evolution of spectral data:

Ak =10 by = b/ My

where

W) _a0lz) 1 & b

z z¢(1;z) :E+,;z—)\k
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The second Weyl function Z(z) is actu-

ally redundant, since it is not indepen-
dent of W(z).

Proof. Let1(y;z) = ¢(y; —z) and prime = 9.
Then ¢"" = —zg¢ and 1" = +zgy so that

O — 17¢///+17///4) — (W(P//_WI(PI—I'ﬂH(P)/-
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Integration over —1 <y <1 gives

0=7(1)¢"(1) —n'(1)¢'(1) +7"(1) $(1)

since the boundary conditions kill contribu-
tions from y = —1.

Division by 7(1) ¢(1) gives

Z(z) —W(—z)W(z)+Z(—z) =0. O
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With@ — %—FEZE—"AkandZ(Z) = 22—1—2

z z— /\k
the formula on the previous page determines

Ck in terms of by:

Z(z) —W(—z)W(z)+ Z(-2z) =0
Z(z) W(z)  Z(=2)
zr:ez( ( Z B W( Z) Z * z ) 0
Cr — W(—)\k) bk +0=0
n b
Cr — <1+j:21}\k+]/\] bk
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Here appears the Cauchy kernel

1
xX+vy

which plays an important role in the in-
verse spectral problem for the discrete
cubic string.
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Solution of inverse spectral problem for
the discrete cubic string in terms of de-
terminants of bimoments (with respect
to the Cauchy kernel) of the spectral
measure p =) ;_q bi oy

ab—//xy du(x) du(y)
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Curious simultaneous approximation
of Weyl functions

W(z) = ¢'(1;2) Z(z) = ¢"(1;2)

¢(1;z) -~ $(L2)

by rational functions with a common
denominator.

(Similar to Hermite—Padé, but W & Z are not
independent.)
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Gives rise to theory of Cauchy biorthog-
onal polynomials.

Four-term recurrence, Riemann-Hilbert
problems, random matrix models.

(M. Bertola, M. Gekhtman, J. Szmigielski 2009)
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Example. DP peakons, n = 3

2
() = n%‘ () = %
2 2
w() =n gt mo(r) = LU
x3(t) =Inly ms(t) = %

with abbreviations explained on next page.
(Time evolution by(t) = by (0) e/ as before.)
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Uy = b1+ by + b3 Vi = Ab1 + Aoby + Asbs

Lb:bx;xfhb+bx;?fh%+bzlﬁ)b%
Vi = %Aﬂzblbz + %)\1)\3%}73
+ %)\2)\31&53
Uy = M=M= A Mo =X,y s

(M +A2) (A1 + A3) (A2 + A3)

Wy =U Vg — U Wy = UV, — Uz Vg
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Vladimir Novikov’s equation
Cubic nonlinearity:

my 4+ (myu +3muy) u =0

m:u_uxx
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The Novikov peakon ODEs look slightly
different:

xk = u(xk)2

My = —My <ux(xk)> M(Xk)

Speed = square of amplitude, so even antipeakons
(my < 0) travel to the right.
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Again, this system is explicitly solvable
using similar methods as before.
(A. Hone, H. Lundmark, J. Szmigielski 2009)

Matrix Lax pair (A. Hone & J. P. Wang):

9 Py 0 zm 1 P
o Y| =10 0 zm o
P3 1 O 0 3

9
=() =
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The Liouville transformation

y = tanh x
$1(y) = ¢1(x) cosh x — 3(x) sinh x
$2(y) = zPa(x)
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5 (P 0 gy) O 1
—|l=10 0 gw]|¢
9y 3 A 0 0 3

(Notice that the 1 in the upper right corner is
gone.)

“Dual cubic string”
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or comparison, the “primal” cubic strin
E the “ 1” cubic st

A = —Ag

can be written as

¢ 0 10 $1

o | = 0 0 1 ¢

¢3 —Ag(y) 0 0 $3
by letting (1, ¢2, $3) = (¢, Py, Pyy)-
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Duality:
One maps to the other under the trans-
formation

i 1

=YW =@

(In the discrete case, interchange of masses g
and distances Iy = Y11 — Yk.)
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Because of the duality we can reuse
results from the DP case to derive n-
peakon solution formulas for Novikov’s
equation.

See next page for two-peakon solution.
(Three-peakon formulas are too large!)
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X1 :111’1

(M — )

141
(M A" 12

4N\ A
/\1b%+)\2b2+ 142 ble

1<"

72 b2
- . T b2
Aq Az /\1 + Ay

A+ Ao

!
2=
407 1/2
(A1 +A2b2+ 12b1b)
mi =
! \//\1/\2(b1+b2)
b% ® A 4 1/2
1 A + Ay
171+bz
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The constants of motion Hy, ..., H, for
the Novikov peakon ODEs have an in-
teresting combinatorial structure (sums
of minors of a certain matrix).

This investigation led to a curious by-
product, the “Canada Day Theorem”
about minors in symmetric matrices.
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The Canada Day Theorem

For any symmetric n X n matrix X,
the sum of the k x k principal mi-
nors of TX equals the sum of all
k x k minors of X.

Here T is the lower triangular n x n matrix
defined by T;; = 1+ sgn(i — j).
(Tij = 0/1/2 above/on/below the diagonal.)
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The Geng—Xue equation

m; + (myu + 3muy)v =0
ny + (n,v + 3nvy,)u =0
M= U — Uyy
N ="70— U
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Found by fiddling around with the Lax
pair: try

0 zm 1 0 zm 1
0 0 zn instead of 0 0 zm
1 0 O 1 0 O

and look for a suitable time evolution
to go along with that.
(Xianguo Geng, Bo Xue 2009)
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The Geng—Xue equation has coupled
peakon solutions:

2::111 e —|x—x;(t

i=1

where exactly one of m; and n; is zero
for each i. (Disjoint support.)
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The Geng—Xue peakons are governed
by a system of 2N ODE:s for the N po-
sitions and the N nonzero momenta.

Explicitly solvable using similar meth-
ods as for DP & Novikov.

(H. Lundmark, J. Szmigielski — work in progress)
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In order to obtain sufficiently many constants
of motion, one needs not only the Lax pair
given by Geng & Xue, but also its “twin Lax
pair” obtained by interchanging m and n, plus
one extra constant of motion which does not
seem to be encoded in the Lax pairs.

Two spectral measures, one from each Lax pair.
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Bimoments with respect to the Cauchy
kernel and both spectral measures:

ab—//;fydﬂ dp(y)

Next page: GX (2 + 2)-peakon solution
(interlacing case my, na, m3, ny).

A1, A2, A1, Az, beo, F = const.
bi(t) = be(0) /M Bi(t) = B (0) et/
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(7\1 - 7‘2)2

L — bbb
M+ A (At Ag) 7

%ele =
7\151 + 7\252 - L by Alél + b /\292
Fboo \ Aj + A1 Ay + Ao
~ =2
(A1 — 12) e
_ ——b1b1b
%ezxz - (M + A1) (M1 +A2) =
Aby 4 Aqby
1e2s = bib1 2%
)Ll + /\1 /\1 + /\2
b byb = =
TP = L T — beo(b1 + b2)

M+ 7\1 A+ 7\2
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A X{b} A 7\2’52 1

2mie” M = ——= = e
! Miz | bihby , bigby  Fbe
/\1 +X1 )\1 +X2
~~ <=\ [ biAby | by b,
(/\1b1 +/\2b2> 1Mo, 014202
_ A+ A A+ Ay
2npe 2 = ———
~ - AM(A = A -~
(bl +b2> 1(h = A2)” byby by
(M + A1) (A1 + A2)
2mze 3 = ~b1 +b —
by A1by 1 by A2y
A +7\1 M +7\2
1
2nge M = ———=
by + by
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THE END

(Unless there is time for the bonus
material. ..)



Bonus: Shockpeakons
The “b-equation”

my + myu + bmu, =0 M= U — Uyy
can be rewritten as

(1-0%)u;+ (b+1-093) (”72>x—|- <32;b ui)x =0

in order to rigorously define weak solutions.
DPcaseb =3 = no u2 term!
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The DP equation admits very weak so-
lutions where u itself is discontinuous,
and not just the derivative u,.

(K. H. Karlsen, G. M. Coclite 2006)

In particular: “multi-shockpeakon” so-
lutions (linear combination of ¢* and
e~ * in each interval, but the pieces don’t
tit together).

(H. Lundmark 2007)
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A single shockpeakon:

sk(t)

my(t)

} > X
xi(t)
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Multi-shockpeakon solution:

%

~

¥1 £2 X3
System of 3n ODEs for {x(t), mi(t),si(t) }7_.
(Integrable or not?!?)

X
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