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(& Novikov & Geng—Xue)
Discrete cubic string
Cauchy biorthogonal polynomials
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The Camassa—Holm shallow water equation

ms + myu + 2mu, = 0 (M =u — Uyy)

admits “multipeakon” solutions of the form

Eml e —|x—x;(t)|
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u = Y m; e~ ¥l gatisfies the PDE iff

X = u(xy) Ty = —mk<ux(mk)>

which is shorthand notation for

n
Xp = Z m; ei|xk7x"‘
i=1
n

i = Y myem; sgn(xg — x;) e~ ¥l
i=1

Geodesics for metric ¢ = ¢~ =%l
( g
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Explicit formulas for general n-peakon solution found
by Beals, Sattinger & Szmigielski (2000).

Example. Formulas for positions when n = 3.
(M1 = 2A2)2 (M1 — A3)* (A2 — A3)*brbobs
Ljk AFAR(A) — M) 2bjb

(A=A )2bb
22(t) = In 22]<k( i k) | k
Albl = /\zbz o /\3b3
x3(t) = In(by + bz + b3)

x1(t) =In

where Ay = constant # 0, by (t) = by (0) et/ > 0.
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In general:

0A2
Ag AkAkfl

Xpi1-k = In—5— Myt1—k = 71A1
Akfl AkAk—l

in terms of Hankel determinants of moments

.Bﬂ .Ba+1 ,311-1-2
a IBuH 1311—&-2

k= |Bas2 (size k x k)

Bi = /y’ du(y) (: Z%bj)t; since y = Z% bjé;\j here)
= =

]
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Cf. orthogonal polynomials:

ONin L2(u): [ Pr(y)Ps(y)du(y) = 6ys
Py has degree k with pos1t1ve leading coeff.

ﬁu ﬁa+1 5a+2
1 ﬁa+1 ﬁa+2
Bly) = ——— |Pov2

VARA

For example, x; = xi1 iff P, _((0) = 0.
(Useful for study of peakon—antipeakon collisions.)

1 y yZ yk
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How the spectral measure y = Z}Ll b, arises:

(02 — 1) = —2zmy (from CH Lax pair) can be

transformed to string equation ¢’ = —z¢¢ on

the finite interval (—1,1).
For peakons, m & g are discrete measures.

$(—1;z) =0, ¢'(—1;z) = 1 defines Weyl function

Wiz = 202 2( +2 ]>
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Degasperis—Procesi equation (1998):

My + myu + 3mu, = 0 (m=u— tyy)

(Cf. Camassa—Holm m; + myu + 2mu, = 0.)
Peakons: % = u(xx) tie = —2my (ux(xi))

Explicit n-peakon solution involving less familiar-
looking expressions than for CH.
(Lundmark & Szmigielski 2003, 2005)



Example. DP peakons, n = 3

2
2 2
x3(t) =Inl; ms(t) = (Lvi}l)z

with abbreviations explained on next page.
(Time evolution by (t) = by(0) e!/* as before.)
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Uy =by+ by + b3 Vi = A1by + Axby + Asbs

(A1 — Ap)? (A1 — A3)? (A2 — A3)?
U =-——=""bbp + ———b1bs + —byb
z AM+ Ao e AM+ Az L8 Ar+ Az P
(A —Ag)? (A —A3)2
Vo= —— 2 A Aobb ~ 22 A A3bib
2 AT A, 1720102 + A+ As 1730103
Ay — A3)?
4 R As) A22+ 53) AaA3bobs
N2 A2 A 32
Us = (M = 2A2)%(M1 — A3)* (A2 — A3) bbabs

(A1 +A2) (A1 4+ A3) (A2 + Az)
V3 = AMAzA3U3

Wi =U1V; —Up Wy, = WLV, — U3V,



What's going on?
Explanatory framework:

Cauchy biorthogonal polynomials

1
[r@aw g B0 =5
Cauch\y,l:ernel

(Bertola, Gekhtman & Szmigielski 2009, 2010)
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Also relevant to other integrable peakon equations.
V. Novikov (2008):
my + (myu + 3muy)u =0 (m=u— yy)
(Hone, Lundmark & Szmigielski 2009)
Geng—Xue (2009):

my + (myu + 3muy)v =0 (m=u— tyy)

nt + (nyv + 3nvy)u =0 (n=0v—0yy)

(Lundmark & Szmigielski, work in progress)
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(02 —9y)p = —zm (from DP Lax pair) can be

transformed to cubic string equation ¢ = —zg¢

on the finite interval (—1,1).
(For peakons, discrete cubic string: ¢ = Y _; gk dy,.)
Two Weyl functions:

where ¢(—1;z) = ¢'(—1,z) =0, ¢"(-1,z) = 1.

14/26



15/26

W (z) and Z(z) have poles where ¢(1;z) = 0.

In other words: at the eigenvalues z = Ay of the discrete
cubic string ¢’ = —z g ¢ with boundary conditions

p=¢ =0aty=-1, ¢p=0aty=+1.

(When all gy > 0, the eigenvalues Ay, are real and positive
because of total positivity.)

W( £ Z(z) 1 &
=ztLl; /\k = tL

:l
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The even part of Z(z) = ‘l; '((11))

W(z) = £,

is determined by

(For g > 0 this means that W determines Z completely.)

Proof. Letn(y;z) = ¢(y; —2).
Then ¢"" = —zg¢ and 1"’ = +2zgn so that

0 — 7]4)//, +;7//l¢ — (774)// _ 17/4)1 _’_;7//4))/.
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Integration over —1 <y <1 gives

0=7(1)¢"(1) —7'(1) ¢'(1) + 1" (1) $(1)

since the boundary conditions kill contributions
fromy = —1.

Division by 77(1) ¢(1) gives

Z(z) —W(—z) W(z) + Z(—z) = 0. O



With@:%—{—zzf—’}\kandzg) ZZ4—22/\we
see that Z is completely determined by W (unless
some A; +A; = 0):

Cauchy kernel appears here!

18/26



19/26

Inverse spectral problem for the discrete cubic string:
determine {yy, gx};_, from {Ay, b},

Explicit solution in terms of determinants of bi-
moments (with respect to the Cauchy kernel) of
the spectral measure y = ) }_; bx 0y,

; xayb i p n )Lu)\bb'b'
ab—//x+ u(x) du(y) = Z)HLA
y

i,j=1
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A curious approximation problem plays a key role:

For 1 < k < n, seek polynomials Q(z), P(z), P(z) of
degree k — 1 such that

P P
W=_+00z®"1), Z=_40kD
* Q (= ) Q (= )
o« Z2Q+WP+P=0c"* ("B N)

e P(0)=1, P(0)=0

(Similar to Hermite—Padé, but the degrees are too
low, and the functions W & Z to be approximated
are not independent.)



All this fits into the general theory of Cauchy
biorthogonal polynomials.

And we’ll finish with a quick glimpse of that theory.
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Let « and B be measures supported on the positive real
axis, with finite moments

wo= [Fanx),  pi= [y ap(y)

and finite Cauchy bimoments

o= [ 2L a5t

Then
(£1g) = [ LEISW) an() apy)

is a bilinear form on the space of polynomials (not sym-
metric in general).



There are unique monic polynomials {py, Gk } oo, With
degree equal to the subscript, such that

(Pil ;) = hid.

They can be written in terms of the bimoments:

Ioo Im -+ 1 Ioo Ion -+ ok
~ 1 (o h1 - x| 1 (o hn - Ik
Pr(x) = Drl: f () = Dy : f

o I - 1y Y

where Dy is the k X k bimoment determinant which starts
with Iy in the upper left corner.
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Normalized biorthogonal polynomials {py, g } - such
that

(pilg;) =
are given by
Ioo  Ion 1
(%) L |ho fnoeox Dk,
X)) = —F/——| . . .= —-_— X
P ‘/DkDIH»l : : Dk+1
Lo In x
Ioo Ion -+ lok
W) 1 ho I -+ I De i,
e = — . . | == 09
iy v/ DiDgy1 | 0 : Dieyq v
1oy




A basic property of the Cauchy kernel is that

u+1 b b+1
+ x?
Ia+1b+ Iab+l - // x+y ]/ (x) dﬁ(y)

[ P 6) =

For the Hessenberg matrices X and Y given by

po(x) po(x) 70(y) q0(y)
x <p1( ) =X <p1( )), y (m(y)) =Y (m(ﬁ),

this implies that X + Y* has rank 1, which leads to four-
term recurrence relations for p; & gj.

=
=

=
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In addition:

interlacing of zeros

Christoffel-Darboux-type identities

Hermite-Padé-like approximation

Riemann-Hilbert problems
e random matrix models

and so on. But that’s another talk!

THE END
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