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Some PDEs have peaked soliton solutions:

u(x,t) ¢

u(x, t) = Z m;(t) e~ lx=x(®)]

i=1
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Main example:

ms + myu + 2muy, = 0 (M = u — tyy)

Camassa—-Holm shallow water equation (1993)

Positions and amplitudes governed by ODEs:

S = M(Xk) My = —mk<ux(xk)>
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In detail:

N
X‘k = Z m; ef|xk*xi‘
i=1
N
i = Y mym; sgn(xg — x;) e~ ¥l
i=1

Integrable Hamiltonian system with
1 N

H = 5 2 mjmje
i,j=1

~[xi—xj]

(Geodesics for metric gij = e_‘x" —xj| J)
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Beals, Sattinger & Szmigielski (2000) solved these
ODE:s explicitly for arbitrary N.

(Rational functions of exponentials e, where ¢y, ..., cn
are the asymptotic velocities of the peakons as t — £c0.)

e Inverse spectral methods.

e Spatial Lax equation (92 — 1) = —L zmy canbe
transformed to string equation ¢ = —zg¢¢ on
the finite interval (—1,1).

e For peakons, m and g are discrete measures (lin.
comb. of Dirac deltas). Inverse spectral problem
for discrete string (Stieltjes, Krein).
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Other integrable PDEs with peakon solutions:
e Degasperis—Procesi (1998):
my + myu + 3mu, = 0 (m =1 — tyy)
e V. Novikov (2008):
my + (myu + 3muy)u =0 (M =u — tyy)
e Geng—Xue (2009):

my + myuv + 3mou, =0 (m =u — tyy)

ny + nyou + 3nuv, = 0 (n=10v—0y)



Remarkably, these three equations are all related to
the so-called cubic string.

Spatial Lax equation for DP, (93 — dy)¢ = —zm ¢,
can be transformed to ¢" = —z g ¢ on the finite
interval (—1,1).

Inverse spectral problem for discrete cubic string
with Dirichlet-like boundary conditions ¢(—1) =
¢'(—1) = 0 = ¢(+1) gives explicit solution to DP
N-peakon ODEs.

(Lundmark & Szmigielski 2003, 2005)
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Cubic string:
9" = —z8¢

Let (¢1,¢2,¢3) = (¢, ¢, ¢") to get a system of first-

order equations:
$1
$2
$3

) ¢H 0 1 0
T ¢ | = 0 01
Y \¢s —Agly) 0 0
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Novikov’s equation comes with a 3 x 3 matrix Lax
pair. After transformation to the finite interval, we
obtain the dual cubic string:

5 (P! 0 gy 0 1
o2l =10 0 8| |¢
¥ \ ¢ A0 0 $3

(Duality: Z—Z =g(y) =1/3({®).
In the discrete case g = Y ; gx (3 — yx), the roles played by masses g,
and distances Iy = Y41 — Y are interchanged.)
Inverse spectral theory for this problem gives explicit
Novikov N-peakon solution.

(Hone, Lundmark & Szmigielski 2009)

9/15



Spatial Lax equation for GX (transformed):

5 (P 0 hy) O 1
T =0 0 g||e
¢3 —A 0 0 3

Or, equally well:

AL 0 gy 0 1
5|2 =10 O h(y) | | ¢2
Y \¢s A 0 0 ¢

We need to use spectra from both Lax pairs together
to compute the peakon solutions!

(Lundmark & Szmigielski, work in progress)
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The Geng—Xue peakon solutions have the form
Eml Ix Xi t)‘
Z ni(t) e~ lx=x(®)]

where m;n; = 0 for all i. (Disjoint support.)

We study an interlacing setup where odd-numbered m;
and even-numbered #n; are nonzero. This introduces
an asymmetry which makes the two Lax pairs slightly
different.
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To handle non-interlacing cases:

e Introduce additional peakons so that the prob-
lem becomes interlacing.

o Let the amplitudes of these auxiliary peakons
tend to zero and see what you get in the limit.

(Related to the “ghostpeakon” problem: how to solve
CH/DP/VN peakon ODEs when some 1 (0) = 0 in the
initial data? Even though my(t) = 0, there is a nontrivial
equation for x(t). But point masses of weight zero are
invisible to the inverse spectral methods!)

(Lundmark, Shuaib & Szmigielski, work in progress)
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A nice feature of GX peakons:

The solution involves Cauchy biorthogonal poly-
nomials with respect to two different measures «
and B (one spectral measure from each Lax pair).

(For DP and Novikov peakons, a = f.)

(CBOPs: Bertola, Gekhtman & Szmigielski 2009, 2010, 2012)



Finally, to complete the picture:

By substituting (x,t) — (ex, et) and letting ¢ — 0, we
get a couple of other related PDEs.

e Camassa-Holm gives
my + myt + 2muy, = 0 (m = Uyy)

Hunter—Saxton equation: (u; + utly)xx = Uxlixy.
(Nematic liquid crystals.)

o Degasperis—Procesi gives
ms + Myt + 3mu, =0 (M = tyy)

Derivative of inviscid Burgers: (ut aF uux) xx = 0.

14/15



These admit piecewise linear solutions instead of peakons:

Zmz |x_xz(t)‘

Inverse spectral methods involve ordinary / cubic string
with Neumann(-like) boundary conditions.

DP and derivative Burgers also admit discontinuous
(shock) solutions. DP shockpeakons — integrable or not?
(Lax pair relies on rules of calculus which are not appli-
cable to discontinuous functions.)
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