CME 326 Jan-March 2009

Assignment 4

(Due in class March 2)

As the first task, consider the IBVP problem

$$u_{t} + Au_{x} + Bu_{y} = \epsilon (Cu_{xx} + Du_{yy}) + F(x, y, t)$$

$$Lu(0, y, t) = g(y, t)$$

$$u(x, y, 0) = f(x, y)$$
(1)

where $x \ge 0$, $0 \le y \le 2\pi$, $\epsilon > 0$. The solution is periodic in y, $u(x > \bar{x}, y, t) = 0$ and

$$A = B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

As the second task, consider the coupling of the two scalar advection equations

$$u_t + au_x = 0, -1 \le x \le 0$$

$$v_t + av_x = 0, 0 \le x \le 1$$

$$u(0, t) = v(0, t).$$
(2)

Let $u_a = \sin(2\pi(x-t))$ be the exact periodic solution.

- 1. Use the Laplace transform technique and the energy-method in (1) to determine how many boundary conditions should be imposed at x = 0.
- 2. Determine the boundary operator L in (1) such that the problem is well posed. Give as many examples of L that you can find.
- 3. Introduce a mesh and write up the semi-discrete formulation of problem (2) using summation-by-parts operators and the SAT-penalty formulation for the boundary and interface conditions. Do it for different operators and meshes on the two domains.
- 4. Prove stability of the semi-discrete formulation for (2) using the energy-method (determine the penalty parameters). This means that both the left boundary treatment and the interface must be stable.
- 5. In the 1st calculation use your scheme above and $u_a(-1,t)$ as boundary data at the left boundary. In the 2nd calculation, write a scheme using periodic boundary conditions and no interface. Use $u_a(x,0)$ as the initial condition. Use the 4th order operators on page 312 in C-R. For the periodic case modify accordingly. Integrate with classical explicit R-K in time. Show by calculations what accuracy you have in space for both schemes. Next, run both schemes to t = 100, do mesh refinement, plot the L_2 error as a function of time and discuss the result.

Motivate your answers clearly!