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So what’s the deal with all the terminology? Distributions, samples, random samples, estimators
and confidence intervals. How does it all fit together? That’s what I’ve been trying to show you
guys, but maybe the idea gets lost in all the details. Trees, forests and all... So let us recap a
bit and collect what we know.
The starting point is pretty much the same x1, x2, . . . , xn. This is typically measured data.
What can we do with this? To do any form of reasonable analysis, we need a model. What we
usually do is assume that the sample consists of observations of random variables, so:

Assumption 1: X1, X2, . . . , Xn are random variables and x1, x2, . . . , xn are observations.

Next up is independence. We almost always assume that the random sample X1, X2, . . . , Xn is
independent. Analysis gets much harder without this assumptions, so:

Assumption 2: X1, X2, . . . , Xn are independent.

So now we have independent random variables. What’s next? Well, how are they distributed?
Assuming a continuous distribution for simplicity, how does the probability density look?
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Or this?
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Or maybe this?

We obviously have to assume something about the distributions to obtain something useful. So:

Assumption 3: X1, X2, . . . , Xn have known types of distribution, that is, we know for example
that they are normally distributed. However, the exact distribution depends on something
unknown: the parameter θ (which might be a vector of unknown parameters). It is not necessary
that they all share the exact same distribution, but usually we will assume this. However, it is
important that if the have different distributions, they depend on the same unknown parameter.
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Consider the normal distribution. Its shape is well-known (the Bell curve or Gaussian), but it
might be moved around and it might be stretched (or contracted). The parameters µ and σ
does this. How? Well, the density function for a normal distribution looks as follows:

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, x ∈ R,

where µ ∈ R and σ > 0 are parameters. It turns out that they happen to be the expectation
and the standard deviation, but that’s not clear from the definition above but follows when
doing the necessary calculations. Right now they are just parameters for the distribution.

Normal distribution
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We see the same type of shape, but different values on the parameters yield different curves. Our
aim now would be — using a sample x1, x2, . . . , xn from N(µ, σ2) — to estimate the unknown
parameters µ and/or σ.
To make calculations easier, we usually make the following assumption:

Assumption 4: X1, X2, . . . , Xn are independent.

If x1, x2, . . . , xn are a sample from a distribution F that depends on an unknown parameter θ,
we wish to find a good way of using the known quantities x1, x2, . . . , xn to estimate θ by some
function

θ̂ = g(x1, x2, . . . , xn).

The Goal

What about θ, θ̂, Θ̂...

What about the big ball with the H inside and the hat ontop1? There are three types of θ:s
involved here. Let’s see how this works.

1Thank you dear student, for the subtle hint about my handwriting on the board..
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So the situation is as follows. We have a method of finding an estimate θ̂ for the unknown
parameter θ by using the sample x1, x2, . . . , xn, namely by the so called statistic

θ̂ = g(x1, x2, . . . , xn).

Question 1. If we repeat the ”experiment” and thus obtain a new sample y1, y2, . . . , yn, what
can we say about the estimate θ̂ = g(y1, y2, . . . , yn)?

Obviously we won’t get the same estimate (in general) since the values will likely have changed,
so what’s going on? This is where the probability comes in to play. We know (by assumption)
what type of distribution we’re working with. We know how this distribution depend on the
unknown parameter θ. So we can – in theory at least – do calculations with regards to the
estimator viewed as a random variable as long as we allow our answers to contain the unknown θ.
How do we move to something random? Considering that we view x1, x2, . . . , xn as observations
of random variables X1, X2, . . . , Xn, we just exchange all instances of the former by the latter.
Thus we obtain the estimator

Θ̂ = g(X1, X2, . . . , Xn)

as an n-dimensional random variable. Note that this is the same function g : Rn → Rp that
was used when defining θ̂ (p is the number of parameters we are estimating).

Question 2. Can we use Θ̂ to obtain some type of bounds for the unknown θ with a given
probability?

The answer is yes, at least if we can transform Θ̂ to something with a known distribution. This
is the procedure used to find confidence intervals. What is a confidence interval? We’ll get
back to this down below.

What would we like to happen?

Good Property 1. We do not want the estimator to be biased. By that we mean that we want
the estimator θ̂ to be the unknown parameter θ on average. Well, that’s rather unspecific, so
instead we mathematically define an unbiased estimator as an estimator such that E(Θ̂) = θ.

Good Property 2. We would like for our estimator to have the property that as the sample
grows larger, the probability of Θ̂ being off from θ is tending to zero. This is consistency. In
mathematical terms, we want the following to hold. Let Θ̂n be the estimator for a sample of
size n. Then for every ε > 0,

lim
n→∞

P (|Θ̂n − θ| > ε) = 0.

Phrased differently, this means that the sequence Θ̂n of random variables converges to θ in
probability. It is difficult to work with this directly, so we normally use a result that follows
from Chebyshev’s inequality. Namely that if V (Θ̂n) → 0 as n → ∞ and Θ̂n is unbiased (note
that this is needed for the theorem to hold, not for the estimator to be consistent), then the
estimator is consistent.
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Expectation and variance

We’ve used (implicitly or explicitly) some results concerning the expectation and the variance
above. Let us recapture what’s allowed. Suppose that X1, X2, . . . , Xn are independent and
identically distributed with E(Xk) = µ and V (Xk) = σ2 for k = 1, 2, . . . , n. Then

E

(
a0 +

n∑
k=1

akXk

)
= a0 +

n∑
k=1

akE(Xk) = a0 + µ
n∑
k=1

ak,

since the expectation is a linear operator (remember that it is either a sum or an integral, both
of which are linear). For the variance, it is true that

V

(
a0 +

n∑
k=1

akXk

)
= /Xk are independent / =

n∑
k=1

a2
kV (Xk) = σ2

n∑
k=1

a2
k.

The assumption about independence is crucial here. Without it, the sum above will get very
messy with covariances all over the place. Note though that for the expectation, independence
is not required.

Something neat with the normal distribution is that linear combinations of normally distributed
variables are still normally distributed (the mean and variance might change, but we’ve seen
above how that works). So assuming for a minute that Xk ∼ N(µ, σ2) for k = 1, 2, . . . , n, we
have

X :=
n∑
k=1

Xk ∼ N(nµ, nσ2) and X :=
1

n

n∑
k=1

Xk ∼ N(µ, σ2/n).

This is clear from the formulas above. Note in particular that

V (X) = V

(
1

n

n∑
k=1

Xk

)
=

1

n2
V

(
n∑
k=1

Xk

)
=

1

n2

n∑
k=1

V (Xk) =
nσ2

n2
=
σ2

n
,

where we used the independence of the variables. This equality shows that as n grows larger,
the variance of X tends to zero. Larger sample size means less variance for X.

Be careful with explicitly showing the difference between what is random and what is not.
We have three quantities:

(i) θ – real value. Unknown but not random.

(ii) θ̂ – estimate for θ. Known value calculated from the sample x1, x2, . . . , xn.

(iii) Θ̂ – The estimator. This is a random variable!

If you want to calculate probabilities (so expectations and variances and such), you have to

use Θ̂.

Random or not?
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y = fΘ̂(x)

θ̂ θE(Θ̂)

Note the following:

(i) θ̂ is calculated from observations, so it might end up anywhere basically.

(ii) We do not now if the expectation E(Θ̂) coincides with the unknown θ, there might be a
bias.

(iii) The random variable Θ̂ is n-dimensional (since it depends on X1, X2, . . . , Xn, hence the
bold font for x in the graph above) and might also be vector-valued in the case that θ ∈ Rp

with p > 1. In the case when p > 1, the density gets difficult to render on paper though...

A non-biased estimator Θ̂ of θ will — on average — hit the unknown θ. This is a direct
consequence of the law of large numbers. What this means more exactly is that if we were
to form the average of estimates (repeating the experiment yielding x1, x2, . . . , xn and find an

estimate θ̂k for each k = 1, 2, 3, . . .), this average will converge to θ with probability one (that’s
the strong law of large numbers) with reasonable assumptions on the distributions.

Certainty

So we have found and estimator Θ̂ of some unknown θ. Can we use the information contained in
the distribution of Θ̂ to say something about which values for estimates of θ that are reasonable?
I mean, if we look at the graph of the density function (or probability function). we can see
where it is likely that observations end up (around points where large amounts of probability
mass is accumulated). In other words, can we find a set I such that θ ∈ I with some given
probability? That was basically question 2 above.
Let’s assume that θ ∈ R (so we only have one dimension). A confidence interval I with
confidence degree 1− α (0 < α < 1) is any interval such that θ belongs to it with probabili-
ty 1−α. The end points of such an interval typically need to be observations of random variables
(transformations of Θ̂). So the systematic question now is how to go from the estimator Θ̂ —
which depends on the unknown parameter unless something unusual occurs — to something
with a completely known distribution. Let’s look at a couple of examples.

Assume that x1, x2, . . . , xn is a sample of observations of X1, X2, . . . , Xn of independent iden-
tically distributed random variables. The type of distribution is known but not some unknown
parameter.
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Estimator for the variance. Since we introduced the sample variance, that seems to be a
reasonable place to start. Indeed, we have seen that E(S2) = σ2, so it is an unbiased estimator
of σ2. It is also a consistent estimator. To say something more specific, we need to now the type
of distribution we’re dealing with. Let’s assume that we have samples from N(µ, σ2). Then

V :=
(n− 1)

σ2
S2 ∼ χ2(n− 1)

according to Cochran’s theorem. This is nice, since we now have a distribution that is completely
known. To find a confidence interval, we find numbers a and b such that

P (a < V < b) = 1− α.
Note that a and b depend on both α and n and that we need to use a table or computer
software. We then solve a < V < b for σ2, obtaining that

(n− 1)S2

b
< σ2 <

(n− 1)S2

a
.

To obtain a confidence interval (the above expression is not a fixed interval since the limits are
stochastic), we need to estimate all involved random variables. The natural thing to do is to
use the sample variance s2 to estimate S2. Thus we get the confidence interval

Iσ2 =

(
(n− 1)s2

b
,

(n− 1)s2

a

)
.

Estimator for the expectation. The expectation is where Xk ends up “on average,” so

a reasonable starting point would be to consider the mean value X =
1

n

n∑
k=1

Xk. We know

that E(X) = µ and V (X) = σ2/n if E(Xk) = µ and V (Xk) = σ2. To transform our estimator
into something with a known distribution, we standardize the variable by removing the mean
and dividing by the standard deviation. If we again assume that we have samples from N(µ, σ2),
we see that

Z :=
X − µ
σ/
√
n
∼ N(0, 1).

So if σ is known, this works great. If σ is unknown, we estimate it by s. This means that we
use

T :=
X − µ
S/
√
n
∼ t(n− 1)

instead, a result that follows from Gosset’s theorem. Proceeding as above, we find a number t
(both distributions are symmetric with respect to the y-axis) such that

P (−t < T < t) = 1− α
in the case when σ is unknown. We find the number t in a table or by using computer software.
Note that it depends on both α and n. If σ is known, we use Z and the normal distribution
instead. Solving for µ in the inequality, we see that

−t < T < t ⇔ X − t S√
n
< µ < X + t

S√
n
.

Estimating S by s and X by x, we obtain the confidence interval

Iµ =

(
x− t s√

n
, x+ t

s√
n

)
.

To be continued...!
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