
Mälardalen University Press Licentiate Thesis

No. 105

Algorithms for Costly
Global Optimization

Nils-Hassan Quttineh

September 2009

School of Education, Culture and Communication
Mälardalen University

Väster̊as, Sweden

This work was funded by the Graduate School in Mathematics and
Computing.

Reprinted with corrections, February 2010

Algorithms for Costly Global Optimization

Copyright c© Nils-Hassan Quttineh, 2009

Typeset by the author in LATEX2e documentation system.

ISSN 1651-9256
ISBN 978-91-86135-29-4
Printed by Mälardalen University, Väster̊as, Sweden

Mälardalen University Press Licentiate Thesis

No. 105

Algorithms for Costly Global Optimization

Nils-Hassan Quttineh

Akademisk avhandling

som för avläggande av Filosofie licentiatexamen i Matematik/tillämpad
matematik vid Akademin för Utbildning, Kultur & Kommunikation,

avdelningen för tillämpad matematik, Mälardalens Högskola, kommer att
offentligt försvaras Torsdagen, 3 September, 2009, 13:15 i Gamma, Hus U,

Högskoleplan 1, Mälardalens Högskola.

Granskare: Prof. Hans Bruun Nielsen, DTU, Danmark

Akademin för Utbildning, Kultur & Kommunikation,
avdelningen för tillämpad matematik

Mälardalens Högskola, Box 883, SE-72123 Väster̊as

In memory of Simplex,
my beloved cat whom

I truly miss and mourn.

Abstract

There exists many applications with so-called costly problems, which means that
the objective function you want to maximize or minimize cannot be described
using standard functions and expressions. Instead one considers these objective
functions as “black box” where the parameter values are sent in and a function
value is returned. This implies in particular that no derivative information is
available.

The reason for describing these problems as expensive is that it may take a long
time to calculate a single function value. The black box could, for example,
solve a large system of differential equations or carrying out a heavy simulation,
which can take anywhere from several minutes to several hours!

These very special conditions therefore requires customized algorithms. Com-
mon optimization algorithms are based on calculating function values every now
and then, which usually can be done instantly. But with an expensive problem,
it may take several hours to compute a single function value. Our main objec-
tive is therefore to create algorithms that exploit all available information to
the limit before a new function value is calculated. Or in other words, we want
to find the optimal solution using as few function evaluations as possible.

A good example of real life applications comes from the automotive industry,
where the development of new engines utilize advanced models that are governed
by a dozen key parameters. The goal is to optimize the model by changing the
parameters in such a way that the engine becomes as energy efficient as possible,
but still meets all sorts of demands on strength and external constraints.

i

Algorithms for Costly Global Optimization

The thesis consists of three papers, which deal with different parts of the area
costly global optimization. The first paper, Paper I, describes and evaluates
an algorithm based on “Radial Basis Functions”, a special type of basis func-
tions used to create an interpolation surface linking the evaluated parameter
combinations (points).

This is the foundation of most costly global optimization algorithms. The idea
is to use the points where the function value have been calculated, creating
an interpolation surface that (hopefully) reflects the true costly function to be
optimized and use the surface to select a new point where the costly function
value is calculated.

The second paper, Paper II, deals with the problem to choose a good set of start-
ing points. The algorithms we have developed are all based on the interpolation
surface technique, which makes it necessarily to pick an initial set of parameter
combinations to start with. This initial set of points have a major impact on
the interpolation surface, and thus also a major influence on the success of the
algorithm.

Paper III describes implementation details and evaluates a variant of the well
known ego algorithm, which is based on a different type of basis functions com-
pared with Paper I.

ii

Acknowledgements

Thanks to my supervisor Kenneth Holmström for introducing me to the field
of Costly Global Optimization. I also thank my colleagues at the Division of
Applied Mathematics.

The research in this thesis has been carried out with financial support from the
Graduate School of Mathematics and Computing (FMB).

Väster̊as, August 10, 2009

Nils-Hassan Quttineh

iii

Papers

The following papers are appended and will be referred to by their Roman
numerals.

I. K. Holmström, N-H. Quttineh, M. M. Edvall, An adaptive radial basis al-
gorithm (ARBF) for expensive black-box mixed-integer constrained global
optimization, Optimization and Engineering (2008).

II. N-H. Quttineh, K. Holmström, The influence of Experimental Designs on
the Performance of Surrogate Model Based Costly Global Optimization
Solvers, Studies in Informatics and Control (2009).

III. N-H. Quttineh, K. Holmström, Implementation of a One-Stage Efficient
Global Optimization (EGO) Algorithm, Research Report 2009-2, School
of Education, Culture and Communication, Division of Applied Mathe-
matics, Mälardalen University (2009).

Parts of this thesis have been presented at the following international confer-
ences:

1. Nordic MPS, Copenhagen, Denmark, April 20-22, 2006.

2. Euro XXI, Reykavijk, Iceland, July 2-5, 2006.

3. SMSMEO, DTU in Copenhagen, Denmark, November 8-11, 2006.

4. ICCOPT-MOPTA, Hamilton, Canada, August 12-15, 2007.

5. Siam Conference on Optimization, Boston, USA, May 10-13, 2008.

6. Nordic MPS, KTH in Stockholm, Sweden, March 13-14, 2009.

7. ISMP, Chicago, USA, August 23-28, 2009.

v

Contents

Abstract i

Acknowledgements iii

Papers v

1 Costly Global Optimization 1

1 Surrogate modeling . 3

2 Merit functions . 7

3 Experimental Designs . 12

4 Convergence Criteria . 17

5 Summary of Papers . 18

Appended Papers

Paper I - An Adaptive Radial Basis Algorithm (ARBF) for
Expensive Black-Box Mixed-Integer Constrained
Global Optimization 21

1 Introduction . 24

2 The RBF method for MINLP . 25

3 The Adaptive Radial Basis Algorithm (ARBF) for MINLP . . . 30

4 Implementation of the RBF and ARBF for MINLP 35

5 Numerical Results . 36

6 Conclusions . 49

vii

Algorithms for Costly Global Optimization

Paper II - The influence of Experimental Designs on
the Performance of CGO Solvers 53

1 Introduction . 56

2 Experimental Designs . 56

3 Handling Constraints . 58

4 Benchmark and Tests . 60

5 Numerical Results . 62

6 Conclusions . 67

Paper III - Implementation of a One-Stage Efficient
Global Optimization (EGO) Algorithm 69

1 Introduction . 71

2 Background to DACE and EGO 73

3 The EGO algorithm . 74

4 Difficulties and Algorithm description 78

5 The CML problem . 83

6 Benchmark and Tests . 86

7 Conclusions . 92

viii

1

Costly Global Optimization

This thesis touches the relative small but important area of Costly Global
Optimization (CGO). A problem is considered costly if it is CPU-intensive, i.e
time consuming, to evaluate a function value. It could be the result of a complex
computer program, e.g. the solution of a PDE system, a huge simulation or a
CFD calculation.

From an application perspective there are often restrictions on the variables
besides lower and upper bounds, such as linear, nonlinear or even integer con-
straints. The most general problem formulation is as follows:

The Mixed-Integer Costly Global Nonconvex Problem

min
x

f(x)

s.t.

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I

(1)

where f(x) ∈ R and xL, x, xU ∈ Rd. Matrix A ∈ Rm1×d, bL, bU ∈ Rm1 ;
defines the m1 linear constraints and cL, c(x), cU ∈ Rm2 defines the m2

nonlinear constraints. The variables xI are restricted to be integers, where set I
is an index subset of {1,. . . ,d}. Let Ω ∈ Rd be the feasible set defined only by
the simple bounds, the box constraints, and ΩC ∈ Rd be the feasible set defined
by all the constraints in (1).

It is common to treat all such functions as black-box, i.e you send in a set of
variables x ∈ Rd and out comes a function value f(x). This means that no
derivative information is available, and standard optimization algorithms won’t
suffice. Hence the need of special CGO solvers.

1

Algorithms for Costly Global Optimization

A popular way of handling the costly black-box problems is to utilize a surrogate
model, or response surface, to approximate the true (costly) function. In order to
perform optimization, surrogate model algorithms iteratively choose new points
where the original objective function should be evaluated. This is done by
optimizing a less costly utility function, also called merit function.

Figure 1: Surrogate modeling.

There exist different surrogate models. Jones et al. [7] introduced the “Efficient
Global Optimization” (EGO) algorithm in 1998. It is based on the DACE
framework, short for ”Design and Analysis of Computer Experiments”, and
models a function as a realization of random variables, normally distributed
with mean µ and variance σ2.

In 2001, the RBF algorithm was introduced by Powell and Gutmann [1, 12]
which use radial basis function interpolation to build an approximating surro-
gate model. An implementation of this RBF algorithm can be found in the
optimization environment TOMLAB [4] by the name rbfSolve. Another im-
plementation using radial basis functions is named ARBFMIP [3], also available
in TOMLAB. This algorithm is described in detail in Paper I.

Different surrogate model algorithms utilize different merit functions, sometimes
closely related to the surrogate model used. A thorough description of Surro-
gate Modeling is presented in Section 1 and some popular merit functions are
presented in Section 2.

Common for all surrogate model CGO solvers is the need of an initial sample of
points (Experimental Design) to be able to generate the initial surrogate model.
In order to create an interpolation surface, one must use at least n ≥ d+1 points,
where d is the dimension of the problem. This is presented more thorough in
Section 3 and is also the topic of Paper II.

2

Surrogate modeling

There exist derivative-free global black-box optimization methods aimed for
non-costly problems, such as the DIRECT algorithm by Jones et al. [6]. This
algorithm divides the box-bounded space into rectangles, refining only areas of
interest. It was later enhanced to handle constraints as well [8]. Generating set
search (GSS) is a class of local derivative-free methods that find search directions
iteratively and performs polls to locate the optimum.

1 Surrogate modeling

A surrogate model, or response surface, is an interpolation of sampled points and
predicts the costly function values for points not yet sampled. Suppose we have
evaluated the costly objective function at n distinct points in the sample space.
We denote this set of sampled points by x, and the corresponding function values
by y. The purpose of building a surrogate model is to provide an inexpensive
approximation of the costly black-box function.

To improve the model, iteratively find a new point to sample, denoted xn+1. For
a robust and efficient algorithm, something more sophisticated than adding the
surface minimum smin of the interpolated surface is needed as this would result
in a purely local search. Merit functions are designed to locate promising areas
of the design space, suggesting new points to sample. Since merit functions are
non-costly, any standard global optimization algorithm can be applied.

This procedure, locating new points, calculate the costly function value and
build a new surrogate model, is the core of surrogate model algorithms. In lack of
any good convergence criteria, it is common to iterate until some computational
budget is exhausted. It could be a given number of function evaluations or a
predefined time limit. In Algorithm 1, a pseudo-code for a generic surrogate
model algorithm is found.

Algorithm 1 Pseudo-code for Surrogate Model Algorithms

1: Find n ≥ d+ 1 initial sample points x using some Experimental Design.
2: Compute costly f(x) for initial set of n points. Best point (xMin, fMin).

3: while n < MAXFUNC do

4: Use the sampled points x to build a response surface model as
an approximation of the costly function f(x).

5: Find a new point xn+1 to sample, using some merit function.

6: Calculate the costly function value f(xn+1).

7: Update best point (xMin, fMin) if f(xn+1) < fMin.

8: Update n := n+ 1.

9: end while

3

Algorithms for Costly Global Optimization

In Figure 2 we present a graphical example. The upper left picture is the true
costly function f(x) to be optimized. The following pictures show the surrogate
model approximation for a certain number of sampled points n, stated in each
picture. As the iterations go by, the surrogate model becomes an increasingly
better approximation of f(x). At n = 100, all main features of the costly
function are captured by the surrogate model.

In the following pages, we give a short introduction to the different surrogate
models used throughout Papers I - III. First a description of the Radial Basis
Function (RBF) interpolation and then the DACE framework.

We also demonstrate how the different interpolation surfaces model the same
function by a graphical example found in Figure 3 on page 7.

Radial Basis Functions

Given n distinct points x ∈ Ω, with the evaluated function values y, the radial
basis function interpolant sn(x) has the form

sn(x̄) =
n∑
i=1

λi · φ
(∥∥∥x(i) − x̄

∥∥∥
2

)
+ bTx+ a, (2)

with λ ∈ Rn, b ∈ Rd, a ∈ R, where φ is either the cubic spline φ(r) = r3 or the
thin plate spline with φ(r) = r2 log r. The unknown parameters λ, b and a are
obtained as the solution of the system of linear equations

(
Φ P
PT 0

)(
λ
c

)
=
(

y
0

)
, (3)

where Φ is the n× n matrix with Φij = φ
(∥∥x(i) − x(j)

∥∥
2

)
and

P =


xT1 1
xT2 1
...

...
xTn 1

 , λ =


λ1

λ2

...
λn

 , c =


b1
b2
...
bd
a

 ,y =


f(x1)
f(x2)

...
f(xn)

 . (4)

If the rank of P is d+1, then the matrix
(

Φ P
PT 0

)
is nonsingular and the linear

system (3) has a unique solution [11]. Thus we have a unique RBF interpolation
function sn(x) to the costly f(x) defined by the points x.

4

Surrogate modeling

Figure 2: The top left picture is the true costly function f(x) to be optimized. The
following pictures are surrogate models, based on the number of sampling
points n in bold face. As the iterations go by, the surrogate model becomes
an increasingly more correct description of f(x).

5

Algorithms for Costly Global Optimization

DACE Framework

As mentioned earlier, DACE models a function as a realization of random vari-
ables, normally distributed with mean µ and variance σ2. Estimates of µ and σ2

are found using Maximum Likelihood Estimation (MLE) with respect to the n
sampled points x and their corresponding function values y.

Using a matrix of correlation values R, the DACE interpolant is defined by

y(x̄) = µ+ r′R−1(y − 1µ) (5)

where r is the vector of correlations between x̄ and x. The first term µ is
the estimated mean, and the second term represents the adjustment to this
prediction based on the correlation of sampled points x.

The correlation function is defined as

Corr
[
x(i),x(j)

]
= e−D(x(i),x(j)) (6)

with respect to some distance formula. Compared with Euclidean distance,
where every variable is weighted equally, DACE utilize the distance formula

D
(
x(i),x(j)

)
=

d∑
k=1

θk ·
∣∣∣x(i)
k − x

(j)
k

∣∣∣pk θk > 0, pk ∈ [1, 2] (7)

which is designed to capture functions more precise. The exponent pk is re-
lated to the smoothness of the function in the kth dimension. Values of pk
near 2 corresponds to smooth functions and values near 1 to less smoothness.
Parameter θk controls the impact of changes in variable xk.

RBF versus DACE

Both interpolation techniques produce surrogate models, and the results are
often very similar. The main features are practically the same, only small details
might differ significantly. In Figure 3 we show an example of RBF and DACE
interpolation, comparing the different techniques by approximating the same
costly function using only n = 9 sampled points.

In the top left picture, the costly function to be optimized. The top right picture
illustrates the DACE interpolation surface where the parameters are found using
MLE. The two pictures in the bottom are RBF interpolation surfaces, the left
one using Thin Plate Splines and the right one using Cubic Splines. There are
some small differences between them, but almost not noticeable in the pictures.
DACE is the only one that reflects different scaling in the different directions,
and this is due to the individual weight factors θk.

6

Merit functions

Figure 3: Surrogate models of the same function using different interpolation methods.
The top left picture is the costly function to be optimized and to its right
the DACE interpolation model. The bottom pictures are RBF interpolation
models using Thin Plate Splines and Cubic splines respectively.

2 Merit functions

Merit functions are used to decide upon a new point, so far not sampled, where
the costly objective function should be evaluated. It is important to clarify the
advantage of merit functions; they are not expensive to evaluate compared to
the costly black-box function.

As stated before, merit functions are not unique. The only qualifications needed
are the ability to locate unexplored regions and/or investigate promising areas of
the parameter space. A purely global merit function would be to find the point
most distant from all sampled points, i.e. maximizing the minimal distance to
sampled points.

7

Algorithms for Costly Global Optimization

The other extreme would be to find the global minimum of the surrogate model,
denoted smin, and choose this as the new point. Note that this is not an
expensive problem and hence any global optimization algorithm can be used to
find smin.

The key to success is to balance these ambiguous goals, to somehow find both
local and global points. The global search is necessary in order to avoid get
stuck in a local minima, but will not likely be able to find an optimal solution
with many digits of accuracy. A pure global search will converge only in the
limit, clearly not preferable since function evaluations are costly.

One-stage/two-stage methods

In 2002, Jones wrote a paper [9] in which he summarized the area of costly global
optimization and characterized popular algorithms and implementations. A
surrogate model based method can be classified as either a two-stage procedure
or a one-stage procedure, defined by the process of selecting new points to
sample.

In its first stage, a two-stage method fit a response surface to the sampled points,
estimating the parameters required to define a surrogate model. Then, in the
second stage, these parameter estimates are considered true in order to utilize
the surface to find new search points.

But considering the estimates as true is a potential source of error. The re-
sponse surface might not be a good approximation of the true function, hence
misleading the search for promising new points to sample.

One-stage methods do not separate the model fitting and the search for new
sample points. Instead, using some measure of credibility, one seek the location
of a new point x∗ with function value f∗ at the same time as fitting the surrogate
model to already sampled data points.

The EGO algorithm traditionally utilize a two-stage procedure, first estimating
parameters and then evaluating some merit function. It is possible though to
construct one-stage procedures, which is explored in Paper III.

In RBF-based algorithms, it is common to use a one-stage procedure, where the
merit function includes a target value f∗ which is a number below the currently
best found solution. A new point to sample is found by optimizing a measure
of credibility of the hypothesis that the surface passes through the sampled
points x and additionally the new point x∗ with function value f∗.

In the upcoming sections, we present some different merit functions proposed
by authors over the years.

8

Merit functions

Target Values

Given a set of sampled points x = {x1, . . . , xn} and a target value f∗, find the
point x∗ which most probably has function value f∗. One should always use a
target value lower than the minimum of the surrogate model, i.e. f∗ < smin.

Figure 4: A merit function.

Define ∆ = smin − f∗. If ∆ is small, a modest improvement will do, i.e. a local
search. A large value of ∆ aims for a big improvement, i.e. global search.

The RBF algorithm utilize radial basis function interpolation and σ, a measure
of ‘bumpiness’ of a radial function. The target value f∗n is chosen as an estimate
of the global minimum of f . For each x̄ /∈ {x1, . . . , xn} there exists a radial
basis function sn(x) that satisfies the interpolation conditions

sn(xi) = f(xi), i = 1, . . . , n,

sn(x̄) = f∗n.
(8)

The new point x∗ is then calculated as the value of x in the feasible region
that minimizes σ(sn). In [2], a ’bumpiness’ measure σ(sn) is defined and it is
shown that minimizing σ(sn(x∗)) subject to the interpolation conditions (8), is
equivalent to minimizing a utility function gn(x∗) defined as

gn(x∗) = (−1)mφ+1µn(x∗) [sn(x∗)− f∗n]2 , x∗ ∈ Ω \ {x1, . . . , xn} , (9)

where µn(x∗) is the coefficient corresponding to x∗ of the Lagrangian function L
that satisfies L(xi) = 0, i = 1, . . . , n and L(x∗) = 1.

9

Algorithms for Costly Global Optimization

A range of target values

Instead of using one target value f∗ in each iteration, defined by some cyclic
scheme to balance local and global search, it is possible to solve the utility
function (9) multiple times for a range of target values.

This range of target values in which f∗ lies, denoted here by F , depends on the
surface minimum smin. Like before, values slightly less than smin means local
search, and a very big value of ∆ will result in a point most distant from already
sampled points, i.e. global search.

Each target value f∗k ∈ F results in a candidate x∗k as (9) is solved. It is not
reasonable to continue with all candidates, the range F might contain as many
as 40-60 values, each one connected with a costly function evaluation if utilized.

Fortunately the x∗k candidates tend to cluster, and by applying a clustering
process it is possible to proceed with a more moderate number of promising
candidates, covering both local and global search. Details on how to perform
the clustering is found in Paper I.

Figure 5: A range of target values.

In Figure 5 we see an example of x∗k candidates, found by the different target
values f∗k , and how they immediately begin to cluster. This idea is implemented
in the RBF-based solver ARBFMIP, presented in [3] and Paper I. It is also used in
the one-stage EGO algorithm presented in Paper III, implemented in TOMLAB
as osEGO.

10

Merit functions

Expected Improvement

A popular choice of merit function for the EGO algorithm it is the Expected
Improvement, a merit function designed to find the point most probable to
have a lower function value than fmin, the best one found so far. To simplify
notations, we define

z(x̄) =
fmin − y(x̄)

σ

where σ2 is the variance and y is the DACE interpolation model value at x̄.
The improvement over fmin is defined as I = max{0, fmin − y}. The expected
value of the improvement (ExpI) is computed as

ExpI(x̄) =
{

(fmin − y) · Φ(z) + σ · φ(z) if σ > 0
0 σ = 0 (10)

where φ(·) and Φ(·) denote the probability density function and cumulative
density function of the standard normal distribution. The expression can be
rewritten as σ · (z · Φ(z) + φ(z)). This two-stage method is connected to the
DACE framework since the estimated values of parameters σ and µ are needed
in order to build the response surface.

The CORS method

In 2005, Regis and Shoemaker [13] presented an RBF method for expensive
black-box functions. The merit function used in this CORS (Constrained Op-
timization using Response Surfaces) method is to find the global minimum of
the response surface smin, but with constraints on the distance from previously
evaluated points. Define the maximin distance from the n sampled points within
the feasible region:

∆n = max
x∈ΩC

min
1≤i≤n

||x− xi||.

In each iteration, find the value of ∆n and minimize the surrogate model sn(x)
with respect to the additional distance constraints:

min sn(x)

s.t. ||x− xi|| ≥ β ·∆n i = 1, . . . , n
x ∈ ΩC

(11)

where 0 ≤ β ≤ 1 is a scalar parameter to be specified.

This two-stage procedure is more advanced than the naive approach of just
choosing the surface min smin in each iteration. By varying the parameter β,
using a cyclic scheme starting with values close to 1 (global search) and ending
with β = 0 (local search), this merit function both explores the sample space
and improves on promising areas.

11

Algorithms for Costly Global Optimization

The Quality function

In a recent paper, Jakobsson et al. [5] introduce a Quality function to be max-
imized. The merit function seeks to minimize the uncertainty of the sample
space, but only in promising areas where the surrogate model predicts low func-
tion values. The uncertainty increases with distance to evaluated points x, and
the measure of uncertainty at a point x̄ is defined as:

Ux(x̄) = min
xi∈x
||xi − x̄||.

This uncertainty should be weighted against function value though, giving points
with low surrogate value sn(x̄) a high weight. A weight function w(sn(x̄)) with
such features can be constructed in many ways.

The quality function measures the improvement in certainty gained weighted
against surrogate function value, and is given by:

Q(x̄) =
∫

Ω

(Ux(x)− Ux∪x̄(x)) · w(sn(x)) dx. (12)

To find a new point to evaluate, solve the following optimization problem using
some standard solver:

arg max
x̄∈ΩC

Q(x̄).

In order to evaluate the quality function, numerical integration is necessary,
which makes this method suited only for problems in lower dimensions. To
overcome this drawback, Lindström and Eriksson [10] introduced a simplified
version of the quality function, avoiding the numerical integration.

Although implemented using RBF interpolation, the Quality function can be
used for any kind of surrogate model. It is a two-stage process since the inter-
polation model is used in the calculations.

3 Experimental Designs

All surrogate based algorithms need an initial set of sample points in order to
get going. To build the first interpolation surface, a minimum of n > d + 1
sample points is required where d is the dimension of the problem to be solved.
So how should one choose these initial points?

The procedure of choosing this initial set is often referred to as Experimen-
tal Design (ExD), or sometimes Design of Experiments (DoE). We prefer the
former, and hence ExD will be used throughout this thesis.

12

Experimental Designs

There are no general rules for an ExD, but there are some attractive features
one like to achieve. Since the objective function is considered black-box, the
ExD should preferably have some kind of spacefilling ability, i.e. not choose all
sample point from a small part of the sample space.

Corner Point Strategy

CGO solvers tend to sample points on the boundary of the box constraints, the
region of highest uncertainty of the costly function. Boundary points seldom
contribute with as much information as interior points do to the interpolation
surface, a problem discussed by Holmström in [3]. Sampling all corner points of
the box constraints Ω, and additionally the midpoint of the box, has proven to
increase the chances of generating interior points.

For this Corner Point Strategy (CPS) to perform at its best, the midpoint has
to be the point with lowest function value, otherwise the initial interpolation
surface will have its minimum somewhere along the boundary and hence the
CGO solver will generate a boundary point. To avoid this we propose addi-
tionally sampling the corner points of half the bounding box as well, centered
around the original midpoint, until we find a point with lowest function value
so far. The idea is demonstrated in Figure 6.

""
""

""
""

""
""

""
""

""
""bb

bb
bb

bb
bb

bb
bb

bb
bb

bbt

t

t

t
t

s
s

s
s

x0

x0

x0

x0

x0

x1

x2 x3

x4

t

t
t

s
s

s
s

Figure 6: A Corner Point Strategy example. First sample the corner points and the
midpoint, denoted by x0. If the midpoint is not of lowest value, proceed with
the inner corner points x1, x2, x3 and x4 until found.

The number of corner points N = 2d grow exponentially, which becomes an
issue for problems in higher dimensions d. A possible remedy is to sample only
a subset of corner points, for example only the lower left corner point of the
bounding box plus all its adjacent corner points. This yields a more moderate
number of initial sample points N = d + 1. This is also the minimum number
of initial points needed for a surrogate model algorithm to get started.

A generalization of the previous idea is to choose both the lower left and the
upper right corner points, plus all adjacent corner points. This gives an initial
sample of size N = 2 · (d+1) if d > 2. In two and three dimensions, the strategy
is equivalent to sampling all corner points.

13

Algorithms for Costly Global Optimization

Latin Hypercube Designs

Latin Hypercube Designs (LHD) is a popular choice of experimental design.
The structure of LHDs ensure that the sampled points cover the sampling space
in a good way. They also have a non-collapsing feature, i.e. no points ever
share the same value in any dimension. It is also extremely easy to generate a
LHD. Suppose we need to find n sample points x ∈ Rd, then simply permute
the numbers 1, . . . , n, once for each dimension d.

Maximin LHDs give an even better design, as the points not only fulfill the
structural properties of LHD designs, but also separate as much as possible
in a given norm, e.g. the standard Euclidean norm. They are much harder to
generate though, except for some special cases in 2 dimensions, using the 1-norm
and ∞-norm, described in [15].

To clarify the limitations of a standard LHD, Figure 7 shows the sampling space
divided into 4 subspaces. The random permutation approach could result in the
situation seen to the left, not covering large pieces of the sampling space at all,
although a valid LHD.

Latin Hypercube Design Maximin LHD

r r r
r r

r r
r

r
r

r

r
r

r

r
r

Figure 7: Different LHD sampling techniques. To the left, a LHD generated by random
permutation of the main diagonal. To the right, a maximin LHD where the
sample points are guaranteed to spread out.

In the right picture, a maximin LHD where the minimal Euclidian distance
between each pair of sample points is maximized, at the same time fulfilling the
special structure of a LHD. The maximin LHDs are clearly preferable.

It is possible to use any norm when generating these designs, but most common
are the 1-norm and ∞-norm besides the standard Euclidian norm (or 2-norm).
A large collection of maximin LHDs and other spacefilling designs are avail-
able at http://www.spacefillingdesigns.nl together with state-of-the-art
articles in the area.

14

Experimental Designs

Random Sampling Designs

Randomly choose a point x ∈ Ω, or optionally x ∈ ΩC to handle constraints,
and forbid points inside a circle with center x and radius r. Randomly select a
new point, reject it if too close to any previous points. Repeat until n points
are found. The result is not necessarily non-collapsing, as hinted by Figure 8.

At a closer look, we see that the radii of points 11 and 12 do overlap some of
their adjacent circles. It is simply not possible to fit the last two circles inside
the box, given the randomly chosen locations of the previous 10 points.

Figure 8: Example of a Random Sampling Design. For this 2-dimensional problem,
12 points have been sampled iteratively to fit inside the bounding box, marked
with a dotted line.

The Random Sampling Design (RSD) algorithm generates the n sample points
one at a time by randomly choosing a point inside the bounding box. If the circle
does not overlap any other circles, the point is saved. If the circle do overlap
another circle, the point is rejected and a new point is randomly generated.
This is repeated until n sample points have been found.

To handle the situation seen in Figure 8, where it is not possible to fit the
last two circles, the RSD algorithm use a specified finite number of points to
reject. For each rejected point, a violation measure is calculated, and the least
infeasible point is always saved. If the limit is reached, still without a feasible
point, the least infeasible point is used instead.

This method is a good substitute for a maximin LHD, at least for sufficiently
large values of r. Finding a maximin LHD is not easy in general, especially
in higher dimensions, hence we recommend using a RSD instead if no suitable
maximin LHD is available.

15

Algorithms for Costly Global Optimization

Optimize maximin distance

Suppose we like to sample n initial points x ∈ ΩC in some way, preferably
with a good spacefilling ability. This can be formulated as an optimization
problem, where the minimum distance between each pair of sample points is to
be maximized:

max
x

dmin

s.t. dmin ≤
∥∥x(i) − x(j)

∥∥ 1 ≤ i < j ≤ n
x(i) ∈ ΩC i = 1, . . . , n

(13)

In a paper from 2003, Stinstra et al. [14] discuss efficient methods for solving
problem (13). By sequentially fixating all points but one, they solve a series
of smaller problems which converges quickly. This approach also improves the
minimum distances between all pairs, something often neglected in the search
for the overall maximin distance.

Solutions tend to be collapsing for regular and standard regions, e.g. the optimal
solution for 4 points in a square surface is always the corner points.

Figure 9: Example of a constrained problem where n = 13 sample points are distributed
in the feasible area using a maximin distance objective.

In Figure 9 above the minimum distance between the n = 13 sample points
have been maximized. This is a powerful approach since it is able to handle any
kind of constraints. Notice that the distance measured between two points is
not affected by the infeasible regions.

16

Convergence Criteria

Deterministic Global Solver

Deterministic global optimization algorithms are designed to find the global
optimum for a given problem. They are not suited for expensive problems, but
can still be used to find good initial points.

For the Deterministic Global Solver (DGS) strategy, apply any standard global
optimization solver for a limited number of iterations, just in order to get an
initial set of n sample points.

The TOMLAB implementation of the DIRECT algorithm, glcDirect, have
been used in many experiments. Because of the algorithmic structure, trisecting
rectangles, the result will always be collapsing.

x x x x x x

x x x

x x x

x

x

x

Figure 10: Using the deterministic global solver DIRECT to generate an initial design.
The bounding box is iteratively trisected in order to explore promising areas
systematically.

4 Convergence Criteria

A major problem in the area of CGO is the lack of a practical convergence
criteria. Like any standard optimization problem, it is clear what is meant by
a local and global optimizer, it is just not possible to verify for a given point.

A local minimizer x∗ is a feasible point x∗ ∈ ΩC such that:

f(x∗) ≤ f(x) ∀ x ∈ ΩC and ‖x∗ − x‖ ≤ δ : δ ≥ 0

restricted to a local area surrounding x∗. For a big enough value of δ, the
minimizer is also global. Normally, gradient information is used to verify if a
point is a local optimizer. But since no derivative information is available, what
to do? When using a surrogate model approach, it is possible to approximate
the real derivatives with the ones of the interpolation surface.

17

Algorithms for Costly Global Optimization

For some special cases, it might be possible to find a lower bound on f(x), e.g.
for a sum of squares or the distance between points to be minimized. If a feasible
point with function value 0 is found, it must be a global optimizer.

It is also possible to utilize a measure of relative error Er whenever a lower
bound is available, stopping at some predefined tolerance:

Er =
fmin − LB
|LB|

, (14)

where fmin is the currently best feasible function value and LB is the best
known lower bound. But in practice it is common to stop after a given budget
of function evaluations or time limit.

5 Summary of Papers

This thesis is based on three papers, two which have been published in journals
and one research report presented at Mälardalen University. Here follows a
short summary of these papers.

Paper I and Paper III deals with the implementation and evaluation of two
surrogate model based algorithms for CGO problems. In Paper II we discuss
the problems involved in choosing an initial set of sample points, referred to as
an Experimental Design (ExD).

Paper I

The algorithm described in Paper I utilize radial basis functions (RBF) to inter-
polate sampled points and contain details on implementing an enhanced version
of the RBF algorithm. Introducing a range of target values for f∗ we solve the
merit function multiple times each iteration and cluster the resulting points.

This adaptive feature add stability to the search process, compared to the static
choice of f∗ defined by a cyclic scheme in the standard RBF algorithms, hence
the name Adaptive RBF algorithm (ARBF). The implementation is able to
handle all sorts of constraints, both linear and non-linear as well as integer re-
strictions on certain variables. It is available in TOMLAB and named ARBFMIP.

Paper II

Paper II investigate the influence of different experimental designs (ExD) on the
performance of surrogate model based CGO solvers. New methods are suggested
and evaluated together with standard experimental designs on a benchmark of
test problems. Three CGO solvers from the TOMLAB environment are used to
compare the performance of the different experimental designs.

18

REFERENCES

Paper III

In Paper III we describe an extension of the EGO algorithm. The standard
algorithm is a two-stage method, first estimating parameters in order to build
the surrogate model, then finding a new point to sample using some merit
function. The drawback with all two-stage methods is that surrogate models
based on a small set of sample points might be very misleading.

It is possible though to turn EGO into a one-stage method, and in the paper we
address implementation details and numerical issues, some inherited from the
two-stage approach, but also some new situations. Except for an implementation
by Jones, there exists no one-stage EGO algorithms to the best of our knowledge.

References

[1] H.-M. Gutmann: A radial basis function method for global optimization.
Journal of Global Optimization 19 (3), 201–227 (2001).

[2] H.-M. Gutmann: A radial basis function method for global optimization.
Technical Report DAMTP 1999/NA22, Department of Applied Mathemat-
ics and Theoretical Physics, University of Cambridge, England (1999).

[3] K. Holmström: An adaptive radial basis algorithm (ARBF) for expensive
black-box global optimization. Journal of Global Optimization 41, 447–464
(2008).

[4] K. Holmström and M. M. Edvall: January 2004, ‘CHAPTER 19: THE
TOMLAB OPTIMIZATION ENVIRONMENT’. In: L. G. Josef Kall-
rath, BASF AB (ed.): Modeling Languages in Mathematical Optimization.
Boston/Dordrecht/London.

[5] S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski:
A method for simulation based optimization using radial basis functions.
Optimization and Engineering (2009).

[6] D. R. Jones, C. D. Perttunen, and B. E. Stuckman: Lipschitzian optimiza-
tion without the Lipschitz constant. Journal of Optimization Theory and
Applications 79, 157–181 (1993).

[7] D. R. Jones, M. Schonlau, and W. J. Welch: Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization 13,
455–492 (1998).

[8] D. R. Jones: DIRECT. Encyclopedia of Optimization (2001).

[9] D. R. Jones: A Taxonomy of Global Optimization Methods Based on
Response Surfaces. Journal of Global Optimization 21, 345–383 (2002).

19

Algorithms for Costly Global Optimization

[10] D. Lindström and K. Eriksson: A Surrogate Model based Global Optimiza-
tion Method. Proceedings 38th International Conference on Computers and
Industrial Engineering (2009).

[11] M. J. D. Powell: The theory of radial basis function approximation in
1990. In W.A. Light, editor, Advances in Numerical Analysis, Volume 2:
Wavelets, Subdivision Algorithms and Radial Basis Functions 2, 105–210
(1992).

[12] M. J. D. Powell: Recent Research at Cambridge on Radial Basis Functions.
New Developments in Approximation Theory, 215–232 (2001).

[13] R. G. Regis and C. A. Shoemaker: Constrained Global Optimization of
Expensive Black Box Functions Using Radial Basis Functions. Journal of
Global Optimization, 31, 153–171 (2005).

[14] E. Stinstra, D. den Hertog, P. Stehouwer, and A. Vestjens: Constrained
Maximin Designs for Computer Experiments. Technometrics, 45, 340–346
(2003).

[15] E. van Dam, B. Husslage, D. den Hertog, and H. Melissen: Maximin Latin
Hypercube Designs in Two Dimensions. CentER Discussion Paper (2005).

20

Paper I

This paper has been published as:

K. HOLMSTRÖM, N-H. QUTTINEH and M. M. EDVALL, An adaptive radial basis
algorithm (ARBF) for expensive black-box mixed-integer constrained global optimiza-
tion, Optimization and Engineering, 9: 311-339, 2008.

An Adaptive Radial Basis Algorithm
(ARBF) for Expensive Black-Box
Mixed-Integer Constrained Global

Optimization

Kenneth Holmström∗, Nils-Hassan Quttineh∗ and
Marcus M. Edvall†

Abstract Response surface methods based on kriging and radial basis function (RBF)
interpolation have been successfully applied to solve expensive, i.e. computationally
costly, global black-box nonconvex optimization problems. In this paper we describe
extensions of these methods to handle linear, nonlinear, and integer constraints. In
particular, algorithms for standard RBF and the new adaptive RBF (ARBF) are de-
scribed. Note, however, while the objective function may be expensive, we assume that
any nonlinear constraints are either inexpensive or are incorporated into the objective
function via penalty terms. Test results are presented on standard test problems,
both nonconvex problems with linear and nonlinear constraints, and mixed-integer
nonlinear problems (MINLP). Solvers in the TOMLAB Optimization Environment
(http://tomopt.com/tomlab/) have been compared, specifically the three determinis-
tic derivative-free solvers rbfSolve, ARBFMIP and EGO with three derivative-based
mixed-integer nonlinear solvers, OQNLP, MINLPBB and MISQP, as well as the GENO
solver implementing a stochastic genetic algorithm. Results show that the determin-
istic derivative-free methods compare well with the derivative-based ones, but the
stochastic genetic algorithm solver is several orders of magnitude too slow for practi-
cal use. When the objective function for the test problems is costly to evaluate, the
performance of the ARBF algorithm proves to be superior.

Keywords: Global optimization, radial basis functions, response surface model,
surrogate model, expensive function, CPU-intensive, optimization software, splines,
mixed-integer nonlinear programming, nonconvex, derivative-free, black-box, linear
constraints, nonlinear constraints.

Abbreviations:

RBF Radial Basis Function

CGO Costly Global Optimization

MINLP Mixed-Integer Nonlinear Programming

∗Department of Applied mathematics, Mälardalen University, SE-721 23 Väster̊as, Sweden.
†Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA 99163-5451, USA.

23

Paper I

1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques, most of which utilize every computed function
value, have been developed over the years. In his excellent paper [9], Jones reviews the
most important developments. Many methods have been developed based on statistical
approaches, called kriging, see e.g. the Efficient Global Optimization (EGO) method
in Jones et al. [10]. In this paper we mainly consider methods based on radial basis
function interpolation, RBF methods, first discussed in [4] and [13].

Problems that are costly to evaluate are commonly found in engineering design, in-
dustrial and financial applications. A function value could be the result of a complex
computer program, an advanced simulation, e.g. computational fluid dynamics (CFD),
or design optimization. One function value might require the solution of a large system
of partial differential equations, and hence consume anything from a few minutes to
many hours. In the application areas discussed, derivatives are most often hard to
obtain and the algorithms make no use of such information. The practical functions
involved are often noisy and nonsmooth; however, the commonly used approximation
methods assume smoothness. Another area illustrating the challenges of optimization
with expensive function evaluations is space mapping optimization, see e.g. [1]. In-
stead of one costly function value, in space mapping a vector valued function is the
result of each costly evaluation. Companion ”coarse” (ideal or low-fidelity) and ”fine”
(practical or high-fidelity) models of different complexities are intelligently linked to-
gether to solve engineering model enhancement and design optimization problems.

Our goal is to develop global optimization algorithms that work in practice and produce
reasonably good solutions with a very limited number of function evaluations. From an
application perspective there are often restrictions on the variables besides the lower
and upper bounds, such as linear, nonlinear or even integer constraints. Henceforth,
we seek to solve the complicated problem formulated as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R; xL, x, xU ∈ Rd; the m1 linear constraints are defined by A ∈ Rm1×d,
bL, bU ∈ Rm1 ; and the m2 nonlinear constraints are defined by cL, c(x), cU ∈ Rm2 .
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.
Let ΩC ∈ Rd be the feasible set defined by all the constraints in (1) and Ω ∈ Rd be the
feasible set defined only by the box constraints, the simple bounds. We assume that
the function f(x) is continuous with respect to all variables, even though we demand
that some variables only take integer values. Otherwise it would not make sense to do
surrogate modeling of f(x). Another assumption is that the nonlinear constraints are

24

An adaptive radial basis algorithm (ARBF) for constrained CGO

cheap to compute compared to the costly f(x). All costly constraints can be treated
by adding penalty terms to the objective function in the following way:

min
x

p(x) = f(x) +
∑
j

wj max
(
0, cj(x)− cjU , cjL − c

j(x)
)
, (2)

where weighting parameters wj have been added. As we have shown in [2] this strategy
works in practice for an industrial train set design problem.

The idea of the RBF algorithm by Powell and Gutmann [4] is to use radial basis
function interpolation to build an approximating surrogate model and define three
utility functions. The next point, where the original objective function should be
evaluated, is determined by optimizing one or more of these utility functions. Roughly
speaking, the utility functions measure the likelihood that the solution to the problem
occurs at a given point with the objective function equal to a certain “target value”.
Maximizing the utility function therefore provides the point most likely to be a solution
to the problem if that the optimal objective equals the target value. Clearly, different
target values result in different points being suggested for further search. In the RBF
methods of Gutmann and Powell, a non-adaptive (static) scheme is used to select
the target values; unfortunately, as we show later, this can lead to the sampling of
many points on the boundary of the space that help little to advance the search. To
deal with this problem, Holmström [7] proposes a more general adaptive approach to
set target values, an Adaptive RBF algorithm (ARBF). Instead of the static choice,
a one-dimensional search for a suitable target value is done to improve convergence.
This leads to a sequence of global optimization problems to be solved in each iteration.
The above mentioned papers only consider a box-bounded region Ω, whereas in this
paper the goal is to solve the MINLP problems as defined by (1). The convergence of
the ARBF method is discussed in Holmström [7] and is based on the same arguments
as for the RBF method, discussed in the thesis of Gutmann [5].

In Section 2 the RBF interpolation method and the extensions of the RBF algorithm
for MINLP are described. A detailed presentation of the new Adaptive RBF algorithm
is given in Section 3, with some additions compared to Holmström [7] to handle MINLP
problems. In Section 4 the implementations in TOMLAB [6, 8] of the given algorithms
are described.

The approach to handle mixed-integer constrained problems is validated with tests on
a set of standard MINLP problems. Results for these problems and some nonconvex
constrained problems are given in Section 5. The same section also compares the
results from seven different MINLP solvers in the TOMLAB optimization environment.
Section 6 gives some concluding remarks.

2 The RBF method for MINLP

First, the surrogate model used in the RBF method is defined. Given n distinct points
x1, . . . , xn ∈ Ω with known function values Fi = f(xi), i = 1, . . . , n, the radial basis
function interpolant sn has the form

sn(x) =

n∑
i=1

λiφ
(
‖x− xi‖2

)
+ p(x), (3)

25

Paper I

where ‖·‖ is the Euclidean norm, λ1, . . . , λn ∈ R and p is in Πd
m (the space of polyno-

mials in d variables of degree less than or equal to m). Common choices of radial basis
functions φ and the corresponding polynomial p(x) and minimal polynomial degree
mφ are given in Table 1. When φ is either cubic with φ(r) = r3 or thin plate spline
with φ(r) = r2 log r, the radial basis function interpolant sn has the form

sn(x) =

n∑
i=1

λiφ
(
‖x− xi‖2

)
+ bTx+ a, (4)

with λ1, . . . , λn ∈ R, b ∈ Rd, a ∈ R. The unknown parameters λi, b, a are obtained as
the solution of the linear equations(

Φ P

PT 0

)(
λ

c

)
=

(
F

0

)
, (5)

where Φ is the n× n matrix with Φij = φ
(
‖xi − xj‖2

)
and

P =


xT1 1
...

...

xTn 1

 , λ =


λ1

...

λn

 , c =


b1
...

bd

a

 , F =


f(x1)

...

f(xn)

 . (6)

If rank(P) = d + 1, the matrix

(
Φ P

PT 0

)
is nonsingular and system (5) has a

unique solution [12]. Thus a unique radial basis function interpolant to f at the points
x1, . . . , xn is obtained. After this, one has to consider the question of choosing the
next point xn+1 to evaluate the objective function for. The idea of the RBF algorithm
is to use radial basis function interpolation and a measure of “bumpiness” of a radial
function, σ. A target value f∗n is chosen as an estimate of the global minimum of f .
For each y /∈ {x1, . . . , xn} there exists a radial basis function sy(x) that satisfies the
interpolation conditions

sy(xi) = f(xi), i = 1, . . . , n,

sy(y) = f∗n.
(7)

The next point xn+1 is then calculated as the value of y in the feasible region that
minimizes σ(sy). As a surrogate model is used, the function y 7→ σ(sy) is much cheaper
to compute than the original function.

In [3], a “bumpiness” measure σ(sn) is defined and it is shown that minimizing σ(sy)
subject to the interpolation conditions (7) is equivalent to minimizing a utility function
gn(y) defined as

gn(y) = (−1)mφ+1µn(y) [sn(y)− f∗n]
2
, y ∈ Ω \ {x1, . . . , xn} . (8)

The method of Gutmann and the bumpiness measure is further discussed in the more
recent papers [14] and [15] by Regis and Shoemaker. Writing the radial basis function
solution to the target value interpolation problem (7) as

sy(x) = sn(x) + [f∗n − sn(y)] ln(y, x), x ∈ Rd, (9)

26

An adaptive radial basis algorithm (ARBF) for constrained CGO

Table 1: Different choices of Radial Basis Functions.

RBF φ(r) > 0 p(x) mφ = degree(p(x))

cubic r3 bT · x+ a 1

thin plate spline r2 log r bT · x+ a 1

linear r a 0

multiquadric (r2 + γ2)
1
2 , γ > 0 a 0

inverse multiquadric 1/(r2 + γ2)
1
2 , γ > 0 a 0

Gaussian exp(−γr2), γ > 0 {0} -1

µn(y) is the coefficient corresponding to y of the radial basis interpolation function
solution ln(y, x) that satisfies ln(y, xi) = 0, i = 1, . . . , n and ln(y, y) = 1. µn(y) can
be computed as follows. Φ is extended to

Φy =

(
Φ φy

φTy 0

)
, (10)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n, and P is extended to

Py =

(
P

yT 1

)
. (11)

Then µn(y) is the (n+ 1)-th component of v ∈ Rn+d+2 that solves the system

(
Φy Py

PTy 0

)
v =

 0n

1

0d+1

 . (12)

The notations 0n and 0d+1 are used for column vectors with all entries equal to zero
and with dimension n and (d + 1), respectively. The computation of µn(y) is done
for many different y when minimizing gn(y). This requires O(n3) operations if not
exploiting the structure of Φy and Py. Hence, it does not make sense to solve the full
system each time. A better alternative is to factorize the matrix Φ and then use this
stored factorization to speed up the factorization of the matrix on the left hand side
of equation 12. An algorithm that requires O(n2) operations is described in [2].

Note that µn and gn are not defined at x1, . . . , xn and

lim
y→xi

µn(y) =∞, i = 1, . . . , n. (13)

This will cause problems when µn is evaluated at a point close to one of the known
points. The function hn(x) defined by

hn(x) =

{
1

gn(x)
, x /∈ {x1, . . . , xn}

0, x ∈ {x1, . . . , xn}
(14)

is differentiable everywhere on Ω, and is thus a better choice as an objective function.
Instead of minimizing gn(y) in (8), Gutmann [4] suggests to minimize −hn(y).

27

Paper I

The basic RBF algorithm has been discussed in detail in [2, 4] and in the form below
in [7]. A discussion on how to expand the RBF algorithm to treat mixed-integer
nonlinear (MINLP) problems follows.

In order to handle possible infeasibility due to the linear and nonlinear constraints not
being fulfilled, define the following L1 type merit function

min
x

FL1(x) = f(x) + hL1(x), (15)

where
hL1(x) =

∑
j

max
(
0, Axj − bjU − εA, bjL −Ax

j − εA
)

+∑
j

max
(
0, cj(x)− cjU − εC , cjL − c

j(x)− εC
)
.

(16)

The linear feasibility tolerance εA and the nonlinear feasibility tolerance εC are directly
deducted when computing hL1(x), which means that any numerically feasible point
fulfills hL1(x) = 0 and f(x) = FL1(x). In the Algorithm RBF for MINLP given below,
the flag Feasible is used to track if the algorithm has found any feasible point or not.
Note that while hL1(x) is scale dependent it does not influence the behavior of the
algorithm RBF for MINLP given below, nor the ARBF algorithm in the next section.
This is due to the fact that hL1(x) is not used in building the interpolation surface,
and it is not used in the subproblem solutions. To compute the first RBF interpolation
surface, at least n ≥ d + 1 disjunct sample points are needed. This set is normally
found by using a statistical experimental design algorithm, e.g. Latin Hypercube
(McKay et al. [11]) or by evaluating some or all the corners of the box defined by Ω.
For a constrained or mixed-integer nonlinear problem, the RBF interpolation needs
to be a good approximation of f(x) in ΩC . Assuming that the constraints c(x) are
much less time-consuming to compute than the costly f(x), one can try to find a large
number of sample points using Latin Hypercube design, then compute hL1(x) for each
of the points and select the first n feasible points found as the initial experimental
design. Define this strategy as a Constrained Latin Hypercube (CLH) design. In case
enough feasible points can not be found, some of the infeasible points are added to
get n points. Results using the new CLH method to generate the initial experimental
design are compared to standard experimental designs in Section 5. Before turning
to the new Adaptive RBF algorithm in the next section, the basic RBF algorithm,
expanded to handle MINLP, is given below. This algorithm has been implemented in
the TOMLAB solver rbfSolve since 2004 and discussed in several conference talks, but
not been presented in great detail before.

Algorithm RBF for MINLP:

• Find initial set of n ≥ d+ 1 sample points xi ∈ ΩC using CLH or xi ∈ Ω using
any other experimental design method.

• Compute the n costly function values f(xi), i = 1, . . . , n and the (non-costly)
nonlinear constraints c(xi), i = 1, . . . , n. If using CLH, c(xi) are already com-
puted.

• Compute hL1(xi), i = 1, . . . , n and FL1(xi), i = 1, . . . , n.

• if for any i, f(xi) = FL1(xi) is true, set Feasible = 1, otherwise Feasible = 0.

• if Feasible, find the feasible point with the lowest function value (xMin, fMin)
by computing fMin(xMin) = min i=1,...,n, xi∈ΩC f(xi).
Otherwise, when no feasible point exists, set fMin(xMin) = min i=1,...,n FL1(xi).

28

An adaptive radial basis algorithm (ARBF) for constrained CGO

• As an approximation of the function f(x), x ∈ ΩC , use the n sample points,
(xi, f(xi)), xi ∈ Ω, to build a smooth RBF interpolation model sn(x) (surrogate
model, response surface model) with chosen φ and m ≥ mφ from Table 1.

• Iteration until n ≥ nMax, or a prescribed maximal CPU time (or fGoal, known
goal for f(x), achieved with a certain relative tolerance with xMin ∈ ΩC).

1. Find global minimum of the constrained RBF surface, sn(xsn) = min
x∈ΩC

sn(x)1.

2. In every iteration in sequence pick one of the N + 2 cycle step choices.

(a) Cycle step −1 (InfStep).
Set target value f∗n = −∞, i.e. solve the global optimization problem

g∞n (x∞gn) = min
x∈ΩC\{x1,...,xn}

µn(x), (17)

where µn(x) is computed as described in equation (12). Set xn+1 = x∞gn .

(b) Cycle step k = 0, 1, . . . , N − 1 (Global search).
Define target value f∗n ∈ (−∞, sn(xsn)] as

f∗n(k) = sn(xsn)− wk ·
(

max
i
f(xi)− sn(xsn)

)
,

with wk = (1−k/N)2 or wk = 1−k/N . Solve the global optimization
problem

gn(xkgn) = min
x∈ΩC\{x1,...,xn}

(−1)mφ+1µn(x) [sn(x)− f∗n(k)]
2

(18)

and set xn+1 = xkgn .

(c) Cycle step N (Local search).
If sn(xsn) < fMin−10−6|fMin|, accept xsn as new search point xn+1.
Otherwise set f∗n(k) = fMin−10−2|fMin|, solve (18) and set xn+1 = xkgn .

3. If xn+1 is not too close to x1, . . . , xn, accept xn+1 as search point and
evaluate f(xn+1) and FL1(xn+1).

4. If xn+1 ∈ ΩC , set Feasible = 1.

5. Update the point with lowest function value (xMin, fMin): either if Feasible
and f(xn+1) < fMin or if not Feasible and FL1(xn+1) < fMin.

6. Increase n and compute new RBF surface. Start new Iteration step.

The InfStep in 2a) is optional, since for most problems, it does not improve the con-
vergence to the global optimum. However, the coefficient µn(x) is always needed in
the Global search step, and sometimes in the Local search step as well. Note that
Gutmann [4] only considers one special case of the algorithm in which InfStep among
others are not included.

The range maxi f(xi)−sn(xsn) in Step 2b) must always be sufficiently positive. In the
case of an initial design with an almost flat surface, or with only infeasible initial points,
the range could become too small, zero, or negative. Therefore, the implementation
in rbfSolve safeguards the computation against this issue.

1Note that any nonlinear constraints are explicitly used in this subproblem. This is the
reason the nonlinear constraints need to be cheap.

29

Paper I

The range may also, for many problems, become too big and lead to unreasonably low
target values. Gutmann suggests replacing f(xi) > mediani f(xi) with mediani f(xi)
both when computing the range and in the RBF interpolation. In practice one com-
monly needs to use some strategy to reduce the range. When large values are replaced
by the median in the RBF interpolation, many numerical interpolation problems are
avoided, but when additional points are sampled close to a stationary point, the func-
tion approximation gets less and less accurate in other parts of the space.

The RBF algorithm in practice is very sensitive to the choice of initial experimental
design, especially when using stochastic designs. If the initial steps of the algorithm
fail to find some point in the basin of the global optimum, it often starts iterating
repeatedly with sample points on the boundaries in the Global search, and only refines
a local minima in the Local search.

Define the number of active variables α(x) as the number of elements of x that have
components close to the bounds in the box, i.e.

α(x) = |{j ∈ 1, . . . , d, j /∈ I : |xj − xjL| ≤ εx or |xj − xjU | ≤ εx}|. (19)

If a point is interior, then obviously α(x) = 0. The integer components of x are not
considered when determining if a point is interior or not. If studying α(x) during
the iterations when running rbfSolve for many problems, the algorithm frequently
generates points with some components on their bounds, α(x) > 0. Doing a systematic
study of the solution of (18) for many f∗n ∈ (−∞, sn(xsn)] on different subproblems
during the RBF iterations confirmed that the solution is typically not interior, and
hence a careful choice of target value is needed. Solving a large set of problems (18) for
different target values should generally be much less time-consuming than computing
the costly f(x). In addition computations for different target values are independent
and could be done in parallel on different CPUs. By examining solutions for a large
set of target values, it should be possible to find good search points in most iteration
steps, and only evaluate the costly f(x) for these points. In the next section a new
adaptive RBF algorithm suitable for parallel implementation is formulated.

3 The Adaptive Radial Basis Algorithm (ARBF)
for MINLP

In this section the main ideas of the new Adaptive Radial Basis Algorithm are dis-
cussed and a formalized description is provided. To overcome the limitations of the
RBF algorithm, the choice of target values must be made more flexible. The objective
function class is very wide and a robust algorithm must adapt to the particular be-
havior of a function. A few choices of target values based on the function value range
as in the RBF algorithm only works for nice well-behaved problems. This observation
has been confirmed by practical experience with the RBF algorithm for a large set
of real-life user problems over the past six years. Instead, a more adaptive algorithm
is proposed, based on evaluating a large set of target values in each iteration is pro-
posed. The approach is similar to two of the algorithms proposed by Jones in [9] to
solve kriging problems, named the Enhanced Method 4 and Method 7.

30

An adaptive radial basis algorithm (ARBF) for constrained CGO

Jones considers several kriging algorithms, e.g. Method 4, where the problem in each
iteration is to maximize the probability of improvement after setting a target value.
The optimal solution found is used as the new search point, and the costly f(x) is
evaluated for this search point and a new surrogate model of kriging type is computed.
As in the RBF algorithm, it is a major difficulty to set the target value properly in
each iteration. To overcome this problem, Jones proposes a new method called the
Enhanced Method 4 that uses a range of target values in each iteration, corresponding
to low, medium and high desired improvement. Similarly, in the ARBF algorithm, a
set of target values are selected each iteration. However, experience has demonstrated
the need to cover the full range from −∞. For each target value the global optimization
problem defined by (18) is solved.

Evaluating a large set of target values leads to many candidate points. If all were used,
it would lead to several costly function evaluations in each iteration. Jones shows on
one-dimensional examples that the optimal solutions tend to cluster in different areas
of the parameter space. Similar behavior has been observed for the solutions of (18)
with different target values. It is hence natural to apply a clustering algorithm to the
set of optimal points {x̂j}Mj=1 (transformed to the unit cube [0, 1]d), and use only one
or a few points from each group found. As described below, Jones suggests applying a
tailor-made clustering algorithm to the sequence of optimal points in decreasing target
value order. The algorithm has been modified by adding steps 7 and 8 later in this
section. In the test in step 8 the number of components on bounds is used, defined as
in (19). Compared to Holmström [7], the algorithm has also been updated to handle
mixed-integer problems by separating treatment of integer and continuous variables,
and in addition step 1 is new.

The Jones Cluster Algorithm for MINLP

• Transform the set of optimal points {x̂j} to the unit cube [0, 1]d, and compute
the distance between two successive optimal points as

∆j =

√ ∑
l=1,...,d,l/∈I

(x̂lj − x̂lj+1)2/(d− |I)|.

• Compute the number of integer components that are different between two suc-
cessive solutions as ∆I

j = |{l ∈ I : x̂lj 6= x̂lj+1}|.
• Assign point 1, x̂1, to group 1.

• Sequentially consider point 2 to M . For each point, if a criterion C > 12, a new
group is started. The criterion C is computed as follows:

1. If ∆I
j−1 > 0 then set C = 100, i.e. start a new group. Then at least one

integer component has changed.

2. If ∆j > 0.1 and ∆j−1 > 0.1 then set C = 100, i.e. start a new group.

3. Otherwise, if ∆j > 0.0005, then set C = ∆j−1/∆j .

4. Otherwise, if j ≥ 3 and ∆j−1 > 0.0005, then set C = ∆j−1/max(∆j−2, 0.0005).

5. Otherwise, if j = 2 and ∆1 > 0.1 and ∆2 < 0.0005, then set C = 100 to
signal the need for a new group.

6. If none of the above conditions is satisfied, set C = 0, i.e. no need to start
a new group unless any of the following two criteria are fulfilled.

31

Paper I

7. If j = M and C < 12 and ∆M−1 > 0.1, set C = 100, i.e. start a new group
for the last point.

8. If C < 12 and ∆j−1 > 0.1 and α(x̂j) = α(x̂j−1), check if any of the
components on the bounds for point x̂j have at least a 10% difference in the
corresponding components in x̂j−1. Also test if any of the components on
the bounds for point x̂j−1 have at least a 10% change in the corresponding
components in x̂j . If any of the tests are true, start a new group by setting
C = C + 200.

Let fMin = mini f(xi) and fMax = maxi f(xi). Jones suggests setting the target
values using a fixed grid as f∗n(j) = sn(xsn) − wj · f∆, where the range is set to
f∆ = fMax − fMin. The two first rows in Table 2 show the choice of target value
factors wj . In the new algorithm, two extreme values shown in row three have been
added. It is then easier to detect if the range of target values is sufficient.

Table 2: Weight factors wj used in the global grid search

0.0 10−4 10−3 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.10 0.11 0.12 0.13 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00

1.50 2.00 3.00 100 ∞

The above choice of f∆ might become too big if the function varies over a large range.
In such cases, as a fixed grid is used, there may be failure to sample important target
values that would lead to the region of the global minimum. Since the range can only
get larger as the iterations proceed, the algorithm is unlikely to sample these target
values in later iterations.

To be more flexible and adaptive, the target values are set as f∗n(j) = sn(xsn) − β ·
wj · f∆, where β is an adaptive factor and the range is

f∆ =

{
min(max(1, fMin), fMax − fMin), iffMin > 0

min(10 ·max(1, |fMin|), fMax − fMin), iffMin ≤ 0.
(20)

If several optimal solutions for different target values are equal or very close, it might
be a sign that the target values are too close, so β is iteratively increased by a factor
10 If the optimal point found for the second target value is far from the solution of
the first target value, i.e. the minimum of the RBF surface, it is a sign that the target
values are too spread out, and β is likewise decreased by a factor 10. In most cases
this happens close to a stationary point.

As in the original RBF algorithm, every iteration of the ARBF algorithm starts by
finding the global minimum of the RBF surface with respect to all constraints by
solving

ŝn := sn(xsn) = min
x∈ΩC

sn(x).

If ŝn � fMin the RBF surface is fluctuating wildly and there is no point in applying
a target value strategy. The target values need to be even lower than ŝn, so they
might as well be set much lower than the actual global minimum. Applying the target
value strategy in such cases generally produces garbage solution points. Instead, the

32

An adaptive radial basis algorithm (ARBF) for constrained CGO

minimum of the RBF surface is added as a new point repeatedly until the interpolation
stabilizes and more reasonable target values can be set. If ŝn is closer to fMin and the
oscillation of the surface is less pronounced, the question is when to rely on the target
value strategy. The approach taken is to consider the RBF surface wildy fluctating,
i.e. applying the above strategy, down to a relative difference of 10%. This works well
in tests so far, but other values could be tried. Currently the following test is used:
If ŝn < fMin − 0.1|fMin| when fMin 6= 0, or ŝn < fMin − 10v when fMin = 0, then
ŝn � fMin is considered true. v is computed as v = min(f(x)), x ∈ {x : f(x) > 10−7}.
For the special case when the set is empty, v = 10−7 is used.

For every ARBF iteration, the algorithm is in one of three modes: the wild mode
described in the previous paragraph, a global grid search mode, or a local grid search
mode. In the global grid search the aim is to sample one or more points from every
region of interest. In the local grid search the aim is to find a better approximation
of any stationary points close to the best point found so far. Ideally one of these
stationary points is also the global minimum. Note that the global grid search also
sample points close to the best point found similar to the local grid search. In the
wild mode the aim is to proceed with surface minimum points until the interpolation
is stable enough to make a global target value grid give reasonable results. The wild
mode is entered automatically when the surface is fluctuating wildly, but the switch
between global and local grid mode is determined by the algorithm in the following
way: Start with global grid mode, and as long as this gives function value reductions,
stay in that mode. Every iteration of the global and local grid mode always end by
adding the minimum point of the surface (one S-step). This is taken care of by the flag
EndGridMode. When no reduction is achieved in an iteration of the global mode (or
possibly only in the final surface minimum S-step sampling) the algorithm switches to
local mode. The same logic applies for local mode; it continues the local grid search
until no reductions are achieved, and then switches to global mode. In both the local
and global grid mode, one or more points might be selected using the cluster algorithm
and some heuristic rules (discussed later in this section). The formal ARBF algorithm
description can now be given.

Algorithm ARBF for MINLP:

• Find initial set of n ≥ d+ 1 sample points xi ∈ ΩC using CLH or xi ∈ Ω using
any other experimental design method.

• Compute the n costly function values f(xi), i = 1, . . . , n and the (non-costly)
nonlinear constraints c(xi), i = 1, . . . , n. If using CLH, c(xi) are already com-
puted.

• Compute hL1(xi), i = 1, . . . , n and FL1(xi), i = 1, . . . , n.

• If for any i, f(xi) = FL1(xi) is true, set Feasible = 1, otherwise Feasible = 0.

• if Feasible, find the feasible point with the lowest function value (xMin, fMin)
by computing fMin(xMin) = min i=1,...,n, xi∈ΩC f(xi).
Otherwise, when no feasible point exists, set fMin(xMin) = min i=1,...,n FL1(xi).

• As an approximation of the function f(x), x ∈ ΩC , use the n sample points,
(xi, f(xi)), xi ∈ Ω, to build a smooth RBF interpolation model sn(x) with
chosen φ and m ≥ mφ from Table 1.

• Set GlobalProgress = 1 and LocalProgress = 0, making the initial search
mode global. Also initialize EndGridMode = 0.

33

Paper I

• Iteration until n ≥ nMax, or a prescribed maximal CPU time (or fGoal, known
goal for f(x), achieved with a certain relative tolerance at xMin ∈ ΩC).

1. Find the global minimum of the RBF surface, sn(xsn) = min
x∈ΩC

sn(x).

2. Find a set of new search points X = {x̄j , j = 1, . . . , k} by applying one of
the following three types of search procedures dependent on logical condi-
tions given for each procedure.

(a) Wild Mode (S-step). If sn(xsn) � fMin or EndGridMode = 1,
accept the RBF surface minimum xsn as the new search point, i.e.
X = xsn . Set EndGridMode = 0.

(b) Global Grid Mode. (G-step). If GlobalProgress = 1, define M
target values f∗n ∈ (−∞, sn(xsn)] as f∗n(j) = sn(xsn)−β ·wj · f∆ with
wj , j = 1, . . . ,M , a vector of predefined factors in the range [0,∞],
and β an adaptive weight factor in the range [10−3, 103], initialized as
β = 1. The function range f∆ is determined in each step as described
in (20).
For each of the M target values, solve the global optimization problem

gn(x̂j) = min
x∈ΩC\{x1,...,xn}

(−1)mφ+1µn(x) [sn(x)− f∗n(j)]
2

(21)

Then use the Jones Clustering Algorithm on the M optimal solution
points x̂j . Apply heuristic rules to determine which of the clustered
groups to consider, and in each selected group, which of the points
to include in the new set of search points X; see the Point Selection
Algorithm later in this section. Set EndGridMode = 1.

(c) Local Grid Mode. (L-step). If LocalProgress = 1, define ML

target values using the same factors wj as in the G-step together with
some additional small factors.
Solve (21) and apply the Jones Clustering Algorithm to the ML opti-
mal solutions x̂j .
Apply the heuristic rules described in the Point Selection Algorithm
to determine which points in the first cluster group should be included
in set X. Set EndGridMode = 1.

3. Check the set of new search points X = {x̄j , j = 1, . . . , k}, deleting any
point too close (normalized distance less than 10−4) to any previous point
in X; or too close to any sample point x1, . . . , xn (distance less than 10−8).

4. Set xn+j = x̄j , j = 1, . . . , k and evaluate f(xn+j), c(xn+j), j = 1, . . . , k
and FL1(xn+j), j = 1, . . . , k

5. If any xn+j ∈ ΩC , j = 1, . . . , k, set Feasible = 1.

6. If Feasible and minj=1,...,k f(xn+j) < fMin or
if not Feasible and minj=1,...,k FL1(xn+j) < fMin

– Update the point with lowest function value (xMin, fMin).

– Set LocalProgress = 1 (if L-step).

– Set GlobalProgress = 1 (if G-step).

else

– Set LocalProgress = 0 (if L-step).

34

An adaptive radial basis algorithm (ARBF) for constrained CGO

– Set GlobalProgress = 0 (if G-step).

7. Increase n by k; compute new RBF surface. Start new Iteration step.

The selection of trial points utilizing the result of the clustering process applied to
the set of optimal solutions computed from the target values is one of the heuristics.
For kriging algorithms, Jones suggests picking the last member of each of the groups
formed by the clustering algorithm as a new candidate point, i.e. the one with the
smallest target value in each group. This selection criteria has been found a bit crude
when applied to RBF algorithms. Therefore a Point Selection Algorithm has been
developed, which describes how to generate new trial points based on the results from
the Jones Cluster Algorithm. The algorithm is described in detail in Holmström [7].

The main idea is to only select points from the cluster groups with least number of
components on bounds, found by computing α(x) in (19) for every optimal solution.
The number of points selected in each group depends on the distance between the
optimal points in the group. The first group, with optimal points close to the current
RBF surface minimum, and the last group, with lowest target values including the
−∞ target value, are treated separately.

4 Implementation of the RBF and ARBF
for MINLP

The MINLP algorithms described are available in MATLAB using the TOMLAB Op-
timization Environment (http://tomopt.com/tomlab/). The Algorithm ARBF for
MINLP in Section 3 is implemented in the TOMLAB solver ARBFMIP, while the
Algorithm RBF for MINLP in Section 2 is found in the solver rbfSolve. Similar ideas
were used to implement a MINLP version of the Efficient Global Optimization (EGO)
method described by Jones et al. [10]. All three solvers are part of the TOMLAB/CGO
toolbox for costly nonconvex black-box mixed-integer optimization.

The implementations rely on robust solutions of the non-costly global MINLP opti-
mization problems described as part of the algorithms, equations (3), (18), (17) and
(21). Subsolvers are required for all three costly MINLP solvers. Any standard MINLP
solver in TOMLAB can be used; currently there are nine choices. In order to make
the CGO solvers more robust, if the subsolver returns an infeasible solution to the
MINLP subproblem, one or two alternative solvers will try to find a feasible solution.

By default and in the numerical tests, the global MINLP solver glcCluster is used. It
uses a mixed-integer constrained DIRECT solver (glcDirect, glcFast or glcSolve) as the
initial step, then applies an adaptive clustering algorithm to all points sampled by the
DIRECT algorithm, and finally repeats local optimization with fixed integer variables.
The starting points in the local optimizations are set as the best point found in each
cluster. As local solver, any nonlinear programming solver in TOMLAB is suitable; by
default NPSOL and SNOPT are used. TOMLAB also has four derivative-based mixed-
integer nonlinear solvers, MULTIMIN, OQNLP, MINLPBB and MISQP. If derivatives
are estimated numerically, these four solvers can be used as subsolvers. In the tests,
OQNLP and MULTIMIN were used as alternative solvers, whenever glcCluster failed
to find a feasible solution for a subproblem.

35

Paper I

5 Numerical Results

In this section the results from a set of standard MINLP test problems and a set of
constrained global optimization test problems are reported. Each problem set was
solved using ARBFMIP, rbfSolve, EGO, OQNLP, MINLPBB, MISQP and GENO.

For the black-box CGO solvers ARBFMIP, rbfSolve and EGO, different settings and
experimental designs were evaluated to see if any combination outperforms the rest.
Two types of radial basis functions were used for ARBFMIP and rbfSolve: the thin
plate spline φ(r) = r2 log r (TPS) and the cubic spline φ(r) = r3 (Cubic). Three
different experimental designs are used: The standard Latin Hypercube (LH), the
Constrained Latin Hypercube (CLH) as defined in Section 2 and a corner strategy
we denote LAC. LAC picks the lower left corner and its d adjacent corners, i.e. the
following d+ 1 corners of Ω:

{xL, xL + ei, i = 1, . . . , d, with ei = 0 ∈ Rd, except component j : eji = xjU − x
j
L}.

In the tests the midpoint of the box, (xL + xU)/2, is always added as point d + 2 in
this design strategy. In the tests of the CLH design, the minimal number of points,
n = d + 1, was used. Slightly more robust results would probably be obtained if n
were increased somewhat. In all runs with the CGO solvers, the maximum number of
function evaluations were set to 250 (nMax = 250 in Algorithm RBF and ARBF for
MINLP).

In the tables, row ExD gives the experimental design used, row RBF gives the radial
basis function used, and in row Scale the On/Off switch indicates whether variable
scaling to the unit cube was used or not. For the MINLP problems, scaling was
not used. Column IP specifies the number of initial points from the experimental
design. For rbfSolve the option to replace all function values f(xi) > medianif(xi)
with the medianif(xi) is used if row Repl is set to Yes. The function values are
replaced both when computing the range and in the RBF interpolation. In ARBFMIP
this choice of replacement strategy is avoided. In each iteration, for the radial basis
interpolation, all function values in the range [fMin,max(0, fMin)+105] are untouched
and values f(x) > max(0, fMin)+105 are replaced by max(0, fMin)+105+log10(f(x)−
max(0, fMin)− 105). Thereby, huge scale differences in the linear equation system (5)
are avoided. The other possible source of numerical difficulties in solving (5) is a very
badly scaled domain [xL, xU]. Such a problem is easily avoided by using the scale
option described above.

The solvers OQNLP, MINLPBB and MISQP are derivative-based MINLP solvers,
but were forced to estimate derivatives numerically in the experiments. It is easy to
derive analytical derivatives for the test problems, but the aim is to test the ability to
solve black-box problems. OQNLP implements a stochastic algorithm to find starting
points, and the random point generation depends on a seed parameter. In the tests
only one seed parameter value was set. The other two solvers are deterministic, and
the result is only dependent on the starting point given. In the tests, each problem is
solved with 100 random starting points created inside the box defined by the simple
bounds.

The GENO solver implements a constrained mixed-integer nonlinear stochastic genetic
algorithm. This type of algorithm is popular in practice, although many function
evaluations are needed to reach a global minimum.

36

An adaptive radial basis algorithm (ARBF) for constrained CGO

Each test problem was solved with 50 random starting points (using the same starting
points as in the experiments with OQNLP, MINLPBB and MISQP, but only the first
50). It is possible to specify a random seed in GENO. The result of a run with a
genetic algorithm is highly dependent on the set of random points generated in the
run. Therefore, each problem was solved using 5 different seeds. Thus, each problem
was solved 250 times. A time limit was defined for all runs with GENO, in order to
avoid excessive run-times. The limit was set so that GENO could perform at least
10000 function evaluations. Most of the runs do not find any good solutions.

Throughout this section, all tables come in pairs and present the number of function
evaluations needed to achieve a function value with relative error of 1% and 0.01%
respectively. The relative error is defined as

E =
fMin − fglobal
|fglobal|

, (22)

where fMin is the current best function value and fglobal is the known global optimum
(which is nonzero for all the problems). A − sign indicates failure.

5.1 Numerical Results for mixed-integer nonlinear
programs

Table 3 gives a compact description for the MINLP test functions, including the abbre-
viations used. Column d is the number of variables, xI the number of integer variables,
Ax the number of linear inequality constraints, Ax with = on the row below the num-
ber of linear equality constraints, c(x) the number of nonlinear inequality constraints
and c(x) with = on the row below the number of nonlinear equality constraints. The
Domain column shows the lower and upper bounds for all variables.

Table 3: Names and descriptions of the MINLP test problems

Problem Abbrev. d xI Ax Ax c(x) c(x) Domain

= =

Kocis & Grossmann 1998 KG98 5 3 3 0 2 2 [0, 10−8, 0, 0, 0] − [108, 108, 1, 1, 1]

Floudas 1995 6.6.5 FL95 3 1 2 0 1 0 [0.2,−2.22554, 0] − [1,−1, 1]

Pörn et al. 1997 PÖ97 2 2 3 0 1 0 [1, 1] − [5, 5]

Kocis & Grossmann 1989 KG89 4 2 1 0 4 0 [0, 0, 0, 0] − [10, 20, 1, 1]

Kesavan et al. 2004 D KE04 5 3 3 1 1 0 [0, 0, 0, 1, 1] − [1, 1, 1, 10, 6]

Floudas-Pardalos 3.4TP3 FP1 6 2 3 0 2 0 [0, 0, 1, 0, 1, 0] − [6, 6, 5, 6, 5, 10]

Floudas-Pardalos 12.2TP1 FP2 5 3 3 0 2 2 [0]5 − [1, 1, 1, 1.5, 1.6]

Floudas-Pardalos 12.2TP3 FP3 7 4 5 0 4 0 [0]7 − [1.2, 1.8, 2.5, 1, 1, 1, 1]

Floudas-Pardalos 12.2TP4 FP4 11 8 4 0 3 3 [0]11 − [1]11

Floudas-Pardalos 12.2TP5 FP5 2 2 3 0 1 0 [1, 1] − [5, 5]

Floudas-Pardalos 12.2TP6 FP6 2 1 2 0 1 0 [1, 1] − [10, 6]

Floudas-Pardalos 12.2TP2 FP7 3 1 2 2 1 0 [0, 0.2,−2.22554] − [1, 1,−1]

37

Paper I

Table 4 presents the results for rbfSolve with different settings. The number of function
values needed to get close to the optimal value with requested accuracy is very low in
all cases. The results are very similar and practically independent of the parameter
settings used for the two experimental designs tested, LAC and CLH. There are a few
failures to converge, possibly avoided if using a larger number of initial points in the
experimental design. In four cases the failures are avoided if the median replacement
option is used, but this option often leads to slower convergence.

Table 4: Number of function evaluations to get within 1% and 0.01% of the optimal
value for rbfSolve on the MINLP test problems.

E ≤ 10−2 E ≤ 10−4

ExD LAC CLH LAC CLH

RBF TPS Cubic TPS Cubic TPS Cubic TPS Cubic

Scale Off Off Off Off Off Off Off Off

Repl IP Yes No Yes No IP Yes No Yes No Yes No Yes No Yes No Yes No

KG98 7 9 8 9 8 6 10 10 10 10 9 8 9 8 10 10 10 10

FL95 5 8 6 8 6 4 5 5 5 5 8 6 8 6 7 5 5 5

PÖ97 3 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5

KG89 6 13 8 16 11 5 11 8 8 8 19 - - - 14 14 17 20

KE04 7 8 8 8 8 6 8 7 8 7 8 8 8 8 8 7 8 7

FP1 8 24 - 10 19 7 24 14 21 16 24 - 10 - 24 14 21 16

FP2 7 8 8 8 8 6 7 7 7 7 8 8 8 8 7 7 7 7

FP3 9 10 10 10 10 8 - - - - 10 10 10 10 - - - -

FP4 13 21 21 15 15 12 23 20 20 16 21 21 15 15 23 20 20 16

FP5 3 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5

FP6 4 5 5 5 5 3 4 4 4 4 5 5 5 5 4 4 4 4

FP7 5 7 7 7 7 4 7 7 7 7 - - - - - - - -

Table 5 and Table 6 present the results for ARBFMIP and EGO with different settings.

The results for ARBFMIP are in general excellent, with a very low number of function
evaluations needed to converge and few failures. The reason for most failures is that the
target value search grid needs to be made more dense in the Point Selection Algorithm
when close to the global optimum. This problem is easy to detect and an adaptive
strategy to overcome the problem is in development. EGO also shows good results
for the CLH design, when feasible points are obtained in the experimental design. It
was not tested using LAC as initial design, since it needs more initial points to work
properly.

Table 7 and Table 8 present the results for OQNLP, MINLPBB and MISQP. The
number of failures (in %) and the mean, min and max values for the successful runs
out of the total 100 for each problem are reported, as well as the number of constraint
evaluations needed. For example, 166 123 represents 166 function evaluations and 123
constraint evaluations. The deterministic solvers are more sensitive to the initial start-
ing points. MISQP had two cases that did not converge, and seems less robust than
the other two. The number of function evaluations needed is an order of magnitude
higher than for the CGO solvers. The solvers also often had trouble obtaining higher
accuracy solutions.

38

An adaptive radial basis algorithm (ARBF) for constrained CGO

Table 5: Number of function evaluations to get within 1% of the optimal value for
ARBFMIP and EGO on the MINLP test problems. No variable scaling was
used.

Solver ARBFMIP EGO

ExD LAC CLH LH CLH LH

RBF IP TPS Cubic IP TPS Cubic IP TPS Cubic IP IP

KG98 7 8 8 6 7 7 51 52 52 6 11 51 -

FL95 5 6 6 4 6 6 33 34 35 4 - 33 37

PÖ97 3 5 5 3 4 4 14 14 14 3 5 14 14

KG89 6 8 11 5 6 6 41 48 42 5 18 41 -

KE04 7 8 8 6 7 7 51 52 52 6 - 51 -

FP1 8 - 15 7 - - 65 66 66 7 164 65 -

FP2 7 8 8 6 7 7 19 52 52 6 8

FP3 9 10 10 8 13 - 65 66 66 8 62 65 -

FP4 13 19 15 12 23 18 65 102 - 12 42

FP5 3 5 5 3 4 4 14 14 14 3 4 14 14

FP6 4 5 5 3 4 4 21 22 22 3 5 21 -

FP7 5 6 6 4 7 7 33 34 34 4 13 33 -

Table 6: Number of function evaluations to get within 0.01% of the optimal value for
ARBFMIP and EGO on the MINLP test problems. No variable scaling was
used.

Solver ARBFMIP EGO

ExD LAC CLH LH CLH LH

RBF IP TPS Cubic IP TPS Cubic IP TPS Cubic IP IP

KG98 7 8 8 6 7 7 51 52 52 6 11 51 -

FL95 5 6 6 4 6 6 33 34 35 4 - 33 37

PÖ97 3 5 5 3 4 4 14 14 14 3 5 14 14

KG89 6 10 12 5 6 7 41 52 52 5 - 41 -

KE04 7 8 8 6 7 7 51 52 52 6 - 51 -

FP1 8 - 15 7 - - 65 66 66 7 164 65 -

FP2 7 8 8 6 7 7 19 52 52 6 8

FP3 9 10 10 8 13 - 65 66 66 8 - 65 -

FP4 13 19 15 12 23 18 65 102 - 12 42

FP5 3 5 5 3 4 4 14 14 14 3 4 14 14

FP6 4 5 5 3 4 4 21 22 22 3 5 21 -

FP7 5 - - 4 - - 33 - - 4 13 33 -

39

Paper I

T
a
b
le

7
:

N
u

m
b

er
o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s
to

g
et

w
it

h
in

1
%

o
f

th
e

o
p

ti
m

al
va

lu
e

fo
r
O

Q
N

L
P

,
M

IN
L
P
B
B

an
d

M
IS

Q
P

o
n

th
e

M
IN

L
P

te
st

pr
o

b
le

m
s.

S
o
lv

e
r

%
O

Q
N

L
P

%
M

IN
L

P
B

B
%

M
IS

Q
P

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

K
G

9
8

7
5

7
5
2
9

5
9
4
3

1
6
6

1
2
4

2
6
3
3
5

1
9
2
4
7

5
0

1
1
9

6
1

1
1
9

6
1

1
1
9

6
1

5
3

1
9
9

1
7
7

9
1

8
1

2
4
4

2
1
7

F
L

9
5

0
1
7
1

1
5
8

1
8

1
2

2
9
7

2
7
9

0
1
3
7

9
5

1
2
1

8
1

1
3
8

9
6

4
8

2
5

2
5

6
6

4
1

4
1

P
Ö

9
7

0
8

8
1

1
8

8
0

5
2

3
4

1
1

8
0

6
0

2
0

1
0

1
0

1
1

1
9

1
9

K
G

8
9

0
6
7
4

4
9
9

1
9

1
2

2
8
8
2

9
6
1

0
3
3
2
9

2
6
6
2

1
8
8
7

1
5
3
3

4
8
0
8

3
8
2
0

1
0
0

-
-

-

K
E

0
4

0
5
4
3
0

3
8
0
8

3
0

1
8

2
1
8
6
7

1
5
3
7
8

0
5
3
9

1
6
0

4
5

7
1
1
9
4

3
8
7

6
3

2
4

1
6

1
0

7
6
4

4
3

F
P

1
1

2
0
8
8

1
5
4
7

2
9
0

2
5
9

8
6
2
1

6
3
2
5

9
2

1
1
0

5
2

5
3

8
2
0
5

7
2

8
7

4
5

4
5

3
1

3
1

5
9

5
9

F
P

2
3
5

4
5
9
5

2
7
5
1

2
7

1
5

4
4
3
4
2

2
6
2
8
7

4
6

1
1
9

9
6

7
7

4
2

1
5
8

2
1
1

5
6

4
0

4
0

1
9

1
9

1
2
7

1
2
7

F
P

3
0

6
4
5

5
0
1

5
0

2
6

6
5
7
6

5
3
4
1

0
3
1
9

2
2
2

2
6
3

1
9
9

3
2
8

2
6
2

9
8

5
8

5
8

5
4

5
4

6
1

6
1

F
P

4
1
3

2
4
0
5
9

8
6
1
2

7
6

3
2

9
5
5
0
0

3
6
1
9
1

0
8
0
2

6
9
0

2
9
8

3
0

1
1
8
8

1
1
6
9

1
0
0

-
-

-

F
P

5
0

8
8

1
1

8
8

0
7
3

4
7

1
1

1
9
7

1
4
1

1
2

1
4

1
4

1
1

2
3

2
3

F
P

6
0

1
1
1

1
0
2

9
5

2
5
1

2
3
7

1
8
1

5
7

2
3

1
2

1
2
8

9
1

5
8

2
1

2
1

5
5

1
1
3

1
1
3

F
P

7
0

1
4
2

1
3
3

1
6

1
0

2
9
0

2
7
7

0
1
5
1

1
0
0

1
4
8

9
6

1
5
1

1
0
0

4
0

2
5

2
5

6
6

4
1

4
1

40

An adaptive radial basis algorithm (ARBF) for constrained CGO

T
a
b
le

8
:

N
u

m
b

er
o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s
to

g
et

w
it

h
in

0
.0

1
%

o
f

th
e

o
p

ti
m

al
va

lu
e

fo
r
O

Q
N

L
P

,
M

IN
L
P
B
B

an
d

M
IS

Q
P

o
n

th
e

M
IN

L
P

te
st

pr
o

b
le

m
s.

S
o
lv

e
r

%
O

Q
N

L
P

%
M

IN
L

P
B

B
%

M
IS

Q
P

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

K
G

9
8

7
5

7
5
2
9

5
9
4
3

1
6
6

1
2
4

2
6
3
3
5

1
9
2
4
7

5
0

1
1
9

6
1

1
1
9

6
1

1
1
9

6
1

5
3

1
9
9

1
7
7

9
1

8
1

2
4
4

2
1
7

F
L

9
5

0
1
7
8

1
6
5

1
8

1
2

3
5
5

3
3
7

0
1
5
4

1
1
0

1
3
8

9
6

1
5
5

1
1
1

5
0

2
9

2
9

6
6

4
6

4
6

P
Ö

9
7

0
8

8
1

1
8

8
0

6
4

4
4

1
1

1
1
6

8
3

2
0

1
0

1
0

1
1

1
9

1
9

K
G

8
9

0
-

-
-

0
-

-
-

1
0
0

-
-

-

K
E

0
4

0
2
2
6
3
3

1
6
1
1
7

4
4

2
9

6
3
2
3
0

4
4
5
1
8

0
5
5
5

1
6
4

5
8

1
0

1
2
3
1

3
9
6

6
3

2
4

1
6

1
0

7
6
4

4
3

F
P

1
1

2
0
8
8

1
5
4
8

2
9
1

2
5
9

8
6
2
2

6
3
2
6

9
2

1
1
0

5
2

5
3

8
2
0
5

7
2

8
7

4
7

4
7

3
1

3
1

6
8

6
8

F
P

2
3
5

4
5
9
5

2
7
5
1

2
7

1
5

4
4
3
4
2

2
6
2
8
7

4
6

1
1
9

9
6

7
7

4
2

1
5
8

2
1
1

5
6

4
0

4
0

1
9

1
9

1
2
7

1
2
7

F
P

3
0

1
0
1
8

7
7
2

5
2

2
8

6
5
8
7

5
3
4
8

0
7
7
7

6
6
2

7
2
1

6
3
9

7
8
6

7
0
2

1
0
0

-
-

-

F
P

4
1
3

2
4
0
5
9

8
6
1
2

7
6

3
2

9
5
5
0
0

3
6
1
9
1

0
4
5
7
1

4
4
1
7

3
9
2
4

3
7
3
1

5
2
5
5

5
2
9
1

1
0
0

-
-

-

F
P

5
0

8
8

1
1

8
8

0
2
1
9

1
5
3

1
1

2
4
8

1
7
6

1
2

1
4

1
4

1
1

2
3

2
3

F
P

6
0

2
3
8

2
2
8

1
1

7
2
5
7

2
4
5

1
8
4

6
0

2
3

1
2

1
3
2

9
4

5
8

2
2

2
2

5
5

1
1
3

1
1
3

F
P

7
1
0
0

-
-

-
1
0
0

-
-

-
1
0
0

-
-

-

41

Paper I

Table 9 presents the results for the GENO solver running each problem 50× 5 = 250
times. Almost every problem fails to be solved within 10000 function evaluations and
the range of failures is between 84 and 100 percent. A stochastic genetic algorithm
solver like GENO is clearly not suitable for costly black-box MINLP problems.

Table 9: Number of function evaluations to get within 1% and 0.01% of the optimal
value for GENO on the MINLP test problems.

% E ≤ 10−2 % E ≤ 10−4

Fail mean min max Fail mean min max

KG98 100 - - - 100 - - -

FL95 94 5761 3048 3711 844 7785 4588 94 11831 7186 9569 5902 14810 8412

PÖ97 100 - - - 100 - - -

KG89 99 6529 4614 5459 3261 7598 5967 100 - - -

KE04 100 - - - 100 - - -

FP1 100 - - - 100 - - -

FP2 94 9094 5550 8538 5028 10165 6005 94 9094 5550 8538 5028 10165 6005

FP3 96 5343 3277 4398 2765 5818 4029 100 - - -

FP4 100 - - - 100 - - -

FP5 100 - - - 100 - - -

FP6 100 - - - 100 - - -

FP7 84 6538 3229 1977 907 8858 5403 100 - - -

5.2 Numerical Results for Constrained Global
Optimization Problems

In this section, evaluations performed on a set of Constrained global optimization test
problems are presented. Table 10 gives the names of the problems and the abbrevi-
ations used and Table 11 gives a compact description of the test functions with the
same notation as in Table 3.

Table 12 and Table 13 present the results for rbfSolve. In this case runs with and
without variable scaling to the unit cube are reported. As for the MINLP problems,
the results are in most cases very good.

Table 14 and Table 15 present the results for ARBFMIP for all three experimental
designs. Results are excellent, similar to the results for the MINLP problems in Sec-
tion 5.1. Comparing the results for the CLH and LH experimental designs, clearly
much fewer function evaluations are needed using the CLH design and more general
failures are avoided. Creating an experimental design with feasible points, as in the
CLH design method, seems to be advantageous and helps the progress of RBF-type
algorithms. Figures 1 and 2 show a comparison between the results for ARBFMIP
and rbfSolve for the CLH and LAC initial designs. It is easy to see that ARBFMIP
produces improved results since most points cluster in the right side of the diagrams.

42

An adaptive radial basis algorithm (ARBF) for constrained CGO

Table 10: Names and abbreviations for the constrained global optimization test problems

Abbrev Problem Name Abbrev Problem Name Abbrev Problem Name

P1 Gomez 2 P7 Schittkowski 234 P13 Schittkowski 343

P2 Gomez 3 P8 Schittkowski 236 P14 Floudas-Pardalos 3.2 TP 1

P3 Hock-Schittkowski 59 P9 Schittkowski 237 P15 Floudas-Pardalos 3.3 TP 2

P4 Hock-Schittkowski 65 P10 Schittkowski 239 P17 Floudas-Pardalos 3.5 TP 4

P5 Hock-Schittkowski 104 P11 Schittkowski 330 P18 Floudas-Pardalos 4.10 TP 9

P6 Hock-Schittkowski 105 P12 Schittkowski 332 P28 Zimmerman

Table 11: Description of the constrained global optimization test problems

Problem d Ax Ax c(x) c(x) Domain

Nr. = =

P1 2 0 0 1 0 [−1,−1] − [1, 1]

P2 2 0 0 1 0 [−1,−1] − [1, 1]

P3 2 0 0 3 0 [0, 0] − [75, 65]

P4 3 0 0 1 0 [−4.5,−4.5,−5] − [4.5, 4.5, 5]

P5 8 0 0 6 0 [0.1]8 − [10]8

P6 6 1 0 0 0 [0, 0, 1, 0, 1, 0] − [6, 6, 5, 6, 5, 10]

P7 2 0 0 1 0 [0.2, 0.2] − [2, 2]

P8 2 0 0 2 0 [0, 0] − [75, 65]

P9 2 0 0 3 0 [54, 0] − [75, 65]

P10 2 0 0 1 0 [0, 0] − [75, 65]

P11 2 0 0 1 0 [10−10, 10−10] − [5, 5]

P12 2 0 0 2 0 [0, 0] − [1.5, 1.5]

P13 3 0 0 2 0 [0, 0, 0] − [36, 5, 125]

P14 8 3 0 3 0 10× [10, 100, 200, 1, 1, 1, 1, 1] − 500× [2, 4, 12, 1, 1, 1, 1, 1]

P15 5 0 0 6 0 [78, 33, 27, 27, 27] − [102, 45, 45, 45, 45]

P17 3 2 0 1 0 [0, 0, 0] − [2, 2, 3]

P18 2 0 0 2 0 [0, 0] − [3, 4]

P28 2 0 0 2 0 [0, 0] − [100, 100]

Table 16 and Table 17 illustrate the results for OQNLP, MINLPBB and MISQP. The
same settings as for the MINLP-problems were used. In general OQNLP performed
much better for this test set than for the MINLP problems. The deterministic solvers
have rather many failures that are due to bad starting points. The function evaluations
needed are less than for the MINLP problems, but still much higher than for the CGO
solvers.

Table 18 presents the results for the GENO solver running each problem 50× 5 = 250
times. The results are slightly better than for MINLP problems, and a few problems
are always solved in less than 10000 function evaluations. Still, six problems are never
solved, and many others are solved only in very few runs. The number of function
evaluations needed to achieve the required accuracy is several orders of magnitude
larger than for the other solvers used. We conclude that, as for the MINLP tests, a
stochastic genetic algorithm is not suitable for any form of costly optimization.

43

Paper I

Table 12: Number of function evaluations to get within 1% of the optimal value for
rbfSolve on the constrained global test problems.

ExD LAC CLH

RBF TPS Cubic TPS Cubic

Scale On Off On Off On Off On Off

Repl IP Yes No Yes No Yes No Yes No IP Yes No Yes No Yes No Yes No

P1 4 5 5 5 5 5 5 5 5 3 9 9 7 8 6 6 5 5

P2 4 31 28 31 28 13 22 10 22 3 12 12 15 18 15 12 12 6

P3 4 16 9 16 9 9 10 9 10 3 21 12 22 23 12 12 18 12

P4 5 20 23 14 23 23 20 14 20 4 25 25 22 13 22 13 22 16

P5 10 64 46 126 54 84 46 63 34 9 36 24 18 36 36 36 48 27

P6 10 - - - - - - - - 9 72 105 - - 195 93 - -

P7 4 5 5 5 5 5 5 5 5 3 5 4 7 4 5 4 7 4

P8 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P9 4 5 5 5 5 5 5 5 5 3 4 4 4 5 4 4 4 5

P10 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P11 4 - - - - - - - - 3 36 6 14 6 23 6 12 6

P12 4 13 48 16 13 61 6 16 6 3 18 36 15 21 15 9 21 36

P13 5 15 14 10 10 7 7 10 10 4 13 10 38 39 7 10 17 17

P14 10 19 13 26 11 25 13 22 12 9 21 12 33 11 15 12 21 18

P15 7 13 9 13 9 13 9 12 10 6 7 8 7 9 7 7 9 9

P17 5 6 6 6 6 6 6 6 6 4 7 47 5 5 7 55 5 5

P18 4 5 5 5 5 5 5 5 5 3 67 117 5 5 61 15 5 5

P28 4 5 5 5 5 5 5 5 5 3 55 11 4 4 6 11 4 4

Table 13: Number of function evaluations to get within 0.01% of the optimal value for
rbfSolve on the constrained global test problems.

ExD LAC CLH

RBF TPS Cubic TPS Cubic

Scale On Off On Off On Off On Off

Repl IP Yes No Yes No Yes No Yes No IP Yes No Yes No Yes No Yes No

P1 4 5 5 5 5 5 5 5 5 3 18 15 8 15 9 12 6 5

P2 4 55 28 52 40 19 25 19 34 3 30 15 30 30 18 18 12 12

P3 4 - - - - - - - - 3 - - - - - - - -

P4 5 32 44 35 38 29 20 23 20 4 43 43 37 37 37 22 31 22

P5 10 175 115 - 124 208 100 175 166 9 - - 183 168 102 156 207 48

P6 10 - - - - - - - - 9 - - - - - - - -

P7 4 5 5 5 5 5 5 5 5 3 5 4 7 4 5 4 7 4

P8 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P9 4 5 5 5 5 5 5 5 5 3 4 4 4 5 4 4 4 5

P10 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P11 4 - - - - - - - - 3 39 6 18 6 30 21 18 24

P12 4 13 49 16 22 61 6 16 19 3 18 39 15 24 21 9 21 36

P13 5 15 16 10 13 7 7 10 13 4 13 10 38 39 10 10 17 17

P14 10 31 13 73 13 43 13 34 13 9 63 12 75 12 29 12 21 18

P15 7 13 10 13 10 13 10 12 10 6 9 9 7 9 9 9 9 9

P17 5 6 6 6 6 6 6 6 6 4 7 47 5 5 7 57 5 5

P18 4 5 5 5 5 5 5 5 5 3 67 117 5 5 61 15 5 5

P28 4 7 7 7 5 7 7 7 5 3 55 11 4 4 6 11 4 4

44

An adaptive radial basis algorithm (ARBF) for constrained CGO

Table 14: Number of function evaluations to get within 1% of the optimal value for
ARBFMIP on the constrained global test problems.

ExD LAC CLH LH

RBF TPS Cubic TPS Cubic TPS Cubic

Scale IP On Off On Off IP On Off On Off IP On Off On Off

P1 4 5 5 5 5 3 6 5 5 5 21 22 22 22 22

P2 4 19 81 10 - 3 11 9 13 9 21 52 35 - 28

P3 4 14 12 8 8 3 53 22 26 39 21 38 42 41 28

P4 5 56 20 20 18 4 50 20 23 20 33 82 50 42 40

P5 10 53 33 31 44 9 25 20 37 20 65 66 71 66 77

P6 10 66 - - - 9 45 - - - 65 206 - 212 -

P7 4 5 5 5 5 3 4 4 4 4 21 22 22 22 22

P8 4 13 19 9 9 3 5 7 5 7 21 25 26 22 22

P9 4 5 7 5 7 3 5 5 5 5 21 31 22 23 23

P10 4 16 11 9 9 3 5 7 5 7 21 25 26 22 22

P11 4 70 - 62 84 3 5 9 6 9 21 173 156 65 60

P12 4 8 9 7 7 3 19 - - - 21 - 23 24 25

P13 5 10 8 12 6 4 5 8 5 8 33 35 35 35 34

P14 10 11 11 11 11 9 10 10 10 10 65 - - - 93

P15 7 8 8 8 8 6 11 9 12 9 51 59 55 54 53

P17 5 6 5 6 6 4 5 5 5 5 33 34 34 34 34

P18 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

P28 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

Table 15: Number of function evaluations to get within 0.01% of the optimal value for
ARBFMIP on the constrained global test problems.

ExD LAC CLH LH

RBF TPS Cubic TPS Cubic TPS Cubic

Scale IP On Off On Off IP On Off On Off IP On Off On Off

P1 4 5 5 5 5 3 10 6 6 6 21 22 22 22 22

P2 4 21 89 14 - 3 24 13 15 13 21 79 49 - 29

P3 4 - - - - 3 54 - - - 21 - - - -

P4 5 73 27 41 22 4 103 26 37 26 33 95 75 47 40

P5 10 178 129 132 78 9 87 76 133 76 65 164 222 133 133

P6 10 - - - - 9 - - - - 65 - - - -

P7 4 5 5 5 5 3 4 4 4 4 21 36 34 22 22

P8 4 14 20 9 9 3 5 7 5 7 21 26 26 22 22

P9 4 6 7 8 7 3 5 5 5 5 21 34 22 26 23

P10 4 17 11 9 9 3 5 7 5 7 21 27 26 22 22

P11 4 106 - 62 - 3 18 26 - 26 21 - 200 209 -

P12 4 8 9 7 50 3 19 - - - 21 - 23 24 25

P13 5 10 11 12 6 4 5 8 5 8 33 35 35 35 34

P14 10 11 11 11 11 9 10 10 10 10 65 - - - 93

P15 7 8 8 8 8 6 22 9 13 9 51 63 55 62 53

P17 5 6 5 6 6 4 5 5 5 5 33 34 34 34 34

P18 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

P28 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

45

Paper I

T
a
b
le

1
6
:

N
u

m
b

er
o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s
to

g
et

w
it

h
in

1
%

o
f

th
e

o
p

ti
m

al
va

lu
e

fo
r

O
Q

N
L
P

,
M

IN
L
P
B
B

an
d

M
IS

Q
P

o
n

th
e

co
n

st
ra

in
ed

g
lo

b
al

te
st

pr
o

b
le

m
s.

S
o
lv

e
r

%
O

Q
N

L
P

%
M

IN
L

P
B

B
%

M
IS

Q
P

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

P
1

0
1
3
9

1
3
3

1
1

2
9
4

2
8
7

3
3

2
3

1
0

1
1

6
6

4
2

7
8

1
4

1
4

1
1

6
3

6
3

P
2

0
7
0
6

6
9
0

1
3

1
0

2
6
2
9

2
5
6
7

8
7

8
2

5
4

4
3

2
8

1
6
7

1
1
1

9
1

3
1

3
1

1
2

1
2

4
6

4
6

P
3

0
2
8
6

2
7
9

2
0

1
7

1
0
6
1

1
0
4
2

6
9

4
3

2
7

2
3

1
2

8
1

5
4

6
7

2
6

2
6

1
0

1
0

4
9

4
9

P
4

0
7
6

7
2

5
1

4
7

9
4

9
0

0
7
1

3
9

7
1

3
9

7
1

5
0

0
2
8

2
8

2
1

2
1

3
8

3
8

P
5

0
2
8
6

2
7
5

8
8

7
9

7
1
0

6
9
0

0
9
4
0

8
9
1

5
7
7

4
9
0

1
9
0
4

2
0
6
9

0
1
4
2

1
4
2

8
2

8
2

2
2
7

2
2
7

P
6

0
1
1
4

1
2
3

1
3
9
4

1
7

2
8
4

1
8
6

1
6
6
5

1
2

9
3

1
1

2
3

3
2
8
0

3
2

P
7

0
1
8

1
5

9
6

3
1

2
8

0
2
4

7
1
3

4
5
3

2
1

0
1
0

1
0

4
4

2
6

2
6

P
8

0
3
1

2
8

9
6

7
5

7
0

1
5

3
1

1
3

1
3

4
4
7

5
6

1
8

2
6

2
6

7
7

4
9

4
9

P
9

0
1
6
8

1
6
4

8
5

4
8
8

4
8
3

0
8
8

4
9

1
3

4
1
3
6

8
2

0
2
9

2
9

7
7

5
2

5
2

P
1
0

0
5
2

4
8

1
0

7
2
5
9

2
5
4

1
9

3
1

1
3

1
3

4
4
4

4
0

2
6

2
6

2
6

1
0

1
0

5
2

5
2

P
1
1

0
7
1

6
8

1
4

1
1

1
0
6

1
0
3

0
7
6

5
3

3
5

1
7

2
8
7

1
2
3

0
3
0

3
0

1
4

1
4

7
3

7
3

P
1
2

0
1
4
9

1
4
1

1
7

1
4

6
4
5

6
1
7

1
3

3
3
5

2
4
2

1
2
7

8
8

1
3
5
5

1
0
5
6

1
0
0

-
-

-

P
1
3

0
1
6
3

1
5
9

1
7

1
3

3
6
6

3
6
2

0
1
0
5

7
6

2
1

6
1
8
5

1
4
0

1
2

4
3

4
3

1
0

1
0

8
9

8
9

P
1
4

0
4
2
3

4
1
3

1
1
8

1
0
9

1
5
3
5

1
4
7
4

0
5
5
7

8
5
2

1
7
6

1
7
0

1
0
6
9

1
5
3
5

1
6

3
6
1
0

3
6
0
9

4
7

8
4
7

2
4
8
1
1

2
4
8
0
6

P
1
5

0
1
0
6

9
9

2
5

1
9

4
1
8

4
0
8

0
9
8

5
9

4
0

7
1
5
1

1
1
2

1
0
0

-
-

-

P
1
7

0
1
0
2

9
7

2
1

1
7

3
0
5

2
9
5

2
6
9

5
0

2
0

5
1
4
2

1
2
6

1
8

2
5

2
5

5
5

5
7

5
7

P
1
8

0
2
5
4

2
4
7

1
4

1
1

8
4
7

8
2
2

6
4

3
9

2
5

2
3

1
2

6
5

5
1

4
8

1
5

1
5

7
7

2
3

2
3

P
2
8

0
8
8
8

8
7
2

2
2

1
9

5
6
5
0

5
5
4
3

4
5

5
0

3
3

3
3

2
0

1
0
6

7
4

4
6

1
7

1
7

1
0

1
0

3
7

3
7

46

An adaptive radial basis algorithm (ARBF) for constrained CGO

T
a
b
le

1
7
:

N
u

m
b

er
o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s
to

g
et

w
it

h
in

0
.0

1
%

o
f

th
e

o
p

ti
m

al
va

lu
e

fo
r

O
Q

N
L
P

,
M

IN
L
P
B
B

an
d

M
IS

Q
P

o
n

th
e

co
n

st
ra

in
ed

g
lo

b
al

te
st

pr
o

b
le

m
s.

S
o
lv

e
r

%
O

Q
N

L
P

%
M

IN
L

P
B

B
%

M
IS

Q
P

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

P
1

0
1
7
2

1
6
5

9
6

3
3
1

3
2
4

3
3

2
4

1
0

1
3

4
6
6

4
2

8
7

1
3

1
3

7
7

2
8

2
8

P
2

0
8
4
7

8
2
6

5
4

5
1

2
6
7
0

2
6
0
8

8
7

8
6

5
7

5
2

3
1

1
6
7

1
1
1

9
1

3
4

3
4

2
6

2
6

4
6

4
6

P
3

1
0
0

-
-

-
1
0
0

-
-

-
1
0
0

-
-

-

P
4

0
8
4

8
0

5
9

5
5

1
0
3

9
9

0
7
1

3
9

7
1

3
9

7
1

5
0

0
2
8

2
8

2
1

2
1

3
8

3
8

P
5

0
4
5
7

4
4
3

1
3
2

1
2
3

1
1
7
5

1
1
4
0

0
9
4
0

8
9
1

5
7
7

4
9
0

1
9
0
4

2
0
6
9

0
1
5
6

1
5
6

1
0
0

1
0
0

2
4
4

2
4
4

P
6

1
0
0

-
-

-
1
0
0

-
-

-
1
0
0

-
-

-

P
7

0
2
1

1
8

9
6

3
2

2
9

0
3
7

1
1

1
3

4
7
3

2
7

4
1
7

1
7

4
4

3
8

3
8

P
8

0
3
1

2
8

9
6

7
5

7
0

1
5

3
2

1
3

1
3

4
4
7

5
6

1
8

2
6

2
6

1
0

1
0

4
9

4
9

P
9

0
1
8
1

1
7
7

8
5

4
9
1

4
8
3

0
8
8

4
9

1
3

4
1
3
6

8
2

0
2
9

2
9

7
7

5
2

5
2

P
1
0

0
5
2

4
8

1
0

7
2
5
9

2
5
4

1
9

3
1

1
3

1
3

4
4
4

4
0

2
6

2
7

2
7

1
0

1
0

5
2

5
2

P
1
1

0
8
0

7
7

2
8

2
5

1
1
2

1
0
9

0
7
6

5
3

3
5

1
7

2
8
7

1
2
3

0
3
0

3
0

1
4

1
4

7
6

7
6

P
1
2

0
1
9
1

1
8
2

5
1

4
8

6
6
8

6
4
0

9
1

7
6
3

6
2
6

4
0
1

3
1
4

1
1
7
7

9
9
1

1
0
0

-
-

-

P
1
3

0
2
0
7

2
0
3

2
7

2
3

6
0
6

6
0
0

0
1
2
7

9
5

3
8

2
1

2
2
8

1
7
8

1
2

4
5

4
6

1
0

1
0

9
2

9
2

P
1
4

0
5
0
9

4
9
8

1
4
3

1
3
4

1
6
8
5

1
6
2
4

0
5
8
5

8
8
0

3
9
2

4
9
9

1
0
6
9

1
5
3
5

1
9

3
7
4
0

3
7
3
9

9
7
3

9
7
3

2
4
8
1
1

2
4
8
0
6

P
1
5

0
2
0
9

2
0
2

4
3

3
7

7
9
9

7
8
1

0
1
0
6

6
6

7
7

4
2

1
5
1

1
1
2

1
0
0

-
-

-

P
1
7

0
1
8
0

1
7
4

2
4

2
0

9
1
7

8
9
5

2
8
6

6
5

3
7

2
0

1
5
9

1
4
1

1
8

3
0

3
0

9
9

6
1

6
1

P
1
8

0
3
1
7

3
0
9

1
9

1
5

1
0
2
8

9
9
9

6
4

3
9

2
5

2
3

1
2

6
5

5
1

4
8

1
5

1
5

7
7

2
3

2
3

P
2
8

1
1
8
9
8

8
6
7

2
4

2
1

1
1
5
0
1

1
1
3
2
2

4
5

5
0

3
3

3
3

2
0

1
0
6

7
4

4
6

1
7

1
7

1
0

1
0

3
7

3
7

47

Paper I

Figure 1: Number of function evaluations for ARBFMIP vs. rbfSolve for Table 13 and
Table 15. Values for the choice Repl = Yes in Table 13 are used. In total there
are 13 points of each kind. Four points were removed since both solvers used
the maximum number of function evaluations.

Figure 2: Number of function evaluations for ARBFMIP vs. rbfSolve for Table 13 and
Table 15. Values for the choice Repl = Yes in Table 13 are used. In total there
are 13 points of each kind. Three points were removed since both solvers used
the maximum number of function evaluations.

48

An adaptive radial basis algorithm (ARBF) for constrained CGO

Table 18: Number of function evaluations to get within 1% and 0.01% of the optimal
value for GENO on the constrained global test problems.

% E ≤ 10−2 % E ≤ 10−4

Fail mean min max Fail mean min max

P1 0 100 81 1 1 1380 725 0 3091 1539 7 7 5438 2780

P2 44 4712 2280 1 1 15105 9208 45 10342 5510 7335 2605 15561 9607

P3 86 2116 1363 93 92 11920 6126 100 - - -

P4 87 5377 3711 3661 2121 11210 8348 98 14180 10434 9467 6536 15226 11962

P5 96 7564 7071 4149 3826 12025 11151 100 - - -

P6 100 - - - 100 - - -

P7 100 5106 2954 5106 2954 5106 2954 100 - - -

P8 0 312 302 2 2 968 904 0 5710 3438 1169 936 8004 4946

P9 100 - - - 100 - - -

P10 0 298 287 1 1 1105 1059 0 5341 3259 3448 1926 8046 4823

P11 100 - - - 100 - - -

P12 98 7365 2974 7280 2794 7492 3249 100 - - -

P13 70 2566 1978 271 268 12527 8965 71 9047 6605 5099 3558 14256 11590

P14 100 - - - 100 - - -

P15 100 - - - 100 - - -

P17 98 7379 3495 7227 3117 7530 3837 100 - - -

P18 44 4356 2126 3425 1103 7969 4180 46 11872 6803 7552 3363 14705 9041

P28 90 6366 3816 3531 2131 9368 5983 97 13564 8429 11384 6727 14332 9302

6 Conclusions

Methods based on radial basis interpolation are powerful tools for solving expensive
black-box optimization problems. The paper presents extensions of two algorithms
based on RBF interpolation to handle black-box mixed-integer nonlinear programs
and nonconvex nonlinear programs. Algorithms have been discussed in detail as well
as the MATLAB implementations of two solvers, rbfSolve and ARBFMIP, in the
TOMLAB optimization environment.

A large number of numerical tests on black-box MINLP and nonlinear programs are
presented that compare seven different MINLP solvers. The results show that the
dedicated costly global black-box optimization solvers, including a third solver, EGO,
outperform other approaches. The use of derivative-based solvers is possible, but
an order of magnitude higher number of function evaluations are normally needed.
Starting values need to be carefully set to avoid failues. Stochastic black-box solvers,
like the tested GENO solver, should definitely be avoided in this context.

The RBF method uses a static selection of target values and is dependent on the
scaling of the problem. The global target value optimization problem often does not
produce interior points, and the search points computed do not help the practical
convergence of the algorithm.

49

Paper I

The details of a new Adaptive RBF (ARBF) method extended to MINLP have been
presented. In every iteration, the method does an extensive search for target values to
produce a suitable selection of search points. In general, the computational overhead
is substantial. However, since the global subsolvers in TOMLAB are very efficient
any problem considered expensive will benefit from the new ARBF algorithm. It is
possible to parallelize the global target value optimization as well as the costly function
evaluations. These two tasks are the most CPU-intensive parts of the algorithm. The
conclusion is that the ARBF approach is the best. Further research is needed to
implement a parallel algorithm. Some more algorithmic work is also needed to make
the ARBF algorithm and the solver robust for more types of problems. There may be
some sensitivity to additive scaling in parts of the algorithms, especially in the choice
of f∆. This sensitivity could easily be removed, but time did not permit testing and
re-solving. However, we are working on an enhanced ARBF algorithm that will be
much less sensitive to the choice of f∆ and β.

References

[1] M. H. Bakr, J. W. Bandler, K. Madsen, and J. Sondergaard: 2000, ‘Review
of the Space Mapping Approach to Engineering Optimization and Modeling’.
Optimization and Engineering 1(3), 241–276.

[2] M. Björkman and K. Holmström: 2000, ‘Global optimization of costly nonconvex
functions using radial basis functions’. Optimization and Engineering 1(4), 373–
397.

[3] H.-M. Gutmann: 1999, ‘A radial basis function method for global optimization’.
Technical Report DAMTP 1999/NA22, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, England.

[4] H.-M. Gutmann: 2001a, ‘A radial basis function method for global optimization’.
Journal of Global Optimization 19, 201–227.

[5] H.-M. Gutmann: 2001b, ‘Radial Basis Function Methods for Global Optimiza-
tion’. Doctoral Thesis, Department of Numerical Analysis, Cambridge University,
Cambridge, UK.

[6] K. Holmström: 1999, ‘The TOMLAB optimization environment in Matlab’. Ad-
vanced Modeling and Optimization 1(1), 47–69.

[7] K. Holmström: 2007, ‘An adaptive radial basis algorithm (ARBF) for ex-
pensive black-box global optimization’. Journal of Global Optimization, DOI
10.1007/s10898-007-9256-8, ISSN 0925-5001 (Print) 1573-2916 (Online).

[8] K. Holmström and M. M. Edvall: January 2004, ‘CHAPTER 19: THE TOMLAB
OPTIMIZATION ENVIRONMENT’. In: L. G. Josef Kallrath, BASF AB (ed.):
Modeling Languages in Mathematical Optimization. Boston/Dordrecht/London.

[9] D. R. Jones: 2002, ‘A taxonomy of global optimization methods based on response
surfaces’. Journal of Global Optimization 21, 345–383.

[10] D. R. Jones, M. Schonlau, and W. J. Welch: 1998, ‘Efficient global optimization
of expensive black-box functions’. Journal of Global Optimization 13, 455–492.

50

An adaptive radial basis algorithm (ARBF) for constrained CGO

[11] M. McKay, R. Beckman, and W. Conover: 1979, ‘A comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code’. Technometrics 21, 239–246.

[12] M. J. D. Powell: 1992, ‘The Theory of Radial Basis Function Approximation in
1990’. In: W. Light (ed.): Advances in Numerical Analysis, Volume 2: Wavelets,
Subdivision Algorithms and Radial Basis Functions. Oxford University Press, pp.
105–210.

[13] M. J. D. Powell: 1999, ‘Recent Research at Cambridge on Radial Basis Func-
tions’. In: M. D. Buhmann, M. Felten, D. Mache, and M. W. Müller (eds.): New
Developments in Approximation Theory. Basel: Birkhäuser, pp. 215–232.

[14] R. G. Regis and C. A. Shoemaker: 2005, ‘Constrained global optimization of
expensive black box functions using radial basis functions’. Journal of Global
Optimization 31(1), 153–171.

[15] R. G. Regis and C. A. Shoemaker: 2007, ‘Improved Strategies for Radial Ba-
sis Function Methods for Global Optimization’. Journal of Global Optimization
37(1), 113–135.

51

Paper II

This paper has been published as:

N-H. QUTTINEH and K. HOLMSTRÖM, The influence of Experimental Designs
on the Performance of Surrogate Model Based Costly Global Optimization Solvers,
Studies in Informatics and Control, 18, 2009.

The influence of Experimental Designs
on the performance of surrogate model
based costly global optimization solvers

Nils-Hassan Quttineh∗ and Kenneth Holmström∗

Abstract When dealing with costly objective functions in optimization, one good
alternative is to use a surrogate model approach. A common feature for all such meth-
ods is the need of an initial set of points, or ”experimental design”, in order to start the
algorithm. Since the behavior of the algorithms often depends heavily on this set, the
question is how to choose a good experimental design. We investigate this by solving
a number of problems using different designs, and compare the outcome with respect
to function evaluations and a root mean square error test of the true function versus
the surrogate model produced. Each combination of problem and design is solved
by 3 different solvers available in the TOMLAB optimization environment. Results
indicate two designs as superior.

Keywords: Black-box, Surrogate model, Costly functions, Latin Hypercube Designs,
Experimental Design.

Abbreviations:

CGO Costly Global Optimization

ExD Experimental Design

MINLP Mixed-Integer Nonlinear Programming

Authors: N-H. Quttineh got a M.Sc. in Optimization at Linköping University 2004
and is a graduate student at Mälardalen University since 2005, with main subject
Algorithms for costly global optimization.

K. Holmström got a Ph.D. in Numerical Analysis at Ume̊a University 1988 and did
industrial research and development work for ABB 1990-93. Besides his academic
career, he has been consultant in more than 100 industrial and scientific projects. Since
2001 he is Full Professor in Optimization at Mälardalen University with main research
interests algorithm and software development for industrial and financial optimization
problems, in particular costly global mixed-integer constrained nonlinear optimization.
Holmström is CEO of Tomlab Optimization Inc. and creator of TOMLAB, an advanced
MATLAB optimization environment distributed since 1998.

∗Department of Applied mathematics, Mälardalen University, SE-721 23 Väster̊as, Sweden.

55

Paper II

1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques have been developed over the years. A common
feature is that, unlike local optimization methods, every computed function value is
saved and utilized.

Problems that are costly to evaluate are commonly found in engineering design, as
well as industrial and financial applications. A function value could be the result of
a complex computer program or an advanced simulation, e.g. computational fluid
dynamics (CFD). Hence consuming anything from a few minutes to many hours of
CPU time.

From an application perspective there are often restrictions on the variables besides
the lower and upper bounds, such as linear, nonlinear or even integer constraints. The
most general problem formulation is as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R and xL, x, xU ∈ Rd. Matrix A ∈ Rm1×d, bL, bU ∈ Rm1 ; defines the
m1 linear constraints and cL, c(x), cU ∈ Rm2 defines the m2 nonlinear constraints.
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.
Let Ω ∈ Rd be the feasible set defined only by the simple bounds, the box constraints,
and ΩC ∈ Rd be the feasible set defined by all the constraints in (1).

Almost every Costly Global Optimization (CGO) solver utilize a surrogate model, or
response surface, to approximate the true (costly) function. The RBF algorithm in-
troduced by Powell and Gutmann [2, 9] use radial basis function interpolation to build
an approximating surrogate model. The EGO algorithm by Jones et al. [6] utilizes
the DACE framework. By optimizing a less costly utility function these algorithms
determine a new point, where afterwards the original objective function is evaluated.
This is repeated until some convergence criteria is fulfilled.

2 Experimental Designs

Common for all surrogate model CGO solvers is the need of an initial sample of points
(experimental design) to be able to generate the initial surrogate model. For all these
points the costly function values are calculated. The initial surrogate model is built
from these sampled points and used as an approximation of the true function. A new

56

The influence of ExD on the Performance of CGO Solvers

point to sample is then decided by some algorithmic strategy, and this continues until
some convergence criteria is met.

It is not obvious how to choose this initial set of points, but there are some criteria we
strive to fulfill. As the problems to solve are considered black-box, we have no idea
what the function might look like. Therefore it is most important that the experimental
design have some sort of space filling ability, i.e. avoid sampling only a certain part of
the design space.

2.1 Deterministic Global Solver

It is of course possible to utilize any standard global optimization solver for a limited
number of iterations, just in order to get an initial set of sample points for the surrogate
model to get going. After all, deterministic global optimization algorithms are designed
to find the global optimum as fast as possible, so why not use this fact and let the
solver find good initial points.

In this paper we utilize the DIRECT algorithm (DIviding RECTangles) by Jones et al. [5],
implemented in the TOMLAB Optimization Environment [4] as solver glcDirect2. This
is a deterministic global optimization solver, but not itself suited for the costly prob-
lems considered. The maximal number of sample points N is possible to set when
running glcDirect. But, because the algorithm generates more than one new point in
each iteration, the costly function value might be computed for a few more sample
points than N .

2.2 Corner Point Strategy

RBF solvers tend to sample points on the border, which seldom contribute as much
information as interior points to the interpolation surface. This problem is thoroughly
discussed by Holmström in [3]. To increase the chances of sampling interior points, a
first idea was to sample all corner points of the box constraints Ω, and additionally
the midpoint of the box.

It turns out that unless the midpoint is the point with lowest function value, the initial
interpolation surface will have its minimum somewhere on the boundary, and the CGO
solver sometime samples a new border point. To avoid this, we propose to additionally
sample corner points of half the bounding box, centered around the original midpoint,
until an interior point with lowest function value is found. The idea is demonstrated
in Figure 1 on page 58.

For problems in higher dimensions d, the exponential growth in number of corner
points N = 2d becomes an issue. A good alternative is then to sample only a subset of
corner points. One idea is to sample only the lower left corner point of the bounding
box plus all its adjacent corner points. This yields a more moderate number of initial
sample points N = d+ 1, which is also the minimum number of initial points needed
for the initialization of the RBF algorithm. This is due to the fact that a minimum of
N ≥ d+ 1 points are required to build an interpolation surface.

2http://www.tomopt.com/tomlab/

57

Paper II

Figure 1: The Corner Point strategy in 2 dimensions.

A generalization of the previous corner idea is to choose both the lower left and the
upper right corner points, plus all adjacent corner points. This gives an initial sample
of size N = 2 · (d+ 1) if d > 2. In two and three dimensions, the strategy is equivalent
to sampling all corner points.

2.3 Maximin LH Designs

Latin Hypercube Designs (LHD) is a popular choice of experimental design. The
structure of LHDs ensure that the sampled points cover the sampling space in a good
way. They also have a non-collapsing feature, i.e. no points ever share the same value
in any dimension. Maximin LHDs give an even better design, as the points not only
fulfill the structural properties of LHD designs, but also separate as much as possible
in a given norm, e.g. the standard Euclidean norm. It is possible to generate Maximin
LHDs for any number of points N .

A good collection of Maximin LHDs, together with many other space filling designs,
can be found at http://www.spacefillingdesigns.nl together with state-of-the-art
articles in this area.

3 Handling Constraints

When solving problems with additional constraints, besides the box constraints, it
might be better to avoid sampling initial points that are not feasible since the function
evaluation is extremely costly. We now describe how the proposed methods in Section 2
are adjusted to handle constraints, whenever possible. The methods presented here can
not handle equality constraints at the moment, however nonlinear equality constraints
are also difficult in general.

There exist other ideas on how to find a space filling initial sample, taking into account
the constraints. Stinstra et al. [10] solve an optimization problem, where the objective
is to maximize the minimum (euclidian) distance between N feasible points.

58

The influence of ExD on the Performance of CGO Solvers

3.1 Constrained Deterministic Global Solver

We need to select a global deterministic solver that is able to handle constraints. The
DIRECT algorithm was extended to handle nonlinear inequality constraints by Jones
in [7]. In the TOMLAB implementation of the constrained DIRECT, glcDirect, the
DIRECT algorithm is generalized to separately treat linear equality and inequality
constraints, and nonlinear equality and inequality constraints. Since the algorithm
always divides a rectangle in three pieces, infeasible points might still be included
in the initial iterations, even if glcDirect has a feature to delete rectangles that are
infeasible with respect to linear inequality constraints, and avoid computing f(x) for
points infeasible with respect to linear and nonlinear constraints.

3.2 Corner Point Strategy

The Corner Point Strategy is not able to handle constraints in a straightforward way.
It is possible to check which generated points are feasible, but what should be done
if only a few of them are feasible? One could develop strategies on how to choose
additional points, but then we diverge too much from the original idea of sampling
the corner points. Therefore we only consider the basic approach, i.e. not taking
constraints into account.

3.3 Constrained Maximin LH Designs

We have developed a method to create an initial sample fulfilling both the LHD struc-
ture and all constraints given for the problem. The method utilizes large Maximin
LHDs, where the number of points in the design is significantly larger than the de-
sired number of initial points, and only picks out the feasible points. The method is
described in pseudo-code below, see Algorithm 1.

Algorithm 1 Find N feasible Maximin LHD points

1: Initialize M := N + # constraints.

2: Apply Maximin LHD with M points to constrained problem.

3: Calculate number of feasible points Mf .

4: if Mf == N then

5: STOP.

6: else if Mf < N then

7: Increase M , go to 2.
8: else
9: Decrease M , go to 2.

10: end if

If the value of Mf starts to alternate between two values, one less than N and the other
one greater than N , stop the algorithm and declare failure to find exactly N feasible
points. The Maximin LHD with too many feasible points is used. The resulting design
includes N feasible points with a Maximin LHD structure. An illustrative example is
found in Figure 2 on page 60.

59

Paper II

Figure 2: A 15 point Maximin LHD with Mf = 9 feasible points.

4 Benchmark and Tests

Our aim is to test the set of experimental designs presented in previous sections. Define
the set of experimental designs as E, and pick a set of test problems P and a set of
solvers S.

Every combination of problem p ∈ P and experimental design e ∈ E is solved with
each solver s ∈ S. Below the different designs, solvers and test problems used in the
benchmark is presented. The set of experimental designs E is summarized in Table 1
on page 61. Information on the test problems are found in Table 2 on page 61.

Three solvers from the TOMLAB /CGO environment are used. The rbfSolve and
arbfmip solvers utilize radial basis functions, and the EGO solver utilizes the DACE
framework. The algorithmic structures are coded in MATLAB but all heavy calcula-
tions are in TOMLAB implemented in Fortran and C code, and interfaced using so
called mex file interfaces.

4.1 Set of Experimental Designs

There are two main parameters to consider: first, the number of initial sample pointsN ,
and second, for constrained problems, whether or not to take the constraints into ac-
count. The tested combinations are described and motivated below.

Size N

The Corner Point Strategy generates a fixed number of initial sample points, one for
each corner point of the bounding box. The other two strategies can generate any
number of initial sample points. We use N1 = (d + 1)(d + 2)/2 and N2 = 10 ·d + 1,
where d is the dimension of the problem to be solved.

60

The influence of ExD on the Performance of CGO Solvers

Constraints

The Maximin LHD strategy can handle constraints by applying Algorithm 1. To test
whether it is more efficient to force all the initial sample points to be feasible, all
problems with constraints in combination with the Maximin LHD design are solved
twice. First using the standard strategy and then applying a Maximin LHD with only
feasible points.

Combinations

Inspired by some preliminary results we also tried to combine the Corner Point Strat-
egy with the other two designs. All corner points (no interior points) were added to
the result of either the global optimization solver or the Maximin LHD.

Table 1: The Set of Experimental Designs (E).

Experimental Design Size of N Constraints

Corner Points Fixed No

GO Solver N1 and N2 Yes

Maximin LHD N1 and N2 No

Maximin LHD N1 and N2 Yes

Corners + GO N1 and N2 Yes

Corners + LHD N1 and N2 No

Corners + LHD N1 and N2 Yes

4.2 Set of Test Problems

In total, a set of 15 box-bounded unconstrained problems PU and a set of 6 constrained
problems PC are solved. Most of them are 2-dimensional problems, except a few
problems in 3 and 4 dimensions. All problems in PC , in combination with the Maximin
LHD experimental design, are solved twice (with and without taking constraints into
account).

Table 2: The Set of Test Problems (P).

Problem set PU PC

Dimension d 2 3 4 2 3

No. of problems 13 1 1 4 2

None of the test problems above have a global minimum in a corner point or midpoint,
as this obviously would benefit the Corner Point Strategy.

Problems in only 2 or 3 dimensions might seem very simple, but even problems of
this size are non-trivial and might be hard to solve when the problems are costly to
compute. It is quite common that costly problems are of small size, with less than 10
unknowns.

61

Paper II

5 Numerical Results

To present the benchmark results in an easy way, we utilize profiling. A perfor-
mance profile [1] shows the relative performance of the solvers in S on the given set
of problems P . However, performance profiles do not provide the number of function
evaluations required to solve any of the problems.

Since function evaluations are expensive we are interested in the percentage of problems
solved (for a given tolerance) within a given number of function evaluations. Data
profiles [8] are specifically designed to handle this. These profiles are both probability
density functions, but with an important difference. A data profile is independent of
the set of solvers S, while the performance profiles are computed relative the other
solvers in S.

5.1 Metrics

The solvers are set to break after 200 function evaluations or earlier if convergence to
the known global optimum is obtained. The relative error is defined as

Er =
fmin − fopt
|fopt|

,

where fmin is the current best function value and fopt is the known global optimum.
Convergence is assumed if the relative error Er is less than 10−4. In the case fopt = 0,
stop when fmin is less than 10−4. To compare the outcome of each experimental
design, a number of metrics are used:

f% Number of function evaluations needed to reach 1,2,3 and 4 digits of accuracy
(Er ≤ 10−k k = 1, 2, 3, 4). This is the primary goal for most optimization
problems.

x% Number of function evaluations needed to sample a point within 10% and 1% of
the design space, centered around the global optimum. It is very important to
sample points close to the global optimum. When this basin is found, the CGO
solvers tend to converge quickly.

RMS When the algorithm stops, the final surrogate model s(x) is compared to the
true function f(x). A grid of points is used to calculate the Root Mean Square
error.

RMS =
1

K
·

(
K∑
k=1

(f(xk)− s(xk))2

)1/2

For d = 2, 412 = 1681 points are used. For d = 3, 213 = 9261 points are used.
For d = 4, 114 = 14641 points are used. It is preferable if the final surrogate
model capture the main features of the costly function, however the main goal
is to find the global minimum with few function evaluations rather than having
an overall good approximation of the objective function.

Smaller values are better for all metrics. To compare the experimental designs, data
profiles for the costly f% and x% metrics are used. The RMS measure is not costly
and presented using performance profiles.

62

The influence of ExD on the Performance of CGO Solvers

5.2 Results

Since our focus of interest is to compare the performance of experimental designs,
not specific solvers, accumulated results for each design are presented and discussed.
Analysis for each solver has been done as well, and if any result differs significantly
for a specific solver, a note is given.

We present the analysis for the set of unconstrained problems PU , but results are
valid for PC as well if not specified otherwise. First compare the experimental designs
where N , the number of initial points, was set to either N1 = (d + 1)(d + 2)/2 or
N2 = 10·d+ 1.

Figure 3: Comparison of setting N1 and N2 for Maximin LHDs. Data profiles for the
metrics f% and x% are used, and a performance profile for RMS.

Figure 3 shows that the Maximin LHD with N2 performs slightly better for all metrics.
The results are similar for the deterministic global solver, and hence consider only the
N2 setting in forthcoming analysis.

63

Paper II

Overall best Experimental Design

Comparing the results of the three originally proposed experimental designs, the Cor-
ner Point Strategy and the global solver approach have a very similar success rate for
all metrics, as seen in Figure 4. The Maximin LHD falls behind when it comes to
finding many digits of accuracy, but is superior when looking at the RMS error. But
as noted, a good RMS error is not the main goal in global optimization.

Figure 4: Comparison of the 3 proposed Experimental Designs. Data profiles for the
metrics f% and x% are used, and a performance profile for RMS.

For the PC problems, the Maximin LHD design performed much better and outper-
formed the other designs for all metrics. But since PC contains only 6 problems this
might just be a coincidence.

The high success rate of the Corner Point Strategy encouraged us to explore two
combined versions. The global solver approach and the Maximin LHD is used as
before, but the corner points of the bounding box are then added to the initial design.

64

The influence of ExD on the Performance of CGO Solvers

This increases the number of initially sampled points somewhat, but should contribute
to a more robust design. The outcome of this experiment is found in Figure 5.

Figure 5: Comparison of Experimental Designs. Data profiles for the metrics f% and x%

are used, and a performance profile for RMS.

A slight improvement can be seen for the Corner Points - deterministic global solver
combination (CP+DGS). The second combination, Corner Points - Maximin LHD
(CP+LHD), has no obvious effect on the f% and x% metrics.

The RMS error is improved for both combinations, and since more points are sam-
pled initially this seems reasonable. Once again the Maximin LHD design, and the
combination (CP+LHD), performed better on the PC problems.

65

Paper II

Constrained versions or not

The results of the ordinary Maximin LHD and the constrained version are compared
on the set of constrained problems PC . Like before, only the N2 setting is used, since
it outperforms the N1 setting. The extra effort of finding feasible points initially seem
not to pay off as one might expect. Figure 6 does not show any significant improvement
for the f% and x% metrics.

Figure 6: Constrained Maximin LHD versus standard Maximin LHD.

A possible reason for this is that although some points are infeasible, they still give
information about the shape of the function. Since only feasible points are sampled
by the CGO solvers, these initial infeasible points give extra stability to the surrogate
model, compared to sampling only feasible points initially.

When considering the RMS metric for constrained problems, there are two ways to
measure the error. One can look at the whole design space, like before, but it is also
interesting to measure only the feasible space. As seen in the plots, these two results
are in conflict. Using a fully feasible initial design naturally gives better RMS error
when only considering the feasible design space, but not as good when measuring the
whole design space.

66

The influence of ExD on the Performance of CGO Solvers

6 Conclusions

The N2 setting performed better for all experimental designs, so this is definitely good.
One could of course try to start with even more points, but since the CGO solvers are
constructed in a way where each new point is chosen carefully by utilizing information
from all the sampled points, this is probably not a good idea.

Finding a feasible experimental design with space filling capacity is not easy. The
algorithm proposed in this paper generates an initial design with feasible points having
the structure of a Maximin LHD. To see any real effect of a fully feasible experimental
design, one must probably have test problems where a large area of the design space
is infeasible. Most of the problems in PC have large feasible areas and thus the effect
is not as noticeable. Also, as the number of initial points N is typically a small part
of the total number of sampled points, the effect is limited.

Sampling the corner points of the bounding box add a tremendous stability to the
solvers, one could think of it as pinpointing the corners of the surface and therefore
getting a more stable description of the boundary. This feature is important as it tends
to help the solvers sample more interior points, which often helps the convergence.

The Maximin LHD approach is superior when looking at the RMS error. Combining
this with the success of the Corner Point Strategy seemed like a promising idea, but
unfortunately did not improve the f% and x% metrics as we had hoped.

There is no obvious winner since all the experimental designs work satisfactory. But
since we consider costly functions, even small differences do matter. The combina-
tion of Corner Points and global solver performs very well compared to the other
experimental designs, with robust results for all metrics.

References

[1] E. D. Dolan, J. J. Moré, and T. S. Munson: Optimality Measures for Performance
Profiles. Preprint ANL/MCS-P1155-0504 (2004).

[2] H. M. Gutmann: A radial basis function method for global optimization. Journal
of Global Optimization 19 (3), 201–227 (2001).

[3] K. Holmström: An adaptive radial basis algorithm (ARBF) for expensive black-
box global optimization. Journal of Global Optimization 41, 447–464 (2008).

[4] K. Holmström and M. M. Edvall: January 2004, ‘CHAPTER 19: THE TOMLAB
OPTIMIZATION ENVIRONMENT’. In: L. G. Josef Kallrath, BASF AB (ed.):
Modeling Languages in Mathematical Optimization. Boston/Dordrecht/London.

[5] D. R. Jones, C. D. Perttunen, and B. E. Stuckman: Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applications
79, 157–181 (1993).

[6] D. R. Jones, M. Schonlau, and W. J. Welch: Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization 13, 455–492
(1998).

67

Paper II

[7] D. R. Jones: DIRECT. Encyclopedia of Optimization (2001).

[8] J. J. Moré and S. M. Wild: Benchmarking Derivative-Free Optimization Algo-
rithms. Preprint ANL/MCS-P1471-1207 (2007).

[9] M. J. D. Powell: Recent Research at Cambridge on Radial Basis Functions. New
Developments in Approximation Theory, 215–232 (2001).

[10] E. Stinstra, D. den Hertog, P. Stehouwer, and A. Vestjens: Constrained Maximin
Designs for Computer Experiments. Technometrics, 45, 340–346 (2003).

68

Paper III

This paper has been published as:

N-H. QUTTINEH and K. HOLMSTRÖM, Implementation of a One-Stage Efficient
Global Optimization (EGO) Algorithm, Research Report MDH, 2, 2009.

Implementation of a One-Stage Efficient
Global Optimization (EGO) Algorithm

Nils-Hassan Quttineh∗ and Kenneth Holmström∗

Abstract Almost every Costly Global Optimization (CGO) solver utilizes a surro-
gate model, or response surface, to approximate the true (costly) function. The EGO
algorithm introduced by Jones et al. utilizes the DACE framework to build an approx-
imating surrogate model. By optimizing a less costly utility function, the algorithm
determines a new point where the original objective function is evaluated. This is
repeated until some convergence criteria is fulfilled. The original EGO algorithm finds
the new point to sample in a two-stage process. In its first stage, the estimates of
the interpolation parameters are optimized with respect to already sampled points. In
the second stage, these estimated values are considered true in order to optimize the
location of the new point. The use of estimate values as correct introduces a source of
error. Instead, in the one-stage EGO algorithm, both the parameters and the location
of a new point are optimized at the same time, removing the source of error. This
new subproblem becomes more difficult, but eliminates the need of solving two sub-
problems. Difficulties in implementing a fast and robust One-Stage EGO algorithm in
TOMLAB are discussed, especially the solution of the new subproblem.

Keywords: Black-box, Surrogate model, Costly functions, Latin Hypercube Designs,
Experimental Design.

1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques, most of which utilize every computed function
value, have been developed over the years.

Problems that are costly to evaluate are commonly found in engineering design, in-
dustrial and financial applications. A function value could be the result of a complex
computer program, an advanced simulation, e.g. computational fluid dynamics (CFD).

∗Department of Applied mathematics, Mälardalen University, SE-721 23 Väster̊as, Sweden.

71

Paper III

One function value might require the solution of a large system of partial differential
equations, and hence consume anything from a few minutes to many hours. In the ap-
plication areas discussed, derivatives are most often hard to obtain and the algorithms
make no use of such information.

From an application perspective there are often restrictions on the variables besides
the lower and upper bounds, such as linear, nonlinear or even integer constraints.
These complicated problems are formulated as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R and xL, x, xU ∈ Rd. Matrix A ∈ Rm1×d, bL, bU ∈ Rm1 ; defines the
m1 linear constraints and cL, c(x), cU ∈ Rm2 defines the m2 nonlinear constraints.
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.

1.1 Surrogate Models

One approach for solving CGO problems is to utilize response surfaces. The basic
idea is to start with an initial sample of points (experimental design), where the costly
function values are calculated. A surrogate model (response surface) is built from the
sampled points, using for example radial basis functions (RBF) or the DACE frame-
work. Use this interpolated surface to approximate the true function, and decide a new
point to sample by some algorithmic strategy. Then iterate until some convergence
criteria is fulfilled.

Surrogate Model Algorithm (pseudo-code)

. Find initial set of n ≥ d+ 1 points x using Experimental Design.

. Compute costly f(x) for initial set of n points. Best point (xMin, fMin).

. Use the sampled points x to build a response surface model as an
approximation of the f(x) surface.

. Choose next point xn+1 to be added:

- Decided by the algorithm used, like EGO, ARBF or rbfSolve.

- Update best point (xMin, fMin) if f(xn+1) < fMin.

. Iterate until fGoal achieved, n > nMax or maximal CPU time used.

72

Implementation of a One-Stage EGO Algorithm

2 Background to DACE and EGO

Suppose we want to predict the function value at a point x̄ not already sampled. The
DACE framework, short for ”Design and Analysis of Computer Experiments” and
also referred to as Kriging, is based on modeling a function as a realization of random
variables, normally distributed with mean µ and variance σ2.

The original EGO algorithm, introduced by Jones, Schonlau and Welch [7] in 1998,
is a two-stage method. Such methods fit a response surface to sampled points in the
first step, then utilize the surface to find new search points in the second step.

Some years later, Jones presents the idea of a one-stage approach [6]. Except for an
implementation by Jones himself, the one-stage approach have not been explored.

2.1 The Correlation function

Before going into mathematical details and formulation of the algorithm, we intro-
duce some notations and variables to be used throughout this paper. Compared with
Euclidean distance, where every variable is weighted equally, the distance formula

D
(
x(i),x(j)

)
=

d∑
k=1

θk ·
∣∣∣x(i)
k − x

(j)
k

∣∣∣pk θk > 0 , pk ∈ [1, 2] (2)

is designed to capture functions more precise. The parameter θk can be interpreted
as a measure of the importance of variable xk. Even small changes in xk might lead
to large differences in the function values at x(i) and x(j).

The exponent pk is related to the smoothness of the function in the k:th dimension.
Values of pk near 2 corresponds to smooth functions and values near 1 to less smooth-
ness. Based on the distance formula (2), the correlation function

Corr
[
ε(x(i)), ε(x(j))

]
= e−D(x(i),x(j)) (3)

has all the intuitive properties one would like it to have. When the distance between
x(i) and x(j) is small, the correlation is close to one. For large distances, the correlation
approaches zero. A large value for θ will affect the distance to grow faster, which leads
to a decrease in the correlation. In this way active variables are accounted for, giving
a more accurate correlation function.

We denote the evaluated function values by y =
(
f(x(1)), . . . , f(x(n))

)′
, where n is

the number of points sampled so far. Denote the matrix of correlation values by R,

where R(i, j) = Corr
[
ε(x(i)), ε(x(j))

]
. Also, let r denote the vector of correlations

between x̄ and the sampled points, that is ri(x̄) = Corr
[
ε(x̄), ε(x(i))

]
.

73

Paper III

2.2 The DACE interpolation model

To build a surrogate model from the sampled points, we need to estimate parameters
θk and pk. This is done by choosing them to maximize the likelihood of the sampled
points. A more detailed analysis is found in Section 3.

With the parameter estimates in hand, we are now able to construct the DACE model,
or DACE response surface. Using the evaluated function values y and the matrix of
correlation values R, the DACE interpolant is defined by

y(x̄) = µ+ r′R−1(y − 1µ) (4)

where r is the vector of correlations between x̄ and the sampled points x. The first
term µ is the estimated mean, and the second term represents the adjustment to
this prediction based on the correlation of sampled points x. The derivation of this
predictor can be found in [10].

The mean square error of the predictor, denoted by s2(x̄), is given by

s2(x̄) = σ2 ·
[
1− r′R−1r +

(1− 1′R−1r)2

(1′R−11)

]
. (5)

As one would imagine, the mean square error for a sampled point is zero, s2(x(i)) = 0.

We now have a formula for the expected value of a point yet to be sampled, along
with an error estimation. Since this predictor is cheap to calculate, compared to the
costly function, it can be used to locate a new point x̄ with as low expected function
value as possible.

3 The EGO algorithm

The Efficient Global Optimization (EGO) algorithm utilizes the DACE interpolation
surface to approximate the costly function based on already sampled points. In order
to use this for optimization, one must find a way to iteratively choose x∗, the next
point to sample.

In the original EGO algorithm, described in Section 3.1, the Maximum Likelihood
Estimation (MLE) of the parameters θ and p is based on the set of sampled points x.
These estimates are used to decide upon new sample points, found by optimizing some
utility function, which hopefully converges towards the global optimum. This can be
seen as a two-stage process.

A drawback with this approach is that the utility function depends on the estimated
parameters, which might lead to inaccurate decisions. To overcome this flaw, the one-
stage process described in Section 3.2 incorporates x∗ into the MLE step. For a given
target value f∗, the MLE tries to fit the surface to already sampled points, conditional
upon the assumption that the surface goes through the point (x∗, f∗).

74

Implementation of a One-Stage EGO Algorithm

3.1 Two-stage process, Standard EGO

We need to estimate the parameters θk and pk in order to construct an interpolation
surface of our costly function. The estimates are found by choosing them to maximize
the likelihood of the already sampled points x.

The likelihood function

L(θ, p) =
1

(2π)n/2(σ2)n/2|R| 12
· e
−

(y − 1µ)′R−1(y − 1µ)

2σ2 (6)

Note that the dependence on parameters θ and p is via the correlation matrix R.
Assuming we know the values of θ and p, we find the values of µ and σ2 that maximizes
the log-likelihood function:

LL(θ, p) = −n
2

log(σ2)− 1

2
log(|R|)− (y − 1µ)′R−1(y − 1µ)

2σ2
(7)

By taking the derivatives of (7) with respect to µ and σ2 respectively, solving them
equal to zero, the solution is:

µ̂ =
(1′R−1y)

(1′R−11)
(8)

and

σ̂2 =
(y − 1µ̂)′R−1(y − 1µ̂)

n
(9)

Substituting equations (8) and (9) back into (7), one finds the concentrated log-
likelihood function only depending on parameters θ and p via R:

ConLL(θ, p) = −n
2

log(σ̂2)− 1

2
log(|R|) (10)

Maximizing (10) yields the estimates needed. Then use equations (8) and (9) to
calculate the estimates of µ and σ2.

Once the estimates are known, a utility function is optimized in order to find x∗, the
next point to sample. There are many different utility functions that could be used,
but the Expected Improvement (ExpI) is most commonly used.

The Expected Improvement relies on the predicted values of µ and σ2 to find the
location x∗ where the probability of improving the objective value is maximized. For
details on different utility functions and the Expected Improvement, see [11].

75

Paper III

3.2 One-stage EGO, new approach

In his paper [6], Jones introduces the idea of a one-stage EGO algorithm, incorporating
the new point x∗ into the estimation process of parameters θ and p. The estimates
are, like before, found by choosing them to maximize the likelihood of the sampled
points x. But this time we compute the likelihood of the observed data conditional
upon the assumption that the surface goes through the point (x∗, f∗).

The conditional likelihood function

CL(θ, p, x∗) =
1

(2π)n/2(σ2)n/2|C| 12
· e
−

(ȳ − r̄µ)′C−1(ȳ − r̄µ)

2σ2 (11)

where

C = R− rr′ , ȳ = y − r · f∗ , r̄ = 1− r.

The dependence on the parameters θ, p and x∗ is via the conditional correlation
matrix C, as vector r describes correlation between x∗ and the n sampled points.
Both R and r are affected by θ and p.

When using the conditional log-likelihood to evaluate the hypothesis that the surface
passes through (x∗, f∗) we also estimate the values of θ and p, and like before find the
values of µ and σ2 that maximizes the conditional log-likelihood function:

CLL(θ, p, x∗) = −n
2

log(σ̂2)− 1

2
log(|C|)− (ȳ − r̄µ)′C−1(ȳ − r̄µ)

2σ2
(12)

with optimal values for µ and σ:

µ̂ =
(r̄′C−1ȳ)

(r̄′C−1r̄)
(13)

and

σ̂2 =
(ȳ − r̄µ̂)′C−1(ȳ − r̄µ̂)

n
(14)

Substituting equations (13) and (14) back into (12), we find the concentrated form
of the conditional log-likelihood function, depending on parameters θ, p and x∗ via
matrix C and vectors r and ȳ:

ConCLL(θ, p, x∗) = −n
2

log(σ̂2)− 1

2
log(|C|) (15)

Maximizing (15) yields the estimates needed. Then use equations (13) and (14) to
calculate the estimates of µ and σ2.

76

Implementation of a One-Stage EGO Algorithm

To illustrate the nasty nature of (15), consider the equivalent formulation of the full
Conditional Maximum Likelihood (CML) problem. Variable S and matrix C are both
dependent on all other variables in a complicated manner. Matrix R and vector r
depends on variables x∗, θ and p, which also affects vectors r̄ and ȳ.

min
θ,p,x∗

n · log(S) + log(|C|) [CML]

s.t. S = 1
n ·
[
(ȳ − r̄ · µ)′ ·C−1 · (ȳ − r̄ · µ)

]
µ =

(r̄′ ·C−1 · ȳ)
(r̄′ ·C−1 · r̄)

C = R− r · r′

ȳ = y − r · f∗

r̄ = 1− r

R(i, j) = exp

(
−

d∑
k=1

θk ·
∣∣∣x(i)
k − x

(j)
k

∣∣∣pk) i, j = 1, . . . , n

r(i) = exp

(
−

d∑
k=1

θk ·
∣∣∣x(i)
k − x

∗
k

∣∣∣pk) i = 1, . . . , n

0 < θk k = 1, . . . , d

1 ≤ pk < 2 k = 1, . . . , d

xL ≤ x∗ ≤ xU

bL ≤ Ax∗ ≤ bU

cL ≤ c(x∗) ≤ cU

Parameters :

f∗ given target value

d dimension of problem

n number of sampled points

x sampled points

y evaluated function values

77

Paper III

3.3 Overview

Based on the DACE framework, we have presented two different approaches on how to
perform iterations in order to find new sample points x∗, hopefully converging towards
the global optimum. Each method is connected to good properties as well as some
troublesome issues.

Two-Stage EGO

Stage 1. Find θ and p by MLE, interpolate surface.

Stage 2. Optimize some utility function to find x∗, a new point to sample.

+ Two separate subproblems, easier to solve.

- Relies on estimated parameters.

One-Stage EGO

Stage 1. Given a value for f∗, find θ, p and x∗ by MLE, conditionally that the
surface goes through (x∗, f∗).

+ Only one subproblem to solve. The computation of x* is not dependent
on previous biased estimates, more accurate computation.

- We don’t know the value of f∗. The new CML problem is more difficult.

In the upcoming Sections 4 and 5, we look deeper into the problems connected to a
one-stage process and present methods to handle these issues.

4 Difficulties and Algorithm description

Although the one-stage process is theoretically more appealing, there are some prac-
tical issues that needs to be adressed. To start with, the optimal value f∗ is obviously
not known in advance and must be chosen in some way. This is the least of our troubles
though, and methods to deal with this is presented in Section 4.1.

Section 5 is devoted to ideas on how to solve the challenging CML problem in a robust
and efficient manner. This is essential since the subproblem needs to be solved multiple
times each iteration.

There is also some numerical issues connected to the subproblem. When optimizing
the concentrated conditional log-likelihood function (15) one need to evaluate points
close to already sampled points x, and this causes the function to collapse. Details
and remedies are presented in Section 4.2.

Finally, a pseudo-code for the one-stage EGO algorithm is presented in Section 4.3.

78

Implementation of a One-Stage EGO Algorithm

4.1 Finding f ∗ values

The one-stage approach finds a new point x∗ by computing the likelihood of the
observed data conditional upon the assumption that the surface goes through the
point (x∗, f∗). The value of f∗ is not known in advance and must be chosen somehow.

Fortunately, the use of a target value is not unique for the one-stage EGO algorithm.
When Gutmann introduced the radial basis function (RBF) method [3], he proposed
a cycle of 5 target values lower than the minimum of the interpolated surface, ranging
from far below (global search) to close below (local search). Set the value of f∗ to

f∗k = smin − wk ·
(

max
i
f(xi)− smin

)

where smin is the minimum of the interpolated surface. The weight factor wk is defined
using a cyclic scheme over k like

wk = (1− k/N2), k = 0, 1, . . . , N − 1.

This is successfully done in TOMLABs CGO-solver rbfSolve [1].

A more powerful approach, but also more computer intensive, is to solve the subprob-
lem for a wide range of f∗ values every iteration. Each solution gives an x∗ candidate,
so how to proceed? It turns out that these solutions tend to cluster, and by applying
a clustering process one could proceed with 1-3 new x∗ values each iteration. This is
successfully done in TOMLABs CGO-solver ARBFMIP, and details on the target values
and the clustering process are found in [4] and [5].

Both methods overcome the problem of not knowing the optimal target value f∗ in
advance, but experience from solving a large number of test problems with rbfSolve

and ARBFMIP suggests that using a range of target values adds robustness to the opti-
mization process.

Another advantage of getting a cluster of new points is the possibility to benefit from
parallel calculations, becoming more and more standard for computers today. Hence
our implementation of the one-stage EGO algorithm will adopt the clustering methods
of ARBFMIP.

4.2 Numerical Issues

The EGO algorithm is known to suffer from numerical problems due to the correlation
matrix becoming more and more ill-conditioned as sampled points start to cluster in
promising areas of the sample space. Equation (10) used for the MLE of parameters
θ and p includes the logarithm of the determinant of the correlation matrix R, which
approaches zero as points are sampled close together.

79

Paper III

For the one-stage process, the CML function (15) is optimized, and the numerical
issues have not disappeared. The situation is even worse due to the intricate relations
between sampled points and parameters θ and p, now also affected by parameters x∗

and f∗. The problem with a rank deficient C matrix is that when evaluating (15) its
inverse is needed (although not calculated implicitly, it is still problematic). It also
contains the term log(|C|), which is undefined as the determinant becomes 0. We now
present three situations where numerical issues arise in the one-stage approach.

Solving the MLE

Numerical issues arise when maximizing (10), the standard MLE, to find parameters θ
and p. The upper bound for parameter p is theoretically 2, but Sasena reports in [11]
that a value strict less than two is more numerical stable. Here is an example clearly
supporting the claim.

Figure 1: MLE of θ and p. To the left, p = 1.99 and to the right p = 2.

Figure 1 shows the same ML function to be minimized, but with the parameter p
fixed to 1.99 and 2 respectively. Clearly the function where p = 1.99 is preferable,
motivating the upper bound of p to be adjusted to 1.99.

Evaluating CML close to sampled points

Ill-conditioning of the correlation matrix is inherited from the two-stage approach, but
also enhanced due to the definition of correlation matrix C = R−rr′. The correlation
vector r(i) approaches 1 for x(i)s close to x∗, hence creating a close-to-zero row and
column in C whenever evaluating points close to x, the set of so far sampled points.

In evaluating a point really close to x, the logical thing would be for the CML
function (15) to approach minus infinity. It is certainly unlikelihood for an already
sampled point, with a function value not equal to f∗, to suddenly match f∗. But when
zooming in on the CML function in a very small interval around a sampled point, we
get something else. Figure 2 illustrates the phenomenon, showing pictures of (15) close
to a sampled point. The CML functions are displayed as minimization problems.

80

Implementation of a One-Stage EGO Algorithm

Figure 2: Evaluating CML close to an already sampled point. The function should in-
crease continuously, but suddenly drop to a constant value.

So what happens when matrix C becomes very close to singular, due to reasons
explained before, and we try to evaluate (15). In our implementation, first the QR-
factorization of matrix C is found, then its determinant is calculated as the product
of the diagonal elements of R which are greater than a specified lower bound ε, i.e.

det C =
∏
i∈I

R(i, i) where I = {i : |R(i, i)/R(1, 1)| > ε}.

This pseudo-rank determinant causes the “valley” surrounding the sampled point,
clearly seen in the one-dimensional example. The width of the valley depends on the
value of ε, becoming more narrow as ε goes to zero. So by using a smaller value of ε
than normally necessary, we at least decrease the critical region. To compensate for
the pseudo-rank, we subtract a big number to the objective for all points inside the
valley.

It is important to clarify the need of evaluating points close to already sampled points.
If a function value y(i) corresponding to a sampled point x(i) is much larger than fmin,
the best found function value so far, it is not desirable to sample points close to x(i).
On the other hand, in search for a new point x∗ that improves the objective value,
it is natural to evaluate points close to sampled points with low function values. In
order to find solutions with many digits of accuracy, it is even necessary.

Bad combinations

After some iterations, when having sampled some points, another numerical issue
arises when maximizing both (10) and (15). In contrast to the previous problem, this
is due to a very natural cause. Independent of the optimization method used to solve
the MLE, many combinations of parameters θ and p are tested, and some of them are
simply not feasible for the given set of sampled points x.

81

Paper III

Although the reasons are completely different, the result is the same as before. When
matrix C becomes singular and its determinant is zero, the CML function returns
minus infinity when taking the logarithm, causing the optimization process to halt. A
numerical example is presented to the left in Figure 3.

Figure 3: MLE of θ for a fixed value of p. To the left, the ML function without safeguard.
To the right, the same ML function with safeguarded logarithm calculations.

To handle this situation, we safeguard the calculations of the logarithm. Whenever the
determinant is zero, return a large negative value instead of calculating the logarithm.
By investigation, MATLAB evaluates log(10−323) as -743.7469 but a smaller value like
log(10−324) = −∞, so whenever |C| < 10−323 we replace the term log(|C|) by -743.75.

As seen in Figure 3, this removes the discontinuity caused by the determinant cal-
culations breaking down. The CML function will act linear in the infeasible area.
This might not be entirely satisfactory, but it prevents the optimization process from
breaking down which is the important thing.

4.3 Pseudo Code

When implementing the one-stage EGO, the algorithmic structures are coded in MAT-
LAB but all heavy calculations are implemented in Fortran and C code, and interfaced
using so called mex file interfaces. Here follows a description of the one-stage EGO
algorithm together with a pseudo-code presented in Algorithm 1.

After finding the initial set of n sample points, we estimate parameters θ and p by
optimizing (10) and build an interpolation surface. We do this in order to find the
surface minimum smin, used to define the range of target values F . Then begins
the process of solving the Conditional Maximum Likelihood (CML) for each target
value f∗k ∈ F , cluster the result and pick new points to sample. One could optionally
add smin as well, since the idea of the interpolation surface is to approximate the true
costly function. This is repeated until the global optimum is found, or the maximum
number of function evaluations is reached.

Our MATLAB implementation is named osEGO.

82

Implementation of a One-Stage EGO Algorithm

Algorithm 1 The one-stage EGO algorithm

1: Find n ≥ d+ 1 initial sample points using some Experimental Design.

2: while n < MAXFUNC do

3: Estimate parameters θ and p by optimizing the ML-function (10).

4: Use θ and p to build the interpolation surface s(x).

5: Find the minimum of the surface, denote it smin.

6: Define F , a range of f∗-values.

7: for all f∗k ∈ F do

8: Maximize the Conditional ML (15) defined by f∗k .

9: end for

10: Apply a clustering process on the results, add new points and update.

11: Optionally add smin and update.

12: end while

5 The CML problem

Instead of solving two consecutive subproblems, the one-stage EGO combines all work
into a single subproblem. This eliminates the use of estimated values for parameters
θ and p, the main drawback of the original two-stage EGO algorithm. But incorporat-
ing x∗ into the MLE complicate things. Not only is the dimension of the subproblem
increased by d+ 1, we need to guess the value of f∗.

In order to solve this new, more complicated, conditional MLE problem efficiently for
a whole range of f∗ values, we need to find ways of generating good initial values for
our parameters x∗, θ and p, and then solve the full problem. We do this by solving a
series of restricted subproblems.

One might argue that in this way we still solve more than one subproblem, hence not
gaining anything compared to the two-stage EGO algorithm. But the point is that
while standard EGO first approximates the interpolation surface to already sampled
points and then search for x∗ in a separate problem, we do not separate x∗ from the
MLE of θ and p although solving the CML problem in several steps.

Subproblem 1

To get started, we solve a restricted version of CML where pk is fixed to 1.99 for
all k, and both x∗ and θ are considered univariate, i.e. θ = θ1 = θ2 = . . . = θd
and x∗ = x∗1 = x∗2 = . . . = x∗d. The most difficult variables are x∗, so by scanning
the space using a parametrization we find a suitable initial value of x∗. Notice that
Subproblem 1 will always be a two-dimensional problem independent of the original
problem. The peaks seen in Figure 4 on page 84 correspond to x lying close to the
diagonal. To solve the subproblem, use starting points in between the peaks.

83

Paper III

Figure 4: To the left, subproblem 1 with univariate x∗ and θ for p = 1.99 fixed. To the
right, subproblem 2 with univariate θ and p, using x∗ found in subproblem 1.

Subproblem 2

Having found an initial guess x∗0, we progress by keeping x∗ fixed and consider uni-
variate values for θ and p instead, solving another two-dimensional problem. From
Subproblem 1 we get a good initial guess for θ, which makes Subproblem 2 relatively
easy to solve. In Figure 4, to the right, a numerical example.

Subproblem 3

At this point, we have univariate initial values for all parameters. From solving Sub-
problem 1 we get values for x∗0 and θ0, and the latter is refined in Subproblem 2
together with p0. We are now ready to solve the full subproblem, with no parame-
terizations or fixations. The solution of CML, which is defined by the current target
value f∗k , is a suggestion for a new point to sample, denoted x∗k. Figure 5 and Figure 6
show pictures of the CML problem, displayed as a maximization problem for best
possible visualization.

Resolving for a new f∗k .

Since we need to solve CML for f∗k ∈ F , where F denotes a range of target values for
the current iteration, one should exploit the possibility of an efficient reoptimization
process. We notice that a relative small change in the value of f∗k results in a very
similar problem to solve. Therefore, if f∗k − f∗k+1 is small, the solution x∗k serves as a
good initial guess for x∗k+1. In this way, by keeping track of when consecutive values
of f∗k differ a lot, it suffices to solve all subproblems only a few times. Whenever the
change in f∗ value is relatively small, solve the full problem directly using the previous
solution as starting point. This will speed up the solution process significantly.

84

Implementation of a One-Stage EGO Algorithm

Figure 5: The full CML subproblem for fixed values of parameters θ and p. At this stage,
the number of sampled points n is relatively small. Black dots indicate starting
points for the solver used to maximize CML.

Figure 6: The full CML subproblem for fixed values of parameters θ and p. The number
of sampled points n is much larger than before, and the problem has become
much more difficult. Black dots indicate starting points used by the solver.

85

Paper III

Modifications

It is possible to solve a restricted version of CML and accept the solution as x∗k without
solving the full subproblem. The most straightforward way is to consider univariate
values for θ and p throughout the whole algorithm, hence decreasing the problem
dimension from 3·d to d + 2. This will most likely be necessary when attempting to
solve higher dimensional problems.

Experience over the years using the EGO algorithm also suggests that keeping p fixed
to a single value at all times, eliminating this parameter completely from the optimiza-
tion process, does not affect the results significantly. A value close to 2 is suggested,
and from the earlier discussion in Section 4.2 on numerical issues, an upper bound of
p = 1.99 is strongly recommended.

6 Benchmark and Tests

This paper aims at evaluating the one-stage EGO implementation osEGO by solving
a set of test problems and compare the results with other algorithms. Three solvers
from the TOMLAB/CGO environment are used. The rbfSolve and arbfmip solvers
utilize radial basis functions, and the EGO solver is an implementation of the standard
two-stage EGO algorithm.

All solvers run with their default parameter settings, controlling algorithmic options
like variable scaling and the choice of merit function.

Following the definition of Dolan and Moré [2], a benchmark consists of a set P of
benchmark problems, a set S of optimization solvers and a well defined convergence test.
Since the problems are considered costly, we define a performance measure ts,p > 0,
the number of function evaluations required for problem p ∈ P to converge using
solver s ∈ S.

All solvers are set to break after 200 function evaluations or earlier if convergence to
the known global optimum is obtained. The relative error is defined as

Er =
fmin − fopt
|fopt|

,

where fmin is the currently best feasible function value and fopt is the known global
optimum. Convergence is assumed if the relative error Er is less than 10−4. When
fopt = 0, stop when fmin is less than 10−4. If convergence is not reached after 200
iterations, declare failure.

All CGO solvers need an initial set of points, or experimental design, in order to start
the algorithm. Since the behavior of any such algorithm often depends heavily on this
set, we solve each problem for a set of experimental designs E, summarized in Table 1
on page 87.

We consider two kinds of test problems in this benchmark, unconstrained box-bounded
problems PU and constrained problems PC . A thorough presentation of the problems
is found in Section 6.2, summarized in Table 2 on page 88.

86

Implementation of a One-Stage EGO Algorithm

6.1 Experimental Designs

Here follows a short description of the five different experimental designs (ExD) used
in this benchmark. All but one design are defined by the number of initial points to
sample, denoted by N . Some of them are able to handle constraints, while others can
do this optionally.

The Corner Point Strategy (CPS) generates a fixed number of initial sample points,
one for each corner point of the bounding box. This method is not able to handle
constraints. The Deterministic Global Solver (DGS) approach applies the DIRECT
algorithm to find N initial points, and is able to handle constraints.

The Maximin LHD strategy apply a Latin Hypercube Design of any given size N ,
where the points are separated subject to the maximin distance. This method could
optionally handle constraints, using a method by Quttineh presented in [9]. The LHD
designs used are taken from the webpage http://www.spacefillingdesigns.nl where
a large collection of optimal maximin designs are available.

Finally, we also consider a combination of the CPS strategy with the Maximin LHD
and DGS methods respectively. The N = 2d corner points of the bounding box are
added to the designs generated by the Maximin LHD and DGS methods.

Table 1: The set of Experimental Designs (E). Five different ExD methods are listed,
together with the available options. The Maximin LHD method can handle
constraints optionally, hence EC = 4 combinations for the constrained problems.

ExD Experimental Design Size of N Constraints EU EC

CPS Corner Points Fixed No 1 1

DGS DG Solver N1 and N2 Yes 2 2

LHD Maximin LHD N1 and N2 Yes/No 2 4

CP+DGS Corners + DGS N1 and N2 Yes 2 2

CP+LHD Corners + LHD N1 and N2 Yes/No 2 4

For all designs, except the CPS strategy, we use the settings N1 = (d + 1)· (d + 2)/2
and N2 = 10 ·d + 1, where d is the dimension of the problem to be solved. For the
Maximin LHD design, it is possible to choose whether constraints should be considered
or not. Therefore, each constrained problem will be solved in total 4 times using the
Maximin LHD design, with and without constraints taken into account and for the
options N1 and N2.

To summarize, we solve each box-bounded problem using nine different designs, nine
being the sum of column EU in Table 1. The constrained problems are solved using 13
different designs, the sum of column EC . For a thorough description on the different
experimental designs, see [9].

87

Paper III

6.2 Test Problems

We define a set of 13 box-bounded unconstrained problems PU , each solved for EU
different designs, and a set of 6 constrained problems PC , each solved for EC different
designs. Most of them are 2-dimensional, except a few problems in 3 dimensions.

Table 2 and Table 3 give a compact description of the test problems. Column d is
the number of variables, Ax the number of linear inequality constraints and c(x) the
number of nonlinear inequality constraints. In the Domain column, the lower and
upper bounds for all variables are shown. The Range column shows the order of the
objective.

None of the test problems have a global minimum in a corner point or midpoint.

Table 2: The set of box-bounded test problems PU .

Nr. Problem Name d Domain Range

B4 Hartman 3 3 [0, 0, 0] − [1, 1, 1] 4·100

B6 Branin RCOS 2 [5, 0] − [10, 15] 3·102

B7 Goldstein and Price 2 [2, 2] − [2, 2] 1·106

B8 Six-Hump Camel 2 [3, 2] − [3, 2] 2·102

B16 Shekels foxholes 2 2 [0, 0] − [10, 10] 1·101

B19 Michalewiczs function 2 2 [0, 0] − [π, π] 2·100

B30 Myers smoothly fluctuating 2 [0.5, 0.5] − [3.5, 3.5] 6·100

B32 LOG-Goldstein and Price 2 [2, 2] − [2, 2] 1·101

B53 Dixon and Price 2 [10, 10] − [10, 10] 9·105

L20 M20 2 [0, 0] − [5, 5] 3·100

L25 M25 2 [2, 2] − [2, 2] 1·100

L28 M28 2 [3, 3] − [9.99, 9.99] 1·102

L49 M39 2 [500, 500] − [500, 500] 2·103

Table 3: The set of constrained test problems PC .

Nr. Problem Name d Ax c(x) Domain Range

C2 Gomez 3 2 0 1 [1, 1] − [1, 1] 4·100

C3 Hock-Schittkowski 59 2 0 3 [0, 0] − [75, 65] 1·102

C4 Hock-Schittkowski 65 3 0 1 [4.5, 4.5, 5] − [4.5, 4.5, 5] 2·102

C13 Schittkowski 343 3 0 2 [0, 0, 0] − [36, 5, 125] 2·102

C19 Bump 2 2 1 1 [ε, ε] − [10, 10] 1·100

C22 HGO 468:1 + constraint 2 0 1 [0, 0] − [1, 1] 6·100

88

Implementation of a One-Stage EGO Algorithm

6.3 Numerical Results

To present the benchmark results in a standardized manner, we utilize data profiles
suggested by Moré and Wild [8], a kind of probability density function. Since function
evaluations are expensive we are interested in the percentage of problems solved to
a given accuracy within k function evaluations. Data profiles are designed to handle
this, and are defined for a set of test problems P and a solver s ∈ S by

ds(k) =
1

|P | ·
∣∣∣∣{p ∈ P :

tp,s
np + 1

≤ k
}∣∣∣∣

where np is the number of variables for each problem p ∈ P .

Our benchmark is defined by the set S of CGO solvers rbfSolve, arbfmip, ego, and
osEgo, and the set of test problems defined by P̄ = {P ×E}. Since the choice of initial
set of sample points have such a big impact on the performance of CGO solvers, each
combination of test problem p ∈ P and experimental design e ∈ E is considered as a
unique problem. In this way, the data profiles will show if a solver is robust or not
with respect to the initial set of sample points.

Unconstrained problems

Figure 7 presents data profiles for the set of unconstrained box-bounded problems
P̄U = {PU ×EU}. It consists of all combinations of the 13 box-bounded problems and
9 experimental designs, i.e. |P̄U | = 117. The tolerance of the relative error Er is set
to 1% in the left picture and to 0.01% in the right picture.

Figure 7: Data profiles for the box-bounded unconstrained problems P̄U show the per-
centage of problems solved as a function of k, the number of function evalua-
tions needed to converge, with tolerance 1% and 0.01%.

The osEgo algorithm is doing quite well, solving more problems to 2 digits of accuracy
than any other solver in S. In finding 4 digits of accuracy, it is beaten by the rbfSolve.

89

Paper III

Constrained problems

Figure 8 presents data profiles for P̄C = {PC×EC}, the set of constrained box-bounded
problems. It consists of all combinations of the 6 constrained problems and the 13
experimental designs, i.e. |P̄C | = 78. The tolerance is set to 1% in the left picture and
to 0.01% in the right picture. All solvers perform very well on this set of constrained
problems, finding the global optimum for almost all instances.

Figure 8: Data profiles for the constrained box-bounded problems P̄C show the percent-
age of problems solved as a function of k, the number of function evaluations
needed to converge, with tolerance 1% and 0.01%.

The osEgo algorithm is the most robust solver in S, converging to 4 digits of accuracy
for all problems in less than 140 function evaluations. The rbfSolve and arbfmip

algorithms are both very close to solve all problem instances as well, only the ego

algorithm has significant failures.

Problem specific analysis

Table 4 and Table 5 present the results separately for each solver in S. The number of
failures (in %) and the mean, min and max for the successful runs out of the total runs
for each problem are reported. That is, the mean, min and max number of function
evaluations needed to converge using the different experimental designs in E for each
solver and problem.

The osEGO algorithm performs well, already confirmed by the data profiles. Some
specific problems seem to cause a lot of trouble though. A common feature for problems
B7 and B53 is the wide range of the objective. It seems like osEGO, just like the other
solvers, is sensitive to such a large span in function values.

Another demanding problem is B16, the classical Shekel Foxholes. All solvers but
EGO finds the global optimum for all experimental designs, in less than 200 function
evaluations, which is impressive. Problem L49 is also challenging, filled with many
local minima, even so both rbfSolve and osEGO are successful.

90

Implementation of a One-Stage EGO Algorithm

Table 4: Number of function evaluations to get within 1% of the optimal value.

Solver % rbfSolve % arbfmip % ego % osEgo

Fail mean min max Fail mean min max Fail mean min max Fail mean min max

B4 0 43 18 58 23 51 38 60 0 41 31 53 0 38 17 49

B6 0 32 24 42 0 39 30 47 0 29 19 35 0 40 29 49

B7 78 169 168 170 34 166 145 200 23 69 26 194 56 162 151 172

B8 0 36 21 46 0 45 28 57 23 30 21 41 0 58 35 70

B16 0 99 38 130 0 140 37 186 100 - - - 0 113 55 148

B19 0 39 26 64 0 29 19 43 12 24 12 37 0 26 13 40

B30 0 20 10 32 0 26 23 30 0 24 13 33 0 22 13 30

B32 0 42 29 53 0 53 31 65 56 52 48 55 0 64 31 79

B53 0 79 22 133 0 119 68 199 23 40 25 56 0 95 32 193

L20 0 24 13 30 0 23 16 28 0 21 13 30 0 25 15 35

L25 34 36 24 68 45 32 30 38 12 61 9 181 45 18 10 26

L28 34 25 22 27 0 42 26 77 0 21 11 26 0 40 10 103

L49 0 86 61 103 78 71 68 74 45 112 89 141 0 106 21 180

C2 0 22 10 32 0 23 10 33 0 20 10 28 0 23 9 35

C3 0 22 12 35 0 25 15 36 8 21 11 28 0 24 14 31

C4 0 34 20 46 0 32 19 45 0 31 17 48 0 38 20 54

C13 0 28 11 45 0 28 11 45 24 31 13 45 0 33 15 47

C19 8 50 7 145 0 68 15 169 24 89 30 158 0 74 21 117

C22 0 42 32 67 8 59 34 149 0 26 17 36 0 29 19 53

Table 5: Number of function evaluations to get within 0.01% of the optimal value.

Solver % rbfSolve % arbfmip % ego % osEgo

Fail mean min max Fail mean min max Fail mean min max Fail mean min max

B4 0 103 54 160 23 82 58 122 0 51 45 59 0 50 24 63

B6 0 44 30 61 0 55 48 62 0 41 29 55 0 62 50 79

B7 89 185 185 185 56 183 175 191 56 73 28 127 89 187 187 187

B8 0 53 35 71 0 57 38 73 23 34 25 48 0 89 76 110

B16 0 113 48 140 0 147 41 195 100 - - - 0 125 64 165

B19 0 54 40 70 0 35 24 54 12 27 15 39 0 33 24 47

B30 0 22 14 34 0 34 25 48 0 29 16 38 0 26 14 37

B32 0 64 50 81 0 60 39 77 89 52 52 52 0 87 38 137

B53 12 123 71 161 23 121 87 165 67 104 40 161 45 160 118 195

L20 0 34 23 45 0 36 30 42 0 25 16 35 0 39 27 50

L25 34 58 44 110 45 37 32 49 34 32 13 70 45 32 17 41

L28 45 64 39 91 0 136 79 166 0 26 16 35 34 92 25 144

L49 0 100 81 121 78 74 70 78 45 147 120 175 0 118 28 191

C2 0 27 18 36 0 26 15 37 0 22 12 30 0 27 14 39

C3 0 25 12 36 0 31 19 44 8 22 15 29 0 27 17 33

C4 0 44 20 61 0 37 23 47 0 37 21 60 0 50 29 82

C13 0 28 11 45 0 28 11 45 24 31 13 45 0 33 15 47

C19 8 56 11 146 0 72 16 174 24 96 33 160 0 78 25 129

C22 0 45 32 69 8 65 39 157 0 28 20 39 0 35 26 60

91

Paper III

Experimental Designs and the one-stage EGO

Some interesting details were found when analyzing the performance of the osEgo

algorithm with respect to the different experimental designs in E. For the set of
unconstrained problems PU , the CP+DGS experimental design works best with the
option N2 = 10·d+ 1.

For the constrained problem set PC , the Maximin LHD allowing infeasible points and
using the option N1 = (d+1)(d+2)/2 was the most successful design. The results also
indicate, somewhat ambiguously, that one should rather use a constrained LHD when
in combination with the Corner Point Strategy. It should be noted that the set PC is
quite small, hence it is difficult to draw any conclusions.

7 Conclusions

The one-stage EGO approach is promising, although it still needs to be improved. We
have successfully implemented an adaptive scheme for f∗, similar to the one used in
ARBFMIP. From the test results, though, it seems like a good idea to implement and
test the cyclic choice of f∗ as well.

By breaking down the full CML problem into subproblems, using univariate variables
for θ, p and x∗, we are able to find good starting points and find new candidates x∗

in each iteration. Using a clustering process, we find the best candidates from each
cluster and proceed with multiple points each iteration.

Numerical issues are a big problem, and it might not be possible to resolve all of them.
We have presented good fixes for some of the issues, allowing the osEgo implementation
to compete with the other CGO solvers in TOMLAB, outperforming the old ego

implementation.

The nasty subproblem CML increase with the number of sampled points n, since the
size of correlation matrices R and C are n × n. This causes the calculations to get
heavier as the iterations go by, and more parameter combinations become infeasible,
complicating the optimization of the subproblems.

At the moment, the solver used to maximize the full CML subproblem utilize a set
of starting points x0. These points are chosen as the sampled points x, but slightly
perturbed towards the midpoint of the sample space. This is motivated by inspection
of the subproblem, realizing that the optimal solution is often very close to an already
sampled point.

Due to our discussion in Section 4.2, we choose to perturb the starting points, avoiding
numerical issues and not starting in a deep basin surrounding sampled points. By
perturbing towards the midpoint, we keep feasibility with respect to the box-bounds.

7.1 Future work

We need to speed up the subproblem solving phase. As n increases, so does the
number of starting points x0. As points tend to pile up in promising areas, many of

92

Implementation of a One-Stage EGO Algorithm

the points in x0 are very similar (close in Euclidean meaning), a bad feature for a set
of starting points. A possible remedy, partly implemented already, is to cluster the
sampled points x and thus reduce the size of x0 and hence decrease the solution times.

The numerical results indicate that osEGO is sensitive to large spans in function values.
We should consider strategies of transforming the function values, perhaps consider
the log values, in order to reduce the range.

References

[1] M. Björkman and K. Holmström: Global Optimization of costly nonconvex func-
tions using radial basis functions. Optimization and Engineering 1 (4), 373–397
(2000).

[2] E. D. Dolan, J. J. Moré, and T. S. Munson: Optimality Measures for Performance
Profiles. Preprint ANL/MCS-P1155-0504 (2004).

[3] H.-M. Gutmann: A radial basis function method for global optimization. Journal
of Global Optimization 19 (3), 201–227 (2001).

[4] K. Holmström: An adaptive radial basis algorithm (ARBF) for expensive black-
box global optimization. Journal of Global Optimization 41, 447–464 (2008).

[5] K. Holmström, N.-H. Quttineh, and M. M. Edvall: An adaptive radial basis
algorithm (ARBF) for expensive black-box mixed-integer constrained global op-
timization. Optimization and Engineering 41, 447–464 (2008).

[6] D. R. Jones: A Taxonomy of Global Optimization Methods Based on Response
Surfaces. Journal of Global Optimization 21, 345–383 (2002).

[7] D. R. Jones, M. Schonlau, and W. J. Welch: Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization 13, 455–492
(1998).

[8] J. J. Moré and S. M. Wild: Benchmarking Derivative-Free Optimization Algo-
rithms. Preprint ANL/MCS-P1471-1207 (2007).

[9] N.-H. Quttineh and K. Holmström: The influence of Experimental Designs on
the Performance of Surrogate Model Based Costly Global Optimization Solvers.
Studies in Informatics and Control 18 (1), (2009).

[10] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn: Design and analysis of
computer experiments (with discussion). Statistical Science, 4, 409–435 (1989).

[11] M. J. Sasena: Flexibility and Efficiency Enhancements for Constrained Global
Design Optimization with Kriging Approximations. Doctoral Dissertation (2002).

93

