
Computational Complexity
of Finite Field Multiplication
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Abstract

The subject for this thesis is to find a basis which minimizes the number of
bit operations involved in a finite field multiplication. The number of bases
of a finite field increases quickly with the extension degree, and it is therefore
important to find efficient search algorithms. Only fields of characteristic
two are considered.

A complexity measure is introduced, in order to compare bases. Different
methods and algorithms are tried out, limiting the search in order to explore
larger fields. The concept of equivalent bases is introduced.

A comparison is also made between the Polynomial, Normal and Triangular
Bases, referred to as known bases, as they are commonly used in implemen-
tations. Tables of the best found known bases for all fields up to F224 is
presented.

A list of the best found bases for all fields up to F225 is also given.
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Notations

Symbol Description Page

p a prime number 5
q a prime power, pm 5
m degree or dimension 6
Fq ground field 6
F∗q multiplicative group 5
Fqm extension field 6
α primitive element 6
p(x) primitive polynomial 6
Tr( ) trace function 9
θ a basis 6
θ′ the dual basis 10
θq equivialent basis of θ 17
a coordinate-vector for an element 11
Tk(θ) the k:th matrix for basis θ 13
w(T ) the weight of a matrix 14
C(θ) complexity of basis θ 14

PB Polynomial Basis 7
NB Normal Basis 8
TB Triangular Basis 8
DP The dual of a Polynomial Basis 10
DN The dual of a Normal Basis 10
DT The dual of a Triangular Basis 10
CL Coset Leaders 20
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Chapter 1

Introduction

In this chapter an introduction to the problem is presented, together with
some background information and an outline of this thesis.

1.1 Background

It is not unusual that mathematical areas when first discovered get classified
as not useful for the daily life. This is the case for subjects like Abstract
Algebra, Number Theory and Finite Fields. But since the enormous success
of personal computers, a neverending request for safer and more correct
transmission of information is seen.

The best examples of a daily life application of error-correcting codes are
CD-records and CD-Roms. The information is encoded using Reed-Solomon
(RS) codes, the most common type of error-correcting codes.

Another area is security applications, like bank services over the internet,
sending important messages, secure phone lines and so on. The need for
cryptography is constantly growing.

The Theory of Encryption and Coding Theory are both based on the mathe-
matics of Finite Fields, also called Galois Fields. It is therefore important to
find ways of improvement in the implementation of computations performed
in Finite Fields.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Definition

In order to perform arithmetical operations in finite fields, which is necces-
sary when considering cryptography and error-correcting applications, finite
field arithmetics is needed.

The elements in a finite field can be represented in different ways, defined
by the basis used. By changing basis representation, the amount of work
connected to multiplication of elements could be decreased. A complexity
measure is introduced, in order to compare bases.

The subject for this thesis is to find a basis which minimizes the number
of bit operations involved in a finite field multiplication. Only fields of
characteristic two are considered.

1.3 Outline of the thesis

The mathematical background needed throughout this thesis is presented in
Chapter 2. The construction of finite fields and extension fields is explained,
together with mathematical concepts used throughout this thesis.

In Chapter 3, we introduce a complexity measure, making it possible to
compare bases. A small example is also found, in order for the reader to
fully understand the difficulties involved.

Different methods and algorithms are presented in Chapter 4, together with
the results. Conclusions and comments are also found here.

Chapter 5 includes a comparison of Polynomial, Normal and Triangular
Bases to the results from the previous chapter. The result tells us which
standard bases that are good when considering multiplication.

Finally, in Chapter 6, the results are summarized and commented. Also,
some proposals and ideas for future research are presented.



Chapter 2

Mathematical Background

In this section we look into the mathematics needed for this thesis. Basic
statements and standard material are given without proof. For more details
and proofs, we refer to McEliece [1] and Herstein [2].

2.1 Groups, Rings and Fields

Definition 1 (Group) A nonempty set of elements G is said to form a
group if a binary operation is defined on G, denoted ◦, such that

1. Closure: a, b ∈ G implies that a ◦ b ∈ G.

2. Associativity: a, b, c ∈ G implies that a ◦ (b ◦ c) = (a ◦ b) ◦ c.

3. Identity: There exists an element e ∈ G such that a ◦ e = e ◦ a = a
for all a ∈ G.

4. Inverse: For every a ∈ G there exists an element a−1 ∈ G such that
a−1 ◦ a = a ◦ a−1 = e.

If ◦ is commutative, that is if a ◦ b = b ◦ a holds for all a, b ∈ G, then G is
called an Abelian Group.

Both the identity element and the inverse of an element in a group G can be
shown to be uniquely determined. The best example of an Abelian group

3



4 CHAPTER 2. MATHEMATICAL BACKGROUND

is the set of integers under addition. Considering all nonsingular matrices
under the operation matrix-multiplication, we get a non-Abelian group.

Definition 2 (Ring) A Ring R is a nonempty set under two binary oper-
ations, normally called addition, denoted by +, and multiplication, denoted
by ?, with the following properties.

1. R is an Abelian group under addition.

2. For every a, b ∈ R, the product a?b is in R.

3. Multiplication is associative, that is a ? (b ? c) = (a ? b) ? c holds for
any a, b, c ∈ R.

4. Multiplication is distributive over addition, that is a ? (b + c) =
a ? b + a ? c and (b + c) ? a = b ? a + c ? a holds for any a, b, c ∈ R.

If the multiplication in R is commutative, that is if a?b = b?a holds for
any a, b ∈ R, then R is called a commutative ring.

A ring is called a ring with identity if the ring has a multiplicative identity,
that is, there exists an element 1 such that a?1 = 1?a = a for all a ∈ R.

The most commonly used ring is the integer ring, which is commutative
and contains infinetly many elements. But there exists other rings, like the
residue class of integers modulo n, denoted Zn. This is a commutative ring
with a finite number of elements under addition and multiplication reduced
modulo n. It contains exactly the n integer elements {0, 1, . . . , n− 1}.

Definition 3 (Field) A field F is a commutative ring with the additional
property that the set of nonzero elements of F form an Abelian group under
multiplication. A field with finitely many elements is called a finite field.

A field is simply a commutative ring in which we can divide by any nonzero
element. The set R containing the real numbers and the set Q containing
the rational numbers are examples of fields. A finite field is also called a
Galois Field after the French mathematician Evartiste Galois, who lived in
the 19th century.
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+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 2.1: Addition and Multiplication tables for the Finite Field F7.

In order to find a finite field, we can remember the finite ring Zn containing
n elements. If we choose n = p, where p is a prime, we get a finite field
with p elements. Those are normally referred to as prime fields, and will be
denoted Fp.1 The nonzero elements of a field Fq will be referred to as the
multiplicative group of Fq and usually denoted F∗q .

An example is presented in Table 2.1, where addition and multiplication
tables for the finite field F7 is found.

2.2 Extension Fields

So far we have discussed finite fields with size equal to a prime. Is it possible
to find a field containing 9 elements? To straighten things out, we present
this lemma.

Lemma 1 There exists a finite field with q elements if and only if q is a
prime power, that is q = pm, where p is a prime and m is a positive integer.
Any two fields with the same number of elements are isomorphic, which
means that there is a one-to-one mapping from one of the fields to the other
such that the algebraic structure is preserved.

Considering Lemma 1, one could say that only one finite field with q elements
exists and will be denoted Fq. We now want to construct Fqm , that is an
extension of the field Fq. Because of Lemma 1, we are guaranteed that such
a field exists.

1The smalles field is F2, where addition and multiplication are performed modulo 2.
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Definition 4 (Extension Field) Let F and K be fields such that F ⊂ K
holds. Then K is called an extension of F and F is called a subfield of K.

The set of complex numbers C is an extension of the real numbers R, con-
structed by adjoining a root of the irreducible polynomial x2 + 1 over R.
The root is well known and is often denoted i. The same works for finite
fields. Using a root of an irreducible polynomial over a prime field results in
an extension of the prime field. First of all, we need to know what is meant
by an irreducible polynomial over a field.

Definition 5 A polynomial p(x) that is divisible only by α ·p(x) or α, where
α ∈ Fq, is called an irreducible polynomial over Fq. If the leading term is
equal to 1, the polynomial is called monic. A monic irreducible polynomial
of degree ≥ 1 is called a prime polynomial.

By adjoining a root of an irreducible polynomial of degree m over Fq, an
extension field Fqm is constructed that contains exactly qm elements. The
field Fq will be refered to as the groundfield. The multiplicative group F∗qm

of nonzero elements can be shown to be cyclic, meaning that it contains
generators (at least one) which are called primitive elements. The order of
such elements is equal to the size of F∗qm , that is qm − 1.

Definition 6 A primitive polynomial is a prime polynomial having a prim-
itive element as a root.

To illustrate the construction of an extension field, an example is presented
in Table 2.2, where the primitive polynomial p(x) = x3 + x + 1 is used to
define F23 .

2.3 Bases

An extension field Fqm can be constructed by adjoining a root of an irre-
ducible polynomial of degree m over Fq. Even more convenient, by using a
primitive polynomial p(x), the root will become a generator for F∗qm . This
can be seen as the set of polynomials over Fq reduced modulo p(x). A finite
field can also be viewed as a vector space of dimension m over Fq. If we
have a vector space, it is meaningful to talk about bases.
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Exponential Polynomial Basis θ =
(

α α2 α6
)

α−∞ 0 ( 0 0 0 )
α0 1 ( 0 1 1 )
α1 α ( 1 0 0 )
α2 α2 ( 0 1 0 )
α3 α + 1 ( 1 1 1 )
α4 α2 + α ( 1 1 0 )
α5 α2 + α + 1 ( 1 0 1 )
α6 α2 + 1 ( 0 0 1 )

Table 2.2: Elements of F23 expressed in Exponential and Polynomial Form, and to
the right expressed in the basis θ. Element α is a root of the primitive
polynomial x3 + x + 1.

There are many distinct bases of Fqm over Fq, some of them have been looked
deeper into and are well known. The most common ones are Polynomial
Bases, also called standard or canonical. Other examples are Normal Bases
and Triangular Bases. These bases are widely known and are already used in
implementations. They will therefore be considered and used for comparison
in future chapters, and deserve some special attention.

Definition 7 (Polynomial Basis) Let ϑ be an element of Fqm such that
{ϑi}m−1

i=0 is a basis of Fqm over Fq.Then {ϑi}m−1
i=0 is called a polynomial basis

of Fqm over Fq.

It can be shown that there exists at least one polynomial basis of a field over
any of it’s subfields. The element ϑ ∈ Fqm generates a polynomial basis of
Fqm over Fq if and only if ϑ is a root of an irreducible polynomial p(x) of
degree m over Fq.

Example 1 Let α be a root of the primitive polynomial p(x) = x3 + x + 1
over F2. If we use ϑ = α2 from the field F23, the result is a polynomial basis
looking like

{ (α2)i }3−1
i=0 = { (α2)0, (α2)1, (α2)2 } = {1, α2, α4}
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Definition 8 (Normal Basis) Let ϑ be an element of Fqm such that {ϑqi}m−1
i=0

is a basis of Fqm over Fq. Then {ϑqi}m−1
i=0 is called a normal basis of Fqm

over Fq.

There is always at least one normal basis of a field over any of it’s subfields.
One of the advantages of normal bases are that raising an element to power
q is a simple cyclic shift of the vector representing the element.

Furthermore, {ϑqi}m−1
i=0 is the set of all roots of p(x). But it is important

to notice that not all irreducible polynomials of degree m generate normal
bases.

Example 2 Once again, consider the field F23 where α is a root of the
primitive polynomial p(x) = x3 + x + 1 over F2. If we use ϑ = α2 the result
is a normal basis looking like

{ (α2)2
i }3−1

i=0 = { (α2)2
0
, (α2)2

1
, (α2)2

2 } = {α2, α4, α}

All elements of a normal basis are roots of the same irreducible polynomial
over Fq.

Definition 9 (Triangular Bases) Let {ϑi}m−1
i=0 be a polynomial basis over

Fq with ϑ being a root of the monic irreducible polynomial p(x) =
∑m

i=0 pix
i

over Fq. Then {σj}m−1
j=0 given by σj =

∑m−1−j
i=0 pi+j+1ϑ

i is the triangular
basis corresponding to {ϑi}m−1

i=0 .

The triangular bases will only be used in the purpose of comparison. To
find information on the special features and applications of this basis, we
refer to Olofsson [3, Ch. 4].
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Example 3 We use the same Polynomial Basis as in Example 1, that is
θ = {1, α2, α4}, with ϑ=α2. The monic irreducible polynomial having α2 as
root is p(x)=x3 +x+1, with coefficients [1, 1, 0, 1]. The Triangular Basis σ
corresponding to polynomial basis θ is

σ0 =
∑3−1−0

i=0 pi+0+1 ·(α2)i = p1 ·(α2)0 + p2 ·(α2)1 + p3 ·(α2)2

= 1·1 + 0·α2 + 1·α4 = 1 + α4 = α5

σ1 =
∑3−1−1

i=0 pi+1+1 ·(α2)i = p2 ·(α2)0 + p3 ·(α2)1 = 0·1 + 1·α2 = α2

σ2 =
∑3−1−2

i=0 pi+2+1 ·(α2)i = p3 ·(α2)0 = 1·1 = 1

We conclude that the triangular basis corresponding to θ is σ = {α5, α2, 1}.

2.4 Trace Function

The trace function is a linear mapping over Fq from Fqm onto Fq. With the
use of this function, we can derive useful relations later.

Definition 10 (Trace) Let α be an element of Fqm. The trace of α over
Fq is defined as TrFqm/Fq

(α) ,
∑m−1

i=0 αqi
.

If there is no confusion about which fields that are involved, we write Tr(α).
To learn more about the trace function, look into McEliece [1, Ch. 8].

Example 4 Consider the field F23 and define α to be a root of the primitive
polynomial p(x) = x3 + x + 1 over F2. The trace of α over F2 is given by

Tr(α) =
3−1∑

i=0

α2i
= α + α2 + α4 = α + α2 + (α2 + α) = 0

A complete list with the trace for all elements in the finite field F23 can be
found in Table 2.3, on page 10.
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With the use of the trace function, a special kind of bases can now be defined.

Definition 11 (Dual Bases) Let {θi}m−1
i=0 and {θ′j}m−1

j=0 be bases of Fqm

over Fq. If

TrFqm/Fq
(θiθ

′
j) =

{
0 , i 6= j
1 , i = j

holds, the bases are said to be dual.

The dual basis is sometimes called complementary basis. It can be shown
that given a basis of Fqm over Fq, there exists a unique dual of that basis.
The dual bases will play an important role later, when we formulate the
problem of multiplication in finite fields.

Example 5 The dual basis of θ =
(

α1 α2 α6
)

is here shown to be
θ′ =

(
α2 α3 α0

)
. The values of the trace-function can be found in

Table 2.3.
Tr(θi θ′j) α2 α3 α0

α1 1 0 0
α2 0 1 0
α6 0 0 1

The only products with trace-value equal to 1, are those where indices of the
basis elements are the same. Therefore, the bases are said to be dual.

Element β Tr( β )
0 0
1 1
α 0
α2 0
α3 1
α4 0
α5 1
α6 1

Table 2.3: A table showing the trace for all elements of F23 .



Chapter 3

Multiplication

A presentation of the problem to be solved, and all mathematical relations
that will be needed in this thesis are derived. The complexity measure used
throughout this thesis is introduced, followed by an example in order for the
reader to fully understand the problem.

3.1 Complexity

The subject for this thesis is to find a basis which minimizes the number of
bit operations involved in a finite field multiplication. In order to compare
bases and fully understand the difficulties involved, we derive a mathemat-
ical formulation. From now on, only finite fields of the form F2m will be
considered.

Assume that we want to multiply two elements in a field F2m . We denote
the elements α and β, and their product is called γ. The basis used will be
denoted θ and it’s dual basis θ′. The elements expressed in basis θ can be
written as

α =
m−1∑

i=0

aiθi β =
m−1∑

i=0

biθi γ =
m−1∑

i=0

ciθi

where a, b and c are the corresponding coordinate vector for the elements
respectively.

11
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With the use of this notation, the following equation is quickly noted.

γ = α · β =
m−1∑

i=0

aiθi ·
m−1∑

j=0

bjθj =
m−1∑

i=0

m−1∑

j=0

aibjθiθj (3.1)

In the end, we want an expression where everything is described with ele-
ments exclusively from the ground field F2. On the following lines, we show
how to find an expression for the coordinate vector of an element, using the
trace function and the dual basis θ′.

Theorem 1 (Trace Relation) Let γ =
∑m−1

i=0 ci ·θi be an element in the
extension field F2m. Let θ be the basis used, and θ′ it’s dual basis. Then the
following holds

ck = Tr(θ′kγ) (3.2)

For details on the proof, we refer to McEliece [1, page 111]. We are now
ready to derive a relation between the coordinate vector c and the coordinate
vectors a and b expressed in basis θ, using the trace-function and the dual
basis θ′.

Theorem 2 (Matrix Relation) Let α and β represent two elements in
the extension field F2m, using the basis θ and dual basis θ′. Let γ represent
the product of α and β, that is γ = α · β. Then it follows that

ck =
m−1∑

i=0

m−1∑

j=0

aibj · Tr(θ′kθiθj) (3.3)

Proof: By using the linearity of the trace function, and with the help of
Equations 3.1 and 3.2, we show the following:

ck
(3.2)
= Tr(θ′kγ)

(3.1)
= Tr


θ′k ·




m−1∑

i=0

m−1∑

j=0

aibjθiθj







=
m−1∑

i=0

m−1∑

j=0

aibj · Tr(θ′kθiθj)
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With the use of equation 3.3 we can now calculate each coordinate of the
product, using only the coordinate vectors from the two operators and the
basis used together with its corresponding dual basis. In the following page,
some final arrangements are done, in order to get the desired expression.

Definition 12 (Matrix Tk) The matrix used to describe the calculation
of the k:th coordinate of c when performing multiplication in a Finite Field,
using basis θ and it’s dual basis θ′, will be denoted Tk(θ).

Tk(θ) =




Tr(θ′kθ0θ0) Tr(θ′kθ0θ1) . . . Tr(θ′kθ0θm−1)
Tr(θ′kθ1θ0) Tr(θ′kθ1θ1) . . . Tr(θ′kθ1θm−1)

...
...

. . .
...

Tr(θ′kθm−1θ0) Tr(θ′kθm−1θ1) . . . Tr(θ′kθm−1θm−1)




We want to rearrange Equation 3.3 in order to clearly see what happens.

ck =
m−1∑

i=0

m−1∑

j=0

aibj · Tr(θ′kθiθj) = a · Tk · bT (3.4)

where Tk is the matrix defined above.

With the use of Equation 3.4 we define the matrix Tk related to the com-
putation of each coordinate ck, independent of the choise of elements to be
multiplied. The contents of those matrices are the result of trace-operations,
and therefore belongs to Fq. As the only groundfield considered here is F2,
the matrices contain 1:s and 0:s.

Each position in those matrices containing a 1 corresponds to a bit operation,
known as XOR or AND, which is related to a time-cost. Therefore, a basis
that generates sparce matrices1 will be efficient considering finite field mul-
tiplication. As we are interested in the number of elements equal to 1 in the
matrices Tk, we define the weight of a matrix.

1A matrix where most elements are 0.



14 CHAPTER 3. MULTIPLICATION

Definition 13 (Matrix Weight) The weight of a matrix T, that is the
number of nonzero elements in it, will be denoted by w(T ).

The weight of a matrix Tk will be equal to the number of inputs to the XOR-
tree needed in order to calculate ck. The tree can be built using w(Tk) − 1
two-inputs XOR. Using Definitions 12 and 13 we define a complexity related
to each basis, that can be used to compare bases to each other.

Definition 14 (Complexity of a Basis) The sum of all weights for the
Tk matrices, defined by basis θ of dimension m, is the complexity of that
basis.

C(θ) =
m−1∑

k=0

w(Tk(θ))

We have now defined a complexity that can be used to compare bases. The
total number of nonzero elements in the m matrices Tk, for k ∈ {0 . . . m−1},
is a good measure of how efficient a basis will be in implementations. With
this result in mind, we demonstrate a small example.

3.2 An Example

We want to multiply elements α3 and α5 from the field F23 , where alpha is
a root of the primitive polynomial x3 + x + 1. We choose to use the basis
θ =

(
α α2 α6

)
and it’s dual basis θ′ =

(
α2 α3 1

)
. It is easy to

do this by hand, and the result should of course be α3 · α5 = α8 = α. To
perform the multiplication on bit-level, we express our elements as vectors
with respect to the basis chosen. By using Equation 3.2 we find

a =
(

Tr(α3 · α2) Tr(α3 · α3) Tr(α3 · 1)
)

=
(

1 1 1
)

b =
(

Tr(α5 · α2) Tr(α5 · α3) Tr(α5 · 1)
)

=
(

1 0 1
)

Using the formulas derived in the last section, we should now be able to
perform the multiplication using only coordinate vectors a and b.
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In this example, where dimension m = 3, using bases θ and θ′ defined as
above, the calculations performed in order to find the coordinate c0 would
look like this:

c0 = a · T0 · bT

=
(

a0 a1 a2

)



Tr(θ′0θ0θ0) Tr(θ′0θ0θ1) Tr(θ′0θ0θ2)
Tr(θ′0θ1θ0) Tr(θ′0θ1θ1) Tr(θ′0θ1θ2)
Tr(θ′0θ2θ0) Tr(θ′0θ2θ1) Tr(θ′0θ2θ2)







b0

b1

b2




=
(

a0 a1 a2

)



Tr(α2α α) Tr(α2α α2) Tr(α2α α6)
Tr(α2α2α) Tr(α2α2α2) Tr(α2α2α6)
Tr(α2α6α) Tr(α2α6α2) Tr(α2α6α6)







b0

b1

b2




=
(

a0 a1 a2

)



Tr(α4) Tr(α5) Tr(α2)
Tr(α5) Tr(α6) Tr(α3)
Tr(α2) Tr(α3) Tr( 1 )







b0

b1

b2




=
(

1 1 1
)



0 1 0
1 1 1
0 1 1




︸ ︷︷ ︸
T0




1
0
1


 = 1

In the first step we use Equation 3.4, insert the basis elements, and calculate
the trace for all positions in matrix T0. Use Table 2.3 on page 10 to follow the
calculations. Finally, the coordinate vectors are multiplied into the matrix,
resulting in the scalar value 1. This is the value of coordinate c0.

The weight of matrix T0 is equal to 6. This should be noted as it will be
used later, when calculating the complexity of basis θ. An important thing
to understand is that, no matter which two elements we choose to multiply
in F23 , the matrices Tk calculated in this example will always be the same as
long as basis θ is used. The only things changing are the coordinate vectors
of the elements to be multiplied.
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In the same way we find c1 and c2:

c1 =
(

a0 a1 a2

)



Tr(θ′1θ0θ0) Tr(θ′1θ0θ1) Tr(θ′1θ0θ2)
Tr(θ′1θ1θ0) Tr(θ′1θ1θ1) Tr(θ′1θ1θ2)
Tr(θ′1θ2θ0) Tr(θ′1θ2θ1) Tr(θ′1θ2θ2)







b0

b1

b2




=
(

a0 a1 a2

)



Tr(α5) Tr(α6) Tr(α3)
Tr(α6) Tr( 1 ) Tr(α4)
Tr(α3) Tr(α4) Tr(α )







b0

b1

b2




=
(

1 1 1
)



1 1 1
1 1 0
1 0 0




︸ ︷︷ ︸
T1




1
0
1


 = 0

The weight of matrix T1 is equal to 6. Also notice that matrix Tk is sym-
metric.

c2 =
(

a0 a1 a2

)



Tr(θ′2θ0θ0) Tr(θ′2θ0θ1) Tr(θ′2θ0θ2)
Tr(θ′2θ1θ0) Tr(θ′2θ1θ1) Tr(θ′2θ1θ2)
Tr(θ′2θ2θ0) Tr(θ′2θ2θ1) Tr(θ′2θ2θ2)







b0

b1

b2




=
(

a0 a1 a2

)



Tr(α2) Tr(α3) Tr( 1 )
Tr(α3) Tr(α4) Tr(α )
Tr( 1 ) Tr(α ) Tr(α5)







b0

b1

b2




=
(

1 1 1
)



0 1 1
1 0 0
1 0 1




︸ ︷︷ ︸
T2




1
0
1


 = 0

We can therefore conclude that c =
(

1 0 0
)
.
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In the begining of this example, we expressed elements α3 and α5 using
basis θ to get the coordinate vectors a and b. Let us now go backwards and
see what element corresponds to the coordinate vector c.

c • θ =
(

1 0 0
)
•
(

α α2 α6
)

= 1·α + 0·α2 + 0·α6 = α

The calculation seems to be correct! The weight of T2 is 5, giving a total
complexity of C = 6 + 6 + 5 = 17. On page 18, we find a picture showing
an implementation using the same basis as above.

3.3 Equivalent Bases

In the last part of this section, some final definitions and mathematical
concepts are presented. They will be used and referred to in chapters to
come. First of all, we look at a well known property of the trace function
that will be very useful.

Lemma 2 Consider the elements α and αq from the field Fqm. The trace
of α and αq over Fq will always be the same. That is Tr(α) = Tr(αq).

For proof, look into McEliece [1, Ch. 8]. This will be used to show that
some bases have the same complexity, but first we introduce the terminology
equivalent bases.

Definition 15 (Equivalent Bases) Let {θi}m−1
i=0 be a basis of Fqm over

Fq. Then {θq
i }m−1

i=0 and {θi}m−1
i=0 are called equivalent bases. The notation θq

will be used.

Here follows a short proof supporting the statement that if θ is a basis, θq

is also a basis.

Proof: We know that θ is a basis, meaning that its elements are lineary
indepentant. We choose to express the elements of θ using a normal basis.
The raising of an element to q is a simple cyclic shift of the vector represent-
ing the element in a normal basis, therefore we conclude that the elements
are still linearly independent.
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Figure 3.1: A figure showing the implementation of basis θ,
taken from the exampel in Section 3.2.
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When we refer to equivalent bases, it might sometimes be the set of equiv-
alent bases, found by repeatedly finding the next equivalent basis.

θ ←→ θq, θq ←→ (θq)q, . . . , θqm−1 ←→ θqm

This can be described as the set of equivalent bases { θ, θq, . . . , θqm−1 } ,
and will be referred to as an equivalence class of bases. Each class contains
at most m different bases, as θqm = θ. We should now try to motivate
the name equivalent bases better. The main result is that if two bases are
equivalent, they will have the same complexity. Before we can prove this,
we need another theorem.

Theorem 3 Let θ denote a basis and θq the equivalent basis. Furthermore,
let θ′ denote the dual basis of θ. Then the dual basis of θq is θ′q.

Proof: In general, for indicies i and j we get

Tr(θi
q ·θ′jq) = Tr((θi ·θ′j)q) = Tr(θi ·θ′j)

In the last step, we use Lemma 2. As θ and θ′ are dual, and the trace of
their product is equal to the trace for the product of θq and θ′q, they must
be dual as well. We also know that each basis has a unique dual basis, which
is all we need to finish the proof.

We are now ready to prove our main result for this chapter.

Theorem 4 If two bases are equivalent, then Tk(θ) is equal to Tk(θq), that
is

Tk(θ) = Tk(θq)

Proof: In general, on the i:th row and j:th column in matrix Tk(θq), we
have

Tr(θ′k
q · θq

i · θq
j ) = Tr((θ′k · θi · θj)q) = Tr(θ′k · θi · θj)
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We have shown that Tk(θ) is equal to Tk(θq) and therefore have the same
weight. Then it follows directly that C(θ) = C(θq), as the complexity by
definition is equal to the sum of all weights of Tk.

Corollary 1 If two bases are equivalent, the complexity related to them will
be the same.

C(θ) = C(θq)

Together with the concept of equivalent bases, two other notations that are
effective and helpful will be used. They are conjugacy classes and cyclotomic
cosets. More information can be found in Wicker [4, Ch. 3].

Definition 16 (Conjugacy Classes) Let α be an element in the finite
field Fqm. The conjugates of α with respect to the subfield Fq are the el-
ements α, αq, αq2

, αq3
, . . ., and they form a set called the conjugacy class of

α with respect to Fq.

All elements within a conjugacy class are equivalent to each other. Before
we look at an example, another definition is presented, closely related to the
conjugacy classes.

Definition 17 (Cyclotomic Cosets) The Cyclotomic Cosets modulo n,
where n = qm − 1, with respect to the field Fq are a partitioning of the
integers { 0, 1, . . . , n− 1 } into sets of the form

{a, aq, aq2, aq3, . . . , aqd−1}

The cyclotomic cosets modulo n with respect to Fq thus contains the expo-
nents of the elements in each conjugacy class. This is an effective way to
describe different conjugacy classes.

In the same way, one could describe a basis as a set containing the exponents
of the basis elements, expressed with the help of a primitive element from
the field. A notation closely related to the cyclotomic cosets are the coset
leaders. The easiest way to understand is to look at an example.

Example 6 Let’s use the field F23 defined by x3 + x + 1 once again. In the
following table, we can see how the conjugacy classes and cyclotomic cosets
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are related. The Coset Leaders, simply the first element from each coset,
will be denoted CL.

CONJUGACY CLASS CYCLOTOMIC COSETS COSET LEADERS

{α0} ←→ {0} 0
{α1, α2, α4} ←→ {1, 2, 4} =⇒ 1
{α3, α6, α5} ←→ {3, 6, 5} 3

Before we start to look at some algorithms that solves this problem, one last
definition is presented.

Definition 18 (Multiple) Let {θi}m−1
i=0 and {σi}m−1

i=0 be two sets of ele-
ments from Fqm. If there exists a β ∈ F∗qm such that σi = β ·θi holds for
all i ∈ {0 . . . m− 1}, then {σi}m−1

i=0 is called a multiple of {θi}m−1
i=0 .

It should be noticed that once you find a basis, it can be multiplied by any
nonzero element from the field and still be a basis. Therefore, all multiples
of a basis are also valid bases.

Example 7 The elements are taken from the field F23. The set {α3, α5, α6}
is a multiple of {α1, α3, α4}, with β = α2.

{α3, α5, α6} = α2•{α1, α3, α4}
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Chapter 4

Different Approaches and
Results

In this chapter, an introduction to the problem of finding valid bases is made,
followed by a description of the different methods. Results from each method
are also presented.

4.1 Presentation of Methods

To get an overview, we look at the second smallest extension field possible,
namely F23 . By adjoining a root α of the primitive polynomial x3 + x + 1
over F2, we get the eight elements {0, 1, α, α2, α3, α4, α5, α6}. To find a basis
for the vectorspace F23 over F2, we need to choose three of the elements.

First of all, the 0-element cannot be used. That leaves us with only 7
elements to choose from. By using a well known formula from combinatorics,
we calculate in how many ways we can choose three out of seven elements.

(
7
3

)
=

7 !
4 ! · 3 !

= 35

There are 35 possible combinations, but not all of them qualify as bases.
In order to find out if a combination is a basis, a test is performed to see
if the elements are linearly independent. If so, the combination works as a
basis. Each element is mapped onto the groundfield F2 as vectors, using the

23
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defining polynomial. These vectors are then tested for linear independence.
If the vectors are linear indepentent, so are the elements.

Only 28 of the 35 combinations in F23 qualify as bases. One is the combi-
nation of elements α, α2 and α6, the basis used in Section 3.2. A complete
list of bases for F23 can be found in Table 4.8, on page 36.

All elements of a field can be described as exponents of a primitive element.
Therefore, the notation

(
α1 α2 α6

)
for basis θ will be replaced with the

set { 1, 2, 6 } . During the search in a specific field, the same α is used all
the time, and the only information needed is the exponential values.

A possible method is to search through all valid basis-combinations and cal-
culate the complexity related to each one and save the best basis found. The
single biggest problem with this method is that the number of combinations
needed to search through increase rapidly when looking at bigger fields.

Consider the field F24 containing 15 nonzero elements. As the dimension m
is 4, we need to choose four elements out of fifteen in order to find a basis. By
using the same formula as before, we now get 1365 different combinations.
This should be compared to the 35 combinations from the previous field.

m := Combinations
(
2m−1

m

)
# Bases

2 3 3
3 35 28
4 1.365 840
5 169.911 83.328
6 67.945.521 27.998.208
7 89.356.415.775 32.509.919.232
8 396.861.704.798.625 132.640.470.466.560

Table 4.1: A table showing the number of possible basis-combinations in each Finite
Field F2m for dimensions 2 up to 8, along with the actual number of bases.

The number of possible combinations literally explode as we consider larger
fields, which can be seen in Table 4.1. For instance, let us say that we can
test 1.000.000 combinations each second. Even for the not so big field F28 ,
including 256 elements, it would take approximately 12.5 years to search
through all possible combinations! This fact makes it clear that such an
approach does not hold in the long run.
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4.2 Exhaustive Search

To start with, this is unexplored territory. To get an idea of what to look for,
the first thing to do was to search through all possible basis combinations
for small fields. This is a classical exhaustive search method.

4.2.1 Algorithm

The search algorithm is not hard to understand. One could say that it con-
sists of one loop for each dimension m. All combinations are tested in order
to find bases. The complexity for each basis is calculated, and if the value
is better than the best found so far, the basis is saved. In pseudocode the
algorithm looks like this for m = 3.

Algorithm 1 Exhaustive Search

Initialize best = m3, basis = { }
1: for i = 0 . . . (qm − 3) do
2: for j = i + 1 . . . (qm − 2) do
3: for k = j + 1 . . . (qm − 1) do
4: if { i, j, k } is a basis then
5: if Complexity of { i, j, k } < best then
6: best := Complexity
7: basis := { i, j, k }
8: end if
9: end if

10: end for
11: end for
12: end for

The variable best is initialized with m3, the worst possible value of the
complexity, corresponding to m matrices filled with 1:s on all m·m positions.
When the algorithm is finished, variable basis contains the best found basis
having a complexity equal to best.

This algorithm is easily extended to greater dimensions than m equal to 3.
The only thing changing is that a new loop is added for each dimension,
together with a counter, testing sets with m components.
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The extra loop for each dimension is the reason why this algorithm does not
work for larger fields. Each loop includes an exponential growth of elements,
making it harder and harder to complete the search. It is impossible to
search through all combinations even for quite small fields, already noticed
in Table 4.1.

4.2.2 Results

The exhaustive search approach did not hold for long, but it gave us some-
thing to start with, an idea of what to look for. All fields up to F26 have
been totally searched, and the results are positive. A statistical study of the
field F26 can be found in Table 4.2, where some information is presented.

Tables for all fields between F23 and F26 can be found in Appendix B,
together with figures of the distribution.

The standard bases seems to do quite well. Both the Polynomial Bases
and their duals along with the Triangular Bases have representatives with
complexity close to the best one found. The Normal Bases, on the other
hand, does not seem to fit in at all.

Statistics for the Field F26

All 27.998.208 bases evaluated
Basis # Bases # Eq.Classes Complexity Quota
Polynomial 54 9 48 1.0667
Normal 4 4 66 1.4667
Triangular 54 9 47 1.0444
Dual Polynomial 54 9 47 1.0444
Dual Triangular 54 9 51 1.1333
Best Found 6 1 45 -

Table 4.2: Statistics for F26 . The column “Complexity” shows the best value found
for each class of bases. The “Quota” is relative to the best found.

Considering Figures 4.1 and 4.2 showing the distribution of complexity over
the bases for the fields F25 and F26 , the trend is that a normal distribution
is approached. The average values found in the search indicate this as well.
This means that using a random choosen basis, the complexity will probably
be bad.
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Figure 4.1: To the left, a diagram showing the distribution of 83.328 bases from F25 .
Lowest value found is 31 and the highest is 90. On average, a basis has
a complexity of 64.5.

Figure 4.2: To the right, a diagram showing the distribution of 27.998.208 bases from
F26 . Lowest value found is 45 and the highest is 162. On average, a basis
has a complexity of 109.7.

With knowledge of the best possible bases for smaller fields, we might find a
pattern of some kind. Here follows a table presenting the best found bases
for each field, along with the complexity and primitive polynomial used.
Only one representative from each equivalence class is presented.

m := Polynomial Basis Complexity
2 x2 + x + 1 { 0, 1 } 5
3 x3 + x + 1 { -1, 0, 1 } 11
4 x4 + x + 1 { -1, 0, 1, 2 } 20
5 x5 + x2 + 1 { -2, -1, 0, 1, 2 } 31
6 x6 + x + 1 {-14, -7, 0, 7, 14, 21 } 45

Table 4.3: The best bases found in fields F2m for dimensions between 2 and 6.

We can see a clear trend. The features resemble the structure of Polynomial
Bases. Exponent 0 is always part of a Polynomial Basis, and the other ele-
ments are generated from a given one, with the result of a common stepsize.

The similarities are obvious, and should be used to limit the search in a smart
way. The structure of the best found bases are the same as for Polynomial
Bases, but the elements are slightly shifted in order to center exponent 0.
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4.3 Multiples of Polynomial Bases

The previous results, found with Algorithm 1, indicate that the structure
of a basis with low complexity looks much like the Polynomial Bases, but
with a shift of some kind. The idea is therefore to test all Polynomial Bases
for each field, together with all multiples of them. This limits the search
enormously and lets us carry on further up in the fields.

4.3.1 Algorithm

The definition of a polynomial basis follows here, to fresh up our memory.

Definition 7 (Polynomial Basis) Let ϑ be an element of Fqm such that
{ϑi}m−1

i=0 is a basis of Fqm over Fq.Then {ϑi}m−1
i=0 is called a polynomial basis

of Fqm over Fq.

A polynomial basis is generated by one element from the present field,
limiting the number of combinations to the size of the field. But the concept
of equivalent bases makes it possible to reduce them even more.

Values from the same Cyclotomic Coset will generate equivalent Polynomial
Bases. It is therefore enough to try all coset leaders for the field in question.
Let CL denote the set of coset leaders, i.e. the first element from each coset.

Algorithm 2 Multiples of Polynomial Bases

Initialize best = m3, basis = { }
1: for t ∈ CL do
2: PB := possible Polynomial Basis generated by (αt)
3: if PB is a basis then
4: for all Multiples of PB do
5: if Complexity of Multiple < best then
6: best := Complexity
7: basis := Multiple
8: end if
9: end for

10: end if
11: end for
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Like the previous algorithm, variables best and basis are used to store the
best found basis during the search. The first loop runs through all the Coset
Leaders for the field in question, to see whether they work as a generator
for a Polynomial Basis or not.

If an element does work, all possible multiples of the Polynomial Basis are
tested. If the complexity of a certain multiple is better than the best basis
found so far, it is saved along with the basis produced. This is repeated
until all elements have been tried out together with all possible multiples.

4.3.2 Results

This algorithm clearly limits the search, meaning that we cannot be sure
that we find the best basis possible. Although, the results for all fields up
to F26 coinsided with those previously found, which is a good sign.

From now on, the primitive polynomials used to define each finite field are
found in Appendix A. The best found bases from each field still contains
exponent 0, and it seems to be centered when possible. Results were found
for all fields up to F213 .

m := Basis Complexity
7 {-3, -2, -1, 0 ,1 ,2 ,3} 61
8 {-129, -86, -43, 0, 43, 86, 129, 172} 107
9 {-4, -3, -2, -1, 0, 1, 2, 3, 4} 101
10 {-4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 126
11 {-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 155
12 {-1375,. . . , -550, -275, 0, 275, 550,. . . , 1650} 180
13 {-2058,. . . , -686, -343, 0, 343, 686,. . . , 2058} 298

Table 4.4: The best bases found in fields F2m for dimensions 7 up to 13, found
using Algorithm 2, based on Multiples of Polynomial Bases. Primitive
polynomials used to define each field are found in Appendix A.

The complexity naturally increases for each new dimension, but not strictly.
So far, the only exception is the field F28 . Also notice the drastic increase in
complexity for the field F213 , compared with earlier ones. These unexpected
results are not fully understood, but some ideas are presented later on.
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4.4 Limitation on the Multiples

By using Algorithm 2, results are found for all fields up to F213 , and all
bases seem to contain exponent 0. Therefore, we limit our search even more,
allowing only multiples of Polynomial Bases where exponent 0 is included.

Example 8 Consider the Polynomial Basis {α0, α2, α4} from the field F23,
defined by the primitive polynomial p(x) = x3 + x + 1. There are 7 possible
multiples, but only three resulting in a new basis including exponent 0,
namely factors α0, α3 and α5.

α3 · {α0, α2, α4} = {α3, α5, α7} = {α3, α5, α0}
α5 · {α0, α2, α4} = {α5, α7, α9} = {α5, α0, α2}

The factor α0 is the Polymonial Basis itself, and will always be considered.
The other two factors results in new bases, including exponent 0.

4.4.1 Algorithm

This approach limits the search even more, testing only m multiples of each
Polynomial Basis found in each field F2m . This is the only difference between
Algorithms 2 and 3.

Algorithm 3 PB Multiples with constraints

Initialize best = m3, basis = { }
1: for t ∈ CL do
2: PB := possible Polynomial Basis generated by (αt)
3: if PB is a basis then
4: for Multiples of PB including exponent 0 do
5: if Complexity of Multiple < best then
6: best := Complexity
7: basis := Multiple
8: end if
9: end for

10: end if
11: end for
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4.4.2 Results

The number of multiples tried out for each Polynomial Basis is decreased
from qm− 1 to m, a great improvement letting us go all the way up to F221 .
As the search is limited even more, we are not able to guarantee that the
result is optimal. But once again, our results merge with those found in
earlier searches.

m := Basis Complexity

14 {-6 · 57,. . . , -1 · 57 , 0, 1 · 57,. . . , 7 · 57 } 246
15 {-7 · 1389,. . . , -1 · 1389 , 0, 1 · 1389,. . . , 7 · 1389 } 281
16 {-7 · 1019,. . . , -1 · 1019 , 0, 1 · 1019,. . . , 8 · 1019 } 442
17 {-9 · 2743,. . . , -1 · 2743 , 0, 1 · 2743,. . . , 7 · 2743 } 363
18 {-8 · 9709,. . . , -1 · 9709 , 0, 1 · 9709,. . . , 9 · 9709 } 405
19 {-9 · 3113,. . . , -1 · 3113 , 0, 1 · 3113,. . . , 9 · 3113 } 595
20 {-8 · 13981,. . . , -1 · 13981 , 0, 1 · 13981,. . . , 11 · 13981 } 508
21 {-11 · 128397,. . . , -1 · 128397 , 0, 1 · 128397,. . . , 9 · 128397 } 555

Table 4.5: The best bases found in fields F2m for all dimensions between 14 and 21,
by using Algorithm 3 based on Limited Multiples of Polynomial Bases.
Primitive polynomials used to define each field are found in Appendix A.

The structure of a basis with low complexity is now seen quite clearly. Ele-
ments sharing a common stepsize, spread out on both sides of exponent 0,
are most likely to generate a good basis.

4.5 Structural Design Algorithm

So far, the best found bases for all fields up to F221 have shared some common
features. All bases includes exponent 0 and the rest of the elements are most
of the time uniformly spread, surrounding exponent 0.

This specific structure is used when designing the next algorithm, with the
adjustment that only bases where exponent 0 is truly centered are con-
sidered. The reason for this is to hold down the number of possibilities,
otherwise this method would not be an improvement at all.
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4.5.1 Algorithm

Let us assume that exponent 0 is always centered and surrounded by ele-
ments on a common stepsize t. Denote the basis ϑ.

ϑ = {. . . , α−2t, α−t, α0, αt, α2t, . . .︸ ︷︷ ︸
m elements

}

The center element, α0, is fixed. That leaves us with m−1 elements needed
in order to obtain a basis for F2m . These should be equally divided between
the sides, more specific m−1

2 elements on each side.

If the dimension is even, exponent 0 cannot be centered. In this case, two
sets of elements are considered, each including m elements. The following
example shows the idea.

Example 9 If we look at the field F24, with dimension m = 4, the number
of elements on each side is 4−1

2 = 1.5. This should of course be rounded up-
wards to 2, making a small adjustment in the formula. Number of elements
on each side, N = dm−1

2 e.
Element α0 cannot be centered as we should have a total of 4 elements,
therefore we create two new sets by skipping the outmost element on each
side. In this way, the element α0 is as centered as possible.

{α−2t, α−t, α0, αt, α2t}
↙ ↘

{α−2t, α−t, α0, αt} {α−t, α0, αt, α2t}

It is easy to create one of the sets from the other, simply by switching the sign
of all exponents. In other words, stepsize t has become −t. In a finite field,
every negative number is equivalent to a number greater than 0. Therefore,
both sets above will be covered, assuming that all t-values are tried out.

How many values of the stepsize t do we need to try, without testing two
equal sets. A finite field of the form Fqm contains qm − 1 nonzero elements.
Element αqm−1 is always equal to 1, and can not be used as a generator.
This leaves us with qm− 2 elements. Therefore, by testing the stepsize t for
all values between 1 and qm − 2, we cover all possible sets.
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Once again, the concept of equivalent sets makes it possible to reduce the
number of t-values. All numbers from the same cyclotomic coset will gen-
erate equivalent sets. It is therefore enough to try out the coset leaders for
the field in question. The algorithm looks like this in pseudo code.

Let CL denote the set of coset leaders. The dimension is denoted with m.
If the dimension is even, the set with most elements on the right is used.

Algorithm 4 Structural Design Algorithm

Initialize N = dm−1
2 e, best = m3, basis = { }

1: for t ∈ CL do
2: Set := {α−Nt, . . . , α−t, α0, αt, . . . , αNt}
3: if Set is a basis then
4: if Complexity of Set < best then
5: best := Complexity
6: basis := Set
7: end if
8: end if
9: end for

10:

11: for Multiples of basis including exponent 0 do
12: if Complexity of Multiple < best then
13: best := Complexity
14: basis := Multiple
15: end if
16: end for

For all values of t, one from each Cyclotomic Coset, a set is created. If this
set is a basis, its complexity is calculated. Like earlier algorithms, the best
found value is always saved.

The second for-loop tests all multiples of the best found basis, but only those
including exponent 0, to see if it might get even better. The reason for this
is that earlier results show that exponent 0 is not always exactly centered,
but often shifted one step to either side.

This is the most efficient algorithm of them all, but to the cost of great
limitations in the search. The idea is to test only sets resembeling what has
been found before, skipping combinations that probably would give us an
average complexity.
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4.5.2 Results

Once again, the results from this algorithm match earlier results, justifying
its use for unexplored fields. Results have been found up to F225 , a field of
reasonable size even for implementations.

m := Stepsize Multiple Complexity
22 1091 5 · 1091 655
23 27007 −1 · 27007 663
24 943033 - 963
25 1465043 −2 · 1465043 791

Table 4.6: The best bases found in fields F2m for dimensions 22 up to 25,
by using Algorithm 4 based on Structural Design. The primitive
polynomials used to define each field are found in Appendix A.

In Table 4.6, the complexity of the bases are found, and they are described
using the notation Stepsize and Multiple. The following example explains
how to interpet this.

Example 10 Look at the field F223, where the Stepsize t = 27007 and
Multiple = 27007. The set { -11·t,. . . , -2·t, -1·t, 0, 1·t, 2·t,. . . , 11·t }
should be shifted using the multiple 27007, in order to get the basis with
lowest complexity.

Example 11 For the field F224, with Stepsize t = 943033 and no Multiple,
the basis looks like this.

{ -11·t,. . . , -2·t, -1·t, 0, 1·t, 2·t,. . . , 11·t, 12·t }

As the dimension is even, exponent 0 cannot be centered, and the set with
most elements on the right is used. As there is no multiple, no shift is
necessary to get the basis with lowest complexity.
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4.6 Conclusions

A table including the best found bases for all fields up to F225 is presented.
The bases are described using the notation Stepsize and Multiple.

The table is divided into four parts, to show us how long each algorithm
could go. The first part is completely searched. Second and third part
were found using Multiples of Polynomial Bases, first allowing all multiples
but later only those including exponent 0. Last part were found using the
Structural Design Algorithm, leading all the way to F225 .

m := Stepsize Multiple Complexity Method
2 1 - 5
3 1 - 11 Exhaustive
4 1 - 20 Search
5 1 - 31
6 7 - 45
7 1 - 61
8 43 - 107
9 1 - 101 Multiples
10 1 - 126 of PB
11 1 1 · 1 155
12 275 - 180
13 343 - 298
14 57 - 246
15 1389 - 281
16 1019 - 442
17 2743 −1 · 2743 363 Limitations
18 9709 - 405 on Multiples
19 3113 - 595
20 13981 1 · 13981 508
21 128397 −1 · 128397 555
22 1091 5 · 1091 655
23 27007 −1 · 27007 663 Structural
24 943033 - 963 Design
25 1465043 −2 · 1465043 791

Table 4.7: The best bases found in each field F2m for dimensions between 2 and 25,
using the algorithm based on Structural Design.
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It should be noted that the results for each new algorithm agrees with earlier
results. Only the first part of the table are facts, as all possibilities have
been tried out, assuring us an optimal basis. The following results are
from algorithms limiting the search more and more, with the consequence
of uncertain results.

It is interesting to notice for which fields the complexity suddenly rises more
than usual, often followed by a decreased value for the next field. The fields
referred to are those with dimension 8, 13, 16, 19 and 24. Common for those
fields are that no Irreducible Polynomials over F2 of weight 3 exist. Every
other field among those listed have Irreducible Polynomials of weight 3.

The weight of a polynomial is the number of nonzero coefficients in it. For
example, the weight of x5 + x + 1 is equal to 3, and the weight of the
polynomial x5 + x4 + x2 + x + 1 is equal to 5. The minimal polynomial of
an element is the polynomial of lowest degree having the element as a root.

The weight of a polynomial is interesting in implementations of sequential
multiplication, as the polynomial defines the feedback. Interesting result
were found during the search using Multiples of Polynomial Bases. The
Polynomial Basis shifted to the best found basis, is generated by an element.
The minimal polynomial of this element has a weight, and it is also 3 in all
fields except for dimensions 8, 13, 16 and 19, where it is 5. The same is
probably true for dimension 24 as well, but this has only been investigated
for fields up to F221 .

Type Equivalence Classes Complexity
PB: { 0,1,2 } { 0,2,4 } { 0,4,1 } 12

{ 0,6,5 } { 0,5,3 } { 0,3,6 } 13
DP: { 5,2,1 } { 3,4,2 } { 6,1,4 } 19
TB: { 6,1,0 } { 5,2,0 } { 3,4,0 } 11
DT: { 1,2,3 } { 2,4,6 } { 4,1,5 } 16
NB: { 6,5,3 } 15

Other: { 0,1,5 } { 0,2,3 } { 0,4,6 } 14
{ 1,2,6 } { 2,4,5 } { 4,1,3 } 17
{ 1,3,5 } { 2,6,3 } { 4,5,6 } 17
{ 1,3,6 } { 2,6,5 } { 4,5,3 } 20

Table 4.8: A complete list of bases for the Finite Field F23 .



Chapter 5

Comparison to Known Bases

Well known bases are those called Polynomial, Normal and Triangular Bases.
In this chapter, the complexities for those bases and their respective duals
are found and calculated. A comparison between the well known bases and
those found in the search from last chapter is also made.

5.1 Known Bases

Bases that have been studied earlier, used in implementations or having
other nice advantages, are here refered to as known bases. The most common
ones are Polynomial and Normal Bases, together with Triangular Bases. All
those are used in implementations, therefore it is interesting to know how
good they are considering multiplication.

Because these bases have a certain structure, it is easy to generate them.
There are no search-methods needed, which of course makes it possible to
generate bases in quite large fields. Known bases for all fields from F22 to
F224 are found and evaluated. Along with the known bases, their respective
dual bases are also tried out.

In this chapter, possible relations between the known bases are tried out.
First of all, we try to find a connection between the complexity for bases and
their duals. This is tested with the help of graphs, by plotting the complexity
of each basis against its dual value. This experiment is performed for all
fields from F23 up to F215 for Polynomial, Normal and Triangular Bases.
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All elements generating a Normal Basis works as generators for Polynomial
Bases as well. In Olofsson [3, Ch.5], bases with this property are considered.
Therefore, a comparison of complexity for such bases might be interesting.
A figure presenting the relation of complexity for Polynomial Bases and
Normal Bases generated by the same element is found in Section 5.3.

Another relation considered is the one between Triangular Bases and the
Polynomial Bases. A Triangular Basis is defined by a Polynomial Basis, and
therefore we look at the complexity of these bases. A figure presenting this
relation is found in Section 5.4.

It would also be interesting to know if there excists any connection between
the complexity of Polynomial Bases and the best Multiple of them. In the
same way as for the dual relations, this is done by graphs, for all fields
between F23 and F215 . In Section 5.5, a figure showing this relation is found.

In Section 5.6, a summary of the best found complexity values for all known
bases in fields up to F224 is found in Table 5.1 on page 46. This table also
contains the overall best value found for each field, making it possible to see
how good the known bases are considering multiplication.

The complete set of figures are found in Appendix C.

5.2 Dual relations

Is it possible to say anything about the complexity of a dual basis just
by looking at the basis related to it? This is an interesting question, but
not easy to answer. To get an idea, some graphs are presented where the
complexity of bases together with the respective dual bases can be found.

For example, the complexity of all Polynomial Bases are saved together with
its corresponding dual values. These values are then plotted in a graph, with
the complexity of the Polynomial Bases on one axis, and the corresponding
dual values on the other.

A dotted line is also found in the graph, showing y = x, in order to see which
basis is the better one. Any point above this line has a greater complexity
for the basis represented on the y-axis. If a point lies on the line, it means
that the complexity is equal for the basis and its dual.

Also, the overall best found value for the field in question is seen as a dash-
dotted line, going in both the x and y direction.
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5.2.1 Polynomial Bases

Here follows a graph for Polynomial Bases from the field F29 .
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Figure 5.1: A figure showing the complexity of Polynomial Bases and their Duals
from the field F29 .

The complexity of the duals is spread out over a wide range, while the com-
plexity of the Polynomial Bases is more stable. It seems like the complexity
of Polynomial Bases is better than its duals most of the time, with only a
few exceptions. The basis with lowest complexity is a Dual Basis though.
In general, most of the bases have a complexity far away from the best value
found. These features are common for all fields searched, and the rest of the
figures are found in Appendix C.1.
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5.2.2 Normal Bases

It should be noted that the dual of a Normal Basis is also a Normal Basis.
As a consequence of that, we get a symmetric figure. Here follows a graph
for Normal Bases from the field F29 .
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Figure 5.2: A figure showing the complexity of Normal Bases and their Duals from
the field F29 .

All matrices Tk have the same weight, as they are only a cyclic shift of each-
other. Therefore, the complexity of the Normal Bases is always a multiple
of m, creating a grid of discrete values.

In the figure, we can see that one basis got a complexity much better than
the rest. This is found in most of the other fields as well, that the main
part of the bases are really bad, with a few exceptions. The other figures
are found in Appendix C.2.
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5.2.3 Triangular Bases

Here follows a graph for Triangular Bases from the field F29 .
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Figure 5.3: A figure showing the complexity of Triangular Bases and their Duals from
the field F29 .

The complexity of the Triangular bases seems to be better than their duals
most of the time. In general, the complexity of a Triangular Basis or its
dual is not good, but with a few important exceptions.

In this figure, and for all figures in Appendix C.3, there exists one or two
Triangular Bases with complexity close to the best found value.
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5.3 Polynomial and Normal Bases

A figure showing the complexity of Polynomial Bases and Normal Bases,
generated from the same element, taken from the field F29 .
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Figure 5.4: A figure showing the complexity of Polynomial Bases and Normal Bases,
generated by the same element.

In general, the Normal Bases have a high complexity. The Polynomial Bases
related to those seems to have a lower complexity, but still not a good value.
One basis deviates from the others, having a complexity much better than
the rest. It also seems like there is a relation between the best Normal Basis
and the Polynomial Basis with lowest complexity. This is seen for all fields,
found in Appendix C.4.
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5.4 Polynomial and Triangular Bases

A figure showing the complexity of Polynomial Bases and the Triangular
Basis related to it, taken from the field F29 .
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Figure 5.5: A figure showing the complexity of Polynomial Bases and the Triangular
Bases related to it.

The complexity is really high for most of the bases, with only a few ex-
ceptions. A Polynomial Basis with low complexity seems to generate a
Triangular Basis with low complexity. These features are seen in the other
fields as well, and the figures are found in Appendix C.5.
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5.5 Polynomial Bases and their Multiples

Is there any relation between the complexity of the best Polynomial Basis
and the best found Multiple of a Polynomial Basis? If so, one could just
search through all Polynomial Bases, skipping the work of testing multiples.

In order to answer this question, the complexity for all Polynomial Bases
and the best found Multiple related to them were calculated. Results from
the field F29 are found in this figure.
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Figure 5.6: A figure showing the Complexity of Polynomial Bases and their respective
best Multiples from the field F29 .

The complexity of a Multiple Basis is always less than, or perhaps equal to,
the complexity of the Polynomial Basis related to it. A Polynomial Basis
with good complexity seems to generate a Multiple with good complexity.
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The overall best Multiple in a field is not always generated by the best
Polynomial Basis though, which is seen in Figure 5.6. On the other hand,
sometimes a Polynomial Basis with average complexity generates a Multiple
with complexity not far from the best. This is seen in the same figure, near
the value 200 on the x-axis.

Similair features are found in the other fields. All the figures for fields F23

through F215 are found in Appendix C.6.

5.6 Summary

On page 46 follows a table presenting the best found complexity for each
class of known bases, looking at fields between F22 and F224 . The best found
complexity for each field is also presented in the table, in order to compare
how good the different bases are considering its complexity of multiplying
elements. As the dual of a Normal Basis is a Normal Basis as well, the
column DN is not included, as it would be the same as NB.

The class of known bases that seems to work best is the Dual Polynomial
Bases, with a complexity near the best found throughout the fields. As
mentioned earlier, the Normal Bases are always the worst choise, except for
dimensions 11 and 14 where the Dual Triangular Bases have complexities
even higher.

In the smaller fields, Triangular Bases are as good as the Polynomial Bases,
or perhaps even better. In larger fields, the Triangular Bases are not as
stable, sometimes having a complexity far away from the best one. This
could be seen in fields F212 and F214 . But they are in fact the best choise in
dimensions 8, 16 and 24, which is interesting.

Common for these dimensions is the fact that no Minimal Polynomials of
weight three exists. It means that for some of the dimensions, where the
complexity found has been much higher than normal, the Triangular Bases
are suddenly a better choise than the Dual Polynomial Bases.

Tables describing how to generate the best found known bases in each field
are found in Appendix D.
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Field F2m Complexity
m := PB NB TB DP DT BEST

2 5 6 5 5 5 5
3 12 15 11 12 12 11
4 22 28 20 20 22 20
5 36 45 31 31 38 31
6 48 66 47 47 51 45
7 70 133 61 62 83 61
8 141 168 114 127 119 107
9 117 153 101 101 127 101
10 148 190 127 128 131 126
11 177 231 160 160 246 155
12 213 276 256 183 261 180
13 385 585 356 315 455 298
14 297 378 357 261 422 246
15 330 675 356 282 347 281
16 571 1360 458 501 452 442
17 428 1377 370 365 448 363
18 441 630 531 420 501 405
19 871 2223 683 642 1288 595
20 593 1260 652 510 614 508
21 652 1995 820 567 1098 555
22 715 1386 790 695 786 655
23 792 1035 697 670 820 663
24 1335 2520 1066 1083 1416 963
25 - - - - - 791

Table 5.1: The best bases found up to F224 . The best complexity found for each
field can be found in the column BEST. The notations used are:

Polynomial Bases (PB), Normal Bases (NB) and Triangular Bases (TB).
Also Dual Polynomial Bases (DP) and Dual Triangular Bases (DT).



Chapter 6

Conclusions and future
research

Here follows conclusions and ideas on what could be done in the future.

6.1 Conclusions

Different methods have been used throughout this thesis. To start with, an
exhaustive search was made for smaller fields, in order to get started. No
previous work has been found, aiming at finding a general solution to this
problem, so we did not know what to look for.

The other methods limited the search more and more. In this way we gained
speed to the algorithms, but to the cost of uncertain results. As there is no
general lower bound for the complexity, it is hard to say how good the results
are. They could be compared to the complexity of known bases though, as
they are easy to generate. For results, look into Appendix D.

The complexity of the best found basis in each extension field between F22

and F224 is in fact lower than for the standard bases. Sometimes the best
found complexities coinside, but this is the case only for lower dimensions.

Our main result is the structure found for optimal bases. To find a basis
with low complexity, we should look for a shifted Polynomial Basis, where
exponent 0 is centered, or slightly moved from the center.
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6.2 Future research

During the work on this thesis, many ideas and interesting thoughts popped
up. Due to the limitations in time, many of those are left unanswered. Here
follows some ideas that would be interesing to continue working with.

- General formula: It would naturally be interesting to find a general
formula for the optimal basis in each field. It is not certain that such
a fomula exists, but constraints and general features could not be im-
possible to find.

- Connection between Complexity and the Weight of Minimal
Polynomials: The complexity of bases in a field seems to be con-
nected to the Weight of Minimal Polynomials. For all fields where
there does not exist a Minimal Polynomial of weight 3, the complexity
is remarkably increased.

- General bounds: Is it possible to find a general upper and lower
bound for the complexity of bases in a finite field. An obvious upper
bound is m3, corresponding to all m matrices filled with m2 digits. Is
it possible to push this limit?

The lower bound is not that easy. It seems reasonable to say that each
one of the Tk matrices should contain at least one digit on every row,
otherwise all information is not considered during the calculations.
There are m matrices, one for each dimension, and they all contain m
rows, giving a possible lower bound for the complexity of m2. This is
nothing but a loose idea though, which needs to look deeper into.

- Wider equivalence concept: Is it possible to define equivalent bases
more widely, covering a bigger set? This would decrease the time in
calculations, making it possible to search larger fields.



Appendix A

Primitive polynomials

This appendix contains a table of the primitive polynomials over F2 used
when defining extension fields throughout this thesis. All results are based
on finite fields constructed by using these primitive polynomials.

For example, the Finite Field F29 was constructed by adjoining a root of
the primitive polynomial x9 + x4 + 1. This root, denoted by α, becomes a
generator for the multiplicative group F∗qm .

According to Table 4.4 found on page 29, the basis with lowest complexity
for F29 is the following set.

{ -4, -3, -2, -1, 0, 1, 2, 3, 4 }

The numbers represent the exponents of α defining the basis.

{ α−4, α−3, α−2, α−1, α0 , α1 , α2 , α3 , α4 }

If the field is constructed by another primitive polynomial, this basis might
not be the best one anymore. Therefore, in order to reconstruct the best
found bases for each field, use only the primitive polynomials found in the
table on next page.
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A.1 Table of Primitive Polynomials over F2

m := Primitive Polynomial
2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x5 + x2 + 1
6 x6 + x + 1
7 x7 + x3 + 1
8 x8 + x4 + x3 + x2 + 1
9 x9 + x4 + 1
10 x10 + x3 + 1
11 x11 + x2 + 1
12 x12 + x7 + x6 + x5 + x3 + x + 1
13 x13 + x4 + x3 + x + 1
14 x14 + x7 + x5 + x3 + 1
15 x15 + x5 + x4 + x2 + 1
16 x16 + x5 + x3 + x2 + 1
17 x17 + x3 + 1
18 x18 + x12 + x10 + x + 1
19 x19 + x5 + x2 + x + 1
20 x20 + x10 + x9 + x7 + x6 + x5 + x4 + x + 1
21 x21 + x6 + x5 + x2 + 1
22 x22 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + 1
23 x23 + x5 + 1
24 x24 + x16 + x15 + x14 + x13 + x10 + x9 + x7 + x5 + x3 + 1
25 x25 + x8 + x6 + x2 + 1

Table A.1: Primitive Polynomials used to define the Finite Fields F2m in this thesis,
where m is the degree of extension.



Appendix B

Statistics

The fields F23 to F26 has been totally searched. Every possible basis com-
bination has been evaluated. The statistical results from this search is pre-
sented in the following tables, and graphs showing the distribution of the
complexity for bases in each field are found in Section B.2.

B.1 Tables

Statistics for the Field F23

All 28 bases evaluated
Basis # Bases # Eq.Classes Complexity Quota
Polynomial 6 2 12 1.0909
Normal 1 1 15 1.3636
Triangular 6 2 11 1
Dual Polynomial 6 2 12 1.0909
Dual Triangular 6 2 12 1.0909
Best Found 3 1 11 -

Table B.1: Statistics for F23 . The column “Complexity” shows the best value found
for each class of bases. The “Quota” is relative to the best complexity.
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Statistics for the Field F24

All 840 bases evaluated
Basis # Bases # Eq.Classes Complexity Quota
Polynomial 12 3 22 1.1
Normal 2 2 28 1.4
Triangular 12 3 20 1
Dual Polynomial 12 3 20 1
Dual Triangular 12 3 22 1.1
Best Found 4 1 20 -

Table B.2: Statistics for F24 . The column “Complexity” shows the best value found
for each class of bases. The “Quota” is relative to the best complexity.

Statistics for the Field F25

All 83328 bases evaluated
Basis # Bases # Eq.Classes Complexity Quota
Polynomial 30 6 36 1.1613
Normal 3 3 45 1.4516
Triangular 30 6 31 1
Dual Polynomial 30 6 31 1
Dual Triangular 30 6 38 1.2258
Best Found 5 1 31 -

Table B.3: Statistics for F25 . The column “Complexity” shows the best value found
for each class of bases. The “Quota” is relative to the best complexity.

Statistics for the Field F26

All 27.998.208 bases evaluated
Basis # Bases # Eq.Classes Complexity Quota
Polynomial 54 9 48 1.0667
Normal 4 4 66 1.4667
Triangular 54 9 47 1.0444
Dual Polynomial 54 9 47 1.0444
Dual Triangular 54 9 51 1.1333
Best Found 6 1 45 -

Table B.4: Statistics for F26 . The column “Complexity” shows the best value found
for each class of bases. The “Quota” is relative to the best complexity.
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B.2 Figures

The distribution of the Complexity for all bases in the fields F23 through F26

seems to approach a Normal Distribution. It could also be two distributions
merging together, one of them shifted a little to the left, and the second one
having a higher peak to the right.
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Figure B.1: A diagram showing the distribution of Complexity for all bases in F23 .
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Figure B.2: A diagram showing the distribution of Complexity for all bases in F24 .
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Figure B.3: A diagram showing the distribution of Complexity for all bases in F25 .
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Figure B.4: A diagram showing the distribution of Complexity for all bases in F26 .



Appendix C

Figures

Here follows the complete set of figures from the different investigations
discussed earlier in Chapter 5. Each section contain figures from all the
fields between F23 and F215 .

All figures presented here have some common features. The axes show the
Complexity for the bases represented. A dotted line is also found in the
graph, showing y = x, in order to see which one is the better. Any point
above this line has a greater complexity for the basis represented on the
y-axis. If a point lies on the line, it means that the complexity is equal for
the two bases represented.

Also, the overall best found value for the field in question is seen as a dash-
dotted line, going in both the x and y direction.
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C.1 Polynomial Bases
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Figure C.1: Complexity of Polynomial Bases and their Duals from the field F23 .
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Figure C.2: Complexity of Polynomial Bases and their Duals from the field F24 .
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Figure C.3: Complexity of Polynomial Bases and their Duals from the field F25 .
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Figure C.4: Complexity of Polynomial Bases and their Duals from the field F26 .
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Figure C.5: Complexity of Polynomial Bases and their Duals from the field F27 .
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Figure C.6: Complexity of Polynomial Bases and their Duals from the field F28 .
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Figure C.7: Complexity of Polynomial Bases and their Duals from the field F29 .
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Figure C.8: Complexity of Polynomial Bases and their Duals from the field F210 .
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Figure C.9: Complexity of Polynomial Bases and their Duals from the field F211 .
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Figure C.10: Complexity of Polynomial Bases and their Duals from the field F212 .
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Figure C.11: Complexity of Polynomial Bases and their Duals from the field F213 .
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Figure C.12: Complexity of Polynomial Bases and their Duals from the field F214 .

400 600 800 1000 1200 1400 1600 1800 2000

400

600

800

1000

1200

1400

1600

1800

2000

Finite Field F
2

15

Complexity of PB

C
o

m
p

le
xi

ty
 o

f 
D

P

Best: 281
PB vs. DP

Figure C.13: Complexity of Polynomial Bases and their Duals from the field F215 .
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C.2 Normal Bases
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Figure C.14: Complexity of Normal Bases and their Duals from the field F23 .
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Figure C.15: Complexity of Normal Bases and their Duals from the field F24 .
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Figure C.16: Complexity of Normal Bases and their Duals from the field F25 .
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Figure C.17: Complexity of Normal Bases and their Duals from the field F26 .
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Figure C.18: Complexity of Normal Bases and their Duals from the field F27 .
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Figure C.19: Complexity of Normal Bases and their Duals from the field F28 .

100 150 200 250 300 350 400

100

150

200

250

300

350

400

Finite Field F
2

9

Complexity of NB

C
o

m
p

le
xi

ty
 o

f 
D

N

Best: 101
NB vs. DN

Figure C.20: Complexity of Normal Bases and their Duals from the field F29 .
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Figure C.21: Complexity of Normal Bases and their Duals from the field F210 .
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Figure C.22: Complexity of Normal Bases and their Duals from the field F211 .
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Figure C.23: Complexity of Normal Bases and their Duals from the field F212 .
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Figure C.24: Complexity of Normal Bases and their Duals from the field F213 .
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Figure C.25: Complexity of Normal Bases and their Duals from the field F214 .
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Figure C.26: Complexity of Normal Bases and their Duals from the field F215 .
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C.3 Triangular Bases
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Figure C.27: Complexity of Triangular Bases and their Duals from the field F23 .
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Figure C.28: Complexity of Triangular Bases and their Duals from the field F24 .
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Figure C.29: Complexity of Triangular Bases and their Duals from the field F25 .



72 APPENDIX C. FIGURES

50 60 70 80 90 100 110 120 130

50

60

70

80

90

100

110

120

130

Finite Field F
2

6

Complexity of TB

C
o

m
p

le
xi

ty
 o

f 
D

T

Best: 45
TB vs. DT

Figure C.30: Complexity of Triangular Bases and their Duals from the field F26 .
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Figure C.31: Complexity of Triangular Bases and their Duals from the field F27 .
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Figure C.32: Complexity of Triangular Bases and their Duals from the field F28 .
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Figure C.33: Complexity of Triangular Bases and their Duals from the field F29 .
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Figure C.34: Complexity of Triangular Bases and their Duals from the field F210 .
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Figure C.35: Complexity of Triangular Bases and their Duals from the field F211 .
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Figure C.36: Complexity of Triangular Bases and their Duals from the field F212 .
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Figure C.37: Complexity of Triangular Bases and their Duals from the field F213 .
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Figure C.38: Complexity of Triangular Bases and their Duals from the field F214 .
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Figure C.39: Complexity of Triangular Bases and their Duals from the field F215 .



C.4. POLYNOMIAL AND NORMAL BASES 77
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Figure C.40: Complexity of Polynomial and Normal Bases from the field F23 .
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Figure C.41: Complexity of Polynomial and Normal Bases from the field F24 .
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Figure C.42: Complexity of Polynomial and Normal Bases from the field F25 .
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Figure C.43: Complexity of Polynomial and Normal Bases from the field F26 .
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Figure C.44: Complexity of Polynomial and Normal Bases from the field F27 .
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Figure C.45: Complexity of Polynomial and Normal Bases from the field F28 .
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Figure C.46: Complexity of Polynomial and Normal Bases from the field F29 .
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Figure C.47: Complexity of Polynomial and Normal Bases from the field F210 .
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Figure C.48: Complexity of Polynomial and Normal Bases from the field F211 .
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Figure C.49: Complexity of Polynomial and Normal Bases from the field F212 .
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Figure C.50: Complexity of Polynomial and Normal Bases from the field F213 .
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Figure C.51: Complexity of Polynomial and Normal Bases from the field F214 .
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Figure C.52: Complexity of Polynomial and Normal Bases from the field F215 .
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Figure C.53: Complexity of Polynomial and Triangular Bases from the field F23 .
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Figure C.54: Complexity of Polynomial and Triangular Bases from the field F24 .
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Figure C.55: Complexity of Polynomial and Triangular Bases from the field F25 .
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Figure C.56: Complexity of Polynomial and Triangular Bases from the field F26 .
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Figure C.57: Complexity of Polynomial and Triangular Bases from the field F27 .
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Figure C.58: Complexity of Polynomial and Triangular Bases from the field F28 .
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Figure C.59: Complexity of Polynomial and Triangular Bases from the field F29 .
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Figure C.60: Complexity of Polynomial and Triangular Bases from the field F210 .
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Figure C.61: Complexity of Polynomial and Triangular Bases from the field F211 .
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Figure C.62: Complexity of Polynomial and Triangular Bases from the field F212 .
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Figure C.63: Complexity of Polynomial and Triangular Bases from the field F213 .
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Figure C.64: Complexity of Polynomial and Triangular Bases from the field F214 .
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Figure C.65: Complexity of Polynomial and Triangular Bases from the field F215 .
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Figure C.66: Complexity of Polynomial Bases and their best Multiples,
taken from the field F23 .
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Figure C.67: Complexity of Polynomial Bases and their best Multiples,
taken from the field F24 .
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Figure C.68: Complexity of Polynomial Bases and their best Multiples,
taken from the field F25 .
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Figure C.69: Complexity of Polynomial Bases and their best Multiples,
taken from the field F26 .
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Figure C.70: Complexity of Polynomial Bases and their best Multiples,
taken from the field F27 .
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Figure C.71: Complexity of Polynomial Bases and their best Multiples,
taken from the field F28 .
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Figure C.72: Complexity of Polynomial Bases and their best Multiples,
taken from the field F29 .
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Figure C.73: Complexity of Polynomial Bases and their best Multiples,
taken from the field F210 .

150 200 250 300 350 400 450

150

200

250

300

350

400

450

Finite Field F
2

11

Complexity of PB

C
o

m
p

le
xi

ty
 o

f 
M

u
lt

ip
le

Best: 155
PB vs. Multiple

Figure C.74: Complexity of Polynomial Bases and their best Multiples,
taken from the field F211 .
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Figure C.75: Complexity of Polynomial Bases and their best Multiples,
taken from the field F212 .
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Figure C.76: Complexity of Polynomial Bases and their best Multiples,
taken from the field F213 .
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Figure C.77: Complexity of Polynomial Bases and their best Multiples,
taken from the field F214 .
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Figure C.78: Complexity of Polynomial Bases and their best Multiples,
taken from the field F215 .
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Appendix D

Tables of Known Bases

This appendix contains tables of known bases, one for each standard basis,
describing the best found bases for all fields from F22 up to F224 .

The first table shows Polynomial Bases. Any root of the minimal polynomial
will generate the Polynomial Basis with the complexity given in the table.

The second table shows Duals of Polynomial Bases. A root of the minimal
polynomial generates a Polynomial Basis, and the dual basis of that PB is
the one with best complexity.

The third table presents the best found Triangular Bases. The root of the
minimal polynomial, given in the table, generates the Polynomial Basis used
to define the best Triangular Basis.

The fourth table presents the best found Dual Triangular Bases. In the
same way as for the Triangular Bases, the root of the minimal polynomial
generates a Polynomial Basis, which is used to define a Triangular Basis.
The dual of this TB is the Dual Triangular Basis with lowest complexity.

In the fifth table, a list of the best Normal Bases is found. The roots of
the minimal polynomial found in the table generates the Normal Basis with
best complexity.

As the duals of Normal Bases are Normal Bases as well, the table is the
same as for the Normal Bases.
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D.1 Polynomial Bases

m := minimal polynomials Complexity
2 x2 + x + 1 5
3 x3 + x + 1 12
4 x4 + x + 1 22
5 x5 + x2 + 1 36
6 x6 + x3 + 1 48
7 x7 + x + 1 70
8 x8 + x5 + x3 + x2 + 1 141
9 x9 + x + 1 117
10 x10 + x3 + 1 148
11 x11 + x2 + 1 177
12 x12 + x3 + 1 213
13 x13 + x8 + x5 + x3 + 1 385
14 x14 + x5 + 1 297
15 x15 + x + 1 330
16 x16 + x11 + x6 + x5 + 1 571
17 x17 + x3 + 1 428
18 x18 + x9 + 1 441
19 x19 + x16 + x13 + x3 + 1 871
20 x20 + x3 + 1 593
21 x21 + x2 + 1 652
22 x22 + x + 1 715
23 x23 + x5 + 1 792
24 x24 + x15 + x9 + x6 + 1 1335

Table D.1: The best Polynomial Bases found in each Finite Field F2m

for all extension degrees between 2 and 24.
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D.2 Dual Polynomial Bases

m := minimal polynomials Complexity
2 x2 + x + 1 5
3 x3 + x + 1 12
4 x4 + x + 1 20
5 x5 + x3 + 1 31
6 x6 + x + 1 47
7 x7 + x3 + 1 62
8 x8 + x4 + x3 + x2 + 1 127
9 x9 + x5 + 1 101
10 x10 + x3 + 1 128
11 x11 + x9 + 1 160
12 x12 + x8 + x7 + x6 + x5 + x + 1 183
13 x13 + x9 + x7 + x3 + 1 315
14 x14 + x5 + 1 261
15 x15 + x7 + 1 282
16 x16 + x10 + x8 + x3 + 1 501
17 x17 + x11 + 1 365
18 x18 + x3 + 1 420
19 x19 + x13 + x11 + x9 + 1 642
20 x20 + x5 + 1 510
21 x21 + x7 + 1 567
22 x22 + x + 1 695
23 x23 + x9 + 1 670
24 x24 + x10 + x6 + x3 + 1 1083

Table D.2: The best Dual Polynomial Bases found in each Finite Field F2m

for all extension degrees between 2 and 24.
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D.3 Triangular Bases

m := minimal polynomials Complexity
2 x2 + x + 1 5
3 x3 + x + 1 11
4 x4 + x + 1 20
5 x5 + x2 + 1 31
6 x6 + x + 1 47
7 x7 + x3 + 1 61
8 x8 + x4 + x3 + x2 + 1 114
9 x9 + x4 + 1 101
10 x10 + x3 + 1 127
11 x11 + x2 + 1 160
12 x12 + x7 + x6 + x4 + 1 256
13 x13 + x12 + x10 + x3 + 1 356
14 x14 + x7 + x5 + x3 + 1 357
15 x15 + x + 1 356
16 x16 + x10 + x9 + x6 + 1 458
17 x17 + x5 + 1 370
18 x18 + x3 + 1 531
19 x19 + x15 + x13 + x9 + 1 683
20 x20 + x3 + 1 652
21 x21 + x16 + x8 + x7 + 1 820
22 x22 + x + 1 790
23 x23 + x5 + 1 697
24 x24 + x19 + x13 + x11 + 1 1066

Table D.3: The best Triangular Bases found in each Finite Field F2m

for all extension degrees between 2 and 24.
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D.4 Dual Triangular Bases

m := minimal polynomials Complexity
2 x2 + x + 1 5
3 x3 + x2 + 1 12
4 x4 + x + 1 22
5 x5 + x2 + 1 38
6 x6 + x + 1 51
7 x7 + x3 + 1 83
8 x8 + x4 + x3 + x2 + 1 119
9 x9 + x4 + 1 127
10 x10 + x3 + 1 131
11 x11 + x2 + 1 246
12 x12 + x7 + x6 + x4 + 1 261
13 x13 + x12 + x10 + x3 + 1 455
14 x14 + x9 + x6 + x2 + 1 422
15 x15 + x + 1 347
16 x16 + x10 + x9 + x6 + 1 452
17 x17 + x3 + 1 448
18 x18 + x3 + 1 501
19 x19 + x15 + x13 + x9 + 1 1288
20 x20 + x3 + 1 614
21 x21 + x7 + 1 1098
22 x22 + x + 1 786
23 x23 + x5 + 1 820
24 x24 + x15 + x14 + x12 + x10 + x8 + 1 1416

Table D.4: The best Dual Triangular Bases found in each Finite Field F2m

for all extension degrees between 2 and 24.
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D.5 Normal Bases

m := minimal polynomial Complexity
2 1 6
3 2 15
4 3, 2, 1 28
5 4, 2, 1 45
6 5, 4, 1 66
7 6, 5, 2 133
8 7, 5, 3 168
9 8, 6, 5, 4, 1 153
10 9, 8, 7, 6, 5, 4, 3, 2, 1 190
11 10, 8, 4, 3, 2 231
12 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 276
13 12, 10, 7, 4, 3 585
14 13, 12, 9, 8, 1 378
15 14, 12, 9, 7, 5, 4, 2 675
16 15, 13, 12, 11, 10, 8, 7, 5, 3, 2, 1 1360
17 16, 14, 13, 12, 11, 10, 9, 7, 5, 3, 1 1377
18 17, 16, 13, 12, 10, 9, 8, 2, 1 630
19 18, 16, 11, 8, 6, 4, 1 2223
20 19, 18, 15, 14, 12, 11, 6, 3, 1 1260
21 20, 19, 17, 15, 14, 13, 9, 5, 4 1995
22 21, 20, 18, 16, 15, 14, 13, 10, 7, 5, 2 1386
23 22, 20, 16, 8, 7, 6, 4 1035
24 23, 21, 20, 19, 18, 17, 9, 8, 7, 5, 3 2520

Table D.5: The best Normal Bases (and DN) found in each Finite Field F2m

for all extension degrees between 2 and 24.

To save space, only the degrees of the mid terms are listed, since irreducible
polynomials over F2 always contain the terms 1 and xm, where m is the
degree. The column minimal polynomial should be interpeted like this.

For m equal to 3, the minimal polynomial should be x3 +x2 +1, as the only
mid term found in the table is 2. For m equal to 4, we have mid terms with
degree 3, 2 and 1, and the minimal polynomial should be x4+x3+x2+x1+1.
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