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Abstract Response surface methods based on kriging and radial basis function (RBF)
interpolation have been successfully applied to solve expensive, i.e. computationally
costly, global black-box nonconvex optimization problems. In this paper we describe
extensions of these methods to handle linear, nonlinear, and integer constraints. In
particular, algorithms for standard RBF and the new adaptive RBF (ARBF) are de-
scribed. Note, however, while the objective function may be expensive, we assume that
any nonlinear constraints are either inexpensive or are incorporated into the objective
function via penalty terms. Test results are presented on standard test problems,
both nonconvex problems with linear and nonlinear constraints, and mixed-integer
nonlinear problems (MINLP). Solvers in the TOMLAB Optimization Environment
(http://tomopt.com/tomlab/) have been compared, specifically the three determinis-
tic derivative-free solvers rbfSolve, ARBFMIP and EGO with three derivative-based
mixed-integer nonlinear solvers, OQNLP, MINLPBB and MISQP, as well as the GENO
solver implementing a stochastic genetic algorithm. Results show that the determin-
istic derivative-free methods compare well with the derivative-based ones, but the
stochastic genetic algorithm solver is several orders of magnitude too slow for practi-
cal use. When the objective function for the test problems is costly to evaluate, the
performance of the ARBF algorithm proves to be superior.
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1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques, most of which utilize every computed function
value, have been developed over the years. In his excellent paper [9], Jones reviews the
most important developments. Many methods have been developed based on statistical
approaches, called kriging, see e.g. the Efficient Global Optimization (EGO) method
in Jones et al. [10]. In this paper we mainly consider methods based on radial basis
function interpolation, RBF methods, first discussed in [4] and [13].

Problems that are costly to evaluate are commonly found in engineering design, in-
dustrial and financial applications. A function value could be the result of a complex
computer program, an advanced simulation, e.g. computational fluid dynamics (CFD),
or design optimization. One function value might require the solution of a large system
of partial differential equations, and hence consume anything from a few minutes to
many hours. In the application areas discussed, derivatives are most often hard to
obtain and the algorithms make no use of such information. The practical functions
involved are often noisy and nonsmooth; however, the commonly used approximation
methods assume smoothness. Another area illustrating the challenges of optimization
with expensive function evaluations is space mapping optimization, see e.g. [1]. In-
stead of one costly function value, in space mapping a vector valued function is the
result of each costly evaluation. Companion ”coarse” (ideal or low-fidelity) and ”fine”
(practical or high-fidelity) models of different complexities are intelligently linked to-
gether to solve engineering model enhancement and design optimization problems.

Our goal is to develop global optimization algorithms that work in practice and produce
reasonably good solutions with a very limited number of function evaluations. From an
application perspective there are often restrictions on the variables besides the lower
and upper bounds, such as linear, nonlinear or even integer constraints. Henceforth,
we seek to solve the complicated problem formulated as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R; xL, x, xU ∈ Rd; the m1 linear constraints are defined by A ∈ Rm1×d,
bL, bU ∈ Rm1 ; and the m2 nonlinear constraints are defined by cL, c(x), cU ∈ Rm2 .
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.
Let ΩC ∈ Rd be the feasible set defined by all the constraints in (1) and Ω ∈ Rd be the
feasible set defined only by the box constraints, the simple bounds. We assume that
the function f(x) is continuous with respect to all variables, even though we demand
that some variables only take integer values. Otherwise it would not make sense to do
surrogate modeling of f(x). Another assumption is that the nonlinear constraints are

2



An adaptive radial basis algorithm (ARBF) for constrained CGO

cheap to compute compared to the costly f(x). All costly constraints can be treated
by adding penalty terms to the objective function in the following way:

min
x

p(x) = f(x) +
∑
j

wj max
(
0, cj(x)− cjU , cjL − c

j(x)
)
, (2)

where weighting parameters wj have been added. As we have shown in [2] this strategy
works in practice for an industrial train set design problem.

The idea of the RBF algorithm by Powell and Gutmann [4] is to use radial basis
function interpolation to build an approximating surrogate model and define three
utility functions. The next point, where the original objective function should be
evaluated, is determined by optimizing one or more of these utility functions. Roughly
speaking, the utility functions measure the likelihood that the solution to the problem
occurs at a given point with the objective function equal to a certain “target value”.
Maximizing the utility function therefore provides the point most likely to be a solution
to the problem if that the optimal objective equals the target value. Clearly, different
target values result in different points being suggested for further search. In the RBF
methods of Gutmann and Powell, a non-adaptive (static) scheme is used to select
the target values; unfortunately, as we show later, this can lead to the sampling of
many points on the boundary of the space that help little to advance the search. To
deal with this problem, Holmström [7] proposes a more general adaptive approach to
set target values, an Adaptive RBF algorithm (ARBF). Instead of the static choice,
a one-dimensional search for a suitable target value is done to improve convergence.
This leads to a sequence of global optimization problems to be solved in each iteration.
The above mentioned papers only consider a box-bounded region Ω, whereas in this
paper the goal is to solve the MINLP problems as defined by (1). The convergence of
the ARBF method is discussed in Holmström [7] and is based on the same arguments
as for the RBF method, discussed in the thesis of Gutmann [5].

In Section 2 the RBF interpolation method and the extensions of the RBF algorithm
for MINLP are described. A detailed presentation of the new Adaptive RBF algorithm
is given in Section 3, with some additions compared to Holmström [7] to handle MINLP
problems. In Section 4 the implementations in TOMLAB [6, 8] of the given algorithms
are described.

The approach to handle mixed-integer constrained problems is validated with tests on
a set of standard MINLP problems. Results for these problems and some nonconvex
constrained problems are given in Section 5. The same section also compares the
results from seven different MINLP solvers in the TOMLAB optimization environment.
Section 6 gives some concluding remarks.

2 The RBF method for MINLP

First, the surrogate model used in the RBF method is defined. Given n distinct points
x1, . . . , xn ∈ Ω with known function values Fi = f(xi), i = 1, . . . , n, the radial basis
function interpolant sn has the form

sn(x) =

n∑
i=1

λiφ
(
‖x− xi‖2

)
+ p(x), (3)
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where ‖·‖ is the Euclidean norm, λ1, . . . , λn ∈ R and p is in Πd
m (the space of polyno-

mials in d variables of degree less than or equal to m). Common choices of radial basis
functions φ and the corresponding polynomial p(x) and minimal polynomial degree
mφ are given in Table 1. When φ is either cubic with φ(r) = r3 or thin plate spline
with φ(r) = r2 log r, the radial basis function interpolant sn has the form

sn(x) =

n∑
i=1

λiφ
(
‖x− xi‖2

)
+ bTx+ a, (4)

with λ1, . . . , λn ∈ R, b ∈ Rd, a ∈ R. The unknown parameters λi, b, a are obtained as
the solution of the linear equations(

Φ P

PT 0

)(
λ

c

)
=

(
F

0

)
, (5)

where Φ is the n× n matrix with Φij = φ
(
‖xi − xj‖2

)
and

P =


xT1 1
...

...

xTn 1

 , λ =


λ1

...

λn

 , c =


b1
...

bd

a

 , F =


f(x1)

...

f(xn)

 . (6)

If rank(P ) = d + 1, the matrix

(
Φ P

PT 0

)
is nonsingular and system (5) has a

unique solution [12]. Thus a unique radial basis function interpolant to f at the points
x1, . . . , xn is obtained. After this, one has to consider the question of choosing the
next point xn+1 to evaluate the objective function for. The idea of the RBF algorithm
is to use radial basis function interpolation and a measure of “bumpiness” of a radial
function, σ. A target value f∗n is chosen as an estimate of the global minimum of f .
For each y /∈ {x1, . . . , xn} there exists a radial basis function sy(x) that satisfies the
interpolation conditions

sy(xi) = f(xi), i = 1, . . . , n,

sy(y) = f∗n.
(7)

The next point xn+1 is then calculated as the value of y in the feasible region that
minimizes σ(sy). As a surrogate model is used, the function y 7→ σ(sy) is much cheaper
to compute than the original function.

In [3], a “bumpiness” measure σ(sn) is defined and it is shown that minimizing σ(sy)
subject to the interpolation conditions (7) is equivalent to minimizing a utility function
gn(y) defined as

gn(y) = (−1)mφ+1µn(y) [sn(y)− f∗n]
2
, y ∈ Ω \ {x1, . . . , xn} . (8)

The method of Gutmann and the bumpiness measure is further discussed in the more
recent papers [14] and [15] by Regis and Shoemaker. Writing the radial basis function
solution to the target value interpolation problem (7) as

sy(x) = sn(x) + [f∗n − sn(y)] ln(y, x), x ∈ Rd, (9)
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Table 1: Different choices of Radial Basis Functions.

RBF φ(r) > 0 p(x) mφ = degree(p(x))

cubic r3 bT · x+ a 1

thin plate spline r2 log r bT · x+ a 1

linear r a 0

multiquadric (r2 + γ2)
1
2 , γ > 0 a 0

inverse multiquadric 1/(r2 + γ2)
1
2 , γ > 0 a 0

Gaussian exp(−γr2), γ > 0 {0} -1

µn(y) is the coefficient corresponding to y of the radial basis interpolation function
solution ln(y, x) that satisfies ln(y, xi) = 0, i = 1, . . . , n and ln(y, y) = 1. µn(y) can
be computed as follows. Φ is extended to

Φy =

(
Φ φy

φTy 0

)
, (10)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n, and P is extended to

Py =

(
P

yT 1

)
. (11)

Then µn(y) is the (n+ 1)-th component of v ∈ Rn+d+2 that solves the system

(
Φy Py

PTy 0

)
v =

 0n

1

0d+1

 . (12)

The notations 0n and 0d+1 are used for column vectors with all entries equal to zero
and with dimension n and (d + 1), respectively. The computation of µn(y) is done
for many different y when minimizing gn(y). This requires O(n3) operations if not
exploiting the structure of Φy and Py. Hence, it does not make sense to solve the full
system each time. A better alternative is to factorize the matrix Φ and then use this
stored factorization to speed up the factorization of the matrix on the left hand side
of equation 12. An algorithm that requires O(n2) operations is described in [2].

Note that µn and gn are not defined at x1, . . . , xn and

lim
y→xi

µn(y) =∞, i = 1, . . . , n. (13)

This will cause problems when µn is evaluated at a point close to one of the known
points. The function hn(x) defined by

hn(x) =

{
1

gn(x)
, x /∈ {x1, . . . , xn}

0, x ∈ {x1, . . . , xn}
(14)

is differentiable everywhere on Ω, and is thus a better choice as an objective function.
Instead of minimizing gn(y) in (8), Gutmann [4] suggests to minimize −hn(y).

5



K. Holmström, N-H. Quttineh & M.M. Edvall

The basic RBF algorithm has been discussed in detail in [2, 4] and in the form below
in [7]. A discussion on how to expand the RBF algorithm to treat mixed-integer
nonlinear (MINLP) problems follows.

In order to handle possible infeasibility due to the linear and nonlinear constraints not
being fulfilled, define the following L1 type merit function

min
x

FL1(x) = f(x) + hL1(x), (15)

where
hL1(x) =

∑
j

max
(
0, Axj − bjU − εA, bjL −Ax

j − εA
)

+∑
j

max
(
0, cj(x)− cjU − εC , cjL − c

j(x)− εC
)
.

(16)

The linear feasibility tolerance εA and the nonlinear feasibility tolerance εC are directly
deducted when computing hL1(x), which means that any numerically feasible point
fulfills hL1(x) = 0 and f(x) = FL1(x). In the Algorithm RBF for MINLP given below,
the flag Feasible is used to track if the algorithm has found any feasible point or not.
Note that while hL1(x) is scale dependent it does not influence the behavior of the
algorithm RBF for MINLP given below, nor the ARBF algorithm in the next section.
This is due to the fact that hL1(x) is not used in building the interpolation surface,
and it is not used in the subproblem solutions. To compute the first RBF interpolation
surface, at least n ≥ d + 1 disjunct sample points are needed. This set is normally
found by using a statistical experimental design algorithm, e.g. Latin Hypercube
(McKay et al. [11]) or by evaluating some or all the corners of the box defined by Ω.
For a constrained or mixed-integer nonlinear problem, the RBF interpolation needs
to be a good approximation of f(x) in ΩC . Assuming that the constraints c(x) are
much less time-consuming to compute than the costly f(x), one can try to find a large
number of sample points using Latin Hypercube design, then compute hL1(x) for each
of the points and select the first n feasible points found as the initial experimental
design. Define this strategy as a Constrained Latin Hypercube (CLH) design. In case
enough feasible points can not be found, some of the infeasible points are added to
get n points. Results using the new CLH method to generate the initial experimental
design are compared to standard experimental designs in Section 5. Before turning
to the new Adaptive RBF algorithm in the next section, the basic RBF algorithm,
expanded to handle MINLP, is given below. This algorithm has been implemented in
the TOMLAB solver rbfSolve since 2004 and discussed in several conference talks, but
not been presented in great detail before.

Algorithm RBF for MINLP:

• Find initial set of n ≥ d+ 1 sample points xi ∈ ΩC using CLH or xi ∈ Ω using
any other experimental design method.

• Compute the n costly function values f(xi), i = 1, . . . , n and the (non-costly)
nonlinear constraints c(xi), i = 1, . . . , n. If using CLH, c(xi) are already com-
puted.

• Compute hL1(xi), i = 1, . . . , n and FL1(xi), i = 1, . . . , n.

• if for any i, f(xi) = FL1(xi) is true, set Feasible = 1, otherwise Feasible = 0.

• if Feasible, find the feasible point with the lowest function value (xMin, fMin)
by computing fMin(xMin) = min i=1,...,n, xi∈ΩC f(xi).
Otherwise, when no feasible point exists, set fMin(xMin) = min i=1,...,n FL1(xi).
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• As an approximation of the function f(x), x ∈ ΩC , use the n sample points,
(xi, f(xi)), xi ∈ Ω, to build a smooth RBF interpolation model sn(x) (surrogate
model, response surface model) with chosen φ and m ≥ mφ from Table 1.

• Iteration until n ≥ nMax, or a prescribed maximal CPU time (or fGoal, known
goal for f(x), achieved with a certain relative tolerance with xMin ∈ ΩC).

1. Find global minimum of the constrained RBF surface, sn(xsn) = min
x∈ΩC

sn(x)1.

2. In every iteration in sequence pick one of the N + 2 cycle step choices.

(a) Cycle step −1 (InfStep).
Set target value f∗n = −∞, i.e. solve the global optimization problem

g∞n (x∞gn) = min
x∈ΩC\{x1,...,xn}

µn(x), (17)

where µn(x) is computed as described in equation (12). Set xn+1 = x∞gn .

(b) Cycle step k = 0, 1, . . . , N − 1 (Global search).
Define target value f∗n ∈ (−∞, sn(xsn)] as

f∗n(k) = sn(xsn)− wk ·
(

max
i
f(xi)− sn(xsn)

)
,

with wk = (1−k/N)2 or wk = 1−k/N . Solve the global optimization
problem

gn(xkgn) = min
x∈ΩC\{x1,...,xn}

(−1)mφ+1µn(x) [sn(x)− f∗n(k)]
2

(18)

and set xn+1 = xkgn .

(c) Cycle step N (Local search).
If sn(xsn) < fMin−10−6|fMin|, accept xsn as new search point xn+1.
Otherwise set f∗n(k) = fMin−10−2|fMin|, solve (18) and set xn+1 = xkgn .

3. If xn+1 is not too close to x1, . . . , xn, accept xn+1 as search point and
evaluate f(xn+1) and FL1(xn+1).

4. If xn+1 ∈ ΩC , set Feasible = 1.

5. Update the point with lowest function value (xMin, fMin): either if Feasible
and f(xn+1) < fMin or if not Feasible and FL1(xn+1) < fMin.

6. Increase n and compute new RBF surface. Start new Iteration step.

The InfStep in 2a) is optional, since for most problems, it does not improve the con-
vergence to the global optimum. However, the coefficient µn(x) is always needed in
the Global search step, and sometimes in the Local search step as well. Note that
Gutmann [4] only considers one special case of the algorithm in which InfStep among
others are not included.

The range maxi f(xi)−sn(xsn) in Step 2b) must always be sufficiently positive. In the
case of an initial design with an almost flat surface, or with only infeasible initial points,
the range could become too small, zero, or negative. Therefore, the implementation
in rbfSolve safeguards the computation against this issue.

1Note that any nonlinear constraints are explicitly used in this subproblem. This is the
reason the nonlinear constraints need to be cheap.
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The range may also, for many problems, become too big and lead to unreasonably low
target values. Gutmann suggests replacing f(xi) > mediani f(xi) with mediani f(xi)
both when computing the range and in the RBF interpolation. In practice one com-
monly needs to use some strategy to reduce the range. When large values are replaced
by the median in the RBF interpolation, many numerical interpolation problems are
avoided, but when additional points are sampled close to a stationary point, the func-
tion approximation gets less and less accurate in other parts of the space.

The RBF algorithm in practice is very sensitive to the choice of initial experimental
design, especially when using stochastic designs. If the initial steps of the algorithm
fail to find some point in the basin of the global optimum, it often starts iterating
repeatedly with sample points on the boundaries in the Global search, and only refines
a local minima in the Local search.

Define the number of active variables α(x) as the number of elements of x that have
components close to the bounds in the box, i.e.

α(x) = |{j ∈ 1, . . . , d, j /∈ I : |xj − xjL| ≤ εx or |xj − xjU | ≤ εx}|. (19)

If a point is interior, then obviously α(x) = 0. The integer components of x are not
considered when determining if a point is interior or not. If studying α(x) during
the iterations when running rbfSolve for many problems, the algorithm frequently
generates points with some components on their bounds, α(x) > 0. Doing a systematic
study of the solution of (18) for many f∗n ∈ (−∞, sn(xsn)] on different subproblems
during the RBF iterations confirmed that the solution is typically not interior, and
hence a careful choice of target value is needed. Solving a large set of problems (18) for
different target values should generally be much less time-consuming than computing
the costly f(x). In addition computations for different target values are independent
and could be done in parallel on different CPUs. By examining solutions for a large
set of target values, it should be possible to find good search points in most iteration
steps, and only evaluate the costly f(x) for these points. In the next section a new
adaptive RBF algorithm suitable for parallel implementation is formulated.

3 The Adaptive Radial Basis Algorithm (ARBF)
for MINLP

In this section the main ideas of the new Adaptive Radial Basis Algorithm are dis-
cussed and a formalized description is provided. To overcome the limitations of the
RBF algorithm, the choice of target values must be made more flexible. The objective
function class is very wide and a robust algorithm must adapt to the particular be-
havior of a function. A few choices of target values based on the function value range
as in the RBF algorithm only works for nice well-behaved problems. This observation
has been confirmed by practical experience with the RBF algorithm for a large set
of real-life user problems over the past six years. Instead, a more adaptive algorithm
is proposed, based on evaluating a large set of target values in each iteration is pro-
posed. The approach is similar to two of the algorithms proposed by Jones in [9] to
solve kriging problems, named the Enhanced Method 4 and Method 7.
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Jones considers several kriging algorithms, e.g. Method 4, where the problem in each
iteration is to maximize the probability of improvement after setting a target value.
The optimal solution found is used as the new search point, and the costly f(x) is
evaluated for this search point and a new surrogate model of kriging type is computed.
As in the RBF algorithm, it is a major difficulty to set the target value properly in
each iteration. To overcome this problem, Jones proposes a new method called the
Enhanced Method 4 that uses a range of target values in each iteration, corresponding
to low, medium and high desired improvement. Similarly, in the ARBF algorithm, a
set of target values are selected each iteration. However, experience has demonstrated
the need to cover the full range from −∞. For each target value the global optimization
problem defined by (18) is solved.

Evaluating a large set of target values leads to many candidate points. If all were used,
it would lead to several costly function evaluations in each iteration. Jones shows on
one-dimensional examples that the optimal solutions tend to cluster in different areas
of the parameter space. Similar behavior has been observed for the solutions of (18)
with different target values. It is hence natural to apply a clustering algorithm to the
set of optimal points {x̂j}Mj=1 (transformed to the unit cube [0, 1]d), and use only one
or a few points from each group found. As described below, Jones suggests applying a
tailor-made clustering algorithm to the sequence of optimal points in decreasing target
value order. The algorithm has been modified by adding steps 7 and 8 later in this
section. In the test in step 8 the number of components on bounds is used, defined as
in (19). Compared to Holmström [7], the algorithm has also been updated to handle
mixed-integer problems by separating treatment of integer and continuous variables,
and in addition step 1 is new.

The Jones Cluster Algorithm for MINLP

• Transform the set of optimal points {x̂j} to the unit cube [0, 1]d, and compute
the distance between two successive optimal points as

∆j =

√ ∑
l=1,...,d,l/∈I

(x̂lj − x̂lj+1)2/(d− |I)|.

• Compute the number of integer components that are different between two suc-
cessive solutions as ∆I

j = |{l ∈ I : x̂lj 6= x̂lj+1}|.
• Assign point 1, x̂1, to group 1.

• Sequentially consider point 2 to M . For each point, if a criterion C > 12, a new
group is started. The criterion C is computed as follows:

1. If ∆I
j−1 > 0 then set C = 100, i.e. start a new group. Then at least one

integer component has changed.

2. If ∆j > 0.1 and ∆j−1 > 0.1 then set C = 100, i.e. start a new group.

3. Otherwise, if ∆j > 0.0005, then set C = ∆j−1/∆j .

4. Otherwise, if j ≥ 3 and ∆j−1 > 0.0005, then set C = ∆j−1/max(∆j−2, 0.0005).

5. Otherwise, if j = 2 and ∆1 > 0.1 and ∆2 < 0.0005, then set C = 100 to
signal the need for a new group.

6. If none of the above conditions is satisfied, set C = 0, i.e. no need to start
a new group unless any of the following two criteria are fulfilled.
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7. If j = M and C < 12 and ∆M−1 > 0.1, set C = 100, i.e. start a new group
for the last point.

8. If C < 12 and ∆j−1 > 0.1 and α(x̂j) = α(x̂j−1), check if any of the
components on the bounds for point x̂j have at least a 10% difference in the
corresponding components in x̂j−1. Also test if any of the components on
the bounds for point x̂j−1 have at least a 10% change in the corresponding
components in x̂j . If any of the tests are true, start a new group by setting
C = C + 200.

Let fMin = mini f(xi) and fMax = maxi f(xi). Jones suggests setting the target
values using a fixed grid as f∗n(j) = sn(xsn) − wj · f∆, where the range is set to
f∆ = fMax − fMin. The two first rows in Table 2 show the choice of target value
factors wj . In the new algorithm, two extreme values shown in row three have been
added. It is then easier to detect if the range of target values is sufficient.

Table 2: Weight factors wj used in the global grid search

0.0 10−4 10−3 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.10 0.11 0.12 0.13 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00

1.50 2.00 3.00 100 ∞

The above choice of f∆ might become too big if the function varies over a large range.
In such cases, as a fixed grid is used, there may be failure to sample important target
values that would lead to the region of the global minimum. Since the range can only
get larger as the iterations proceed, the algorithm is unlikely to sample these target
values in later iterations.

To be more flexible and adaptive, the target values are set as f∗n(j) = sn(xsn) − β ·
wj · f∆, where β is an adaptive factor and the range is

f∆ =

{
min(max(1, fMin), fMax − fMin), iffMin > 0

min(10 ·max(1, |fMin|), fMax − fMin), iffMin ≤ 0.
(20)

If several optimal solutions for different target values are equal or very close, it might
be a sign that the target values are too close, so β is iteratively increased by a factor
10 If the optimal point found for the second target value is far from the solution of
the first target value, i.e. the minimum of the RBF surface, it is a sign that the target
values are too spread out, and β is likewise decreased by a factor 10. In most cases
this happens close to a stationary point.

As in the original RBF algorithm, every iteration of the ARBF algorithm starts by
finding the global minimum of the RBF surface with respect to all constraints by
solving

ŝn := sn(xsn) = min
x∈ΩC

sn(x).

If ŝn � fMin the RBF surface is fluctuating wildly and there is no point in applying
a target value strategy. The target values need to be even lower than ŝn, so they
might as well be set much lower than the actual global minimum. Applying the target
value strategy in such cases generally produces garbage solution points. Instead, the

10



An adaptive radial basis algorithm (ARBF) for constrained CGO

minimum of the RBF surface is added as a new point repeatedly until the interpolation
stabilizes and more reasonable target values can be set. If ŝn is closer to fMin and the
oscillation of the surface is less pronounced, the question is when to rely on the target
value strategy. The approach taken is to consider the RBF surface wildy fluctating,
i.e. applying the above strategy, down to a relative difference of 10%. This works well
in tests so far, but other values could be tried. Currently the following test is used:
If ŝn < fMin − 0.1|fMin| when fMin 6= 0, or ŝn < fMin − 10v when fMin = 0, then
ŝn � fMin is considered true. v is computed as v = min(f(x)), x ∈ {x : f(x) > 10−7}.
For the special case when the set is empty, v = 10−7 is used.

For every ARBF iteration, the algorithm is in one of three modes: the wild mode
described in the previous paragraph, a global grid search mode, or a local grid search
mode. In the global grid search the aim is to sample one or more points from every
region of interest. In the local grid search the aim is to find a better approximation
of any stationary points close to the best point found so far. Ideally one of these
stationary points is also the global minimum. Note that the global grid search also
sample points close to the best point found similar to the local grid search. In the
wild mode the aim is to proceed with surface minimum points until the interpolation
is stable enough to make a global target value grid give reasonable results. The wild
mode is entered automatically when the surface is fluctuating wildly, but the switch
between global and local grid mode is determined by the algorithm in the following
way: Start with global grid mode, and as long as this gives function value reductions,
stay in that mode. Every iteration of the global and local grid mode always end by
adding the minimum point of the surface (one S-step). This is taken care of by the flag
EndGridMode. When no reduction is achieved in an iteration of the global mode (or
possibly only in the final surface minimum S-step sampling) the algorithm switches to
local mode. The same logic applies for local mode; it continues the local grid search
until no reductions are achieved, and then switches to global mode. In both the local
and global grid mode, one or more points might be selected using the cluster algorithm
and some heuristic rules (discussed later in this section). The formal ARBF algorithm
description can now be given.

Algorithm ARBF for MINLP:

• Find initial set of n ≥ d+ 1 sample points xi ∈ ΩC using CLH or xi ∈ Ω using
any other experimental design method.

• Compute the n costly function values f(xi), i = 1, . . . , n and the (non-costly)
nonlinear constraints c(xi), i = 1, . . . , n. If using CLH, c(xi) are already com-
puted.

• Compute hL1(xi), i = 1, . . . , n and FL1(xi), i = 1, . . . , n.

• If for any i, f(xi) = FL1(xi) is true, set Feasible = 1, otherwise Feasible = 0.

• if Feasible, find the feasible point with the lowest function value (xMin, fMin)
by computing fMin(xMin) = min i=1,...,n, xi∈ΩC f(xi).
Otherwise, when no feasible point exists, set fMin(xMin) = min i=1,...,n FL1(xi).

• As an approximation of the function f(x), x ∈ ΩC , use the n sample points,
(xi, f(xi)), xi ∈ Ω, to build a smooth RBF interpolation model sn(x) with
chosen φ and m ≥ mφ from Table 1.

• Set GlobalProgress = 1 and LocalProgress = 0, making the initial search
mode global. Also initialize EndGridMode = 0.
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• Iteration until n ≥ nMax, or a prescribed maximal CPU time (or fGoal, known
goal for f(x), achieved with a certain relative tolerance at xMin ∈ ΩC).

1. Find the global minimum of the RBF surface, sn(xsn) = min
x∈ΩC

sn(x).

2. Find a set of new search points X = {x̄j , j = 1, . . . , k} by applying one of
the following three types of search procedures dependent on logical condi-
tions given for each procedure.

(a) Wild Mode (S-step). If sn(xsn) � fMin or EndGridMode = 1,
accept the RBF surface minimum xsn as the new search point, i.e.
X = xsn . Set EndGridMode = 0.

(b) Global Grid Mode. (G-step). If GlobalProgress = 1, define M
target values f∗n ∈ (−∞, sn(xsn)] as f∗n(j) = sn(xsn)−β ·wj · f∆ with
wj , j = 1, . . . ,M , a vector of predefined factors in the range [0,∞],
and β an adaptive weight factor in the range [10−3, 103], initialized as
β = 1. The function range f∆ is determined in each step as described
in (20).
For each of the M target values, solve the global optimization problem

gn(x̂j) = min
x∈ΩC\{x1,...,xn}

(−1)mφ+1µn(x) [sn(x)− f∗n(j)]
2

(21)

Then use the Jones Clustering Algorithm on the M optimal solution
points x̂j . Apply heuristic rules to determine which of the clustered
groups to consider, and in each selected group, which of the points
to include in the new set of search points X; see the Point Selection
Algorithm later in this section. Set EndGridMode = 1.

(c) Local Grid Mode. (L-step). If LocalProgress = 1, define ML

target values using the same factors wj as in the G-step together with
some additional small factors.
Solve (21) and apply the Jones Clustering Algorithm to the ML opti-
mal solutions x̂j .
Apply the heuristic rules described in the Point Selection Algorithm
to determine which points in the first cluster group should be included
in set X. Set EndGridMode = 1.

3. Check the set of new search points X = {x̄j , j = 1, . . . , k}, deleting any
point too close (normalized distance less than 10−4) to any previous point
in X; or too close to any sample point x1, . . . , xn (distance less than 10−8).

4. Set xn+j = x̄j , j = 1, . . . , k and evaluate f(xn+j), c(xn+j), j = 1, . . . , k
and FL1(xn+j), j = 1, . . . , k

5. If any xn+j ∈ ΩC , j = 1, . . . , k, set Feasible = 1.

6. If Feasible and minj=1,...,k f(xn+j) < fMin or
if not Feasible and minj=1,...,k FL1(xn+j) < fMin

– Update the point with lowest function value (xMin, fMin).

– Set LocalProgress = 1 (if L-step).

– Set GlobalProgress = 1 (if G-step).

else

– Set LocalProgress = 0 (if L-step).

12
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– Set GlobalProgress = 0 (if G-step).

7. Increase n by k; compute new RBF surface. Start new Iteration step.

The selection of trial points utilizing the result of the clustering process applied to
the set of optimal solutions computed from the target values is one of the heuristics.
For kriging algorithms, Jones suggests picking the last member of each of the groups
formed by the clustering algorithm as a new candidate point, i.e. the one with the
smallest target value in each group. This selection criteria has been found a bit crude
when applied to RBF algorithms. Therefore a Point Selection Algorithm has been
developed, which describes how to generate new trial points based on the results from
the Jones Cluster Algorithm. The algorithm is described in detail in Holmström [7].

The main idea is to only select points from the cluster groups with least number of
components on bounds, found by computing α(x) in (19) for every optimal solution.
The number of points selected in each group depends on the distance between the
optimal points in the group. The first group, with optimal points close to the current
RBF surface minimum, and the last group, with lowest target values including the
−∞ target value, are treated separately.

4 Implementation of the RBF and ARBF
for MINLP

The MINLP algorithms described are available in MATLAB using the TOMLAB Op-
timization Environment (http://tomopt.com/tomlab/). The Algorithm ARBF for
MINLP in Section 3 is implemented in the TOMLAB solver ARBFMIP, while the
Algorithm RBF for MINLP in Section 2 is found in the solver rbfSolve. Similar ideas
were used to implement a MINLP version of the Efficient Global Optimization (EGO)
method described by Jones et al. [10]. All three solvers are part of the TOMLAB/CGO
toolbox for costly nonconvex black-box mixed-integer optimization.

The implementations rely on robust solutions of the non-costly global MINLP opti-
mization problems described as part of the algorithms, equations (3), (18), (17) and
(21). Subsolvers are required for all three costly MINLP solvers. Any standard MINLP
solver in TOMLAB can be used; currently there are nine choices. In order to make
the CGO solvers more robust, if the subsolver returns an infeasible solution to the
MINLP subproblem, one or two alternative solvers will try to find a feasible solution.

By default and in the numerical tests, the global MINLP solver glcCluster is used. It
uses a mixed-integer constrained DIRECT solver (glcDirect, glcFast or glcSolve) as the
initial step, then applies an adaptive clustering algorithm to all points sampled by the
DIRECT algorithm, and finally repeats local optimization with fixed integer variables.
The starting points in the local optimizations are set as the best point found in each
cluster. As local solver, any nonlinear programming solver in TOMLAB is suitable; by
default NPSOL and SNOPT are used. TOMLAB also has four derivative-based mixed-
integer nonlinear solvers, MULTIMIN, OQNLP, MINLPBB and MISQP. If derivatives
are estimated numerically, these four solvers can be used as subsolvers. In the tests,
OQNLP and MULTIMIN were used as alternative solvers, whenever glcCluster failed
to find a feasible solution for a subproblem.
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5 Numerical Results

In this section the results from a set of standard MINLP test problems and a set of
constrained global optimization test problems are reported. Each problem set was
solved using ARBFMIP, rbfSolve, EGO, OQNLP, MINLPBB, MISQP and GENO.

For the black-box CGO solvers ARBFMIP, rbfSolve and EGO, different settings and
experimental designs were evaluated to see if any combination outperforms the rest.
Two types of radial basis functions were used for ARBFMIP and rbfSolve: the thin
plate spline φ(r) = r2 log r (TPS) and the cubic spline φ(r) = r3 (Cubic). Three
different experimental designs are used: The standard Latin Hypercube (LH), the
Constrained Latin Hypercube (CLH) as defined in Section 2 and a corner strategy
we denote LAC. LAC picks the lower left corner and its d adjacent corners, i.e. the
following d+ 1 corners of Ω:

{xL, xL + ei, i = 1, . . . , d, with ei = 0 ∈ Rd, except component j : eji = xjU − x
j
L}.

In the tests the midpoint of the box, (xL + xU )/2, is always added as point d + 2 in
this design strategy. In the tests of the CLH design, the minimal number of points,
n = d + 1, was used. Slightly more robust results would probably be obtained if n
were increased somewhat. In all runs with the CGO solvers, the maximum number of
function evaluations were set to 250 (nMax = 250 in Algorithm RBF and ARBF for
MINLP).

In the tables, row ExD gives the experimental design used, row RBF gives the radial
basis function used, and in row Scale the On/Off switch indicates whether variable
scaling to the unit cube was used or not. For the MINLP problems, scaling was
not used. Column IP specifies the number of initial points from the experimental
design. For rbfSolve the option to replace all function values f(xi) > medianif(xi)
with the medianif(xi) is used if row Repl is set to Yes. The function values are
replaced both when computing the range and in the RBF interpolation. In ARBFMIP
this choice of replacement strategy is avoided. In each iteration, for the radial basis
interpolation, all function values in the range [fMin,max(0, fMin)+105] are untouched
and values f(x) > max(0, fMin)+105 are replaced by max(0, fMin)+105+log10(f(x)−
max(0, fMin)− 105). Thereby, huge scale differences in the linear equation system (5)
are avoided. The other possible source of numerical difficulties in solving (5) is a very
badly scaled domain [xL, xU ]. Such a problem is easily avoided by using the scale
option described above.

The solvers OQNLP, MINLPBB and MISQP are derivative-based MINLP solvers,
but were forced to estimate derivatives numerically in the experiments. It is easy to
derive analytical derivatives for the test problems, but the aim is to test the ability to
solve black-box problems. OQNLP implements a stochastic algorithm to find starting
points, and the random point generation depends on a seed parameter. In the tests
only one seed parameter value was set. The other two solvers are deterministic, and
the result is only dependent on the starting point given. In the tests, each problem is
solved with 100 random starting points created inside the box defined by the simple
bounds.

The GENO solver implements a constrained mixed-integer nonlinear stochastic genetic
algorithm. This type of algorithm is popular in practice, although many function
evaluations are needed to reach a global minimum.
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Each test problem was solved with 50 random starting points (using the same starting
points as in the experiments with OQNLP, MINLPBB and MISQP, but only the first
50). It is possible to specify a random seed in GENO. The result of a run with a
genetic algorithm is highly dependent on the set of random points generated in the
run. Therefore, each problem was solved using 5 different seeds. Thus, each problem
was solved 250 times. A time limit was defined for all runs with GENO, in order to
avoid excessive run-times. The limit was set so that GENO could perform at least
10000 function evaluations. Most of the runs do not find any good solutions.

Throughout this section, all tables come in pairs and present the number of function
evaluations needed to achieve a function value with relative error of 1% and 0.01%
respectively. The relative error is defined as

E =
fMin − fglobal
|fglobal|

, (22)

where fMin is the current best function value and fglobal is the known global optimum
(which is nonzero for all the problems). A − sign indicates failure.

5.1 Numerical Results for mixed-integer nonlinear
programs

Table 3 gives a compact description for the MINLP test functions, including the abbre-
viations used. Column d is the number of variables, xI the number of integer variables,
Ax the number of linear inequality constraints, Ax with = on the row below the num-
ber of linear equality constraints, c(x) the number of nonlinear inequality constraints
and c(x) with = on the row below the number of nonlinear equality constraints. The
Domain column shows the lower and upper bounds for all variables.

Table 3: Names and descriptions of the MINLP test problems

Problem Abbrev. d xI Ax Ax c(x) c(x) Domain

= =

Kocis & Grossmann 1998 KG98 5 3 3 0 2 2 [0, 10−8, 0, 0, 0] − [108, 108, 1, 1, 1]

Floudas 1995 6.6.5 FL95 3 1 2 0 1 0 [0.2,−2.22554, 0] − [1,−1, 1]

Pörn et al. 1997 PÖ97 2 2 3 0 1 0 [1, 1] − [5, 5]

Kocis & Grossmann 1989 KG89 4 2 1 0 4 0 [0, 0, 0, 0] − [10, 20, 1, 1]

Kesavan et al. 2004 D KE04 5 3 3 1 1 0 [0, 0, 0, 1, 1] − [1, 1, 1, 10, 6]

Floudas-Pardalos 3.4TP3 FP1 6 2 3 0 2 0 [0, 0, 1, 0, 1, 0] − [6, 6, 5, 6, 5, 10]

Floudas-Pardalos 12.2TP1 FP2 5 3 3 0 2 2 [0]5 − [1, 1, 1, 1.5, 1.6]

Floudas-Pardalos 12.2TP3 FP3 7 4 5 0 4 0 [0]7 − [1.2, 1.8, 2.5, 1, 1, 1, 1]

Floudas-Pardalos 12.2TP4 FP4 11 8 4 0 3 3 [0]11 − [1]11

Floudas-Pardalos 12.2TP5 FP5 2 2 3 0 1 0 [1, 1] − [5, 5]

Floudas-Pardalos 12.2TP6 FP6 2 1 2 0 1 0 [1, 1] − [10, 6]

Floudas-Pardalos 12.2TP2 FP7 3 1 2 2 1 0 [0, 0.2,−2.22554] − [1, 1,−1]
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Table 4 presents the results for rbfSolve with different settings. The number of function
values needed to get close to the optimal value with requested accuracy is very low in
all cases. The results are very similar and practically independent of the parameter
settings used for the two experimental designs tested, LAC and CLH. There are a few
failures to converge, possibly avoided if using a larger number of initial points in the
experimental design. In four cases the failures are avoided if the median replacement
option is used, but this option often leads to slower convergence.

Table 4: Number of function evaluations to get within 1% and 0.01% of the optimal
value for rbfSolve on the MINLP test problems.

E ≤ 10−2 E ≤ 10−4

ExD LAC CLH LAC CLH

RBF TPS Cubic TPS Cubic TPS Cubic TPS Cubic

Scale Off Off Off Off Off Off Off Off

Repl IP Yes No Yes No IP Yes No Yes No Yes No Yes No Yes No Yes No

KG98 7 9 8 9 8 6 10 10 10 10 9 8 9 8 10 10 10 10

FL95 5 8 6 8 6 4 5 5 5 5 8 6 8 6 7 5 5 5

PÖ97 3 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5

KG89 6 13 8 16 11 5 11 8 8 8 19 - - - 14 14 17 20

KE04 7 8 8 8 8 6 8 7 8 7 8 8 8 8 8 7 8 7

FP1 8 24 - 10 19 7 24 14 21 16 24 - 10 - 24 14 21 16

FP2 7 8 8 8 8 6 7 7 7 7 8 8 8 8 7 7 7 7

FP3 9 10 10 10 10 8 - - - - 10 10 10 10 - - - -

FP4 13 21 21 15 15 12 23 20 20 16 21 21 15 15 23 20 20 16

FP5 3 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5

FP6 4 5 5 5 5 3 4 4 4 4 5 5 5 5 4 4 4 4

FP7 5 7 7 7 7 4 7 7 7 7 - - - - - - - -

Table 5 and Table 6 present the results for ARBFMIP and EGO with different settings.

The results for ARBFMIP are in general excellent, with a very low number of function
evaluations needed to converge and few failures. The reason for most failures is that the
target value search grid needs to be made more dense in the Point Selection Algorithm
when close to the global optimum. This problem is easy to detect and an adaptive
strategy to overcome the problem is in development. EGO also shows good results
for the CLH design, when feasible points are obtained in the experimental design. It
was not tested using LAC as initial design, since it needs more initial points to work
properly.

Table 7 and Table 8 present the results for OQNLP, MINLPBB and MISQP. The
number of failures (in %) and the mean, min and max values for the successful runs
out of the total 100 for each problem are reported, as well as the number of constraint
evaluations needed. For example, 166 123 represents 166 function evaluations and 123
constraint evaluations. The deterministic solvers are more sensitive to the initial start-
ing points. MISQP had two cases that did not converge, and seems less robust than
the other two. The number of function evaluations needed is an order of magnitude
higher than for the CGO solvers. The solvers also often had trouble obtaining higher
accuracy solutions.
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Table 5: Number of function evaluations to get within 1% of the optimal value for
ARBFMIP and EGO on the MINLP test problems. No variable scaling was
used.

Solver ARBFMIP EGO

ExD LAC CLH LH CLH LH

RBF IP TPS Cubic IP TPS Cubic IP TPS Cubic IP IP

KG98 7 8 8 6 7 7 51 52 52 6 11 51 -

FL95 5 6 6 4 6 6 33 34 35 4 - 33 37

PÖ97 3 5 5 3 4 4 14 14 14 3 5 14 14

KG89 6 8 11 5 6 6 41 48 42 5 18 41 -

KE04 7 8 8 6 7 7 51 52 52 6 - 51 -

FP1 8 - 15 7 - - 65 66 66 7 164 65 -

FP2 7 8 8 6 7 7 19 52 52 6 8

FP3 9 10 10 8 13 - 65 66 66 8 62 65 -

FP4 13 19 15 12 23 18 65 102 - 12 42

FP5 3 5 5 3 4 4 14 14 14 3 4 14 14

FP6 4 5 5 3 4 4 21 22 22 3 5 21 -

FP7 5 6 6 4 7 7 33 34 34 4 13 33 -

Table 6: Number of function evaluations to get within 0.01% of the optimal value for
ARBFMIP and EGO on the MINLP test problems. No variable scaling was
used.

Solver ARBFMIP EGO

ExD LAC CLH LH CLH LH

RBF IP TPS Cubic IP TPS Cubic IP TPS Cubic IP IP

KG98 7 8 8 6 7 7 51 52 52 6 11 51 -

FL95 5 6 6 4 6 6 33 34 35 4 - 33 37

PÖ97 3 5 5 3 4 4 14 14 14 3 5 14 14

KG89 6 10 12 5 6 7 41 52 52 5 - 41 -

KE04 7 8 8 6 7 7 51 52 52 6 - 51 -

FP1 8 - 15 7 - - 65 66 66 7 164 65 -

FP2 7 8 8 6 7 7 19 52 52 6 8

FP3 9 10 10 8 13 - 65 66 66 8 - 65 -

FP4 13 19 15 12 23 18 65 102 - 12 42

FP5 3 5 5 3 4 4 14 14 14 3 4 14 14

FP6 4 5 5 3 4 4 21 22 22 3 5 21 -

FP7 5 - - 4 - - 33 - - 4 13 33 -

17



K. Holmström, N-H. Quttineh & M.M. Edvall

T
a
b
le

7
:

N
u

m
b

er
o

f
fu

n
ct

io
n

ev
al

u
at

io
n

s
to

g
et

w
it

h
in

1
%

o
f

th
e

o
p

ti
m

al
va

lu
e

fo
r
O

Q
N

L
P

,
M

IN
L
P
B
B

an
d

M
IS

Q
P

o
n

th
e

M
IN

L
P

te
st

pr
o

b
le

m
s.

S
o
lv

e
r

%
O

Q
N

L
P

%
M

IN
L

P
B

B
%

M
IS

Q
P

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

F
a
il

m
e
a
n

m
in

m
a
x

K
G

9
8

7
5

7
5
2
9

5
9
4
3

1
6
6

1
2
4

2
6
3
3
5

1
9
2
4
7

5
0

1
1
9

6
1

1
1
9

6
1

1
1
9

6
1

5
3

1
9
9

1
7
7

9
1

8
1

2
4
4

2
1
7

F
L

9
5

0
1
7
1

1
5
8

1
8

1
2

2
9
7

2
7
9

0
1
3
7

9
5

1
2
1

8
1

1
3
8

9
6

4
8

2
5

2
5

6
6

4
1

4
1

P
Ö
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Table 9 presents the results for the GENO solver running each problem 50× 5 = 250
times. Almost every problem fails to be solved within 10000 function evaluations and
the range of failures is between 84 and 100 percent. A stochastic genetic algorithm
solver like GENO is clearly not suitable for costly black-box MINLP problems.

Table 9: Number of function evaluations to get within 1% and 0.01% of the optimal
value for GENO on the MINLP test problems.

% E ≤ 10−2 % E ≤ 10−4

Fail mean min max Fail mean min max

KG98 100 - - - 100 - - -

FL95 94 5761 3048 3711 844 7785 4588 94 11831 7186 9569 5902 14810 8412

PÖ97 100 - - - 100 - - -

KG89 99 6529 4614 5459 3261 7598 5967 100 - - -

KE04 100 - - - 100 - - -

FP1 100 - - - 100 - - -

FP2 94 9094 5550 8538 5028 10165 6005 94 9094 5550 8538 5028 10165 6005

FP3 96 5343 3277 4398 2765 5818 4029 100 - - -

FP4 100 - - - 100 - - -

FP5 100 - - - 100 - - -

FP6 100 - - - 100 - - -

FP7 84 6538 3229 1977 907 8858 5403 100 - - -

5.2 Numerical Results for Constrained Global
Optimization Problems

In this section, evaluations performed on a set of Constrained global optimization test
problems are presented. Table 10 gives the names of the problems and the abbrevi-
ations used and Table 11 gives a compact description of the test functions with the
same notation as in Table 3.

Table 12 and Table 13 present the results for rbfSolve. In this case runs with and
without variable scaling to the unit cube are reported. As for the MINLP problems,
the results are in most cases very good.

Table 14 and Table 15 present the results for ARBFMIP for all three experimental
designs. Results are excellent, similar to the results for the MINLP problems in Sec-
tion 5.1. Comparing the results for the CLH and LH experimental designs, clearly
much fewer function evaluations are needed using the CLH design and more general
failures are avoided. Creating an experimental design with feasible points, as in the
CLH design method, seems to be advantageous and helps the progress of RBF-type
algorithms. Figures 1 and 2 show a comparison between the results for ARBFMIP
and rbfSolve for the CLH and LAC initial designs. It is easy to see that ARBFMIP
produces improved results since most points cluster in the right side of the diagrams.
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Table 10: Names and abbreviations for the constrained global optimization test problems

Abbrev Problem Name Abbrev Problem Name Abbrev Problem Name

P1 Gomez 2 P7 Schittkowski 234 P13 Schittkowski 343

P2 Gomez 3 P8 Schittkowski 236 P14 Floudas-Pardalos 3.2 TP 1

P3 Hock-Schittkowski 59 P9 Schittkowski 237 P15 Floudas-Pardalos 3.3 TP 2

P4 Hock-Schittkowski 65 P10 Schittkowski 239 P17 Floudas-Pardalos 3.5 TP 4

P5 Hock-Schittkowski 104 P11 Schittkowski 330 P18 Floudas-Pardalos 4.10 TP 9

P6 Hock-Schittkowski 105 P12 Schittkowski 332 P28 Zimmerman

Table 11: Description of the constrained global optimization test problems

Problem d Ax Ax c(x) c(x) Domain

Nr. = =

P1 2 0 0 1 0 [−1,−1] − [1, 1]

P2 2 0 0 1 0 [−1,−1] − [1, 1]

P3 2 0 0 3 0 [0, 0] − [75, 65]

P4 3 0 0 1 0 [−4.5,−4.5,−5] − [4.5, 4.5, 5]

P5 8 0 0 6 0 [0.1]8 − [10]8

P6 6 1 0 0 0 [0, 0, 1, 0, 1, 0] − [6, 6, 5, 6, 5, 10]

P7 2 0 0 1 0 [0.2, 0.2] − [2, 2]

P8 2 0 0 2 0 [0, 0] − [75, 65]

P9 2 0 0 3 0 [54, 0] − [75, 65]

P10 2 0 0 1 0 [0, 0] − [75, 65]

P11 2 0 0 1 0 [10−10, 10−10] − [5, 5]

P12 2 0 0 2 0 [0, 0] − [1.5, 1.5]

P13 3 0 0 2 0 [0, 0, 0] − [36, 5, 125]

P14 8 3 0 3 0 10× [10, 100, 200, 1, 1, 1, 1, 1] − 500× [2, 4, 12, 1, 1, 1, 1, 1]

P15 5 0 0 6 0 [78, 33, 27, 27, 27] − [102, 45, 45, 45, 45]

P17 3 2 0 1 0 [0, 0, 0] − [2, 2, 3]

P18 2 0 0 2 0 [0, 0] − [3, 4]

P28 2 0 0 2 0 [0, 0] − [100, 100]

Table 16 and Table 17 illustrate the results for OQNLP, MINLPBB and MISQP. The
same settings as for the MINLP-problems were used. In general OQNLP performed
much better for this test set than for the MINLP problems. The deterministic solvers
have rather many failures that are due to bad starting points. The function evaluations
needed are less than for the MINLP problems, but still much higher than for the CGO
solvers.

Table 18 presents the results for the GENO solver running each problem 50× 5 = 250
times. The results are slightly better than for MINLP problems, and a few problems
are always solved in less than 10000 function evaluations. Still, six problems are never
solved, and many others are solved only in very few runs. The number of function
evaluations needed to achieve the required accuracy is several orders of magnitude
larger than for the other solvers used. We conclude that, as for the MINLP tests, a
stochastic genetic algorithm is not suitable for any form of costly optimization.
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Table 12: Number of function evaluations to get within 1% of the optimal value for
rbfSolve on the constrained global test problems.

ExD LAC CLH

RBF TPS Cubic TPS Cubic

Scale On Off On Off On Off On Off

Repl IP Yes No Yes No Yes No Yes No IP Yes No Yes No Yes No Yes No

P1 4 5 5 5 5 5 5 5 5 3 9 9 7 8 6 6 5 5

P2 4 31 28 31 28 13 22 10 22 3 12 12 15 18 15 12 12 6

P3 4 16 9 16 9 9 10 9 10 3 21 12 22 23 12 12 18 12

P4 5 20 23 14 23 23 20 14 20 4 25 25 22 13 22 13 22 16

P5 10 64 46 126 54 84 46 63 34 9 36 24 18 36 36 36 48 27

P6 10 - - - - - - - - 9 72 105 - - 195 93 - -

P7 4 5 5 5 5 5 5 5 5 3 5 4 7 4 5 4 7 4

P8 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P9 4 5 5 5 5 5 5 5 5 3 4 4 4 5 4 4 4 5

P10 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P11 4 - - - - - - - - 3 36 6 14 6 23 6 12 6

P12 4 13 48 16 13 61 6 16 6 3 18 36 15 21 15 9 21 36

P13 5 15 14 10 10 7 7 10 10 4 13 10 38 39 7 10 17 17

P14 10 19 13 26 11 25 13 22 12 9 21 12 33 11 15 12 21 18

P15 7 13 9 13 9 13 9 12 10 6 7 8 7 9 7 7 9 9

P17 5 6 6 6 6 6 6 6 6 4 7 47 5 5 7 55 5 5

P18 4 5 5 5 5 5 5 5 5 3 67 117 5 5 61 15 5 5

P28 4 5 5 5 5 5 5 5 5 3 55 11 4 4 6 11 4 4

Table 13: Number of function evaluations to get within 0.01% of the optimal value for
rbfSolve on the constrained global test problems.

ExD LAC CLH

RBF TPS Cubic TPS Cubic

Scale On Off On Off On Off On Off

Repl IP Yes No Yes No Yes No Yes No IP Yes No Yes No Yes No Yes No

P1 4 5 5 5 5 5 5 5 5 3 18 15 8 15 9 12 6 5

P2 4 55 28 52 40 19 25 19 34 3 30 15 30 30 18 18 12 12

P3 4 - - - - - - - - 3 - - - - - - - -

P4 5 32 44 35 38 29 20 23 20 4 43 43 37 37 37 22 31 22

P5 10 175 115 - 124 208 100 175 166 9 - - 183 168 102 156 207 48

P6 10 - - - - - - - - 9 - - - - - - - -

P7 4 5 5 5 5 5 5 5 5 3 5 4 7 4 5 4 7 4

P8 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P9 4 5 5 5 5 5 5 5 5 3 4 4 4 5 4 4 4 5

P10 4 11 5 11 5 5 5 5 5 3 6 4 6 4 7 4 7 4

P11 4 - - - - - - - - 3 39 6 18 6 30 21 18 24

P12 4 13 49 16 22 61 6 16 19 3 18 39 15 24 21 9 21 36

P13 5 15 16 10 13 7 7 10 13 4 13 10 38 39 10 10 17 17

P14 10 31 13 73 13 43 13 34 13 9 63 12 75 12 29 12 21 18

P15 7 13 10 13 10 13 10 12 10 6 9 9 7 9 9 9 9 9

P17 5 6 6 6 6 6 6 6 6 4 7 47 5 5 7 57 5 5

P18 4 5 5 5 5 5 5 5 5 3 67 117 5 5 61 15 5 5

P28 4 7 7 7 5 7 7 7 5 3 55 11 4 4 6 11 4 4
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Table 14: Number of function evaluations to get within 1% of the optimal value for
ARBFMIP on the constrained global test problems.

ExD LAC CLH LH

RBF TPS Cubic TPS Cubic TPS Cubic

Scale IP On Off On Off IP On Off On Off IP On Off On Off

P1 4 5 5 5 5 3 6 5 5 5 21 22 22 22 22

P2 4 19 81 10 - 3 11 9 13 9 21 52 35 - 28

P3 4 14 12 8 8 3 53 22 26 39 21 38 42 41 28

P4 5 56 20 20 18 4 50 20 23 20 33 82 50 42 40

P5 10 53 33 31 44 9 25 20 37 20 65 66 71 66 77

P6 10 66 - - - 9 45 - - - 65 206 - 212 -

P7 4 5 5 5 5 3 4 4 4 4 21 22 22 22 22

P8 4 13 19 9 9 3 5 7 5 7 21 25 26 22 22

P9 4 5 7 5 7 3 5 5 5 5 21 31 22 23 23

P10 4 16 11 9 9 3 5 7 5 7 21 25 26 22 22

P11 4 70 - 62 84 3 5 9 6 9 21 173 156 65 60

P12 4 8 9 7 7 3 19 - - - 21 - 23 24 25

P13 5 10 8 12 6 4 5 8 5 8 33 35 35 35 34

P14 10 11 11 11 11 9 10 10 10 10 65 - - - 93

P15 7 8 8 8 8 6 11 9 12 9 51 59 55 54 53

P17 5 6 5 6 6 4 5 5 5 5 33 34 34 34 34

P18 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

P28 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

Table 15: Number of function evaluations to get within 0.01% of the optimal value for
ARBFMIP on the constrained global test problems.

ExD LAC CLH LH

RBF TPS Cubic TPS Cubic TPS Cubic

Scale IP On Off On Off IP On Off On Off IP On Off On Off

P1 4 5 5 5 5 3 10 6 6 6 21 22 22 22 22

P2 4 21 89 14 - 3 24 13 15 13 21 79 49 - 29

P3 4 - - - - 3 54 - - - 21 - - - -

P4 5 73 27 41 22 4 103 26 37 26 33 95 75 47 40

P5 10 178 129 132 78 9 87 76 133 76 65 164 222 133 133

P6 10 - - - - 9 - - - - 65 - - - -

P7 4 5 5 5 5 3 4 4 4 4 21 36 34 22 22

P8 4 14 20 9 9 3 5 7 5 7 21 26 26 22 22

P9 4 6 7 8 7 3 5 5 5 5 21 34 22 26 23

P10 4 17 11 9 9 3 5 7 5 7 21 27 26 22 22

P11 4 106 - 62 - 3 18 26 - 26 21 - 200 209 -

P12 4 8 9 7 50 3 19 - - - 21 - 23 24 25

P13 5 10 11 12 6 4 5 8 5 8 33 35 35 35 34

P14 10 11 11 11 11 9 10 10 10 10 65 - - - 93

P15 7 8 8 8 8 6 22 9 13 9 51 63 55 62 53

P17 5 6 5 6 6 4 5 5 5 5 33 34 34 34 34

P18 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22

P28 4 5 4 5 5 3 4 4 4 4 21 22 22 22 22
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Figure 1: Number of function evaluations for ARBFMIP vs. rbfSolve for Table 13 and
Table 15. Values for the choice Repl = Yes in Table 13 are used. In total there
are 13 points of each kind. Four points were removed since both solvers used
the maximum number of function evaluations.

Figure 2: Number of function evaluations for ARBFMIP vs. rbfSolve for Table 13 and
Table 15. Values for the choice Repl = Yes in Table 13 are used. In total there
are 13 points of each kind. Three points were removed since both solvers used
the maximum number of function evaluations.
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Table 18: Number of function evaluations to get within 1% and 0.01% of the optimal
value for GENO on the constrained global test problems.

% E ≤ 10−2 % E ≤ 10−4

Fail mean min max Fail mean min max

P1 0 100 81 1 1 1380 725 0 3091 1539 7 7 5438 2780

P2 44 4712 2280 1 1 15105 9208 45 10342 5510 7335 2605 15561 9607

P3 86 2116 1363 93 92 11920 6126 100 - - -

P4 87 5377 3711 3661 2121 11210 8348 98 14180 10434 9467 6536 15226 11962

P5 96 7564 7071 4149 3826 12025 11151 100 - - -

P6 100 - - - 100 - - -

P7 100 5106 2954 5106 2954 5106 2954 100 - - -

P8 0 312 302 2 2 968 904 0 5710 3438 1169 936 8004 4946

P9 100 - - - 100 - - -

P10 0 298 287 1 1 1105 1059 0 5341 3259 3448 1926 8046 4823

P11 100 - - - 100 - - -

P12 98 7365 2974 7280 2794 7492 3249 100 - - -

P13 70 2566 1978 271 268 12527 8965 71 9047 6605 5099 3558 14256 11590

P14 100 - - - 100 - - -

P15 100 - - - 100 - - -

P17 98 7379 3495 7227 3117 7530 3837 100 - - -

P18 44 4356 2126 3425 1103 7969 4180 46 11872 6803 7552 3363 14705 9041

P28 90 6366 3816 3531 2131 9368 5983 97 13564 8429 11384 6727 14332 9302

6 Conclusions

Methods based on radial basis interpolation are powerful tools for solving expensive
black-box optimization problems. The paper presents extensions of two algorithms
based on RBF interpolation to handle black-box mixed-integer nonlinear programs
and nonconvex nonlinear programs. Algorithms have been discussed in detail as well
as the MATLAB implementations of two solvers, rbfSolve and ARBFMIP, in the
TOMLAB optimization environment.

A large number of numerical tests on black-box MINLP and nonlinear programs are
presented that compare seven different MINLP solvers. The results show that the
dedicated costly global black-box optimization solvers, including a third solver, EGO,
outperform other approaches. The use of derivative-based solvers is possible, but
an order of magnitude higher number of function evaluations are normally needed.
Starting values need to be carefully set to avoid failues. Stochastic black-box solvers,
like the tested GENO solver, should definitely be avoided in this context.

The RBF method uses a static selection of target values and is dependent on the
scaling of the problem. The global target value optimization problem often does not
produce interior points, and the search points computed do not help the practical
convergence of the algorithm.
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The details of a new Adaptive RBF (ARBF) method extended to MINLP have been
presented. In every iteration, the method does an extensive search for target values to
produce a suitable selection of search points. In general, the computational overhead
is substantial. However, since the global subsolvers in TOMLAB are very efficient
any problem considered expensive will benefit from the new ARBF algorithm. It is
possible to parallelize the global target value optimization as well as the costly function
evaluations. These two tasks are the most CPU-intensive parts of the algorithm. The
conclusion is that the ARBF approach is the best. Further research is needed to
implement a parallel algorithm. Some more algorithmic work is also needed to make
the ARBF algorithm and the solver robust for more types of problems. There may be
some sensitivity to additive scaling in parts of the algorithms, especially in the choice
of f∆. This sensitivity could easily be removed, but time did not permit testing and
re-solving. However, we are working on an enhanced ARBF algorithm that will be
much less sensitive to the choice of f∆ and β.
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