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Abstract We consider tactical planning of a military operation on a large target
scene where a number of specific targets of interest are positioned, using a given
number of resources which can be for example fighter aircraft, unmanned aerial
vehicles, or missiles. The targets could be radar stations or other surveillance equip-
ment, with or without defensive capabilities, which the attacker wishes to destroy.
Further, some of the targets are defended, by for example Surface-to-Air Missile
units, and this defense capability can be used to protect also other targets. The at-
tacker has knowledge about the positions of all the targets and also a reward associ-
ated with each target. We consider the problem of the attacker, who has the objective
to maximize the expected outcome of a joint attack against the enemy.

The decisions that can be taken by the attacker concern the allocation of the re-
sources to the targets and what tactics to use against each target. We present a math-
ematical model for the attacker’s problem. The model is similar to a generalized
assignment problem, but with a complex objective function that makes it intractable
for large problem instances. We present approximate modelsthat can be used to
provide upper and lower bounds on the optimal value, and alsoprovide heuristic
solution approaches that are able to successfully provide near-optimal solutions to a
number of scenarios.
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1 Introduction

Effect Based Operations (EBO) is a military concept which emerged during the
1991 Gulf war for the planning and conduct of operations combining military and
non-military methods to achieve a particular effect. The doctrine was developed to
take advantage of advancements in weaponry and tactics, from an emerging under-
standing that attacking a second-order target may have firstorder consequences for
a variety of objectives. The Commander’s intent can be satisfied with a minimum
of collateral damage or risk to own forces, but EBO planning is complex and hard
since it embraces political factors as well as economic.

Despite its complexity, this is not an impossible task. We have been dealing with
these challenges on an ad hoc basis throughout history, but we can now use modern
technologies and process thinking to provide all ingredients of successful effect
based operations.

A network-centric system is a system-of-systems concept where a number of ac-
tors are attached to each other in a network sharing information in an adaptable and
interoperable manner. Obviously networking enables an enormous rise in accessible
information and the intrinsic challenge is the developmentof systems and functions
to shape this information into guidance and control of a variety of operations with
multiple objectives. For example, [6] presents an optimization methodology for find-
ing a correct balance between weapons and attack damage assessment sensors.

The above mentioned pinpoints the trend in military operational planning, also
at the Swedish military arena. In our case we can use this paradigm shift to put
functional and algorithmic requirements on planning of airto ground missions. This
leads to adaptation to new doctrines of command and control and to a tool that
contains the most of planning experience implemented by planning specialist per-
sonnel in cooperation with algorithm experts. Mission performance can be driven to
its limits with a model based planning, which simultaneously keeps control of both
objective and system performance, which is probably the most cost effective way to
gain performance.

1.1 Network Centric Framework

In a network centric framework, a resource is not an entity tightly coupled to a
sluggish hierarchical organization but a resource with ownintelligence to offer spe-
cific effects to a variety of effect customers. Our work does not embrace the full
meaning of EBO but is guided by quantifying and responding toeffect requests and
hence becoming a true entity of a network centric system. In order to understand the
paradigm shift in EBO planning or network centric planning,Figure 1 shows the
principles of future effect based operations.

Initially an effect must be achieved in order to answer what to do. Thereafter
possible systems are considered and how theses systems could manage to do it. The
last issue of the effect chain is to decide the resource allocation. As can be noticed,
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Fig. 1 The effect chain including an EBO principle of a split up of theplanning process into stages
from the target to allocation of individual platforms.

resource owners are considered in the later planning stages, which is quite a change
from traditional planning.

Obviously there are two dimensions in the effect chain, the mission-conduction
and the resource owner dimensions. The resource owner dimension keeps and con-
ducts resource supply chains as well as allocation schemes and schedules. The
mission-conduction states individual missions and how they shall be implemented.

In order to fulfil requirements on future EBO planning systems, effort must be
put on scalable model-based algorithms which promote an easy workflow and a high
speed planning performance. Each scenario shall be individually stated by the set
of input data, but planning shall always be performed via implemented tactics and
knowledge of actual resource performance and mission pattern.

1.2 Mission Planning

An air to ground mission planning system is modular and contains a planning sys-
tem and weapon systems, hosted by a variety of carriers such as unmanned aerial
vehicles or fighter aircraft. In order to perform effect oriented planning in line with
Figure 1 we transform the planning process according to Figure 2, where each plat-
form is separated into carrier and weapon performance and tactics producing a cer-
tain effect which can be matched with the effect customers needs.

Initially we maximize system effect in the target area by optimally allocating
the number of weapons to suppress enemy defense and destroy vital targets. A tar-
get area can consist of different ground based targets and sheltering air defense
units. Each target has a specific value which indicates its importance. The effect
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Fig. 2 A resource, a fighter with weapon system, has a relationship between route planning, type
of weapon and a set up of tactics which forms the final effect.

oriented weapon allocation of the target area is followed bya search for appropriate
platforms, where platform location and scheduling parameters are considered. Each
platform must further have a route to the firing position, including tactical features
such as hiding and a limited exposure of radar cross section during the flight phase.

These planning aspects are coupled, but with an acceptable loss of generality the
effect planning task can be separated from the platform in order to start an overall
planning process. Our work addresses a model based approachto rapidly calculate
weapon allocation to optimize system effect in an hostile ground based target area.
Early work on a similar problem was done by Miercort and Soland in [4], but they
consider a less complicated model without intricate dependencies. In a recent paper
by Kwon et al. [3], a new weapon-target allocation problem ispresented together
with a branch-and-price algorithm for solving it. In contrast, Kaminer and Ben-
Asher present a model in [2] for maximizing the effectiveness of a defense.

1.3 Paper Overview

In Section 2 we describe the problem at hand, which is basically a weapon-targeting
problem, together with some basic concepts that will be usedthroughout the paper.
Section 3 gives a generic mathematical model for the problem. It is straightforward
with only simple linear constraints, but comes with a difficult objective function.
This section also gives optimistic and pessimistic models that can be used to find
upper and lower bounds on the optimal objective value.

In order to use the generic model and solve realistic scenarios, it is necessary to
specify how to evaluate a given situation, and especially how the defenders act in
different situations. One possible way to do this is presented in Section 4,

Section 5 looks into different heuristic approaches, who cannot guarantee opti-
mality but find high quality solutions for larger scenarios within reasonable time
frames. Section 6 contains results for these heuristics. Finally, in Section 7, we
present some remarks and conclusions together with suggestions on future work.
This paper is based on material that can be found in [5].
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2 The Joint Attack Problem

Imagine a large open area, like a desert, where a number of enemy targets are po-
sitioned. These can be radar stations or other surveillanceequipment, which the
attacker wishes to destroy. The targets are however guardedby defenders, like
Surface-to-Air Missile (SAM) units. The defenders are alsoconsidered to be po-
tential targets for the attack, since the destruction of defenders can improve upon
the overall outcome of the attack.

The positions of all targets, both those with and without defense, are known.
The set of targets is denotedS, and the subset̄S denotes the targets with defensive
capabilities, which are defined by radii of defense and armament. Each targets ∈ S
is given a specified rewardrs, where important targets have higher values.

The attacker’s problem is to maximize the expected outcome of a simultaneous
attack against the enemy, using at mostR identical resources, like aircraft or un-
manned aerial vehicles. Each target should be assigned an attack plan which speci-
fies the number of resources to be used against it, and also from which directions.

As illustrated in Figure 3, some targets do not have a defensive system of their
own, but depends on the defense of others. Also, the radius ofdefense for different

Fig. 3 A possible attack scenario. Some targets, here shown in black, are air defense units. The
other targets are radar stations or similar surveillance units who are valuable to destroy.

defenders might overlap. A defender will always protect itself primarily, and then
engage resources passing by inside its radius of defense towards other targets.

2.1 Tactics and Angles of Attack

If a targets is attacked, it is done so by a tactict chosen from a set of tactics,T .
In real life there are numerous possible tactics for an attack, but we limit ourselves
to tactics using at most 3 resources, as described graphically in Figure 4. The idea
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behind these tactics is to overload the defensive system of asingle defender. This is
done either by sending multiple resources from one direction (see tactics 1–3), or
by attacking from multiple and evenly spread directions (see tactics 4–5).

X
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X

2.

X

3.

4.

X X
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w
w

Fig. 4 A graphical description of the 5 tactics considered.

Each tactict has its own features, such as the number of resources needed,nt , and
the number of attacking directions involved, denotedVt . The number of resources
that is launched from each of the anglesVt is denoted bymt . Each tactic gives rise to
a probability of success, for each of thent resources, against a single targets. This
probability is denotedpst and might vary between the targets, depending on their
respective defensive capabilities.

We consider a coarse angle discretization (every 30 degree), defining a setV of
angles. Each tactict ∈ T is associated with a reference angle of attack,w, which
defines from which direction the attack is launched. For tactics which involve more
than one angle of attack (i.e.Vt > 1), multiple anglesw might give rise to exactly
the same attack, since we consider evenly spread angles. To avoid such symmetries,
we introduce a subsetWst which contains all reference anglesw to be used together
with tactict against targets.

For tactics involving multiple angles, we define

w j = w+( j−1) ·
2π
Vt

, j = 1, . . . ,Vt .

We also introduce the concept of an engagement path(s,v), which is the line
emanating from targets at anglev. In total, there are|S| · |V | different engagement
paths. For a certain tactic and angle, though, only a few of these paths will be used.
If there is at least one resource on the path, we call it an active path.

In the following, a reference angle of attack is always denotedw and defined by
the setWst , whereas an anglev refers to an individual angle inV used for general
discussions involving engagement paths(s,v).
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2.2 The Objective

The essence of the attacker’s problem is to decide for each target s which tactict
that shall be used (if any) and specify a reference angle of attack w. We therefore
introduce the binary variable

zstw =

{

1 if targets is attacked using tactict from anglew,
0 otherwise.

These decisions, at most one for each targets, is defined as an attack planz. Let
pkill

stw(z) be the probability of successfully incapacitating targets when attacked by
tactic t from reference anglew. As will be clear from the upcoming analysis, this
probability depends on the overall attack planz, which is a complicating fact.

The probability for a resource to survive the defense of a defenderi ∈ S̄ which
it passes by on its way towards the targets on path(s,v) is denotedpisv(z), and it
depends on what tactics are used against the other targets. Whenever an engagement
path(s,v) does not intersect the area of defense for targeti, pisv(z) = 1 holds.

The success of an attack against a certain target depends on the following.

1. The number of resources used against the target (nt =Vt ·mt).
2. The target’s ability to defend itself against incoming resources (pst).
3. The probability of successfully surviving the defense ofevery other target which

the resource pass by on its way towards the target (pisw j ).

For a given targets, tactict and angle of attackw, the probability of successfully
eliminating targets is

pkill
stw(z) = 1−

Vt

∏
j=1

[

1− pst ∏
i∈S̄\{s}

pisw j(z)
]mt

. (1)

The probability of success for a tactict and anglew against a targets generally
depends on which tactics are applied against every other target, that is, the whole
attack plan, which means that the probabilitiespisw j are related to each other. This
dependence is the core difficulty of the attacker’s problem.

The objective is to maximize the expected total reward of theattack, found by
multiplying the probability of success of an attack againsta target with its reward.
Since we want to optimize the total reward of the attack, these expected values
should be added. The objective then becomes

max ∑
s∈S

[

∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]

· rs.

For each targets ∈ S, at most one of the decision variableszstw, t ∈ T , w ∈ Wst ,
takes the value one, since it is attacked at most once.
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3 Mathematical Models

We here give a generic model for the joint attack problem and two approximate
models that can be used to find upper and lower bounds on the optimal value.

3.1 A Generic Model

As stressed above, the probabilitypisv(z) depends in general on the whole attack
planz, but in the generic model we make no assumptions on the exact nature of this
dependence.

max ∑
s∈S

[

∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]

· rs [GENERIC]

s.t. ∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (i)

∑
t

∑
w∈Wst

zstw ≤ 1, s ∈ S (ii)

zstw ∈ {0,1}, s ∈ S, t ∈ T,w ∈Wst

It is not necessary to attack all targets. Depending on the rewards specified for
the targets, it might be optimal not to do so. Constraint(i) states that we cannot use
more resources than we have. Constraint(ii) makes sure that each target is attacked
at most once. Both constraints are linear, but the objectiveis in general non-linear,
non-convex and non-separable.

3.2 Optimistic Model

It is possible to construct two auxiliary problems, that provide upper and lower
bounds, respectively, on the optimal value of the generic problem. We analyze the
expression forpkill

stw(z), under two specific assumptions.
Assume that no target will shoot against resources passing by towards other tar-

gets, but just against resources targeting themselves. This means thatpisv(z) = 1
would hold for all targetss ∈ S̄, and thatpkill

stw(z) would collapse into the quantity

Pst = 1−
Vt

∏
j=1

[

1− pst ∏
i∈S̄\{s}

1
]mt

= 1− (1− pst)
nt .
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Now the probabilities of success no longer depend on the overall attack planz.
Further, since this expression does not depend on the anglew anymore, we only
have to decide which tactict to use against each targets, if any tactic at all.

We then obtain the optimistic model

max ∑
s

∑
t

rs ·Pst · zst [OPT IMIST IC]

s.t. ∑
s

∑
t

nt · zst ≤ R (i)

∑
t

zst ≤ 1, s ∈ S (ii)

zst ∈ {0,1}, s ∈ S, t ∈ T.

Solutions to the optimistic model give upper bounds to the original problem, since
the values of all coefficients in the objective function are systematically increased.
Even more, this is a valid upper bound for all choices of discretizationV .

The solution found is also a feasible solution in the original problem, if comple-
mented with an arbitrary reference angle of attack for each tactic used. This means
that we can easily calculate a true objective value and also get a lower bound. This
bound is only valid for the considered discretizationV though.

3.3 Pessimistic Model

In contrast to the assumption made above, we now assume that each target will
shoot against all resources passing by, on their paths towards other targets, and with
its full defensiv capability. Denote by ˜pisv the resulting probability of surviving the
defense from another target. This probability is clearly a pessimistic estimate of the
true probability of surviving the defense from this target.

If pisv(z) = p̃isv would always hold, thenpkill
stw(z) would become the quantity

Pstw = 1−
Vt

∏
j=1

[

1− pst ∏
i∈S̄\{s}

p̃isw j

]mt
,

and we then obtain the pessimistic model
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max ∑
s

∑
t

rs ·Pstw · zst [PESSIMIST IC]

s.t. ∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (i)

∑
t

∑
w∈Wst

zstw ≤ 1, s ∈ S (ii)

zstw ∈ {0,1}, s ∈ S, t ∈ T,w ∈Wst .

The values of ˜pisv might of course be too pessimistic, and hence the solution
could provide poor lower bounds on the optimal value of the generic model. Hope-
fully, though, the structure of the solution (the attack plan z) is close to the optimal
one, and by evaluating the true objective one can find a betterpessimistic bound.

4 Simulation Details

In order to fully specify the generic model presented in Section 3.1, one needs to
describe how the probabilitypisv(z) depends on the attack planz. It is obviously a
hard task to model a real-life situation. We will here give the assumptions used in
our simulation study.

We will analyze the different factors that affectpisv(z), that is, the probability for
a resource to survive the defense from another target as it passes by toward its own
target, and how it depends onz. To do this, we look into the details of the defensive
systems of the targets and define their rules of engagement.

4.1 Specifications of the Defensive System

Since we consider the problem of the attacker, we need to specify a set of determin-
istic engagement rules for the defenders. Each target with defensive capability is
assumed to have a specified number of defensive channels, such as cannons or anti-
missile systems. It will primarily defend itself, and any residual defensive channels
will be used to defend the other targets, by engaging resources passing by inside its
radius of defense. We make the following assumptions for each defenderi ∈ S̄.

1. The defender will primarily defend itself.
2. If there areDi > 0 residual defensive channels, then they will be evenly allocated

against the active engagement paths that pass by the target.
3. At mostFi channels might be used against a single engagement path.
4. At mostGi different engagement paths might be engaged.
5. All defensive channels should be used if there is something to shoot at.
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6. If there are more active paths than defensive channels, one defensive channel is
allocated to each path as long as possible with respect to a ranking defined by the
distances to the target.

Given an attack planz, we let auxiliary variablesuisv(z) describe how many
defensive channels that should be allocated against the resources on each active path
(s,v) passing by. The values of these variables will comply with the above rules.

Specifically, the number of resources on each path, denotedNsv, affects the prob-
ability of success for each of these resources. We defineK = maxt∈T{nt : Vt = 1}
to be the maximum number of resources travelling on a single engagement path.
Hence,Nsv is in the rangek = 0, . . . ,K.

We further define the parameterdisv to be the orthogonal distance between a
targeti ∈ S̄ and the engagement path(s,v). For other targets with positions inside
the area of defense of targeti, the distance to the mid-point of this path is used.
This is illustrated in Figure 5. Each active path is given a rank number, where the
path closest to targeti gets the highest rank, the second closest path gets the second
rank, and so on. Closest path refers to the smallest distancedisv and is thus relative
to the targeti. This ranking will be used when the defenders cannot engage all paths
passing by, but need to prioritize.

X

x

x

0 1 2 3

0.7

0.8

0.9

1

θ = 0.95

β = 2

β = 1.5

Fig. 5 To the left, an illustration of how the distance between a target and the active engagement
path is measured. To the right, an example of how the design parametersβik andθik affect the
probability pk

isv.

4.2 Specification of the Objective

The probability for a resource to survive as it passes by target i ∈ S̄ towards target
s ∈ S on path(s,v) is a function of the distancedisv and the number of resourcesNsv

on the path, which are both a direct consequence of the attackplanz. The obvious
way to model this dependence would be to demand values for allsuch combinations
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as input data, but this is practically impossible. We instead introduce an analytic
expression, based on bothdisv andNsv.

Let pk
isv be the probability for a resource to successfully pass by onedefensive

channel of targeti. These probabilities are derived from the values ofpst , for tactics
t ∈ T where allk = nt resources are sent from the same angle(Vt = 1). Since this is
only relevant for targets in̄S, we denote thispik for all i ∈ S̄ andk = 1, . . . ,K.

pk
isv = 1−

(

1−
disv

ρi

)βik

· (1−θik · pik)

Here,ρi is the radius of defense, whileβik andθik are design parameters that model
the defensive capacities of targeti against different numbers of resourcesk.

The rightmost plot in Figure 5 shows the probabilitypk
isv on the y-axis as a func-

tion of the distancedisv on the x-axis. Here, the probabilitypik = 0.7 is used, and the
solid line corresponds to parameter valuesβik = 1 andθik = 1. The dash-dotted line
is obtained when the value ofθik is changed to 0.95. The two dashed curves corre-
spond to the values of 1.5 and 2 respectively for parameterβik. In all, this expression
for pk

isv shows a reasonable behaviour. Fordisv = 0, its value becomesθik · pik and
for disv = ρi the probability becomes 1. For distances in-between, the parameterβik

is used to model the effectiveness of the defensive system oftargeti.
Now finally, the probability for a resource to survive as it passes by targeti ∈ S̄

towards targets ∈ S on path(s,v), given the attack planz, is

pisv(z) =
K

∏
k=1

(

pk
isv

)uk
isv
.

Here, the auxiliary variableuk
isv equalsuisv(z) if k = Nsv and zero otherwise. Since

uisv(z), and thus alsouk
isv, might be greater than one the probability of success de-

creases with the number of defensive channels assigned to the engagement path.
This is realistic as the defensive channels can be seen as independent, and the prob-
ability for a resource to survive two channels should be the probability of surviving
them both. The general formula (1) now becomes

pkill
stw(z) = 1−

Vt

∏
j=1

[

1− pst ∏
i∈S̄\{s}

K

∏
k=1

(

pk
isw j

)uk
isw j

]mt
.

The values of the variablesuk
isv are dependent on the entire attack planz. Once

their values are known, it is however straightforward to evaluate the objective of the
generic model.
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4.3 An Illustrative Example

Consider a single defenderi, as illustrated in Figure 6. We name all paths(s,v)
intersecting the area of defense in accordance with their rank, that is, the path with
rank 1 is named path 1, and so on. Notice that one of the engagement paths never
intersects the area of defense, and it is therefore never considered when the residual
defensive channels are assigned. We assume that at most 3 channels might be used
against a single engagement path (i.e.,Fi = 3).

ri = 1

ri = 2

ri = 3

ri = 4

(Outside area
of defense)

X

xx

x

x

x

x

Fig. 6 A situation where multiple engagement paths intersect the area of defense for a targeti.

Assume first that at most 4 different engagement paths might be engaged (i.e.,
Gi = 4), and that there are 5 residual defensive channels (i.e.,Di = 5). Consider the
case where all four paths passing by targeti are active (i.e.,Bi = 4), that is, at least
one resource is following each path. Under the given assumptions, all paths should
be engaged and first each path gets one defensive channel locked against it. The
remaining channel is assigned to the path closest to the target, which is path 1. The
variablesuisv here take the valuesui1 = 2, ui2 = 1, ui3 = 1 andui4 = 1.

In the case thatBi or Gi decreases to 3, targeti can only engage 3 engagement
paths. ForBi = 4 andGi = 3, the path most far away will no longer be engaged. The
residual defensive channels are then distributed as follows: ui1 = 2, ui2 = 2, ui3 = 1
andui4 = 0. If Bi = 3 andGi = 3 (or 4), then only three engagement paths are active.
Depending on which path that is not active, the other paths are assigned defensive
channels like before, with respect to rank. Assume that for example path 2 is not
active, in which case we get:ui1 = 2, ui2 = 0, ui3 = 2 andui4 = 1.

Finally, if Bi < 2, all defensive channels cannot be assigned to an engagement
path, sinceFi = 3. With only one (or none) active path, at mostBi ·Fi ≤ 1 ·3 = 3
channels could be assigned. For example, if only path 3 is active, we obtain:ui1 = 0,
ui2 = 0, ui3 = 3 andui4 = 0.
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5 Heuristic Solution Methods

A problem like this, with only a few constraints (one attack per target and shared
resources) and a non-convex objective function, is well suited for meta-heuristics.
Throughout this section, we base our work on the following assumptions:

1. The number of available resources is limited, that is, it is not possible to use the
maximal number of resources against every target.

2. It is optimal to use all available resources.

The first assumption is reasonable, since otherwise the problem is reduced to choos-
ing between tactics 3 and 5, either assigning all resources on the same path or split-
ting them on three different paths. (One would however stillneed to figure out the
optimal combination of tactics and angle of attack for each target, and this would be
a non-trivial problem.) The second assumption is very reasonable and simplifies the
work of defining neighbourhoods and setting up heuristic schemes.

5.1 Local Search

Given a feasible solution to the generic model,z, found by some heuristic scheme,
one could try to improve it locally, that is, to perform a local search.

For this problem, where a solutionz states which tactict and anglew to be used
for each targets, it is straightforward to test all feasible anglesw ∈ Wst for the
assigned tactict, one target at a time, and save the best improvement (if any).Then,
if an improvement is made, one can repeat the same process again (since one target
is now attacked from a different angle, and further improvements might be possible)
until the process converges.

At the same time as one tests all angles, one can also switch between the tac-
tics that use the same number of resources, hence conservingthe overall usage of
resources (assumed to be at its upper limit).

A limitation of this local search procedure is that the allocation of resources to
targets is never changed. Even so, this procedure has provento be an effective tool
for finding good solutions, for almost any starting solution, as long as the allocation
of resources to targets is close to the optimal one.

5.2 A Constructive Heuristic

An intuitive strategy is to iteratively augment a partial solution, adding one extra
resource in each iteration. It seems plausible that the optimal solution using, say, 8
resources is close to the optimal solution for 7 resources.

Provided a feasible solution usingk ≥ 0 resources, denotedzk, we seek a solu-
tion zk+1. This is done by considering one target at a time, adding one resource if
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not K = 3 resources are already in use for this target, and then performing a local
search. The best such augmentation, over all targets, is saved and returned as the
new solutionzk+1. The augmentation with one resource at a time is repeated until
the available number of resources is reached. The cost of theheuristic will increase
with respect to the number of targets, since it performs one local search per target.

Note that this constructive heuristic can be applied to any feasible starting solu-
tion. Further, if the initial solution is near-optimal fork resources, then it is likely
that the augmented solution is also near-optimal, but now for k+1 resources.

As a bonus, this approach will generate Pareto-like solutions, stating the expected
outcome of an attack for different numbers of resources, which also yields marginal
values for additional resources with respect to the expected outcome. This informa-
tion is useful when choosing the number of resources to use for an attack. As will
be seen in the forthcoming results, the gain in expected outcome of an additional
resource decreases as a function of the number of resources already in use.

5.3 Simulated Annealing

A popular meta-heuristic, which is easy to implement, is simulated annealing. The
basic idea, which makes it a meta-heuristic and not a local search method, is to
accept solutions which are non-improving in order to escapelocal optima. This is
done by chance, and the probability to accept a non-improving value is related to
the change in objective value from the current solution to the new one.

Also, in order to assure finding a local optimum, the probability of accepting
worse solutions decreases over time. This is done by a temperature parameter, which
decreases as the iterations goes by. A simulated annealing approach is successfully
used for a weapon-target allocation problem in [1].

In order to apply a simulated annealing approach, we need to define a neighbour-
hood for a solutionz. Under the assumptions stated above, all we need is to work
with feasible attack plansz that use all available resources. Hence we define five
neighbourhoods of an attack planz, denotedNk(z), in the following ways.

1. The angle of attackw is changed for one targets and tactict in the attack plan,
that is,zstw → zstw̄.

2. The tactic against one target is changed by switching between one angle and mul-
tiple angles, that is,zstw → zst̄w̃. If necessary, the reference anglew is adjusted.
For example, instead of two resources attacking from the same angle, they attack
from different angles. Notice that the number of resources involved in the attack
is still the same though.

3. Pick two targets at random and switch their tactics and angle of attack. For ex-
ample, variableszs1t1w1 andzs2t2w2 becomezs1t2w2 andzs2t1w1 instead.

4. Pick two targets at random and exchange their angle of attack. For example,
variableszs1t1w1 andzs2t2w2 becomezs1t1w2 andzs2t2w1 instead.

5. Pick two targets at random, which do not use the same numberof resources,
and change to new tactics which increase/decrease the number of resources used
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respectively. For example, one target is changed to be attacked by two resources
instead of one, while another target is attacked by two resources instead of three.

The use of multiple neighbourhoods provides diversity to the search, and by repeat-
edly changing between them all feasible solutions can be reached. Notice that neigh-
bourhoodN5 is crucial, since without it the number of resources allocated against
each target would remain fixed to that of the initial solutionthroughout the search.

The implemented simulated annealing heuristic consists ofouter and inner iter-
ations. At the end of each outer iteration the temperature isdecreased (from the
initial temperature 0.9 and with the cooling factor 0.7). In each outer iteration,
we cycle once through the different neighbourhoods, according to the sequence
{5,2,1,3,4,1,5,2,1}. For each of these, we perform 100 evaluations of neighbours.
During the search, we keep track of the overall best found solution.

6 Numerical Experiments

The optimistic and pessimistic models presented in Sections 3.2 and 3.3, respec-
tively, are easily solved using a linear integer programming solver, in our case
CPLEX. They provide upper and lower bounds on the true optimal value, and these
are found in fractions of a second. In order to improve the lower bound, the pes-
simistic solution provided by the solver is simply evaluated using the true objective
function. This step improves the bound significantly and is also instant. Moreover,
if a local search, as described above, is performed from the pessimistic solution, an
even better solution can be found. This is fairly inexpensive and improves the bound
in most cases.

The constructive heuristic is initiated with the locally improved pessimistic so-
lution obtained fork = 2 resources. It is then applied to find a solution with the
available number of resources. The procedure should generate near-optimal solu-
tions to the cost of at most one application of the local search procedure for each
target and each new resource.

The simulated annealing method is applied as described in Section 5.3. This is a
fairly time-consuming method, but is likely to produce the solutions of best quality.

6.1 Case 105

The test case, called Case 105, includes 2 targets with defense and 5 other targets,
which are positioned as shown in Figure 7. One unit step in thepicture corresponds
to 1 km. The targets with defense are positioned 10 km apart, and each of them has
a defensive radius of 10 km. The distances between the targets are 300–500 meters.
When modelling the problem, a coarse angle discretization of12 angles is used.

We define three different reward settings for the targets. Insetting I,rs = 0 for
s ∈ S̄ andrs = 1 for s ∈ S \ S̄, that is, there is no reward for the defenders and the



Effect Oriented Planning of Joint Attacks 17

−5 0 5 10 15 20

−5

0

5

10

15

1 2

Case 105:   2 Defender units  and  5 Target units

Fig. 7 Test case 105, with 2 defenders and 5 other targets.

same reward for every other target. Although this setting does not reward the targets
with defense, it might still be optimal to attack the defenders in order to reduce their
defensive capabilities and thus increase the overall reward of the attack. In reward
setting II, rs = 1 for s ∈ S̄ andrs = 2 for s ∈ S \ S̄, so that the defenders are also
considered valuable but only second to the other targets. Insetting III, rs = 1 for
s ∈ S̄ andrs = 5 for s ∈ S \ S̄, which differentiates the two types of targets more.
Below, we present and analyze the result for the different reward settings.

6.2 Results for Case 105

In Figure 8 we see a graphical representation of the best found solution for Case 105
with reward setting III and 14 resources available. Both defenders, numbers 1 and 2,
are attacked by tactic 5 which means 3 resources from different directions. Targets 5
and 6 are attacked using tactic 4, where 2 resources attack from opposite directions.
Target 3 is attacked using tactic 2, that is, 2 resources fromthe same direction,
indicated by the dashed line. Finally, targets 4 and 7 are attacked by single resources.

The solutions are not always intuitive at first glance. For example, one of the at-
tack paths toward target 1 intersects the defensive area of target 2 for a long distance,
and vice versa. Is it not better to attack with all 3 resourcesfrom the same angle and
avoid the defense of the other defenders? The explanation islogical. Consider the
resource attacking defender 1. By travelling inside the defensive area of defender 2,
some of the defender’s defensive capability will be allocated against this resource.
As one of three resources taking part of the attack against target 1, the total ex-
pected probability of success will be quite high even thoughthis specific resource
faces great danger. In this way, the defensive capabilitiesavailable for target 1 to use
against other resources are reduced, and the overall expected outcome will gain.
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Fig. 8 Test case 105, with 2 defenders and 5 other targets. Best solution for 14 resources.

Figure 9 shows a graphical representation of the best found solution for the same
case but with 17 resources available. The objective value isimproved somewhat.
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Fig. 9 Test case 105, with 2 defenders and 5 other targets. Best solution for 17 resources.

The use of reward setting I (i.e. reward 0 for defenders and reward 1 for other
targets), render the result seen in Figure 10. The x-axis represents the number of
resources available and the y-axis the corresponding objective values. The two
outer dash-dotted lines represent the upper and lower bounds, respectively, found by
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Fig. 10 Test case 105, with 2 defenders and 5 other targets.

CPLEX, where the pessimistic solutions have been evaluatedusing the true objec-
tive function. The single dots represent the pessimistic values given by CPLEX. The
dashed line with dots is the locally improved pessimistic solutions. We can see that
the improvement is substantial for most numbers of resouces. The dash-dotted line
with squares shows the best found solutions from the simulated annealing heuris-
tic. The solid line with circles shows the result of the constructive heuristic. These
solutions are in general the best ones found, but sometimes simulated annealing
solutions are equally good.

For reward settings II and III, a similar behaviour can be observed in Figure 11
and Figure 12, respectively. Obviously, the objective values differ due to the differ-
ent reward settings, but the overall trend is the same.

We conclude this section with some remarks. The behaviour isvery similar for
the different reward settings. The optimistic and pessimistic bounds are not tight
for 5–10 resources, but a local search from the pessimistic solution improves the
situation. For Case 105, with only 7 targets, using more thanaround 15 resources is
not very interesting, and, as can be seen in the graphs, the optimistic and pessimistic
bounds are then tight.

The simulated annealing algorithm performs very well, and provides solutions
comparable with the constructive heuristic approach, but it requires comparably
long time even for a moderate number of resources. Mostly, the constructive heuris-
tic finds the best found solution, and it is beaten by the simulated annealing method
on only single occasions, but it requires even more time thanthe latter algorithm
when considering many resources.
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Fig. 11 Test case 105, with 2 defenders and 5 other targets.
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Fig. 12 Test case 105, with 2 defenders and 5 other targets.
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6.3 Results for Larger Instances

In addition to Case 105, a number of different cases have beenstudied. These ranges
from 7 to 21 targets. Case 105 is a good representative for allof them, with respect
to the behaviour of the heuristic solution approaches. In Table 1, we give mean
objective values for 12 different cases, with a varying number of resources. Here,
the objective values are normalized with respect to the optimistic value found for
each case.

Table 1 Normalized mean objective values for each method. Best values are in boldface and sec-
ond best values are emphasized.

Resources

Method 5 10 15 20 25 30

Opt. CPLEX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pess. Exact 0.6702 0.7691 0.8399 0.8894 0.9209 0.9463

Pess. Local 0.6893 0.8300 0.9023 0.9522 0.9737 0.9834

Constr. Heur.0.6999 0.8599 0.9382 0.9852 0.9941 0.9988

Sim. Ann. 0.68450.8545 0.9369 0.9840 0.9918 0.9940

For larger instances, with 10–20 targets, the quality of theoptimistic and pes-
simistic bounds are not as good as for smaller instances. We suspect that the pes-
simistic bound is tight for up to 10 resources, and that the strength of the optimistic
bound improves with an increasing number of resources. For instances where 10–20
resources are available, none of the bounds seems to be tight.

The constructive heuristic is the most stable of all solution methods, providing
high quality solutions for all different scenarios and reward settings. The simulated
annealing method is also very successful. Because of the long calculation times
required for a single run of the simulated annealing method,it is only competitive
with the constructive heuristic approach when seeking a single solution for a specific
and quite large number of resources. Otherwise, the constructive heuristic provides
both better calculation times and solution quality, with the important extra feature
of providing a range of solutions, one for each number of resources. In all, the
constructive heuristic is the clear winner.

7 Conclusions and Future Work

We have introduced and defined a mission planning problem. A generic mathemat-
ical model of the problem is presented, and the complex objective function is ana-
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lyzed in detail. The generic model can be approximated in order to derive optimistic
and pessimistic models. Such models are an important tool since they provide upper
and lower bounds on the optimal value, hence limiting the uncertainty of the quality
of solutions.

However, in order to solve problem instances of realistic sizes, it is necessary to
use heuristic methods. We have proposed a constructive heuristic method and a sim-
ulated annealing heuristic to solve this difficult problem.The methods were tested
on a set of problem instances, and the results are very promising. The constructive
heuristic method has good solution times, while solution times are relatively long
for the simulated annealing algorithm.

All methods are generic and can handle different scenarios for the defender’s
strategy. It is sufficient to provide a black-box function tocall whenever the objec-
tive needs to be evaluated. Hence, if the assumptions in Section 4 are inadequate, or
needs to be modified in any way, the given framework will stillbe applicable.

This paper has focused on the development of a planning system only considering
target scene parameters such as target location and defensesystem description, and
how the defense reacts upon attack. Resource performance iscertainly included in
the analysis but just in the sense of a static set-up of effect-on-target as a function
of tactics, and the ability to survive in a surface-to-air defense system environment.
This approach complies with future command and control doctrines which promote
a separation of effect planning and resource allocation planning.

To extend the mission scope we can include planning aspects of the platform.
Route planning can be conducted in a flexible way with its own objectives to con-
clude the overall mission success. Obvious aspects are minimizing radar cross sec-
tion exposure during route phase, and minimize time to target, that is, to explore
hiding possibilities or by clever surveillance tactics during the cruise phase. An ob-
vious continuation from our work within this paper, is to investigate the coupling
between route and effect planning. If this is solved properly, a large step is taken to
control and comprise vital aspects of ground attack planning.

Further, firing platforms must not be given in advance, instead maximizing the
effect of the target area can be the driver to find the best platforms from a larger set.
Based on this fact, future work could address at least two obvious scenarios. The
first is when the target scene is known and there is a predefinednumber of platforms
where route planning is included in the overall mission. A second scenario is to
consider when several platforms are available. In this casewe must allocate good
firing units from a set of platforms but also decide firing position and route planning.
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