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Abstract When dealing with costly objective functions in optimization, one good
alternative is to use a surrogate model approach. A common feature for all such meth-
ods is the need of an initial set of points, or ”experimental design”, in order to start the
algorithm. Since the behavior of the algorithms often depends heavily on this set, the
question is how to choose a good experimental design. We investigate this by solving
a number of problems using different designs, and compare the outcome with respect
to function evaluations and a root mean square error test of the true function versus
the surrogate model produced. Each combination of problem and design is solved
by 3 different solvers available in the TOMLAB optimization environment. Results
indicate two designs as superior.
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1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques have been developed over the years. A common
feature is that, unlike local optimization methods, every computed function value is
saved and utilized.

Problems that are costly to evaluate are commonly found in engineering design, as
well as industrial and financial applications. A function value could be the result of
a complex computer program or an advanced simulation, e.g. computational fluid
dynamics (CFD). Hence consuming anything from a few minutes to many hours of
CPU time.

From an application perspective there are often restrictions on the variables besides
the lower and upper bounds, such as linear, nonlinear or even integer constraints. The
most general problem formulation is as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R and xL, x, xU ∈ Rd. Matrix A ∈ Rm1×d, bL, bU ∈ Rm1 ; defines the
m1 linear constraints and cL, c(x), cU ∈ Rm2 defines the m2 nonlinear constraints.
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.
Let Ω ∈ Rd be the feasible set defined only by the simple bounds, the box constraints,
and ΩC ∈ Rd be the feasible set defined by all the constraints in (1).

Almost every Costly Global Optimization (CGO) solver utilize a surrogate model, or
response surface, to approximate the true (costly) function. The RBF algorithm in-
troduced by Powell and Gutmann [2, 9] use radial basis function interpolation to build
an approximating surrogate model. The EGO algorithm by Jones et al. [6] utilizes
the DACE framework. By optimizing a less costly utility function these algorithms
determine a new point, where afterwards the original objective function is evaluated.
This is repeated until some convergence criteria is fulfilled.

2 Experimental Designs

Common for all surrogate model CGO solvers is the need of an initial sample of points
(experimental design) to be able to generate the initial surrogate model. For all these
points the costly function values are calculated. The initial surrogate model is built
from these sampled points and used as an approximation of the true function. A new
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point to sample is then decided by some algorithmic strategy, and this continues until
some convergence criteria is met.

It is not obvious how to choose this initial set of points, but there are some criteria we
strive to fulfill. As the problems to solve are considered black-box, we have no idea
what the function might look like. Therefore it is most important that the experimental
design have some sort of space filling ability, i.e. avoid sampling only a certain part of
the design space.

2.1 Deterministic Global Solver

It is of course possible to utilize any standard global optimization solver for a limited
number of iterations, just in order to get an initial set of sample points for the surrogate
model to get going. After all, deterministic global optimization algorithms are designed
to find the global optimum as fast as possible, so why not use this fact and let the
solver find good initial points.

In this paper we utilize the DIRECT algorithm (DIviding RECTangles) by Jones et al. [5],
implemented in the TOMLAB Optimization Environment [4] as solver glcDirect1. This
is a deterministic global optimization solver, but not itself suited for the costly prob-
lems considered. The maximal number of sample points N is possible to set when
running glcDirect. But, because the algorithm generates more than one new point in
each iteration, the costly function value might be computed for a few more sample
points than N .

2.2 Corner Point Strategy

RBF solvers tend to sample points on the border, which seldom contribute as much
information as interior points to the interpolation surface. This problem is thoroughly
discussed by Holmström in [3]. To increase the chances of sampling interior points, a
first idea was to sample all corner points of the box constraints Ω, and additionally
the midpoint of the box.

It turns out that unless the midpoint is the point with lowest function value, the initial
interpolation surface will have its minimum somewhere on the boundary, and the CGO
solver sometime samples a new border point. To avoid this, we propose to additionally
sample corner points of half the bounding box, centered around the original midpoint,
until an interior point with lowest function value is found. The idea is demonstrated
in Figure 1 on page 4.

For problems in higher dimensions d, the exponential growth in number of corner
points N = 2d becomes an issue. A good alternative is then to sample only a subset of
corner points. One idea is to sample only the lower left corner point of the bounding
box plus all its adjacent corner points. This yields a more moderate number of initial
sample points N = d + 1, which is also the minimum number of initial points needed
for the initialization of the RBF algorithm. This is due to the fact that a minimum of
N ≥ d + 1 points are required to build an interpolation surface.

1http://www.tomopt.com/tomlab/
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Figure 1: The Corner Point strategy in 2 dimensions.

A generalization of the previous corner idea is to choose both the lower left and the
upper right corner points, plus all adjacent corner points. This gives an initial sample
of size N = 2 · (d + 1) if d > 2. In two and three dimensions, the strategy is equivalent
to sampling all corner points.

2.3 Maximin LH Designs

Latin Hypercube Designs (LHD) is a popular choice of experimental design. The
structure of LHDs ensure that the sampled points cover the sampling space in a good
way. They also have a non-collapsing feature, i.e. no points ever share the same value
in any dimension. Maximin LHDs give an even better design, as the points not only
fulfill the structural properties of LHD designs, but also separate as much as possible
in a given norm, e.g. the standard Euclidean norm. It is possible to generate Maximin
LHDs for any number of points N .

A good collection of Maximin LHDs, together with many other space filling designs,
can be found at http://www.spacefillingdesigns.nl together with state-of-the-art
articles in this area.

3 Handling Constraints

When solving problems with additional constraints, besides the box constraints, it
might be better to avoid sampling initial points that are not feasible since the function
evaluation is extremely costly. We now describe how the proposed methods in Section 2
are adjusted to handle constraints, whenever possible. The methods presented here can
not handle equality constraints at the moment, however nonlinear equality constraints
are also difficult in general.

There exist other ideas on how to find a space filling initial sample, taking into account
the constraints. Stinstra et al. [10] solve an optimization problem, where the objective
is to maximize the minimum (euclidian) distance between N feasible points.
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3.1 Constrained Deterministic Global Solver

We need to select a global deterministic solver that is able to handle constraints. The
DIRECT algorithm was extended to handle nonlinear inequality constraints by Jones
in [7]. In the TOMLAB implementation of the constrained DIRECT, glcDirect, the
DIRECT algorithm is generalized to separately treat linear equality and inequality
constraints, and nonlinear equality and inequality constraints. Since the algorithm
always divides a rectangle in three pieces, infeasible points might still be included
in the initial iterations, even if glcDirect has a feature to delete rectangles that are
infeasible with respect to linear inequality constraints, and avoid computing f(x) for
points infeasible with respect to linear and nonlinear constraints.

3.2 Corner Point Strategy

The Corner Point Strategy is not able to handle constraints in a straightforward way.
It is possible to check which generated points are feasible, but what should be done
if only a few of them are feasible? One could develop strategies on how to choose
additional points, but then we diverge too much from the original idea of sampling
the corner points. Therefore we only consider the basic approach, i.e. not taking
constraints into account.

3.3 Constrained Maximin LH Designs

We have developed a method to create an initial sample fulfilling both the LHD struc-
ture and all constraints given for the problem. The method utilizes large Maximin
LHDs, where the number of points in the design is significantly larger than the de-
sired number of initial points, and only picks out the feasible points. The method is
described in pseudo-code below, see Algorithm 1.

Algorithm 1 Find N feasible Maximin LHD points

1: Initialize M := N + # constraints.

2: Apply Maximin LHD with M points to constrained problem.

3: Calculate number of feasible points Mf .

4: if Mf == N then

5: STOP.

6: else if Mf < N then

7: Increase M , go to 2.
8: else
9: Decrease M , go to 2.

10: end if

If the value of Mf starts to alternate between two values, one less than N and the other
one greater than N , stop the algorithm and declare failure to find exactly N feasible
points. The Maximin LHD with too many feasible points is used. The resulting design
includes N feasible points with a Maximin LHD structure. An illustrative example is
found in Figure 2 on page 6.
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Figure 2: A 15 point Maximin LHD with Mf = 9 feasible points.

4 Benchmark and Tests

Our aim is to test the set of experimental designs presented in previous sections. Define
the set of experimental designs as E, and pick a set of test problems P and a set of
solvers S.

Every combination of problem p ∈ P and experimental design e ∈ E is solved with
each solver s ∈ S. Below the different designs, solvers and test problems used in the
benchmark is presented. The set of experimental designs E is summarized in Table 1
on page 7. Information on the test problems are found in Table 2 on page 7.

Three solvers from the TOMLAB /CGO environment are used. The rbfSolve and
arbfmip solvers utilize radial basis functions, and the EGO solver utilizes the DACE
framework. The algorithmic structures are coded in MATLAB but all heavy calcula-
tions are in TOMLAB implemented in Fortran and C code, and interfaced using so
called mex file interfaces.

4.1 Set of Experimental Designs

There are two main parameters to consider: first, the number of initial sample points N ,
and second, for constrained problems, whether or not to take the constraints into ac-
count. The tested combinations are described and motivated below.

Size N

The Corner Point Strategy generates a fixed number of initial sample points, one for
each corner point of the bounding box. The other two strategies can generate any
number of initial sample points. We use N1 = (d + 1)(d + 2)/2 and N2 = 10 ·d + 1,
where d is the dimension of the problem to be solved.
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Constraints

The Maximin LHD strategy can handle constraints by applying Algorithm 1. To test
whether it is more efficient to force all the initial sample points to be feasible, all
problems with constraints in combination with the Maximin LHD design are solved
twice. First using the standard strategy and then applying a Maximin LHD with only
feasible points.

Combinations

Inspired by some preliminary results we also tried to combine the Corner Point Strat-
egy with the other two designs. All corner points (no interior points) were added to
the result of either the global optimization solver or the Maximin LHD.

Table 1: The Set of Experimental Designs (E).

Experimental Design Size of N Constraints

Corner Points Fixed No

GO Solver N1 and N2 Yes

Maximin LHD N1 and N2 No

Maximin LHD N1 and N2 Yes

Corners + GO N1 and N2 Yes

Corners + LHD N1 and N2 No

Corners + LHD N1 and N2 Yes

4.2 Set of Test Problems

In total, a set of 15 box-bounded unconstrained problems PU and a set of 6 constrained
problems PC are solved. Most of them are 2-dimensional problems, except a few
problems in 3 and 4 dimensions. All problems in PC , in combination with the Maximin
LHD experimental design, are solved twice (with and without taking constraints into
account).

Table 2: The Set of Test Problems (P ).

Problem set PU PC

Dimension d 2 3 4 2 3

No. of problems 13 1 1 4 2

None of the test problems above have a global minimum in a corner point or midpoint,
as this obviously would benefit the Corner Point Strategy.

Problems in only 2 or 3 dimensions might seem very simple, but even problems of
this size are non-trivial and might be hard to solve when the problems are costly to
compute. It is quite common that costly problems are of small size, with less than 10
unknowns.
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5 Numerical Results

To present the benchmark results in an easy way, we utilize profiling. A perfor-
mance profile [1] shows the relative performance of the solvers in S on the given set
of problems P . However, performance profiles do not provide the number of function
evaluations required to solve any of the problems.

Since function evaluations are expensive we are interested in the percentage of problems
solved (for a given tolerance) within a given number of function evaluations. Data
profiles [8] are specifically designed to handle this. These profiles are both probability
density functions, but with an important difference. A data profile is independent of
the set of solvers S, while the performance profiles are computed relative the other
solvers in S.

5.1 Metrics

The solvers are set to break after 200 function evaluations or earlier if convergence to
the known global optimum is obtained. The relative error is defined as

Er =
fmin − fopt

|fopt|
,

where fmin is the current best function value and fopt is the known global optimum.
Convergence is assumed if the relative error Er is less than 10−4. In the case fopt = 0,
stop when fmin is less than 10−4. To compare the outcome of each experimental
design, a number of metrics are used:

f% Number of function evaluations needed to reach 1,2,3 and 4 digits of accuracy
(Er ≤ 10−k k = 1, 2, 3, 4). This is the primary goal for most optimization
problems.

x% Number of function evaluations needed to sample a point within 10% and 1% of
the design space, centered around the global optimum. It is very important to
sample points close to the global optimum. When this basin is found, the CGO
solvers tend to converge quickly.

RMS When the algorithm stops, the final surrogate model s(x) is compared to the
true function f(x). A grid of points is used to calculate the Root Mean Square
error.

RMS =
1

K
·

(
K∑

k=1

(f(xk)− s(xk))2
)1/2

For d = 2, 412 = 1681 points are used. For d = 3, 213 = 9261 points are used.
For d = 4, 114 = 14641 points are used. It is preferable if the final surrogate
model capture the main features of the costly function, however the main goal
is to find the global minimum with few function evaluations rather than having
an overall good approximation of the objective function.

Smaller values are better for all metrics. To compare the experimental designs, data
profiles for the costly f% and x% metrics are used. The RMS measure is not costly
and presented using performance profiles.
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5.2 Results

Since our focus of interest is to compare the performance of experimental designs,
not specific solvers, accumulated results for each design are presented and discussed.
Analysis for each solver has been done as well, and if any result differs significantly
for a specific solver, a note is given.

We present the analysis for the set of unconstrained problems PU , but results are
valid for PC as well if not specified otherwise. First compare the experimental designs
where N , the number of initial points, was set to either N1 = (d + 1)(d + 2)/2 or
N2 = 10·d + 1.

Figure 3: Comparison of setting N1 and N2 for Maximin LHDs. Data profiles for the
metrics f% and x% are used, and a performance profile for RMS.

Figure 3 shows that the Maximin LHD with N2 performs slightly better for all metrics.
The results are similar for the deterministic global solver, and hence consider only the
N2 setting in forthcoming analysis.
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Overall best Experimental Design

Comparing the results of the three originally proposed experimental designs, the Cor-
ner Point Strategy and the global solver approach have a very similar success rate for
all metrics, as seen in Figure 4. The Maximin LHD falls behind when it comes to
finding many digits of accuracy, but is superior when looking at the RMS error. But
as noted, a good RMS error is not the main goal in global optimization.

Figure 4: Comparison of the 3 proposed Experimental Designs. Data profiles for the
metrics f% and x% are used, and a performance profile for RMS.

For the PC problems, the Maximin LHD design performed much better and outper-
formed the other designs for all metrics. But since PC contains only 6 problems this
might just be a coincidence.

The high success rate of the Corner Point Strategy encouraged us to explore two
combined versions. The global solver approach and the Maximin LHD is used as
before, but the corner points of the bounding box are then added to the initial design.
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This increases the number of initially sampled points somewhat, but should contribute
to a more robust design. The outcome of this experiment is found in Figure 5.

Figure 5: Comparison of Experimental Designs. Data profiles for the metrics f% and x%

are used, and a performance profile for RMS.

A slight improvement can be seen for the Corner Points - deterministic global solver
combination (CP+DGS). The second combination, Corner Points - Maximin LHD
(CP+LHD), has no obvious effect on the f% and x% metrics.

The RMS error is improved for both combinations, and since more points are sam-
pled initially this seems reasonable. Once again the Maximin LHD design, and the
combination (CP+LHD), performed better on the PC problems.
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Constrained versions or not

The results of the ordinary Maximin LHD and the constrained version are compared
on the set of constrained problems PC . Like before, only the N2 setting is used, since
it outperforms the N1 setting. The extra effort of finding feasible points initially seem
not to pay off as one might expect. Figure 6 does not show any significant improvement
for the f% and x% metrics.

Figure 6: Constrained Maximin LHD versus standard Maximin LHD.

A possible reason for this is that although some points are infeasible, they still give
information about the shape of the function. Since only feasible points are sampled
by the CGO solvers, these initial infeasible points give extra stability to the surrogate
model, compared to sampling only feasible points initially.

When considering the RMS metric for constrained problems, there are two ways to
measure the error. One can look at the whole design space, like before, but it is also
interesting to measure only the feasible space. As seen in the plots, these two results
are in conflict. Using a fully feasible initial design naturally gives better RMS error
when only considering the feasible design space, but not as good when measuring the
whole design space.
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6 Conclusions

The N2 setting performed better for all experimental designs, so this is definitely good.
One could of course try to start with even more points, but since the CGO solvers are
constructed in a way where each new point is chosen carefully by utilizing information
from all the sampled points, this is probably not a good idea.

Finding a feasible experimental design with space filling capacity is not easy. The
algorithm proposed in this paper generates an initial design with feasible points having
the structure of a Maximin LHD. To see any real effect of a fully feasible experimental
design, one must probably have test problems where a large area of the design space
is infeasible. Most of the problems in PC have large feasible areas and thus the effect
is not as noticeable. Also, as the number of initial points N is typically a small part
of the total number of sampled points, the effect is limited.

Sampling the corner points of the bounding box add a tremendous stability to the
solvers, one could think of it as pinpointing the corners of the surface and therefore
getting a more stable description of the boundary. This feature is important as it tends
to help the solvers sample more interior points, which often helps the convergence.

The Maximin LHD approach is superior when looking at the RMS error. Combining
this with the success of the Corner Point Strategy seemed like a promising idea, but
unfortunately did not improve the f% and x% metrics as we had hoped.

There is no obvious winner since all the experimental designs work satisfactory. But
since we consider costly functions, even small differences do matter. The combina-
tion of Corner Points and global solver performs very well compared to the other
experimental designs, with robust results for all metrics.
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