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Abstract 
The purpose of this paper is to formulate an optimization model for the production scheduling problem at 
continuous production sites. The production scheduling activity should produce a monthly schedule that 
accounts for orders and forecasts of all products. The plan should be updated every day, with feedback on the 
actual production the previous day. The actual daily production may be lower than the planned production due 
to disturbances, e.g. disruptions in the supply of a utility. The work is performed in collaboration with Perstorp, 
a world-leading company within several sectors of the specialty chemicals market. Together with Perstorp, a 
list of specifications for the production scheduling has been formulated. These are formulated mathematically 
in a mixed-integer linear program that is solved in receding horizon fashion. The formulation of the model aims 
to be general, such that it may be used for any process industrial site.  
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1 INTRODUCTION 
Process industrial sites, such as sites for chemical, food, or 
pulp and paper processing, are often integrated sites, as 
described by [1]. This means that the products of some 
production areas become raw materials for other areas. 
Changing the production rate in one area may therefore 
affect several other areas at the site. A production 
schedule for an integrated site should specify how much 
that should be produced and sold of each product at each 
time, and how the inventories at the site should be used. 
Since the production areas are connected, finding a good 
production schedule may not be trivial without the use of 
optimization, especially at the presence of disturbances. 
Several suggestions of optimization models for production 
scheduling have been proposed. The majority of these, 
e.g. the proposals by [2], [3], and [4], handle the 
scheduling of batch processes. The state-task network 
(STN) representation introduced in [2] is also used by, 
among others, [5] and [6] to formulate production 
scheduling models for continuous plants. However, these 
studies focus on the unit level of the equipment hierarchy 
of a site rather than the area/site level that is relevant for 
the current study. A task is typically a chemical or physical 
transformation process such as heating or filtration ([3]). 
Here, the focus is on control of the product flow of 
intermediate and final products at a site. Since the 
production is continuous, the scheduling problem concerns 
choosing the production rates and amounts to sell of each 
product rather than the scheduling of individual tasks. 
Perstorp is a world-leading company within several sectors 
of the specialty chemical market. The company has 10 
production sites around the world, where each production 
site is divided into about 5-10 production areas. The 
production sites typically run in a continuous mode, without 
any product changes or grade changes. The aim of 
Perstorp is to run its production sites in a well-defined way 
even when there are site-wide disturbances such as 
disruptions in a utility or raw material. In order to do so, 
decision makers at Perstorp have generated a 
specification list containing demands and desires for the  

 
production scheduling system. This list is used as a 
starting point for finding a production scheduling model that 
is generic enough to be applied to all its production sites. 
In [7], a hierarchical structure for production scheduling 
and disturbance management is suggested, which is briefly 
described in Section 2. The current paper handles the 
upper level of the scheduling hierarchy, the production 
scheduling activity. The only aspect of the lower level 
detailed production scheduling activity that is considered 
here is the information exchange with the production 
scheduling. The production scheduling is designed on the 
basis of the specification list from Perstorp. The demands 
and specifications are formulated mathematically in a 
mixed-integer linear programming model. To get decision 
support on how to handle disturbances in real-time, the 
production scheduling is run in receding horizon, where the 
monthly production plan is updated each day. An example 
of a receding horizon solution of a production scheduling 
problem is included in Section 5 at the end of this paper to 
show how production disturbances are handled by the 
scheduling.  
 
2 SCHEDULING HIERARCHY 
In [7], the structure depicted in Figure 1 is suggested for 
scheduling and disturbance management. The production 
scheduling layer in the figure produces a production 
schedule based on information on orders and forecasted 
orders, and the detailed production scheduling takes care 
of disturbances in production. Similar hierarchical 
scheduling strategies are suggested in [8] and [9]. This 
paper focuses on the production scheduling activity, and 
aims at describing the functions of this activity in detail as 
well as how the functions can be formulated 
mathematically. The activities that the production 
scheduling should handle have been formulated together 
with Perstorp. The resulting list of specifications is given in 
Section 3. The specifications are then incorporated in an 
optimization model in Section 4.  



 

 
 

Figure 1: Suggested scheduling hierarchy. 
 

 
3 PRODUCTION SCHEDULING ACTIVITIES 
The objective of the production scheduling (PS) is to 
produce a production schedule that serves as an input to 
the lower level of the hierarchy in Figure 1, the detailed 
production scheduling (DPS). The production schedule de- 
fines reference values for the inventory levels, production 
rates and sales of all products for the DPS. The suggestion 
in [7] is to make the plan for one month, and update the 
plan every day in receding horizon. The current PS 
solution is sent to the DPS at the beginning of each day. 
Production scheduling is particularly interesting for 
integrated sites, where production areas are connected 
such that the products of some areas are raw materials to 
other areas. The product flow at integrated sites may be 
modeled as described in [10], as a network where directed 
arcs indicate possible transfers of intermediate products. 
An example of an integrated site is given in Figure 2. 
Together with decision makers at Perstorp, the following 
list of activities that should be handled by the production 
scheduling was produced.  
 

 
Figure 2: Example of an integrated site. 

 

3.1 The connection of production areas 
At integrated sites, as the one shown in Figure 2, 
production areas are connected via the flow of products at 
the site. The scheduling needs to take this into account 
when producing the production schedule.  
3.2 Orders and forecasts 
Information on which order quantities that should be 
produced, and when, should be provided as an input for 
the scheduling. The scheduling should be able to handle 
both actual orders and forecasts. The actual orders are the 
most important to fulfill, which should be accounted for in 
the scheduling. For the first days of the scheduling period, 
it is reasonable to assume that most of the orders are final, 
whereas for the last days, fewer orders have probably 
been placed and forecasted orders dominate. The 
scheduling should be performed such that the backlog of 
orders is as small as possible. 
3.3 Production rate limitations 
Production areas have a maximum capacity, which should 
be incorporated into the scheduling. Most areas also have 
a minimum rate at which they can operate, unless they are 
completely shut down. Production between zero and the 
minimum rate is thus not possible. The minimum 
production rate limits exist due to physical limitations, e.g. 
a distillation column has a minimum rate at which it can 
operate. 
3.4 Inventory limitations 
Most inventories have a maximum capacity. At some sites, 
this is not a strong limitation, since extra inventory capacity 
may be achieved by e.g. renting storage space temporary 
warehouses. However, at chemical plants the inventories 
are often (liquid) buffer tanks, which means that the 
maximum and minimum limits are hard constraints. 
3.5 Reference intervals for inventories 
In some cases, it could be desirable to keep the inventory 
levels at the site at certain reference levels. However, in 
many cases it might be a better approach to consider a 
reference interval, where it does not matter what the 
inventory level is, as long as it is kept between some 
minimum and maximum levels. These limits have to be 
within the hard constraints on the maximum and minimum 
inventory levels discussed previously. 
3.6 Start-up costs and start-up times 
Shutting down and starting up areas is often very 
expensive and time-consuming, which should be taken into 
account when performing the scheduling. The start-up 
costs originate from the cost of utilities and raw materials 
that are consumed during the start-up phase, e.g. for 
heating up reactors. The start-up time is the time it takes 
for the area to return to normal production rate after a 
shutdown. This time could be several days for some areas. 
3.7 Market conditions 
The scheduling has to consider the profitability of the 
forecasted orders, in addition to the confirmed orders. The 
scheduling should aim at maximizing the total profit. 
3.8 Costs for late delivery 
Late delivery of orders may lead to penalty costs. The aim 
of the scheduling should be to minimize the backlog of 
orders to avoid these costs. 
3.9 Cost of production rate changes 
Changing the production rate of an area quickly may be 
hard for the operators, and a stable production rate is also 
often more economically profitable because of lower 
average utility and raw material consumption. The 
scheduling should take this into account, and penalize 
large production rate changes from one day to the next. 
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4 FORMULATION OF THE OPTIMIZATION PROBLEM 
The issues stated in Section 3 that should be incorporated 
into the optimization problem are handled one by one in 
this section. A suggestion on how to formulate each 
constraint or specification mathematically is given. The 
model is formulated for integrated sites, and it is assumed 
that each area produces one product, which is stored in 
one buffer tank. The set of production areas at the site is 
denoted !, and the set of time periods that is considered is 
denoted !. 
4.1 Formulation of constraints 
The connection of production areas 
If the area dynamics are fast compared to the dynamics of 
the production network, the production in an area can be 
assumed to be directly proportional to the inflows to the 
area (i.e., the dynamics within the area are ignored). This 
can be expressed as 

qijt
in = qjtaij  (1) 

where !!"#!"  is the inflow of product i to area j at time t, !!" 
the production in area j at time t, and !!"  is called the 
conversion factor between product i and product j. The 
connection of production areas may be expressed as mass 
balances at the buffer tanks at the site, i.e., 

Iit = Ii,t!1 + qit ! qit
O ! qit

F ! qjtaij
j"#i

$ , i " A, t " T  (2) 

where !!" is the inventory level of tank i at the end of time 
period t, !!"! the orders sent to the market from the buffer 
tank of product i at time t, !!"!  the forecasted orders sent to 
the market from the buffer tank of product i at time t, and !i 
the set of areas directly downstream of area i. The notation 
is shown in Figure 3, which shows a site with three 
production areas. 

 
Figure 3: Example of a site with three areas. 

 
Orders and forecasts 
The order quantity of product i that should be delivered at 
time t is denoted !!"  and is given as an input to the 
optimization, for all products at the site and all times over 
the horizon. A forecast of the anticipated orders over the 
horizon is also assumed to be given. The forecasted order 
quantity of product i at time t is denoted !!". 
Production rate limitations 
To avoid solutions where the areas operate at rates 
between zero and the minimum rate, binary variables !!" 
may be used.!!!" is equal to one if area i operates at time t, 
and zero otherwise. The production rate constraints are 
expressed as 

witqi
min ! qit ! witqi

max, i " A, t " T  (3) 

where !!!"#  is the minimum rate at which area i can 
operate, and !!!"# the maximum production rate during one 
time step for area i. 

Inventory limitations 
The hard constraints on the inventory levels may simply be 
expressed as 

Ii
min ! Iit ! Ii

max, i " A, t " T  (4) 

where !!!"# and !!!"#  are the minimum and maximum 
allowed inventory levels in tank i. 
 
Reference intervals for inventories 
Auxiliary variables !!" may be used to put a linear penalty 
on deviating from the reference interval in a buffer tank. 
For a reference intervals with lower bound !!!"and upper 
bound !!!", constraints 

Ii
lb ! zit " Iit " Ii

ub + zit, i # A, t # T  (5) 

may be formulated, and the auxiliary variables penalized in 
the objective function, to achieve this.  
Start-up costs and start-up times 
A binary variable !!"  can be introduced to keep track of 
when an area has been shut down. Inequality constraints 

sit ! wi,t"1 "wit, i # A, t # T  (6) 

force !!" to be equal to one if area i has been shut down 
from time t!1 to t. To penalize shutdown/start-up of areas, 
!!" may be penalized in the objective function. 
The start-up times for areas may be formulated as the 
constraint 

wi,t+ j !1" sit, j =1,…,ni, i # A, t # T  (7) 

where !! is the start-up time of area i. 
Market conditions 
The forecasted orders that should be prioritized are the 
orders that give the highest profit. This may be achieved by 
penalizing ! miqit

F
t"  in the objective function, where !! is 

the contribution margin of product i. Another constraint 
imposed by the market is that the flows to the market may 
not be greater than the demand. For the flow to the market 
of orders, both the orders at the time step and the backlog 
of orders from the previous time step have to be taken into 
account. The constraint may be expressed as 

qit
O !Oit + Bi,t"1, i # A, t # T  (8) 

where !!!!!! is the backlog of product i at time t!1, which is 
defined under ‘Costs for late delivery’. 
For forecasts, the constraint 

qit
F ! Fit, i " A, t " T  (9) 

is used to ensure that the production scheduling does not 
plan to produce more of a product than can be sold. 
Costs for late delivery 
The backlog of orders, !!", of product i at time t is given by 

Bit = Bi,t!1 +Oit ! qit
O, i " A, t " T  (10) 

where the variables !!" ! !  at all times. To avoid late 
delivery of orders, the backlog may be penalized in the 
objective function. To ensure that the backlog of the most 
profitable products is handled first, the term may be 
weighted by factors proportional to the contribution 
margins, !!. 
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Cost of production rate changes 
Auxiliary variables !!" may be used to penalize production 
rate changes. Constraints 

qit ! xit " qi,t!1 " qit + xit, i # A, t # T  (11) 

may be formulated, and !!"  penalized in the objective 
function. 
4.2 Variables and parameters 
The variables that were used to formulate the constraints 
in Section 4.1 are summarized in Table 1. All variables are 
continuous except for the binary variables !!" and !!". 

 
The external inputs to the model are the orders, !!", and 
forecasted orders, !!", for all products i at each time step t 
over the horizon. The model also needs initial conditions 
for the production rates, sales, and inventories. These are 
given to the PS as measurements from the site 
(information from DPS), such that the initial conditions 
represent the actual production and inventory levels at the 
start of the optimization. To handle the start-up time 
constraints in the receding horizon formulation, the 
previous !!  measurements of !!"  are needed. This is 
handled by supplying the last ni  measurements of !!"  to 
the PS as initial conditions. From these measurements, the 
initial conditions of !!" that are required by the PS are also 
given. 
4.3 Formulation of objective function 
As described previously, some variables have to be 
penalized in the objective function to handle the 
specifications from Section 3. The suggested objective 
function is 

ZPS = (!imiBit !"imiqit
F +#isit +$izit +%ixit )

t"T
#

i"A
#  (12) 

where !, !, !, !, and ! are penalty parameters. The first 
term penalizes backlog of orders, where the weighting with 
the contribution margins, !!, ensures that backlog of the 
most profitable products is handled first. The second term 
encourages to plan the production for forecasted orders. 
The most profitable forecasted orders are prioritized, since 
the term is weighted with the contribution margins. The 
third term penalizes start-up/shutdown of areas. The 
weight on this variable, !, should correspond to the cost of 
starting up the different production areas. The last two 
terms penalize the auxiliary variables !!"  and !!" , to 
account for the buffer tank reference interval and the cost 
of production rate changes, respectively. 

4.4 Resulting optimization problem 
An optimization problem that takes the specifications in 
Section 3 into account may be formulated as 

 (13) 

The problem is a mixed-integer linear program (MILP) 
since it consists of both binary and continuous variables 
and the objective function is linear. In total, there are 
! ! !!! continuous variables and ! ! !!! binary variables. 
 
5 AN EXAMPLE 
The example provided in this section is constructed to 
resemble a real industrial site. Real data from Perstorp 
cannot be published due to secrecy matters. The planning 
horizon in the example is a month ( ! !!30 days). 
5.1 Background data 
The site structure is depicted in Figure 4. The site has six 
production areas, six products and six buffer tanks. The 
downstream areas are most profitable, and product 3 is a 
byproduct for which there is no demand. The contribution 
margins, !! , maximum and minimum production rates, 
and!!!!"# and !!!"#, and start-up times, !!, for all production 
areas/products are given in Table 2. The buffer tanks are 
limited between zero and one (0-100 %) and a reference 
interval between 40 % and 60 % of the buffer tank volume 
is desired for all buffer tanks.  
 

 

Figure 4: Site considered in the example. 

 

 Table 2: Production data 

 !!!"#,  
(kg/day) 

!!!"#,  
(kg/day) 

!! 
($/kg) 

!! !
(days) 

Product 1 2.4 24 0.4 4 
Product 2 1.2 12 0.7 2 
Product 3 0.48 4.8 0.1 3 
Product 4 0.24 2.4 0.5 1 
Product 5 0.48 4.8 0.8 2 
Product 6 0.48 4.8 1 1 

 
To make the results easier to interpret, it is assumed that 
the forecasts are perfect, such that all forecasted orders 
become actual orders. The information on all orders of the 
month is given already at the first day of the month. This 
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Table 1: Variables 

!!" Inventory level of tank i at the end of time period t 
!!" Daily production rate of area i at time t 
!!"! Daily flow to the market of orders of product i at 

time t 
!!"!  Daily flow to the market of forecasted orders of 

product i at time t 
!!" Backlog of product i at the end of time period t 
!!" Operational mode of area i (on/off) at time t 
!!" Shutdown/start-up variable for area i at time t 
!!" Auxiliary variable for buffer tank reference interval 

for tank i at time t 
!!" Auxiliary variable for production rate changes for 

area i at time t 
 

minimize (12) 
subject to (2) – (11) 
and !!" ! !!" ! !!"! ! !!"! !!!" ! !!" ! !!" ! !!!!!!!!! ! !! ! ! ! 
       !!" ! !!" ! !!! !!!!!!!! ! !! ! ! ! ,  
 
ccc 
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means that the flows to the market !!"!  and !!"!  can be 
merged into one flow, !!"!. For simplicity, it is also assumed 
that all the conversion factors are equal to one, !!" ! 1. 
The mass balance constraints according to (2) become 

I1t = I1,t!1 + q1t ! q1t
M ! q2t ! q3t ! q4t, t " T  (14) 

I2t = I2,t!1 + q2t ! q2t
M ! q5t, t " T  (15) 

I3t = I3,t!1 + q3t ! q3t
M ! q6t, t " T  (16) 

Iit = Ii,t!1 + qit ! qit
M , i = 4, 5, 6, t " T  (17) 

5.2 Shaping the objective function 
The objective function that is used is given by (12). At the 
site, the costs for shutting down/starting up areas are very 
high. Thus, a large penalty on start-ups is used in the 
objective function. The cost of starting up/shutting down is 
approximately equal for all areas. It is more important to 
deliver orders on time (avoid backlog) than to avoid to 
deviate from the inventory reference interval or to avoid 
changing the production rate rapidly. The buffer tanks 
should be used to handle unexpected production 
disturbances. The penalty parameters for the optimization 
are thus chosen as 

!i =10, "i =1, #i =100, $i =1, %i = 0.1, i ! A  

The optimization problem is given by (13), with the 
parameter values stated in this section. The problem 
consists of 1080 continuous variables and 360 binary 
variables. 
5.3 Simulation 
In this section, the production scheduling for one month is 
illustrated. An initial plan for the sales of the six products is 
given by the placed orders. The example is constructed as 
five periods with different levels of daily orders. The daily 
orders of each product in these periods are summarized in 
Table 3.  

Table 3: Orders of each product in kg/day. 

Days  ! 1–4 5–10 11–15 16–23  24–29 
Product 1 4.80 5.53 5.96 4.80 4.11 
Product 2 7.20 7.93 7.20 7.20 6.74 
Product 3 0 0 0 0 0 
Product 4 2.40 2.40 1.20 2.40 2.35 
Product 5 4.80 2.40 4.80 4.80 4.40 
Product 6 4.80 2.40 4.80 4.80 4.18 

 

 
The production scheduling is run in receding horizon, such 
that the optimization problem (14) is solved at the 
beginning of each day of the month. The production 
scheduling gets updates on the actual production and 
inventory usage each day from the detailed production 
scheduling (lower level in the scheduling hierarchy). This 
information is used to update the initial conditions to the 
next optimization problem to be solved. In this example, 
the detailed production scheduling is only run when there 
are disturbances in production. Otherwise, it is assumed 
that the daily production is performed precisely according 
to the plan given by the production scheduling. Three utility 
disturbances that affect the actual daily production have 
been simulated: An electricity disturbance at day 2, a 
middle-pressure steam failure at day 12, and a high-
pressure steam disturbance at day 18. The electricity 

disturbance affects all areas, the middle-pressure steam 
disturbance affects area 2, 4, and 6, and the high-pressure 
steam disturbance area 1 and 3. Other areas may also be 
affected indirectly since the areas are connected by the 
flow of products at the site. In Figure 5-7, the resulting 
trajectories for the production rates, sales, and inventories 
are shown. In the figures, the plan obtained from the 
scheduling is marked as blue solid lines, and the actual 
production/sales/inventory usage is marked with dashed 
green lines. 
Figure 6 shows that the production scheduling eliminates 
the backlog of products due to disturbances when this is 
possible, i.e., produces more than the ordered quantities at 
some time instances. At the end of the month, 100 % of 
the total ordered amount of each of the products has been 
delivered. Some orders are delivered one or a few days 
late. If this should be allowed or not depends on the 
contracts and relations with the customers at the actual 
site. In Figure 7 it can be seen that the buffer tanks are 
utilized to fulfill the orders, at times where there have been 
disturbances in production. When it is possible, the buffer 
tank levels are returned to within the reference interval. 
 

 
Figure 5: Production rate trajectories. The blue solid lines 
mark the production plan and the green dashed lines the 
actual production. 

 
Figure 6: Sales trajectories. The red solid lines mark the 
orders, the blue solid lines the planned sales, and the 
green dashed lines the actual sales. 
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Figure 7: Inventory trajectories. The blue solid lines mark 
the planned inventory usage, and the green dashed lines 
the actual usage. The reference intervals for the buffer 
tanks are marked with red dotted lines. 
 
 
6 CONCLUSIONS AND FUTURE WORK 
An optimization model for production scheduling was 
introduced given specifications of functions and demands 
from a process industrial company. The optimization 
problem becomes a mixed-integer linear program that is 
solved every day of the month in receding horizon fashion, 
given updates on the actual production each day and the 
incoming orders. An example is given to show how the 
scheduling could operate during a month with some 
production disruptions. 
It is possible to extend the model in various directions, to 
capture even more realistic conditions. For example, one 
could introduce a set of discrete production levels for each 
area, since it is not possible in practice to make minor 
changes in the production rate. Another extension is to 
introduce variables for individual orders of each product 
each day, not just an accumulated daily requested amount 
for each product. Such extensions are currently ongoing 
work. 
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