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Abstract We introduce a time-indexed mixed-integer linear programgmmodel
for a military aircraft mission planning problem, where aflef cooperating air-
craft should attack a humber of ground targets so that tla ¢éoipected effect is
maximized. The model is a rich vehicle routing problem areldhrect application
of a general solver is practical only for scenarios of veryderate sizes. We pro-
pose a Dantzig—Wolfe reformulation and column generatigmr@ach. A column
here represents a specific sequence of tasks at certainfomas aircraft, and to
generate columns a longest path problem with side contriirsolved. We com-
pare the column generation approach with the time-indexedetwith respect to
upper bounding quality of their linear programming reléas and conclude that
the former provides a much stronger formulation of the probl

1 Introduction

We study a military aircraft mission planning problem (MAMR which was intro-
duced by Quittinetet al. [26]. In general, a military aircraft mission might involve
various tasks, such as surveillance, backup support, eesssistance or an attack.
We only consider the situation where a set of ground targetsisito be attacked
with a fleet of aircraft. The planning of such aircraft missas still to a large extent
carried out manually, and it takes an experienced plann@rakhours to create a
feasible plan.

The research presented here has been performed in coliabovéth an in-
dustrial partner, and is a continuation of the work by Quettiret al. [26, 25].
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The MAMPP is recognized as a generalized vehicle routinglpro (GVRP) with
precedence relationships and synchronization in time asdipn between multi-
ple vehicles. Examples of mathematical optimization apphes to military routing
problems can be found in [33, 29, 28, 7]. To the best of our kedge, the MAMPP
has not been analyzed by optimization methods by others.

Synchronization in a vehicle routing problem (VRP) might dénibited with
regard to spatial, temporal, and load aspects. A receneguwf/VRPs with syn-
chronization constraints (VRPS) is given in Drexl [10] amtws that this topic is
challenging and emerging. Following the definitions frors thaper, the synchro-
nization in our problem can be classified as operation symehation, in which one
has to decide about time and location of some interactiondst vehicles. In [11],
Drexl presents modeling techniques for a VRP with trailard &ransshipments
(VRPTT), which is an application of the VRP with all the prensly mentioned syn-
chronization constraints. Different transformations lafssic VRPs and of several
types of VRPSs are described. Recently, Drexl [12] presett® mixed-integer
programming formulations and five branch-and-cut algorghor the VRPTT.

Bredstbm and Rnnqvist [6] give a daily homecare planning problem, whigh i
modeled as a vehicle routing and scheduling problem withqutence constraints
on visits as well as time windows and pairwise synchroniraf{because two staff
members are required to visit an elderly person simultasighitRedjemet al. [27]
also consider routing with time windows and synchronizesityifor a homecare
planning problem. Synchronized routing and schedulingleras need to be solved
also in the forestry industry. El Hachemtial. [14], for instance, include multiple
aspects such as pick-up and delivery, and inventory stocksalve the decomposed
problem using constraint-based local search. Other exasmyl work on routing
with synchronization are [21, 3, 1].

Already in the 1970s, Golden [17] touched the GVRP as a vanaif the classic
VRP. One of the first dedicated papers on GVRP is by Ghiani ematdta [16],
who give a transformation to the capacitated arc routinglpra. Baldaccet al. [4]
discuss some applications for the GVRP, whereas formulgsémd branch-and-cut
algorithms are given in the recent paper of Beldaal. [5]. Ha et al. [18] solve
the GVRP with the number of vehicles as a decision varialiéh beuristically
and exact using a branch-and-cut approach. For the samieprobfsaret al. [2]
present an exact method based on column generation, anddtaheuristics.

In Sigurdet al. [30], vehicle routing with precedence constraints and tmie
dows is considered in order to schedule transportatiorvefdnimals to avoid the
spread of diseases. A general framework for VRP with timedawvs and temporal
dependencies, including exact synchronization, is giveDohnet al. [9]. In the
context of GVRP, a time windows extension is considered bydvoet al. [24],
who suggest a metaheuristic solution method. Their worlceors an application
to the design of home-to-work transportation plans.

By taking into account multiple non-standard charactiesstf the GVRP, such
as precedence relationships and operation synchronizat®believe to contribute
to the existing literature. Our paper reads as follows. IctiBe 2, the problem set-
ting is described, followed by a time-indexed mathematfimahulation in Section 3.
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Section 4 develops a column generation method for a Dandfe reformulation

of the time-indexed model, followed in Section 5 by a degmipof a stabilized

column generation method. In Section 6, we give theoretioahding results. Fur-
ther, in Section 7, numerical results of our approach areudised, followed by a
conclusion in Section 8.

2 Problem Setting

This section provides a concise description of the probletting). A detailed report
on the complex problem characteristics and how to transtbem into a mathemat-
ical formulation can be found in Quittinedhal. [26]. As mentioned above, we only
consider military aircraft missions involving attacks.€ldgreographical area of inter-
est, referred to as the target scene, includes the targeataeghld to be attacked and
other objects such as enemy defense positions, like stideae missiles (SAMS),
and protected objects, like hospitals and schools. We denall objects to be sta-
tionary with known positions. The target scene is defined byeaof entrance and
a line of exit for the aircraft. These are typically deployfesm a base situated far
away from the target scene and enter the scene by the ergrchmry out the mis-
sion and return to a base after leaving the scene at the eitThe diameter of a
target scene is usually of the order of 100 km, the distanetsden targets are of
the order of a few kilometers, and the timespan of the attechksound a quarter of
an hour. Typically, a mission involves 6-8 targets and 4+&ait. At the end of this
section, an example of a target scene is depicted, togeitieawolution.

The goal of a mission is to find an attack plan where maximall texpected
effect is gained within short timespan. The mission timea8reed by the time the
first aircraft passes the entry line and the time the lastafirpasses the exit line.
Since the entire target scene is located in hostile areantbsion time needs to
be minimized. To take into account the threat from defensstipas, aircraft are
restricted not to fly through defended airspace. Weaponsherother hand, are
allowed to pass through defended airspace, but at the ribkiofy shot down, that
is, with a lower expected effect on the target.

In order to plan a mission, the aircraft characteristicddneebe taken into ac-
count. Each aircraft has an armament capacity, limitinghthaber of attacks it can
perform. It can also be equipped with an illumination lased o guide weapons.
Each target needs to be attacked exactly once, and requieesiraraft that illumi-
nates the target with a laser beam and one aircraft that ti@snibe weapon. Since
an attack requires continuous illumination from the launtthe weapon until its
impact, the two aircraft need to team up. This rendez-votsnly depends on the
time but also on the location of both aircraft, so that thenilination is continuously
visible for the weapon.

Figure 1 illustrates how a target is modeled. The feasiltéehkispace can be de-
rived from the type of aircraft and the type of weapon beirediand is represented
by the inner and outer radii. This attack space is then divid® six sectors, which
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each holds at most three discretized attack positions aodtdmpatible illumina-

tion positions. If a protected object is inside the estirdateea of risk for collateral
damage of a given attack position, this position is considamfeasible. For any
attack position, the expected effect on the target can bmileaéd. It depends on
the kind of weapon being used, which is decided in advanak parthe direction

of the impact and the weapon'’s kinetic energy. The two illuation alternatives
per sector differ in flight direction, roughly clockwise arunter-clockwise, but are
both compatible with all attack positions of the sector. ur problem setting we
consider only one altitude layer, but one could of courserakthe target modeling
by allowing attack options on different discrete altitudgdrs.

Fig. 1 The feasible attack AN
space defined by inner and
outer radii, and divided into
six sectors, each with three
attack and two illumination
alternatives. A pair of compat-
ible attack and illumination
positions is marked, where
the arrows indicate the flight
directions.

Not all attack sequences are allowed. Depending on the wiedttbn and the
proximity between targets, dust and debris might reduceittileility and hinder an
attack. Hence, we assume that precedence constraintsvare gpecifying which
targets are not allowed to be attacked before other targets.

In summary, the problem involves three types of decisioirst,Rhe choice of
attack direction against each target. Second, which twaraitrshall be assigned
against the targets. Third, the order in which each airdudfits its assigned tasks
in the mission. Now it is clear that the problem belongs todllass of vehicle rout-
ing problems, describing the attack and illumination pos& by nodes, each of
which being associated with an expected effect on the taByeturther introduc-
ing dummy nodes associated with the crossings of the enthyeait lines of the
target scene, and modeling possible aircraft movementsdsy the mission plan-
ning problem can partly be represented by a network. Becaiuges precedence
relationships, some arcs are eliminated from the netwdrk.r€striction that every
target should be attacked exactly once results in a netviatkanly contains arcs
between different targets, or from or to the dummy nodes.

Each of the arcs has two attributes: an expected effect aadel time. The effect
attribute is different from zero only for an arc that is leayian attack node, and it
then equals the resulting expected effect against thettahgiight path between
two positions has to comply with restrictions on the aircthinamics and that the
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aircraft cannot pass through defended airspace. By usinigta flath generator
provided by our industrial partner, we are able to find thénpeth minimal time
between any pair of positions. In general, travel times héllasymmetric because
each position is also associated with a flight direction.

To illustrate the essential aspects of a solution to the M&RVHgure 2 depicts
a target scene and an optimal solution. For this problenams, two aircraft are
used, there are no precedence constraints on the targétsaelm aircraft can attack
at most two targets. All numerical data used in the scenaeewrovided by our
industrial partner.

|324
| 338
| 1 | 1 '
200 258 300 teng = 338

Fig. 2 Optimal solution to a problem instance that includes threestargnd nearby SAMsx()
and hospitals (+). Shown are aircraft routes, chosen attacklamdnation positions against each
target, the times of the attacks, and the times when the twa#tigass the exit line.

The aircraft routes are shown as solid and dashed lines. fldcekaequence is
2-1-3, with a total mission time &f,y = 338 seconds. The expected effects of the
attacks on targets 2 and 3 are maximal, among the availabtkatositions for these
targets, while the attack position against target 1 rendarsffect that is slightly
below the maximal possible. Achieving maximal effect agtithis target would
require a longer tour for both aircraft, which makes thism@ative non-optimal.

3 A Time-Indexed M athematical M odel

We here present a time-indexed mixed-integer linear progrimg (MILP) mathe-
matical model of the MAMPP. This MILP model can be derivedhirthe one in-
troduced by Quittinelet al. [26], through a discretization of time. In particular, this
discretization allows an alternative modeling of the timmegagation constraints.
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We divide the nomenclature into indices and sets, paramatet coefficients, and
decision variables, given in Tables 1, 2 and 3.

Table1 Indices and sets

R fleet of aircraftr
M set of targetsm, to be attacked
N set of nodes in the network, excluding the origi) énd destinationd) nodes

G,Gnp set of all sectors for all targets and for targetrespectively

NA, N}, set of feasible attackd) and illumination () nodes, respectively, for target

A,Ag,lg setof arcs in the network (including fromand tod) and sets of arc§, j) such that
nodej is an attack (A) node or illumination (I) node in sectprrespectively

P set of ordered pairgm, n) of targets such that the attack on tangetannot preceed the
attack on target

S set of time periods within a discretized planning horizon, ezfdiep lengtmt

Table2 Parameters

c{j for arcs(i, j) with i € Nn’ﬁ, that is, for arcs leaving attack nodes, the value{pfs the
expected effect of the attack, and otherwise the value is zero

Sj the time needed for aircraftto traverse ar¢i, j ), expressed in number of time periods;
equals actual time to traverse the arc divided\byrounded upwards

Ts the ending time of period, which equals- At,s=0,1,...,|S

rr armament capacity of aircraft

am weapon capacity needed towards tarmget

U positive parameter that weights mission timespan against expdfgetian targets

Table 3 Decision variables

X routing variable, equals 1 if aircrafttraverses ari, j), and 0 otherwise

Vi time indicator variable, equals 1 if nodlés visited by aircraftr in time periods, and
0 otherwise

tend the time that the last aircraft passes the exit line

The primary objective is to maximize the total expected afgainst all the
targets. However, in order to acheive this effect, the udergj flight paths within
the target scene might be neccessary, which exposes thaftioca higher risk of
being detected and engaged by enemy defense. A secondantiwbjs therefore
to limit the mission timespan. We thus have a multi-objectptimization problem,
with two objectives that are typically in conflict.

Since the maximal allowed mission timespan is given3)yAt, an explicit way
of limiting the mission timespan is to reduce the cardigaditS, which might how-
ever cause the MAMPP to become infeasible. A further drawlofthis approach
is that it can allow mission timespans that are unneccdgdang with respect to
the obtained target effect.

Instead, we have chosen to optimize a weighted combinafitimeatwo objec-
tives, using the positive parametemwhich reflects the trade-off between effect on
target and mission timespan. This yields a solution thaaret® optimal. As part of
a decision support tool, the value pfcan either be chosen by a mission planner or
varied systematically in order to generate a populationigsimn plans with differ-
ent properties with respect to effect and time, to be furéwatuated by a mission
planner. Since target effect is the primary goal, the vafye i3 typically small.
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The time-indexed mathematical model for the MAMPP is giveloty.
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Constraints (1) and (2) describe that each aircraft leandaters the target scene
via the origin and destination nodes, respectively, whilestraint (3) is the node
balance equation for each aircraft. The requirement thet eaget shall be attacked
and illuminated exactly once is modeled by constraints (%) €b), respectively,
while constraint (6) synchronizes these tasks to the saaters€onstraint (7) states
that each aircraft can visit each target at most once. Thistcaint is actually re-
dundant, but it strengthens the column generation probtente presented. The
armament limitation is modeled by constraint (8).

Further, constraint (9) states that each aircraft is lenthie origin at time zero.
Constraint (10) ensures that if aircrafis visiting nodej directly after node, then
the time of visiting nodg cannot be earlier than the time of visiting nddaus the
time needed to traverse gjicj). Constraint (11) enforces that if notlis not visited
by an aircraft, no outgoing ar@, j) from that node can be traversed by the aircraft.

Constraint (12) states that the attack and the illuminatiba target need to
be synchronized in time. Constraint (13) imposes the peusal restrictions on
the attacking times of pairs of targets. Similarly, constrél4) imposes the prece-
dence restrictions for an individual aircraft. This coasit is also redundant, but it
strengthens the column generation problems. Constréihs(ates that each aircraft
can visit each node in at most one time period, and constiaitdefines the total
mission time, since all aircraft end up at the destinatiotend-inally, (17) and (18)
are definitional constraints.

The optimal value of the linear programming (LP) relaxaté [-MAMPP is
denotedz .

4 Column Generation

The planning of a military aircraft mission is typically madlose to when the mis-
sion actually takes place (say, within 24 hours); one reésothis is that the plan-
ning can then be based on the most recent information. The nieeded for the
chain of planning is of the order of several hours. Solvirgy¢hntinuous time ver-
sion of MAMPP presented in Quittinedh al. [26] to optimality takes a general MIP
solver several hours for already moderate-sized problastamees. This is also the
case for the model TI-MAMPP presented above. Hence, efficilgorithms are
needed to meet the needs and expectations in a real-lifegsétfe propose a col-
umn generation method based on a Dantzig—\Wolfe refornomdé] of the model
TI-MAMPP. For overviews of column generation, see for exenfip2] and [32].

The Dantzig—Wolfe reformulation is defined in the followisigps. Suppose that
the constraints (1)—(3), (7)—(11), (14)—(15), and (178)tiaveN; feasible solutions
for aircraftr € R. Each of these describes a possible route for the aironatilving
specific tasks at specific targets at certain times. Assuat@thc N; of the routes
for aircraftr € R are explicitly available. Typicallyn, < N; holds. Let the values
of the variables for each feasible solution to the abovetimeed constraints be
denoted by¢f andyis, k=1,...,n.
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Next, we relax the binary variable restrictions from the NIAMPP and intro-
duce variable; as convexity weights on the solutior$ andyi&, k=1,....n.
Further, we impose the relationships

nr nr
Xj = YK and i — 3 V¥Z
k=1 k=1

Substitution of these relationships into the objectivection and into the con-
straints (4)—(6), (12), (13) and (16) yields the followirestricted Dantzig—\Wolfe
master problem.

nr
Zoup = max ER > ( > Cirinrlk> Z — Hlend [DW-RMP
reRk=1 \(i,j)eA

subject to

rk
[l reZ:zk; (ge%m(i,j;e/*gx”)
rk
[P rgR k; (ge%m(i-i)zégx”)
n | il k| A G (2
(ol rngZ1 ((i’DZEAgXu) Zf( rngzl (U,j)ze'gxlj) Z{< ge (21)
) 2

Z =1, meM (19)

Z =1, meM  (20)

N

w35 (ne)e 25 ()

>33 k) 2, s, (23
Z4 > rng:l (iENﬁy’)Zrk ( ses,  (293)

meM, (22)

n S|
A rgR kZl (tZSi ezN‘m‘ y{tk

Ny
[tr] Z ( TS'YQ;) Z < tend, reR (24
k=1 \se{0}US
Ny
v 4 =1 reR  (25)
k=1
Z >0, k=1,....,n,, reR (26)

Each column of this problem represents a route for a spedificaét, and the
restricted master problem is to find the best way to combirevallable routes into
a solution that is feasible and optimal with respect to tlstrietions that couple all
aircraft, in a linear programming sense.
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Comparing DW-RMP with TI-MAMPP, constraints (19)—(21) empond to the
attack, illumination and synchronization constraints-(8), while constraints (22)
and (23) match the time synchronization and precedenceragnts (12) and (13).
Further, constraint (24) defines the total mission time,ilaiy to (16). Finally,
constraints (25) and (26) are definitional.

If all feasible routes for each aircraft are known, that fsp;i = N; holds for
all r € R, the restricted master problem becomes a full master pmbhgth an
optimal objective value denotexj,. Further, any optimal solution to DW-RMP
that is integral yields a feasible solution to TI-MAMPP antbaer bound tozp,
denotedz ..

Assume that DW—RMP has a feasible solution. Each of its cain$$ is associ-
ated with a dual variable, indicated in the square brackethd left. The optimal
values of these dual variables are used to define a Dantzife-\8abproblem, or
column generation problem, for each aircraft R. The objective function in each
subproblem describes the reduced cost of any feasible oolilnat is, any possible
route for the aircraft. As long as there is a route with a pesiteduced cost, such
routes should be generated and their corresponding colachesd to DW-RMP.
Generating columns with positive reduced costs boils dangolving the following
subproblem for each aircrafte R.

Chi1 = Max ; X~ Tois — [DW-SUR]
(i,))eA se{0}uS

- |a Xij P Xj | -
-5 ¥ Xij— Xij | - n Yis— > Yis| -
gé ’ (m%\g ! (i,j;elg J) mnggS ms(iezwm ° ieZNnu °

IS
- Amns it — is| —Vr
e (IZ%ZN%V* iezNﬁyr) ‘

subject to (1), (2),(3),(7),(8),(9), (10),(11), (14),(15),(17),(18)

The problem DW-SUBcan be described as a side constrained longest path prob-
lem in a time-layered network where all nodesNihave|S| time copies. The con-
straints (9)—(11) are taken into account implicitly in tlemstruction of the network,
while constraints (7), (8), (14) and (15) are side constsaifihis problem does not
possess the integrality property.

An upper bound oy is given byzayp + 3 er Ch 4 1- The lowest such upper
bound ever found is denoted Byip.
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5 Stabilized Column Generation

As is well known, column generation methods are dually eajaivt to cutting plane
methods. The latter are known to be inherently instable, [ib9%he sense that suc-
cessive iterates can be very distant, which may cause sloveagence. In column
generation methods, the dual instability manifests itaglbscillations in the values
of the dual variables, which slows down the convergenceial#we primal space.

In order to improve the efficiency of the column generatidmesue, it is therefore
common to apply a stabilization of the values of the dualal@es. This technique
was introduced by Marsteet al. [23] back in 1975, and examples of applications
from more recent years can be found in [13] and [31], to mergmme.

The idea is to prevent the dual solution of the DW-RMP to flatdibetween
successive iterations. This is accomplished by includitgaconstraint for each
dual variable, centered around its current value and ptegethe value to change
drastically from one iteration to the next. These additi@mnstraints in the dual
problem correspond to auxiliary variables in the primaligpeon, and the effect of
these variables is a relaxation of the original primal caists. Consequently, the
parameters that specify the size of the box appear as pevilfirts in the objective
function for the auxiliary variables.

We stabilize constraints (19)—(23) in DW-RMP, and the optiobjective value
of the stabilized DW-RMP is denotei,,». An upper bound oy, is calculated
asZgyp + Yrer Cy 11+ (The reason that a formula similar to the one used in non-
stabilized column generation applies also in the stalullzzese is that both formulas
are in fact equivalent to a Lagrangian dual bound, and thataf no significance
how the dual point is obtained.)

The size of each box slowly shrinks every iteration, and reisentered every
time it becomes binding (that is, every time an auxiliaryialle becomes nonzero).

6 Bounding Properties

The relationships between the various optimal values anchd® in our column
generation approach becomes rather intricate. Theséredaips are illustrated in
Figure 3.

The optimal valuezp for TI-MAMPP is trivially bounded from below by the
objective valuez, of any feasible solution, and bounded above by the optirRal L
valuez . This bound has proven to be very weak, see [26, 25]. Furtfyecan be
bounded from above by the optimal LP value of the full mastebjem, 7. It
always holds thaty,, < z'p, but since the column generation problem DW-$UB
does not have the integrality propertj,, < z'p can be expected to hold.

Assume first that no stabilization is used. As routes are cdia¢he restricted
master problem, its optimal valug,,» converges monotonically toward§p. Note
that the relationship betweesy,, andz}, is unknown. Furtherzyp is convergent
towardsz,p from above.
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Z4p Zp Zup Zp

Fig. 3 Bounding relationships for the column generation approach.

Considering the case with stabilization, the relationsi@pveernzeg,,p andzyp
is unknown, since the stabilized restricted master prolihetndes both a restriction
and a relaxation, as compared to the full master problem.exewthe valugg,p
becomes a lower bound faj,, if the dual box is not binding (that is, all auxiliary
variables in the primal problem are zero). Finalfyp, as calculated in Section 5, is
an upper bound fazy,. Further, it converges towardg,p.

7 Numerical Validation

We have made a preliminary assessment of T-MAMPP and therogeneration
approach by using a few small problem instances that ardiédérno, or slight
modifications of, instances used in [26]. All experimentgehiaeen carried out using
the modeling language AMPL [15] and the solver CPLEX [20].

Table 4 shows problem characteristics and results obtauitbdhe continuous-
time model of MAMPP in [26] and TI-MAMPP. We observe that evenrather
large time steps, the optimal solutions found by the cowtiisdtime and time-
indexed models are very similar, with respect to attack seges and to attack and
illumination nodes. Although not reported in the table, Wgmabserve that the solu-
tion times of the continuous-time and time-indexed modedssanilar for large time
steps, while the latter is much more demanding when the stepsmall. Further,
the upper bounds given by the linear programming relaxata@frthe continuous-
time and time-indexed versions of the MAMPP are very simitadependent of the
sizes of the time steps, and very weak.

Table 5 shows a comparison between the time-indexed modethencolumn
generation approach. Here, initial values for the dualaldes for the stabilized
constraints (19)—(23), used to initialize the dual boxes,abtained by solving the
LP relaxation of TI-MAMPP. (The radii of the boxes were iaily set to 0.3 and
shrinked by a factor of 0.97 in each iteration.) To createndtial set of routes and
columns, the DW-SUBproblem is solved for an ad hoc fixed set of sectors to be
visited, for each aircrait € R.
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Table4 Problem characteristics and comparison of the continuous-th&me-indexed models.
Here,u = 0.005 and all instances include two aircraft. The notafi@f23} means that target 1 is
attacked before targets 2 and 3. The maximal possible total effetargets is 000.

Problem Cont. At =60 At =45 At =30
No.| |M| Prec. I | Eff.  teg Eff.  teng | Eff.  tend | Eff.  tend
1] 3 - 3] 0.974 333 |0.808 420 | 0.974 405 | 0.974 390
2| 3 - 2| 0.974 338 | 0.808 420 | 0.974 405 | 0.974 390
3| 3 {1234 3|0.863 352 |0.808 420 |0.863 405 | 0.808 390
4| 4 {1)2|3}4} 3| 0.917 628 | 1.000 840 | 0.917 720 | 0.917 720
5| 4 {1]2/3/4} 2| 0917 638 | 1.000 840 | 0.917 720 | 0.917 720

Table 5 Comparison of the time-indexed model and column generation. Ptimal LP value
Z'p of the time-indexed model varies very little with the step size;giwe the value foAt = 60.
The columnsgp[45 andZz[30 are the optimal values of the time-indexed model with different
time steps. Furtheg, are the objective values obtained when solving the integesiome of the
final master problem (and a feasible solution exists), and Iteneisitimber of column generation
iterations needed to reach optimality.

Time-indexed CG:At =45 CG:At =30
No.| Zp  Zp[48  Zp[30 Zup Zp lter| Zyp Zp  lter.

123173 1.933 2.683| 1933 1933 16| 2.683 2.683 22
223173 1.887 2.674| 1887 1.887 11| 2.674 2674 15
3 (22813 0.346 0.080| 0.346 0.346 22| 1.271 - 22
4 |30.117 -7.677 -7.730| -6.532 - 37| -4.744 - 37
5130.115 -7.730 -7.730| -7.083 - 29| -6.002 - 60

Comparing the columng p, andzy,e with the columnsgp, we conclude that the
upper bound og, obtained frongy,, is much tighter than the bourfl,. The bound
Z;,p is indeed very close tg, while the bound;  is very weak. Further, comparing
the columnsg; andz,, we see that whenever the restricted master problem has an
integral feasible solution, it is also of high quality.

8 Conclusion

Clearly, the Dantzig—Wolfe reformulation and column gextien approach provide
vastly superior upper bounds on the optimal value of TI-MAM®/e conclude
that the Dantzig—Wolfe reformulation gives rise to a verpist formulation of the
TI-MAMPP. This model by itself is not very efficient in term§solving the mili-
tary aircraft mission planning problem, but it was helpfuthe development of the
column generation procedure.

The solution times of our implementation of the column gatien approach are
not competitive compared to direct methods. The solutioDWFRMP takes very
little time. This holds even for the integer version of thisiglem. The column gen-
eration problem DW-SUBis however very time-consuming to solve to optimality.
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There are several opportunities for tailoring and streaimdj the computations,
and especially to reduce the computational burden of thentolgeneration prob-
lem DW-SUB. For example, in early column generation iterations it rhigé
more efficient to terminate the column generation solvercas |s the objective
value gets positive, since this is enough to ensure progresther, a tailored solver
for DW-SUB: can be developed by exploiting its underlying time-layemetivork
structure. This is an interesting opportunity for furthesearch.

The column generation approach can be applied to obtain per lgpund, to be
used for assessing the quality of any feasible solution +MPMPP, for example
generated by a metaheuristic. Also, feasible solutiongigged by metaheuristics
can be used to provide high quality initial columns to therreted master problem.
This combination is another topic for further research.

A great advantage of the column generation approach to MAMRPreal-life
planning situation would be its creation of many possiblées for all aircraft. This
is of practical interest since a real-life MAMPP can neverekpected to include
all possible aspects of the mission to be planned, and bedditise multi-objective
nature of the problem. The access to multiple aircraft gt then be exploited
in an interactive decision support system.
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