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Abstract We introduce a time-indexed mixed-integer linear programming model
for a military aircraft mission planning problem, where a fleet of cooperating air-
craft should attack a number of ground targets so that the total expected effect is
maximized. The model is a rich vehicle routing problem and the direct application
of a general solver is practical only for scenarios of very moderate sizes. We pro-
pose a Dantzig–Wolfe reformulation and column generation approach. A column
here represents a specific sequence of tasks at certain timesfor an aircraft, and to
generate columns a longest path problem with side constraints is solved. We com-
pare the column generation approach with the time-indexed model with respect to
upper bounding quality of their linear programming relaxations and conclude that
the former provides a much stronger formulation of the problem.

1 Introduction

We study a military aircraft mission planning problem (MAMPP), which was intro-
duced by Quttinehet al. [26]. In general, a military aircraft mission might involve
various tasks, such as surveillance, backup support, rescue assistance or an attack.
We only consider the situation where a set of ground targets needs to be attacked
with a fleet of aircraft. The planning of such aircraft missions is still to a large extent
carried out manually, and it takes an experienced planner several hours to create a
feasible plan.

The research presented here has been performed in collaboration with an in-
dustrial partner, and is a continuation of the work by Quttineh et al. [26, 25].
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The MAMPP is recognized as a generalized vehicle routing problem (GVRP) with
precedence relationships and synchronization in time and position between multi-
ple vehicles. Examples of mathematical optimization approaches to military routing
problems can be found in [33, 29, 28, 7]. To the best of our knowledge, the MAMPP
has not been analyzed by optimization methods by others.

Synchronization in a vehicle routing problem (VRP) might beexhibited with
regard to spatial, temporal, and load aspects. A recent survey of VRPs with syn-
chronization constraints (VRPS) is given in Drexl [10] and shows that this topic is
challenging and emerging. Following the definitions from this paper, the synchro-
nization in our problem can be classified as operation synchronization, in which one
has to decide about time and location of some interaction between vehicles. In [11],
Drexl presents modeling techniques for a VRP with trailers and transshipments
(VRPTT), which is an application of the VRP with all the previously mentioned syn-
chronization constraints. Different transformations of classic VRPs and of several
types of VRPSs are described. Recently, Drexl [12] presented two mixed-integer
programming formulations and five branch-and-cut algorithms for the VRPTT.

Bredstr̈om and R̈onnqvist [6] give a daily homecare planning problem, which is
modeled as a vehicle routing and scheduling problem with precedence constraints
on visits as well as time windows and pairwise synchronization (because two staff
members are required to visit an elderly person simultaneously). Redjemet al. [27]
also consider routing with time windows and synchronized visits for a homecare
planning problem. Synchronized routing and scheduling problems need to be solved
also in the forestry industry. El Hachemiet al. [14], for instance, include multiple
aspects such as pick-up and delivery, and inventory stock, and solve the decomposed
problem using constraint-based local search. Other examples of work on routing
with synchronization are [21, 3, 1].

Already in the 1970s, Golden [17] touched the GVRP as a variation of the classic
VRP. One of the first dedicated papers on GVRP is by Ghiani and Improta [16],
who give a transformation to the capacitated arc routing problem. Baldacciet al. [4]
discuss some applications for the GVRP, whereas formulations and branch-and-cut
algorithms are given in the recent paper of Bektaşet al. [5]. Hà et al. [18] solve
the GVRP with the number of vehicles as a decision variable, both heuristically
and exact using a branch-and-cut approach. For the same problem, Afsaret al. [2]
present an exact method based on column generation, and two metaheuristics.

In Sigurdet al. [30], vehicle routing with precedence constraints and timewin-
dows is considered in order to schedule transportation of live animals to avoid the
spread of diseases. A general framework for VRP with time windows and temporal
dependencies, including exact synchronization, is given in Dohnet al. [9]. In the
context of GVRP, a time windows extension is considered by Moccia et al. [24],
who suggest a metaheuristic solution method. Their work concerns an application
to the design of home-to-work transportation plans.

By taking into account multiple non-standard characteristics of the GVRP, such
as precedence relationships and operation synchronization, we believe to contribute
to the existing literature. Our paper reads as follows. In Section 2, the problem set-
ting is described, followed by a time-indexed mathematicalformulation in Section 3.
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Section 4 develops a column generation method for a Dantzig–Wolfe reformulation
of the time-indexed model, followed in Section 5 by a description of a stabilized
column generation method. In Section 6, we give theoreticalbounding results. Fur-
ther, in Section 7, numerical results of our approach are discussed, followed by a
conclusion in Section 8.

2 Problem Setting

This section provides a concise description of the problem setting. A detailed report
on the complex problem characteristics and how to transformthem into a mathemat-
ical formulation can be found in Quttinehet al. [26]. As mentioned above, we only
consider military aircraft missions involving attacks. The geographical area of inter-
est, referred to as the target scene, includes the targets that need to be attacked and
other objects such as enemy defense positions, like surface-to-air missiles (SAMs),
and protected objects, like hospitals and schools. We consider all objects to be sta-
tionary with known positions. The target scene is defined by aline of entrance and
a line of exit for the aircraft. These are typically deployedfrom a base situated far
away from the target scene and enter the scene by the entry line, carry out the mis-
sion and return to a base after leaving the scene at the exit line. The diameter of a
target scene is usually of the order of 100 km, the distances between targets are of
the order of a few kilometers, and the timespan of the attacksis around a quarter of
an hour. Typically, a mission involves 6–8 targets and 4–6 aircraft. At the end of this
section, an example of a target scene is depicted, together with a solution.

The goal of a mission is to find an attack plan where maximal total expected
effect is gained within short timespan. The mission time is defined by the time the
first aircraft passes the entry line and the time the last aircraft passes the exit line.
Since the entire target scene is located in hostile area, themission time needs to
be minimized. To take into account the threat from defense positions, aircraft are
restricted not to fly through defended airspace. Weapons, onthe other hand, are
allowed to pass through defended airspace, but at the risk ofbeing shot down, that
is, with a lower expected effect on the target.

In order to plan a mission, the aircraft characteristics need to be taken into ac-
count. Each aircraft has an armament capacity, limiting thenumber of attacks it can
perform. It can also be equipped with an illumination laser pod to guide weapons.
Each target needs to be attacked exactly once, and requires one aircraft that illumi-
nates the target with a laser beam and one aircraft that launches the weapon. Since
an attack requires continuous illumination from the launchof the weapon until its
impact, the two aircraft need to team up. This rendez-vous not only depends on the
time but also on the location of both aircraft, so that the illumination is continuously
visible for the weapon.

Figure 1 illustrates how a target is modeled. The feasible attack space can be de-
rived from the type of aircraft and the type of weapon being used, and is represented
by the inner and outer radii. This attack space is then divided into six sectors, which
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each holds at most three discretized attack positions and two compatible illumina-
tion positions. If a protected object is inside the estimated area of risk for collateral
damage of a given attack position, this position is considered unfeasible. For any
attack position, the expected effect on the target can be calculated. It depends on
the kind of weapon being used, which is decided in advance, and on the direction
of the impact and the weapon’s kinetic energy. The two illumination alternatives
per sector differ in flight direction, roughly clockwise or counter-clockwise, but are
both compatible with all attack positions of the sector. In our problem setting we
consider only one altitude layer, but one could of course extend the target modeling
by allowing attack options on different discrete altitude layers.

Fig. 1 The feasible attack
space defined by inner and
outer radii, and divided into
six sectors, each with three
attack and two illumination
alternatives. A pair of compat-
ible attack and illumination
positions is marked, where
the arrows indicate the flight
directions.

X

Not all attack sequences are allowed. Depending on the wind direction and the
proximity between targets, dust and debris might reduce thevisibility and hinder an
attack. Hence, we assume that precedence constraints are given, specifying which
targets are not allowed to be attacked before other targets.

In summary, the problem involves three types of decisions. First, the choice of
attack direction against each target. Second, which two aircraft shall be assigned
against the targets. Third, the order in which each aircraftfulfils its assigned tasks
in the mission. Now it is clear that the problem belongs to theclass of vehicle rout-
ing problems, describing the attack and illumination positions by nodes, each of
which being associated with an expected effect on the target. By further introduc-
ing dummy nodes associated with the crossings of the entry and exit lines of the
target scene, and modeling possible aircraft movements by arcs, the mission plan-
ning problem can partly be represented by a network. Becauseof the precedence
relationships, some arcs are eliminated from the network. The restriction that every
target should be attacked exactly once results in a network that only contains arcs
between different targets, or from or to the dummy nodes.

Each of the arcs has two attributes: an expected effect and a travel time. The effect
attribute is different from zero only for an arc that is leaving an attack node, and it
then equals the resulting expected effect against the target. A flight path between
two positions has to comply with restrictions on the aircraft dynamics and that the
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aircraft cannot pass through defended airspace. By using a flight path generator
provided by our industrial partner, we are able to find the path with minimal time
between any pair of positions. In general, travel times willbe asymmetric because
each position is also associated with a flight direction.

To illustrate the essential aspects of a solution to the MAMPP, Figure 2 depicts
a target scene and an optimal solution. For this problem instance, two aircraft are
used, there are no precedence constraints on the targets, and each aircraft can attack
at most two targets. All numerical data used in the scenario were provided by our
industrial partner.
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Fig. 2 Optimal solution to a problem instance that includes three targets and nearby SAMs (×)
and hospitals (+). Shown are aircraft routes, chosen attack andillumination positions against each
target, the times of the attacks, and the times when the two aircraft pass the exit line.

The aircraft routes are shown as solid and dashed lines. The attack sequence is
2–1–3, with a total mission time oftend = 338 seconds. The expected effects of the
attacks on targets 2 and 3 are maximal, among the available attack positions for these
targets, while the attack position against target 1 rendersan effect that is slightly
below the maximal possible. Achieving maximal effect against this target would
require a longer tour for both aircraft, which makes this alternative non-optimal.

3 A Time-Indexed Mathematical Model

We here present a time-indexed mixed-integer linear programming (MILP) mathe-
matical model of the MAMPP. This MILP model can be derived from the one in-
troduced by Quttinehet al. [26], through a discretization of time. In particular, this
discretization allows an alternative modeling of the time propagation constraints.
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We divide the nomenclature into indices and sets, parameters and coefficients, and
decision variables, given in Tables 1, 2 and 3.

Table 1 Indices and sets
R fleet of aircraft,r
M set of targets,m, to be attacked
N set of nodes in the network, excluding the origin (o) and destination (d) nodes
G,Gm set of all sectors for all targets and for targetm, respectively
NA

m,N
I
m set of feasible attack (A) and illumination (I) nodes, respectively, for targetm

A,Ag,Ig set of arcs in the network (including fromo and tod) and sets of arcs(i, j) such that
node j is an attack (A) node or illumination (I) node in sectorg, respectively

P set of ordered pairs(m,n) of targets such that the attack on targetm cannot preceed the
attack on targetn

S set of time periods within a discretized planning horizon, eachof step length∆ t

Table 2 Parameters
cr

i j for arcs(i, j) with i ∈ NA
m, that is, for arcs leaving attack nodes, the value ofcr

i j is the
expected effect of the attack, and otherwise the value is zero

Sr
i j the time needed for aircraftr to traverse arc(i, j), expressed in number of time periods;

equals actual time to traverse the arc divided by∆ t, rounded upwards
Ts the ending time of periods, which equalss ·∆ t, s = 0,1, . . . , |S|
Γ r armament capacity of aircraftr
qm weapon capacity needed towards targetm
µ positive parameter that weights mission timespan against expected effect on targets

Table 3 Decision variables
xr

i j routing variable, equals 1 if aircraftr traverses arc(i, j), and 0 otherwise
yr

is time indicator variable, equals 1 if nodei is visited by aircraftr in time periods, and
0 otherwise

tend the time that the last aircraft passes the exit line

The primary objective is to maximize the total expected effect against all the
targets. However, in order to acheive this effect, the use oflong flight paths within
the target scene might be neccessary, which exposes the aircraft to a higher risk of
being detected and engaged by enemy defense. A secondary objective is therefore
to limit the mission timespan. We thus have a multi-objective optimization problem,
with two objectives that are typically in conflict.

Since the maximal allowed mission timespan is given by|S| ·∆ t, an explicit way
of limiting the mission timespan is to reduce the cardinality of S, which might how-
ever cause the MAMPP to become infeasible. A further drawback of this approach
is that it can allow mission timespans that are unneccessarily long with respect to
the obtained target effect.

Instead, we have chosen to optimize a weighted combination of the two objec-
tives, using the positive parameterµ which reflects the trade-off between effect on
target and mission timespan. This yields a solution that is Pareto optimal. As part of
a decision support tool, the value ofµ can either be chosen by a mission planner or
varied systematically in order to generate a population of mission plans with differ-
ent properties with respect to effect and time, to be furtherevaluated by a mission
planner. Since target effect is the primary goal, the value of µ is typically small.
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The time-indexed mathematical model for the MAMPP is given below.

z∗IP = max ∑
r∈R

∑
(i, j)∈A

cr
i jx

r
i j −µtend [TI–MAMPP]

subject to

∑
(o, j)∈A

xr
o j = 1, r ∈ R (1)

∑
(i,d)∈A

xr
id = 1, r ∈ R (2)

∑
(i,k)∈A

xr
ik = ∑

(k, j)∈A
xr

k j, k ∈ N, r ∈ R (3)

∑
r∈R

∑
g∈Gm

∑
(i, j)∈Ag

xr
i j = 1, m ∈ M (4)

∑
r∈R

∑
g∈Gm

∑
(i, j)∈Ig

xr
i j = 1, m ∈ M (5)

∑
r∈R

∑
(i, j)∈Ag

xr
i j = ∑

r∈R
∑

(i, j)∈Ig

xr
i j, g ∈ G (6)

∑
g∈Gm

∑
(i, j)∈Ag∪Ig

xr
i j ≤ 1, m ∈ M, r ∈ R (7)

∑
m∈M

∑
g∈Gm

∑
(i, j)∈Ag

qmxr
i j ≤ Γ r

, r ∈ R (8)

yr
o0 = 1, r ∈ R (9)

|S|

∑
t=s+Sr

i j

yr
jt ≥ xr

i j + yr
is −1, (i, j) ∈ A, s ∈ {0}∪S,

r ∈ R (10)

∑
s∈S

yr
ks = ∑

(k, j)∈A
xr

k j, k ∈ N, r ∈ R (11)

∑
r∈R

∑
i∈NA

m

yr
is = ∑

r∈R
∑

i∈N I
m

yr
is, m ∈ M, s ∈ S (12)

∑
r∈R

|S|

∑
t=s

∑
i∈NA

m

yr
it ≥ ∑

r∈R
∑

i∈NA
n

yr
is, (m,n) ∈ P, s ∈ S (13)

∑
i∈NA

m

s−1

∑
t=1

yr
it + ∑

i∈NA
n

yr
is ≤ 1, (m,n) ∈ P, s ∈ S, r ∈ R (14)

∑
s∈S

yr
is ≤ 1, i ∈ N∪{o,d}, r ∈ R (15)

∑
s∈{0}∪S

Tsy
r
ds ≤ tend , r ∈ R (16)

xr
i j ∈ {0,1}, (i, j) ∈ A, r ∈ R (17)

yr
is ∈ {0,1}, i ∈ N∪{o,d}, s ∈ {0}∪S, r ∈ R (18)
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Constraints (1) and (2) describe that each aircraft leaves and enters the target scene
via the origin and destination nodes, respectively, while constraint (3) is the node
balance equation for each aircraft. The requirement that each target shall be attacked
and illuminated exactly once is modeled by constraints (4) and (5), respectively,
while constraint (6) synchronizes these tasks to the same sector. Constraint (7) states
that each aircraft can visit each target at most once. This constraint is actually re-
dundant, but it strengthens the column generation problemsto be presented. The
armament limitation is modeled by constraint (8).

Further, constraint (9) states that each aircraft is leaving the origin at time zero.
Constraint (10) ensures that if aircraftr is visiting nodej directly after nodei, then
the time of visiting nodej cannot be earlier than the time of visiting nodei plus the
time needed to traverse arc(i, j). Constraint (11) enforces that if nodei is not visited
by an aircraft, no outgoing arc(i, j) from that node can be traversed by the aircraft.

Constraint (12) states that the attack and the illuminationof a target need to
be synchronized in time. Constraint (13) imposes the precedence restrictions on
the attacking times of pairs of targets. Similarly, constraint (14) imposes the prece-
dence restrictions for an individual aircraft. This constraint is also redundant, but it
strengthens the column generation problems. Constraint (15) states that each aircraft
can visit each node in at most one time period, and constraint(16) defines the total
mission time, since all aircraft end up at the destination node. Finally, (17) and (18)
are definitional constraints.

The optimal value of the linear programming (LP) relaxationof TI–MAMPP is
denotedz∗LP.

4 Column Generation

The planning of a military aircraft mission is typically made close to when the mis-
sion actually takes place (say, within 24 hours); one reasonfor this is that the plan-
ning can then be based on the most recent information. The time needed for the
chain of planning is of the order of several hours. Solving the continuous time ver-
sion of MAMPP presented in Quttinehet al. [26] to optimality takes a general MIP
solver several hours for already moderate-sized problem instances. This is also the
case for the model TI–MAMPP presented above. Hence, efficient algorithms are
needed to meet the needs and expectations in a real-life setting. We propose a col-
umn generation method based on a Dantzig–Wolfe reformulation [8] of the model
TI–MAMPP. For overviews of column generation, see for example [22] and [32].

The Dantzig–Wolfe reformulation is defined in the followingsteps. Suppose that
the constraints (1)–(3), (7)–(11), (14)–(15), and (17)–(18) haveNr feasible solutions
for aircraftr ∈ R. Each of these describes a possible route for the aircraft, involving
specific tasks at specific targets at certain times. Assume that nr < Nr of the routes
for aircraft r ∈ R are explicitly available. Typically,nr ≪ Nr holds. Let the values
of the variables for each feasible solution to the above-mentioned constraints be
denoted byxrk

i j andyrk
is , k = 1, . . . ,nr.
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Next, we relax the binary variable restrictions from the TI–MAMPP and intro-
duce variableszr

k as convexity weights on the solutionsxrk
i j andyrk

is , k = 1, . . . ,nr.
Further, we impose the relationships

xr
i j =

nr

∑
k=1

xrk
i j zr

k and yr
is =

nr

∑
k=1

yrk
is zr

k.

Substitution of these relationships into the objective function and into the con-
straints (4)–(6), (12), (13) and (16) yields the following restricted Dantzig–Wolfe
master problem.

z∗RMP = max ∑
r∈R

nr

∑
k=1

(

∑
(i, j)∈A

cr
i jx

rk
i j

)

zr
k −µtend [DW–RMP]

subject to

[αm] ∑
r∈R

nr

∑
k=1



 ∑
g∈Gm

∑
(i, j)∈Ag

xrk
i j



zr
k = 1, m ∈ M (19)

[βm] ∑
r∈R

nr

∑
k=1



 ∑
g∈Gm

∑
(i, j)∈Ig

xrk
i j



zr
k = 1, m ∈ M (20)

[γg] ∑
r∈R

nr

∑
k=1



 ∑
(i, j)∈Ag

xrk
i j



zr
k = ∑

r∈R

nr

∑
k=1



 ∑
(i, j)∈Ig

xrk
i j



zr
k, g ∈ G (21)

[ηms] ∑
r∈R

nr

∑
k=1



 ∑
i∈NA

m

yrk
is



zr
k = ∑

r∈R

nr

∑
k=1



 ∑
i∈N I

m

yrk
is



zr
k, m ∈ M, (22)

s ∈ S

[λmns] ∑
r∈R

nr

∑
k=1





|S|

∑
t=s

∑
i∈NA

m

yrk
it



zr
k ≥ ∑

r∈R

nr

∑
k=1



 ∑
i∈NA

n

yrk
is



zr
k, s ∈ S, (23)

(m,n) ∈ P

[τr]
nr

∑
k=1

(

∑
s∈{0}∪S

Ts · y
rk
ds

)

zr
k ≤ tend , r ∈ R (24)

[νr]
nr

∑
k=1

zr
k = 1, r ∈ R (25)

zr
k ≥ 0, k = 1, . . . ,nr, r ∈ R (26)

Each column of this problem represents a route for a specific aircraft, and the
restricted master problem is to find the best way to combine all available routes into
a solution that is feasible and optimal with respect to the restrictions that couple all
aircraft, in a linear programming sense.
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Comparing DW–RMP with TI–MAMPP, constraints (19)–(21) correspond to the
attack, illumination and synchronization constraints (4)–(6), while constraints (22)
and (23) match the time synchronization and precedence constraints (12) and (13).
Further, constraint (24) defines the total mission time, similarly to (16). Finally,
constraints (25) and (26) are definitional.

If all feasible routes for each aircraft are known, that is, if nr = Nr holds for
all r ∈ R, the restricted master problem becomes a full master problem, with an
optimal objective value denotedz∗MP. Further, any optimal solution to DW–RMP
that is integral yields a feasible solution to TI-MAMPP and alower bound toz∗IP,
denotedzIP.

Assume that DW–RMP has a feasible solution. Each of its constraints is associ-
ated with a dual variable, indicated in the square brackets to the left. The optimal
values of these dual variables are used to define a Dantzig–Wolfe subproblem, or
column generation problem, for each aircraftr ∈ R. The objective function in each
subproblem describes the reduced cost of any feasible column, that is, any possible
route for the aircraft. As long as there is a route with a positive reduced cost, such
routes should be generated and their corresponding columnsadded to DW–RMP.
Generating columns with positive reduced costs boils down to solving the following
subproblem for each aircraftr ∈ R.

c̄ r
nr+1 = max ∑

(i, j)∈A
cr

i jx
r
i j − τr ∑

s∈{0}∪S
Tsy

r
ds − [DW–SUBr]

− ∑
m∈M



αm ∑
g∈Gm

∑
(i, j)∈Ag

xr
i j −βm ∑

g∈Gm

∑
(i, j)∈Ig

xr
i j



−

− ∑
g∈G

γg



 ∑
(i, j)∈Ag

xr
i j − ∑

(i, j)∈Ig

xr
i j



− ∑
m∈M

∑
s∈S

ηms



 ∑
i∈NA

m

yr
is − ∑

i∈N I
m

yr
is



−

− ∑
(m,n)∈P

∑
s∈S

λmns





|S|

∑
t=s

∑
i∈NA

m

yr
it − ∑

i∈NA
n

yr
is



−νr

subject to(1),(2),(3),(7),(8),(9),(10),(11),(14),(15),(17),(18)

The problem DW–SUBr can be described as a side constrained longest path prob-
lem in a time-layered network where all nodes inN have|S| time copies. The con-
straints (9)–(11) are taken into account implicitly in the construction of the network,
while constraints (7), (8), (14) and (15) are side constraints. This problem does not
possess the integrality property.

An upper bound onz∗MP is given byz∗RMP +∑r∈R c̄ r
nr+1. The lowest such upper

bound ever found is denoted by ¯zMP.
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5 Stabilized Column Generation

As is well known, column generation methods are dually equivalent to cutting plane
methods. The latter are known to be inherently instable [19], in the sense that suc-
cessive iterates can be very distant, which may cause slow convergence. In column
generation methods, the dual instability manifests itselfas oscillations in the values
of the dual variables, which slows down the convergence alsoin the primal space.

In order to improve the efficiency of the column generation scheme, it is therefore
common to apply a stabilization of the values of the dual variables. This technique
was introduced by Marstenet al. [23] back in 1975, and examples of applications
from more recent years can be found in [13] and [31], to mention some.

The idea is to prevent the dual solution of the DW–RMP to fluctuate between
successive iterations. This is accomplished by including abox-constraint for each
dual variable, centered around its current value and preventing the value to change
drastically from one iteration to the next. These additional constraints in the dual
problem correspond to auxiliary variables in the primal problem, and the effect of
these variables is a relaxation of the original primal constraints. Consequently, the
parameters that specify the size of the box appear as penaltyweights in the objective
function for the auxiliary variables.

We stabilize constraints (19)–(23) in DW–RMP, and the optimal objective value
of the stabilized DW–RMP is denotedz∗SRMP. An upper bound onz∗MP is calculated
asz∗SRMP +∑r∈R c̄ r

nr+1. (The reason that a formula similar to the one used in non-
stabilized column generation applies also in the stabilized case is that both formulas
are in fact equivalent to a Lagrangian dual bound, and that itis of no significance
how the dual point is obtained.)

The size of each box slowly shrinks every iteration, and it isre-centered every
time it becomes binding (that is, every time an auxiliary variable becomes nonzero).

6 Bounding Properties

The relationships between the various optimal values and bounds in our column
generation approach becomes rather intricate. These relationships are illustrated in
Figure 3.

The optimal valuez∗IP for TI–MAMPP is trivially bounded from below by the
objective value,zIP, of any feasible solution, and bounded above by the optimal LP
valuez∗LP. This bound has proven to be very weak, see [26, 25]. Further,z∗IP can be
bounded from above by the optimal LP value of the full master problem,z∗MP. It
always holds thatz∗MP ≤ z∗LP, but since the column generation problem DW–SUBr

does not have the integrality property,z∗MP < z∗LP can be expected to hold.
Assume first that no stabilization is used. As routes are added to the restricted

master problem, its optimal valuez∗RMP converges monotonically towardsz∗MP. Note
that the relationship betweenz∗RMP andz∗IP is unknown. Further, ¯zMP is convergent
towardsz∗MP from above.
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Fig. 3 Bounding relationships for the column generation approach.

Considering the case with stabilization, the relationshipbetweenz∗SRMP andz∗MP
is unknown, since the stabilized restricted master problemincludes both a restriction
and a relaxation, as compared to the full master problem. However, the valuez∗SRMP
becomes a lower bound forz∗MP if the dual box is not binding (that is, all auxiliary
variables in the primal problem are zero). Finally, ¯zMP, as calculated in Section 5, is
an upper bound forz∗MP. Further, it converges towardsz∗MP.

7 Numerical Validation

We have made a preliminary assessment of TI–MAMPP and the column generation
approach by using a few small problem instances that are identical to, or slight
modifications of, instances used in [26]. All experiments have been carried out using
the modeling language AMPL [15] and the solver CPLEX [20].

Table 4 shows problem characteristics and results obtainedwith the continuous-
time model of MAMPP in [26] and TI–MAMPP. We observe that evenfor rather
large time steps, the optimal solutions found by the continuous-time and time-
indexed models are very similar, with respect to attack sequences and to attack and
illumination nodes. Although not reported in the table, we also observe that the solu-
tion times of the continuous-time and time-indexed models are similar for large time
steps, while the latter is much more demanding when the stepsare small. Further,
the upper bounds given by the linear programming relaxations of the continuous-
time and time-indexed versions of the MAMPP are very similar, independent of the
sizes of the time steps, and very weak.

Table 5 shows a comparison between the time-indexed model and the column
generation approach. Here, initial values for the dual variables for the stabilized
constraints (19)–(23), used to initialize the dual boxes, are obtained by solving the
LP relaxation of TI–MAMPP. (The radii of the boxes were initially set to 0.3 and
shrinked by a factor of 0.97 in each iteration.) To create an initial set of routes and
columns, the DW–SUBr problem is solved for an ad hoc fixed set of sectors to be
visited, for each aircraftr ∈ R.



Military Aircraft Mission Planning 13

Table 4 Problem characteristics and comparison of the continuous-time and time-indexed models.
Here,µ = 0.005 and all instances include two aircraft. The notation{1|23} means that target 1 is
attacked before targets 2 and 3. The maximal possible total effect on targets is 1.000.

Problem Cont. ∆ t = 60 ∆ t = 45 ∆ t = 30
No. |M| Prec. Γ Eff. tend Eff. tend Eff. tend Eff. tend

1 3 – 3 0.974 333 0.808 420 0.974 405 0.974 390
2 3 – 2 0.974 338 0.808 420 0.974 405 0.974 390
3 3 {1|23} 3 0.863 352 0.808 420 0.863 405 0.808 390
4 4 {1|2|3|4} 3 0.917 628 1.000 840 0.917 720 0.917 720
5 4 {1|2|3|4} 2 0.917 638 1.000 840 0.917 720 0.917 720

Table 5 Comparison of the time-indexed model and column generation. The optimal LP value
z∗LP of the time-indexed model varies very little with the step size; we give the value for∆ t = 60.
The columnsz∗IP[45] andz∗IP[30] are the optimal values of the time-indexed model with different
time steps. Further,zIP are the objective values obtained when solving the integer version of the
final master problem (and a feasible solution exists), and Iter. is the number of column generation
iterations needed to reach optimality.

Time-indexed CG: ∆ t = 45 CG: ∆ t = 30
No. z∗LP z∗IP[45] z∗IP[30] z∗MP zIP Iter. z∗MP zIP Iter.

1 23.173 1.933 2.683 1.933 1.933 16 2.683 2.683 22
2 23.173 1.887 2.674 1.887 1.887 11 2.674 2.674 15
3 22.813 0.346 0.080 0.346 0.346 22 1.271 – 22
4 30.117 -7.677 -7.730 -6.532 – 37 -4.744 – 37
5 30.115 -7.730 -7.730 -7.083 – 29 -6.002 – 60

Comparing the columnsz∗LP andz∗MP with the columnsz∗IP, we conclude that the
upper bound onz∗IP obtained fromz∗MP is much tighter than the boundz∗LP. The bound
z∗MP is indeed very close toz∗IP while the boundz∗LP is very weak. Further, comparing
the columnsz∗IP andzIP, we see that whenever the restricted master problem has an
integral feasible solution, it is also of high quality.

8 Conclusion

Clearly, the Dantzig–Wolfe reformulation and column generation approach provide
vastly superior upper bounds on the optimal value of TI–MAMPP. We conclude
that the Dantzig–Wolfe reformulation gives rise to a very strong formulation of the
TI–MAMPP. This model by itself is not very efficient in terms of solving the mili-
tary aircraft mission planning problem, but it was helpful in the development of the
column generation procedure.

The solution times of our implementation of the column generation approach are
not competitive compared to direct methods. The solution ofDW–RMP takes very
little time. This holds even for the integer version of this problem. The column gen-
eration problem DW–SUBr is however very time-consuming to solve to optimality.
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There are several opportunities for tailoring and streamlining the computations,
and especially to reduce the computational burden of the column generation prob-
lem DW–SUBr. For example, in early column generation iterations it might be
more efficient to terminate the column generation solver as soon as the objective
value gets positive, since this is enough to ensure progress. Further, a tailored solver
for DW–SUBr can be developed by exploiting its underlying time-layerednetwork
structure. This is an interesting opportunity for further research.

The column generation approach can be applied to obtain an upper bound, to be
used for assessing the quality of any feasible solution to TI–MAMPP, for example
generated by a metaheuristic. Also, feasible solutions generated by metaheuristics
can be used to provide high quality initial columns to the restricted master problem.
This combination is another topic for further research.

A great advantage of the column generation approach to MAMPPin a real-life
planning situation would be its creation of many possible routes for all aircraft. This
is of practical interest since a real-life MAMPP can never beexpected to include
all possible aspects of the mission to be planned, and because of the multi-objective
nature of the problem. The access to multiple aircraft routes can then be exploited
in an interactive decision support system.
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18. Hà, M.H., Bostel, N., Langevin, A., Rousseau, L.M.: An exact algorithm and a metaheuristic
for the generalized vehicle routing problem with flexible fleet size. Computers & Operations
Research43, 9–19 (2014)
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