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Abstract

The benefits, in terms of social surplus, from introducing congestion pricing
schemes in urban networks are depending on the design of the pricing scheme.
The major part of the literature on optimal design of congestion pricing schemes
is based on static traffic assignment, which is known for its deficiency in correctly
predict travels in networks with severe congestion. Dynamic traffic assignment
can better predict travel times in a road network, but are more computational ex-
pensive. Thus, previously developed methods for the static case cannot be applied
straightforward. Surrogate-based optimization is commonly used for optimization
problems with expensive-to-evaluate objective functions. In this paper we evaluate
the performance of a surrogate-based optimization method, when the number of
pricing schemes which we can afford to evaluate (due to the computational time)
is limited to between 20 and 40. A static traffic assignment model of Stockholm
is used for evaluating a large number of different configurations of the surrogate-
based optimization method. Final evaluation is done with the dynamic traffic
assignment tool VisumDUE, coupled with the demand model Regent, for a Stock-
holm network including 1 240 demand zones and 17 000 links. Our results show
that the surrogate-based optimization method can indeed be used for designing a
congestion pricing scheme which return a high social surplus.

1 Introduction

Road pricing continues being suggested as a tool for traffic management in urban ar-
eas. In Sweden, Stockholm and Gothenburg have adopted congestion charges, and road
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pricing in terms of congestion charging has previously been implemented in Singapore
and London. The benefits from introducing congestion charges are well established in
the literature of transportation economics [1–3], but also from practical experience in
Stockholm [4, 5] and in London [6].

There has recently been a growing interest in analyzing road pricing schemes in ur-
ban areas using dynamic traffic assignment (DTA) models. The motivation behind this
development is the problem for traditional (static) traffic assignment models to accu-
rately predict travel time savings in networks with severe congestion, when evaluating
road pricing schemes [7–9]. In theory, first-best pricing can be achieved by introducing
marginal social cost pricing (MSCP) tolls [10]. In practice there are, however, limita-
tions on how the charging system may be designed, and second-best pricing schemes
are usually suggested. Further discussions on implementation and public acceptability
of congestion charges can for instance be found in [11–15].

In a second-best pricing scheme the objective is to maximize the social surplus, under
constraints on toll locations and/or toll levels. Finding second-best optimal toll levels
and their locations in urban road traffic networks has so far mainly been studied using
either derivative-free heuristics (for example genetic algorithms and simulated anneal-
ing) or ascent methods, together with static traffic assignment models. For an overview
of developed methods we refer to [16]. Both derivative-free heuristics and ascent meth-
ods rely on fast computations of the road users response (traffic flows, travel times and
demands), given the road pricing scheme. For the case of ascent methods, they also
rely on fast computations (or rather approximation) of derivatives. DTA models are
either based on analytical relationships or on simulation of traffic conditions. Using
DTA models for evaluating the road users’ response to a pricing scheme is, however,
more computationally expensive (as in time consuming) in comparison with static traf-
fic assignment models. Previously developed optimization methods for the static case
are therefore not suitable to use together with DTA. For the DTA case, a grid search
method for optimizing a single time dependent toll in a hypothetical three link network
is presented in [17], and a surrogate-based optimization method with a simulation-based
DTA is applied to a highway network model of Maryland in [18].

Another approach is adopted in [19] for combined optimization of toll locations and
their individual toll levels. Instead of performing the optimization with the DTA model
directly, toll location and levels are in a first step optimized with a static traffic model
(STA) [20]. In a second step they are evaluated in a DTA model (the Silvester/Contram
model [21]), and the social surplus is computed more accurately for the selected cordon
design. This approach allows for combined optimization of the cordon structure and toll
levels, and shows the applicability of combining STA and DTA models in the process of
optimizing and evaluating toll locations and levels. Assuming that the DTA model is
able to more accurately model the spatial and temporal distribution of congestion, the
toll locations and levels based on the static model can most likely be further improved.
Thus there is a need for tuning the toll levels in order to further improve the social
surplus when it can be more accurately estimated using a DTA model.
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While second-best pricing is a difficult optimization problem, both in the static and
the dynamic case, MSCP tolls can in the static case be computed by solving a convex
optimization problem, if all users are assumed to have the same value of time (only one
user class). In the dynamic case, time dependent MSCP tolls are computed for analytical
DTA models in [17, 22, 23]. For the simulation-based DTA models, approximatively
time dependent MSCP tolls are computed in [24]. When introducing congestion pricing
there are, however, practical considerations which makes the application of MSCP rather
limiting.

In [18] encouraging results are reported for the application of surrogate-based op-
timization with a simulation-based DTA model, for optimizing toll levels in a cordon
pricing scheme. Similar approaches have earlier been developed for road pricing with a
DTA model [25] and for a robust pricing problem with a STA model [26]. Surrogate-
based optimization, for example in terms of response surfaces, is commonly used for
optimization problems with expensive-to-evaluate objective functions. The surrogate
model is used for approximating the costly function, and the optimization is then per-
formed on the surrogate model instead. The performances of optimization methods
based on surrogate models are, however, dependent on three components; experimental
design, infill strategy and choice of surrogate model itself. The experimental design will
give the initial set of toll levels for which the costly function needs to be evaluated, the
infill strategy iteratively determine additional sets of toll levels to be evaluated by the
costly function, and the choice of surrogate model will give the functional form to be
fitted to the sampled sets of toll levels. For a thorough review on the application of
surrogate-based optimization in traffic modeling and planning related problems we refer
to [18].

While some very interesting insights on the applicability of surrogate models for op-
timizing toll levels within a DTA model are presented in [18], their traffic model does not
include travel demand modeling (TDM). With reduced or increased travel times/travel
costs it is well know that the travel demand will be affected, and a major part of the
socio-economic benefits for introducing congestion pricing is related to reduction of the
travel demand. Thus, bringing in TDM improves the realism of the traffic model and
allows for a more accurate computation of the social surplus. In both Stockholm and
Gothenburg the main adaptation strategy was work trips changing from car to pub-
lic transport [27]. The introduction of travel demand modeling within a DTA model
is therefore important, but will increase the computational time. For the TDM-DTA
model used in this paper the computational time is approximately ten hours for eval-
uating one set of toll levels. Thus to sample 67 initial points, and 30 additional infill
points, as is done in [18], is not feasible.

This paper focuses on evaluating the performance of a surrogate-based optimization
framework for optimizing toll levels in cordon pricing schemes, when the number of
possible evaluations of the costly objective function is limited to a small number. To
be able to evaluate a large number of different configurations of the surrogate-based
optimization framework, we will use a STA model based on user equilibrium route
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choice, including a TDM for the Stockholm region. The use of the STA model also
allows us to use stochastic-search methods (meta-heuristics) to compute close to global
optimal toll levels. This would not be possible using a DTA model for a network of
similar size. Based on these evaluations, the surrogate-based optimization framework
will be used on a recently developed DTA model for the Stockholm region which is
based on VisumDUE analytical traffic assignment software and Regent demand model
[28]. The traffic models used within this work have been roughly calibrated for actual
traffic conditions in the Stockholm region, but not to the extent that they can be used
as a basis for actual policy decisions on congestion pricing.

The main contributions from this paper are the design and evaluation of the surrogate-
based optimization framework when the number of different sets of toll levels to evaluate
is limited to a small number and when TDM and DTA are combined. This is, to our
knowledge, the first attempt to evaluate a methodology for road toll optimization, with
a combined TDM-DTA model, for a large scale traffic network.

The remainder of the paper is outlined as follows. In Section 2 the toll level setting
problem is presented and followed by the methodological approach in Section 3. Evalua-
tion of the surrogate-based optimization framework with the STA model is presented in
Section 4. Based on the evaluation with the STA model, a configuration to be used with
the DTA model is chosen and applied in Section 5. Finally the results are discussed
in Section 6, and in Section 7 we conclude our findings and suggest further research
directions.

2 The toll level setting problem

This paper focuses on the toll level setting problem (TLP), which is to find optimal
toll levels for a set of cordon tolls in a congestion pricing scheme with the objective to
maximize the social surplus (S). The cordon design is assumed to be predetermined,
and it is only the toll levels that are being optimized. The methodology presented in
this paper should, however, be possible to extend to level setting problems in other
forms of congestion pricing schemes, as long as there are suitable traffic models for
evaluating them, for example distance-based or access-based pricing schemes. Thus the
costly function is in our case the social surplus measurement, and the decision variables
to adjust are the different toll levels. These toll levels are usually bounded from below
by zero, and from above by a maximum toll level which the government/operator has
decided.

The social surplus measure is the sum of the consumer surplus (CS) plus the toll
revenues (R) minus additional external effects [29]. For simplicity we will assume that
both the consumer surplus and the revenues are given in the unit of SEK. If the consumer
surplus is given in travel time, the value of time (VOT), possibly differentiated for each
user class, can be used to transform time into a monetary unit. In this paper we will
neglect additional external effects, and the change in social surplus ΔS from the no-toll
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scenario is expressed as
ΔS = ΔCS +ΔR,

where ΔCS and ΔR imply the change in consumer surplus and revenues. The consumer
surplus is the consumer benefits minus the consumer costs, and if the travel demand is
given by a discrete choice travel demand model, the consumer surplus can be computed
by the logsum [30]. For fixed travel demand, the change in consumer surplus is simply
equal to the change in total travel costs.

Let C be the set of defined cordons, and M the set of time periods, for which the the
toll levels are differentiated. The matrix τ , then consists of cordon toll levels for each
combination of cordon and time period, τcm with c ∈ C and m ∈ M. Note that for a
time static traffic model τ is reduced to a vector of cordon toll levels for the modeled
time period. The set of feasible cordon toll levels are given by

T :
{
τ |τLcm ≤ τcm ≤ τUcm, c ∈ C, m ∈ M

}
,

where τLcm and τUcm are the lower and upper bound for each cordon toll and time period.
For simplicity we let the traffic state, in terms of network travel costs, flows and

demand be represented by u. This representation can easily be extended to multiple
user classes and time periods. While the computation of the social surplus measure itself
is trivial, it requires knowledge about the traffic state corresponding to a given set of toll
levels, which is computed using a traffic model. The cordon tolls, τ , are added to the
generalized link costs in the traffic model. Thus, the computational time for evaluating
one set of toll levels is depending on the computational effort required for computing the
corresponding traffic state as function of toll levels, u(τ). The change in social surplus
can then be formulated as a function of the traffic state

ΔS(u(τ)) = ΔCS(u(τ)) + ΔR(u(τ)), (1)

where the consumer surplus and the revenue are now implicit functions of the toll levels.
The optimization problem can be expressed as

max
τ∈T

ΔS(u(τ)). (2)

3 Methodology

Surrogate-based optimization is commonly applied to low dimensional engineering design
problems, which either have a black-box objective function or an objective function
which is costly (as in computational time). In this section we present the surrogate-
based optimization framework, and its components, which will later be applied to the
TLP.
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3.1 The surrogate-based optimization framework

The main components of the framework are the costly objective function (in our case (1),
the social surplus), the response surface (the surrogate model itself), the initial sam-
pling (determined by the experimental design) and the infill sampling. An overview of
the surrogate-based optimization framework is given in Figure 1. Note that the infill
sampling is an iterative process which will make use of the fitted surrogate model to
various degrees, but the actual optimization of toll levels over the surrogate model is not
necessarily done in each iteration. In contrast to [18], this paper focuses on the applica-
tion of a surrogate modeling framework to a road pricing problem in which the possible
number of objective function evaluations is very limited. Based on the computational
time from running the DTA model it is reasonable to evaluate somewhere between 20
and 40 sets of toll levels in the costly objective function, that is, the sum of the initially
sampled points and infill sampled points is in the region of 20 to 40 samples.

Initial sampling according to 
experimental design 

Fit surrogate model 

Continued sampling according 
to sampling strategy 

Optimization of surrogate 
model 

Evaluation of optimal solution 
in the costly function 

Evaluating the costly function 

Continue 
sampling? 

Yes 

No 

Figure 1: Conceptual idea of the surrogate-based optimization framework.

The response surface is used for predicting the costly function values for points (in
our case a certain combination of cordon toll levels) which have not yet been sampled,
and will thus provide an inexpensive approximation of the costly objective function; in
fact, one get both an analytical expression of the response surface itself as well as for
its derivatives. Hence, instead of performing the optimization on the costly function
itself, the optimization can be performed on the response surface. The response surface
will in general be a non-convex function, and finding its optimal solution is thus not
trivial either, although the evaluation of a non-sampled point can be done with very
little computational effort. Here a multi-started simulated annealing method has been
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used for finding the global optimum of the response surface, denoted s∗. Both linear and
non-linear constraints can be included in the framework. For the problem studied in this
paper, only box constraints on the toll level variables are required. Such constraints can
easily be included in the standard methods used for finding the optimum of the response
surface. Figure 2 illustrates a costly function and corresponding surrogate models based
on 25 and 100 samples points, respectively.

The experimental design is used for choosing an initial set of points to sample, for
which the costly objective function will be evaluated. In addition to these points, a set
of pre-determined points can optionally be specified. Given the initial sampling, the
response surface can be constructed. Commonly used response surfaces are radial basis
functions (RBF) [32], and Kriging models (sometimes referred to as DACE models) [33,
34]. While the initial sampling is used for constructing the response surface, additional
points can be sampled in order to iteratively improve the approximation of the costly
function. The generation of infill samples is determined by the infill strategy, and
is commonly both depending on where in the variable domain the response surface
predict good solutions to be found (local search strategy) as well as of what part of
the domain has been less explored (global search strategy). Initial samples and infill
samples constitute the total number of sampled points.

The performance of the framework is sensitive to the problem dimension. In the field
of surrogate-based optimization, problems with more than 15 variables are considered
as high-dimensional problems [35]. The type of surrogate models evaluated in this
paper are suitable for low and moderate dimension problems, and for the basis of our
evaluation we consider a problem with six variables (same dimension as in [18]). We,
however, extend our evaluation to the case of ten variables as well.

In standard textbook literature, surrogate-based optimization is commonly presented
for a minimization problem. Even though the TLP is a maximization problem we will
in this section present the surrogate-based optimization framework for a minimization
problem. As a basis for the implementation of the surrogate modeling framework pre-

Figure 2: The leftmost picture is the true costly function f(x) to be optimized. The following
pictures are the surrogate models based on 25 and 100 sampling points n, respectively.
Source [31].

7



sented in this paper, the Surrogate Model Optimization Toolbox for MATLAB [36] has
been used.

3.2 Response surfaces

In this section we introduce two type of functions commonly used as response surfaces,
the Radial Basis Function (RBF) interpolation [32] and the Kriging model interpola-
tion [33, 34], applied to a costly function, f(x) with x ∈ R

d, and box constraints given
by x ∈ Ω.

3.2.1 Radial basis functions

Given n distinct points x ∈ Ω, with the evaluated function values y = f(x), the radial
basis function interpolant s(x) has the form

s(x̄) =
n∑

i=1

λi · φ
(∥∥x(i) − x̄

∥∥
2

)
+ bTx+ a, (3)

with λ ∈ R
n, b ∈ R

d, a ∈ R, where φ is commonly chosen as the cubic spline φ(r) = r3

or the thin plate spline with φ(r) = r2 log r. The unknown parameters λ, b and a are
obtained as the solution of the system of linear equations(

Φ P
P T 0

)(
λ
c

)
=

(
y
0

)
, (4)

where Φ is the n× n matrix with Φij = φ
(∥∥x(i) − x(j)

∥∥
2

)
and

P =

⎛
⎜⎜⎜⎝

xT
1 1

xT
2 1
...

...
xT
n 1

⎞
⎟⎟⎟⎠ , λ =

⎛
⎜⎜⎜⎝

λ1

λ2
...
λn

⎞
⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎜⎜⎝

b1
b2
...
bd
a

⎞
⎟⎟⎟⎟⎟⎠ ,y =

⎛
⎜⎜⎜⎝

f(x1)
f(x2)

...
f(xn)

⎞
⎟⎟⎟⎠ . (5)

If the rank of P is d + 1, then the matrix
(

Φ P
PT 0

)
is nonsingular and the linear

system (4) has a unique solution [37]. Thus we have a unique RBF interpolation function
s(x) to the costly f(x), defined by the points x, if n ≥ d+ 1.

3.2.2 Kriging models

Kriging models1 describes every point in the interpolation function as a realization of
random variables, normally distributed with mean μ and variance σ2. Kriging models

1The application of Kriging models as surrogate models was first discussed in a paper with title
“Design and Analysis of Computer Experiments” (DACE) [33], thus Kriging models designed for use
as surrogate models are sometime referred to as DACE models.
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can be included in the theory of RBF interpolation functions [38], but interpreting Krig-
ing models in terms of mean value and standard deviation allows for the development
of more advanced infill strategies.

Estimates of μ and σ2 are obtained from Maximum Likelihood Estimation (MLE)
with respect to the n sampled points x and their corresponding function values y = f(x).
Using a matrix R of correlation values between sampled points, the Kriging interpolant
for a non-sampled point x̄ is defined by

s(x̄) = μ+ r′R−1(y − 1μ) (6)

where r is the vector of correlations between x̄ and x, μ is the estimated mean, and
r′R−1(y− 1μ) represents the adjustment to this prediction based on the correlation of
sampled points x. The correlation function is defined as

Corr
[
x(i),x(j)

]
= e−D(x(i), x(j)) (7)

where D
(
x(i),x(j)

)
is a distance formula. Compared with Euclidean distance, where

every variable is weighted equally, we will utilize the distance formula from [33]

D
(
x(i),x(j)

)
=

d∑
k=1

θk ·
∣∣∣x(i)

k − x
(j)
k

∣∣∣pk θk > 0, pk ∈ [1, 2] (8)

which is designed to capture functions more precise. The exponent pk is related to
the smoothness of the function in the kth dimension. Values of pk near 2 corresponds
to smooth functions and values near 1 to less smoothness. Parameter θk controls the
impact of changes in variable xk.

Note that when the distance between x(i) and x(j) is small, the correlation is close
to one. When the distances increase, the correlation approaches zero. A large value
for θ will affect the distance to grow faster, which leads to a decrease in the correlation.
Thus, different dimensions can be given different weights, allowing for a more accurate
correlation function.

3.3 Merit functions

To determine additional points to sample, where the costly objective function should be
evaluated, merit functions are used. The only qualifications needed in a merit function
are the ability to identify unexplored regions and/or investigate promising areas. A
purely global merit function would be to find the point most distant from all sampled
points, that is, maximizing the minimal distance to sampled points. The other extreme
would be to have a purely local merit function. Such a function would find smin, the
global minimum of the surrogate model, and choose this as the new point to sample.

A key factor here is to balance these ambiguous goals, to somehow find both local
and global points. The global search is necessary in order to avoid getting stuck in a
local minima, but will be inefficient for finding the global optimal solution to the costly
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function. Infill strategies use a merit function to determine the next point to sample,
based on information from an already fitted response surface. They are commonly
divided into one-stage and two-stage methods. In a one-stage infill strategy the search
for infill points does not make use of the fitted response surface, while a two-stage
strategy in the first stage fit the response surface to already sampled points, and in the
second stage make use of the fitted model to decide where to sample the next point.

For this paper we will evaluate two different two-stage methods. The first one is
candidate point sampling [39], in which candidate points are sampled and evaluated both
based on their proximity to already sampled points, and on their predicted objective
function value when evaluated in the surrogate model. This method is applicable to both
RBF and Kriging interpolation functions. The second one is Expected Improvement (EI)
sampling [34], which makes use of the interpretation of Kriging models in terms of mean
value and standard deviation. This sampling strategy can therefore only be applied with
Kriging models.

It is possible to develop algorithms that suggests multiple infill points in each it-
eration, see for example [40, 41], which is very efficient whenever the costly function
evaluations can be performed in parallel. For reasons explained later in Section 4, this
is not possible for the scope of this paper.

3.3.1 Candidate point sampling

Candidate point (CAND) sampling evaluates a large number of points based on their
value when being evaluated in response surface, and on their distance to previously
sampled points. The surrogate model objective function value and the distance to the
closest sampled point are weighted together, and the candidate point with the minimum
candidate values is then chosen. Thus a trade-off between local and global search can be
obtained. Also note that this sampling strategy can be used with any surrogate model.

To use both objective function value and distance in the same candidate value,
requires scaling. Let K(x̃) denote the candidate value at x̃, and let x̂1 and x̌1 be the
candidate points with maximum and minimum surrogate objective function values. The
scaled objective function value is K1(x̃) = (s(x̃)− s(x̌1)) / (s(x̂1)− s(x̌)).

Let G(x̃) denote the Euclidean norm between x̃ and the closest already sampled
point. The candidate points with longest and shortest distance to the closest already
sampled point are denoted x̂2 and x̌2 respectively. The scaled distance K2(x̃) is then
given by K2(x̃) = (G(x̂2)−G(x̃)) / (G(x̂2)−G(x̌)). Using weights w1 and w2 the
weighted candidate value is given as K(x̃) = w1K1(x̃) + w2K2(x̃).

A large value on w1 and a small value on w2 will favor candidate points in areas
where the response surface returns low function values, and with an opposite weight
setting, candidate points in less explored areas will be favored. To have an infill strategy
sampling points in both areas, we will use an iterative scheme for selecting values on w1

and w2. Starting with w1 = 0 and w2 = 1 we will increase w1 by 0.1 each time a new
point is sampled, and update w2 = 1−w1. When w1 reaches 1, it will be reset to 0, and
w2 reset to 1.
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Finally we need to decide how to sample the candidate points. Two sets of candidate
points will be sampled. The first set is created by sampling 1000d points by a small
random perturbation of the so far best found point and the second set is created by
sampling another 1000d points uniformly in the solution space. Thus we will ensure to
both sample points where we know that good solutions have already been obtained, and
in less explored areas.

3.3.2 Expected improvement sampling

With a Kriging model we both get an estimate of the costly objective function value,
s(x̄) in the point x̄, and an estimate of the uncertainty σ(x̄). Let fmin be the lowest
found objective function value for the costly function. The improvement at a point x̄
from the best found solution fmin is then defined as

I(x̄) = max [0, fmin − f(x̄)] . (9)

Equation (9) states that if we evaluate a new point, with objective function value
f(x̄) < fmin, then an improvement equal to fmin − f(x̄) has been reached, otherwise the
improvement is 0.

Not knowing the actual costly function value at x̄ we can still make use of information
from the Kriging model to estimate the expected improvement, ExpI(x̄), at the point x̄.
The expected improvement can be formulated as in [34]

ExpI(x̄) =

{
(fmin − f(x̄))Φ

(
fmin−f(x̄

σ(x̄)

)
σ(x̄)Ψ

(
fmin−f(x̄

σ(x̄)

)
if σ(x̄) > 0

0 if σ(x̄) = 0,
(10)

where Φ(·) and Ψ(·) are the probability density function and cumulative density function
respectively.

With EI sampling, the next point to sample, x̂, is given by x̂ = arg {maxx ExpI(x)}.
The maximization of ExpI(x) is however, in general, a non-convex continuous optimiza-
tion problem. To solve this problem we will apply a multi-started simulated annealing
algorithm.

Note that whenever we evaluate ExpI at an already sampled point, x(i), i ∈ 1...n,
σ(x̄) will be zero, and the expected improvement becomes zero. Thus by maximizing
ExpI(x) a point will never be sampled more than once.

The first term in ExpI is favoring points at which the response surface predicts good
solutions, while the other term is favoring points in which the uncertainty is high. Thus
this measurement provides a balance between a local and global behavior, when being
used as merit function in an infill strategy.

One potential problem using EI sampling is that σ(x) is an estimated standard
deviation, and with few sampled points, σ(x) will give an underestimation of the actual
standard deviation, thus underestimating the uncertainty at point x [42]. The effect of
an underestimation of the standard deviation will be a more local behavior of the EI
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sampling, since the second term, favoring global exploration, will be smaller. Therefore
a correction factor has been applied, presented in [42], to improve the estimation of
the actual standard deviation. The correction factor uses leave-one-out cross validation
(which will later be discussed in Section 3.5.1) to approximate the underestimation, and
compute a factor (> 1) to be multiplied with the standard deviation. This factor does
not take into account that the quality of the approximation will differ over the domain.

3.4 Experimental design

All surrogate-based algorithms need an initial set of sample points in order to get going.
To build the first response surface, a minimum of n ≥ d + 1 sample points is required
where d is the dimension of the problem to be solved. For example, if we are to fit a
model for a TLP with six variables, we need at least seven initially sampled toll levels.
So how should one choose these initial points? The procedure of choosing this initial set
is often referred to as Experimental Design, or sometimes Design of Experiments. An
experimental design in which the points are uniformly spread will result in a response
surface which has the property that the model accuracy is also uniformly spread. This
is called the space-filling property of the experimental design and is important for the
performance of the surrogate model optimization framework. Latin hypercube design
(LHD) possess good space-filling properties [43], and by maximizing the minimum dis-
tance between the points we can ensure that the experimental design results in sampled
points which are also separated as much as possible in any suitable norm. Such a design
is referred to as maximin LHD (MLHD).

In addition to MLHD, [44] shows the benefit of using additional corner points of
the search space, as well as using interior points with low objective function values (for
a minimization problem). This would, however, greatly increase the number of initial
samples, and in this paper we have instead used a combination of a few corner and
interior points.

3.5 Measurements of model accuracy

To measure the model accuracy, the leave-one-out cross-validation technique has been
applied [45]. We will in this section also discuss the use of the estimated global optimum
and global optimum when measuring model accuracy.

3.5.1 Leave-one-out cross-validation

The basic principle behind this approach is to leave one of the sampled points out, re-
fit the response surface, and then compare the estimate from the re-fitted model, with
the actual measurement from the sampled points. In [46] it is noted that leave-one-out
cross-validation gives a measurement of the model sensitivity to lost information. Solely
using this measurement may result in acceptance of a model as accurate while it is only
insensitive to lost information, or we reject an accurate model because it is sensitive to
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lost information. The benefit of using leave-one-out cross validation is that it does not
require any additional sampling, which is crucial when evaluating the performance of
the surrogate-based optimization framework with a truly costly function.

Three different measurements have been computed from the leave-one-out cross val-
idation; normalized root mean square error (NRMSE), normalized maximum absolute
error (NMAE) and Pearson correlation coefficient (PCC). NRMSE gives an estimate of
the mean error over the complete domain, thus measuring the overall accuracy of the
surrogate model, and NMAE gives an estimate of the maximum error, thus measuring
the local accuracy. PCC gives the correlation between true and estimated objective func-
tion values at the sampled points, from leave-one-out cross validation. Thus it would
be desirable to have a model with low NRMSE and NMAE, and high PCC values [47].

For a set of n sampled points the NRMSE is given by√∑n
i=1 (s(xi)− f(xi))

2∑n
i=1 (s(xi))

2 ,

and NMAE is given by

max1≤i≤n

∣∣s(x(i))− f(x(i))
∣∣

1
n
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(
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n
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.

3.5.2 Global optimum and estimated global optimum

For the STA model, global optimum is computed using MATLABs simulated annealing
method for multiple starting points. The resulting objective function value (f ∗) cannot
be guaranteed to actually be global optimal, but we believe it is reasonably close to
the global optimal solution. By evaluating the optimal toll level solution from the
optimization on the response surface in the costly objective function, we can compare
this function value with f ∗. This gives a measurement of how good solution that we
can produce with the surrogate-based optimization framework for a given combination
of response surface, infill strategy and experimental design. For the Regent/VisumDUE
model no global optimum can be estimated, and thus f ∗ cannot be computed and used
in the evaluation process.

Optimizing the toll levels over the response surface results in an estimate of the
global optimal objective function value (denoted s∗), which can then be compared with
the same toll levels evaluated in the costly function. It is, however, difficult to use this
comparison in the evaluation process. Let us for instance assume that the optimum of
the response surface correspond with one of the sampled points. The optimal response
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surface function value and the costly objective function value will then be equal, and
it is easy to determine that we have actually found the true global optimum. This is a
false conclusion since there could be a non-sampled point with a better costly objective
function value.

4 Evaluation of the surrogate-based optimization

framework

The surrogate-based optimization framework offers a variety of possible combinations
of response surfaces and sampling strategies. Our aim is to apply the framework to the
Regent/VisumDUE model [28] of the Stockholm region, which requires approximately
ten hours of computational time to evaluate one set of toll levels. The computational
time limits the number of costly function evaluations which are reasonable in a practical
application, and we will therefore focus our attention to surface-sampling combinations
which can produce high quality solutions within 20 to 40 costly function evaluations.
It is in the case of the TDM-DTA model that function evaluations are costly, and our
evaluation of the framework is therefore carried out in two steps, similar to [18].

In the first step a large number of different combinations of response surfaces, exper-
imental designs and infill sampling strategies are evaluated using a static traffic model
with user equilibrium route choices and a binomial logit demand model for the Stock-
holm region. While both the static and dynamic models represent the Stockholm region,
the STA model requires approximately six minutes for evaluating one set of toll levels,
and allows for a large number of combinations to be evaluated. On the other hand, the
STA model lacks a detailed road network and the realism that comes from the spatial
and temporal distribution of congestion in the VisumDUE model. With the STA model
over 16 000 costly function evaluations have been carried out during 180 hours. To use
the dynamic model for this number of function evaluations would have required over
22 years of computational time. The implementation of the STA model also allows for
efficient usage of parallel processing, which is not possible with our current setup of the
Regent/VisumDUE model.

In the second step we choose the most promising combination, and evaluate it with
the Regent/VisumDUE model. Another benefit from using the STA model in the first
step is that other global optimization methods, such as genetic algorithms and simulated
annealing, can be applied for comparison. Thus we can compare the solutions produced
by the surrogate-based optimization framework with close to global optimal solutions.

4.1 The static traffic model

The STA model of the Stockholm region uses an aggregated traffic network of Stockholm
(Figure 3), with 392 links and 40 zones (1 560 OD-pairs). It models the morning rush
hour, for a single user class with VOT equal to 1.2 SEK per minute. Route choice is
modeled by a Wardrop equilibrium and travel demand is given by a multinomial logit
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model, including the choices of travel by car, by public transport or not traveling at
all. The demand model is roughly calibrated for the aggregated network. Therefore
the model should not be used for actual policy evaluation purposes for the Stockholm
region, but for evaluating the surrogate-based optimization framework we believe it is
a good representation of a congested urban area, including the complexity of travel
choices related to both route and mode. The model has been used in several evaluations
of road toll optimization methods [20, 48], and a detailed description of the model is
given in [20].

CBD 

Figure 3: Stockholm network model used in the static traffic model.

The change in social surplus is given by (1). For the STA model, the change in
consumer surplus, ΔCS, is given by the logsum from the multinomial logit demand
model, and the change in revenues, ΔR, is given by the sum of the collected tolls. For a
more detailed description of the computation of the social surplus measurement for this
model see [20].

Comparing STA and DTA for a case when a congestion pricing scheme is introduced
in a road traffic network, one can expect the improvement of the social surplus to be
larger when the road users response is evaluated with the DTA (given that it is a well-
designed pricing scheme) [9]. Here, we, however, use an STA model with an aggregated
network, in comparison with a much more detailed network with the DTA model. Thus
we will have the problem of overestimating the congestion on some roads in the network
[20], and therefore the maximum improvement of the social surplus is actually higher
with the STA model in our case.
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4.2 Experimental setup

Two cordon pricing scenarios for Stockholm will be considered in the evaluation process.
The first one, Scenario 1, consist of three cordons; the ring toll currently implemented
in Stockholm, tolls on the bypass highway and a toll cordon covering the inner city
bridges. This set of cordon tolls corresponds to one of the possible extensions of the
current pricing scheme which has been discussed [49]. For each cordon, the toll levels are
differentiated based on direction, resulting in a total of six different toll level variables.
The second scenario, Scenario 2, is based on the current toll ring in Stockholm and the
bypass highway. Here the current toll ring is further differentiated into four sub-cordons,
each with their individual toll level, differentiated depending on direction. This results
in a total of eight differentiated toll levels for the toll ring, and additionally two tolls for
the bypass highway. For both scenarios the maximum toll level of each cordon is set to
60 SEK.

Scenario 1 will be the scenario primarily used for the evaluation of the surrogate-
based optimization framework, and this is also the scenario which will be used when
evaluating the framework with the DTA model. Scenario 2 gives an optimization prob-
lem with higher dimension, and will primarily be used for sensitivity analysis of the
performance of the framework with respect to the problem dimension. The two scenar-
ios are illustrated in Appendix A.

Setup for Scenario 1

In [18] response surfaces which can handle noisy costly functions are evaluated. For the
traffic models used within this work, this is not necessary since they are deterministic.

Four different response surfaces have been evaluated; Kriging models with exponen-
tial (p = 1), Gaussian (p = 2) and generalized exponential (1 <= p <= 2) correlation
functions, and RBF with cubic interpolation function. Since the costly objective func-
tion is known to be non-convex we have chosen to only evaluate global optimization
infill strategies, thus rejecting the suboptimal approaches used in [18].

The infill strategies which has been evaluated are the candidate point (CAND) and
the expected improvement (EI) sampling strategies. CAND sampling has been applied
with all response surfaces, and EI sampling with the correction factor2 has been applied
with all Kriging models.

Four different experimental designs have been evaluated for each combination of
surrogate model and infill sampling strategy. The experimental designs used are all of
maximin LHD (MLHD) type, based on seven and fourteen sampled points (sets of toll
levels), and optionally augmented with five points corresponding to uniform toll levels;
two additional corner points (zero and maximum toll levels) and three interior points
(25%, 50% and 75% of maximum toll levels). We denote these experimental designs
ED-x, x ∈ {7,14,7U,14U}, where the number is the sample size and U indicates the

2Preliminary evaluations without the correction factor showed a more local optimizing behavior and
this configuration was therefore not included in the full evaluation.
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augmented designs. The minimum number of samples required to fit an RBF is 7, and
according to [36] the recommended minimum number of sampled points is 14. The
complete set of combinations evaluated in Scenario 1 are listed in Table 1.

Table 1: Evaluated combinations of experimental design, surrogate model and infill strategy.

Number Surrogate model Infill strategy Exp. Design

RBF ED-

1–4 Cubic CAND 7, 7U, 14, 14U

Kriging ED-

5–8 p = 1 CAND 7, 7U, 14, 14U

9–12 EI 7, 7U, 14, 14U

13–16 p = 2 CAND 7, 7U, 14, 14U

17–20 EI 7, 7U, 14, 14U

21–24 1 ≤ p ≤ 2 CAND 7, 7U, 14, 14U

25–28 EI 7, 7U, 14, 14U

Note that MLHD and CAND sampling include random sampling of toll levels. There-
fore ten repetitions of the experiments have been carried out for each combination listed
in Table 1. The same ten sets of random seeds have been used for each combination.

Additionally, for comparison with the results in [18], Scenario 1 has been evaluated
with four different surrogate models, for 67 initially sampled toll levels and 30 addition-
ally infill samples (CAND sampling for RBF and EI sampling for the Kriging models).
Scenario 1 has the same problem dimension as the experiment with DynusT in [18],
although the DynusT experiments include five toll level variables and a sixth variable
to model off-peak tolls as proportional to peak toll levels.

Setup for Scenario 2

For Scenario 2, the main objective is to evaluate how sensitive the performance is to
the problem dimension. Therefore the experiments have been limited to the Kriging
model with Gaussian correlation function and EI sampling and to the RBF. Three
different experimental design have been used; MLHD with 11, 22 and 33 samples, equal
to d+1, 2(d+1) and 3(d+1) respectively, extended with the five uniform samples from
Scenario 1 (denoted ED-11U, ED-22U and ED-33U respectively). ED-11U and ED-22U
correspond to ED-7U and ED-14U in Scenario 1. The third one (ED-33U) has been
added to evaluate the performance with an even higher number of initial samples. As
before, ten repetitions have been carried out for each combination.

17



4.3 Numerical results

It is natural that the main evaluation of the surrogate-based optimization framework
is done by evaluating the toll levels which maximize the response surface in the costly
objective function. The toll levels obtained from maximization of the response surface
are denoted τ̂ , and the corresponding costly objective function value is given by ΔS(τ̂).
Additionally, the PCC, NRMSE and NMAE values are reported.

Scenario 1

Results from the experiment with the Scenario 1 cordon layout are presented in Figure 4
and Figure 5. The global optimal objective function value, f ∗, has been estimated to
607 130 SEK.

Comparisons with results from [18] are presented in Table 2. Here ΔS(τ̂ ) is also
included to illustrate the performance of the surrogate-based optimization framework
when using a higher number of samples in the experimental design. For these compar-
isons only one set of experiments has been carried out, with the same random seed,
due to the increased computational burden. Thus the initial set of sampled toll levels
is equal for all four cases.

Table 2: PCC, NRMSE, NMAE, s∗ and ΔS(τ̂ ) after 67 and 97 sampled sets of toll levels (N),
including comparison with results from [18].

Surrogate model N PCC NRMSE NMAE s∗ ΔS(τ̂ )

Kriging p = 1 67 0.89 0.27 2.46 601 051 590 942
Kriging p = 2 0.85 0.20 2.12 608 207 594 461
Kriging 1 ≤ p ≤ 2 0.73 0.27 2.46 621 231 573 375
RBF cubic 0.96 0.10 1.00 610 891 596 657
Kriging p = 2 from [18] - 0.03 2.26 - -
Kriging p = 2 from [18]

- 0.03 2.74 - -
with noise

Kriging p = 1 97 0.95 0.18 2.11 618 294 604 770
Kriging p = 2 0.94 0.13 1.71 606 626 605 754
Kriging 1 ≤ p ≤ 2 0.87 0.18 2.03 603 472 598 760
RBF cubic 0.98 0.07 0.78 599 181 599 702
Kriging p = 2 from [18]

- 0.03 2.90 - -
with noise
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Figure 4: Mean social surplus for Scenario 1, ΔS(τ̂ ) in SEK, after 20 (bottom), 30 (middle) and
40 (top) sampled sets of toll levels, together with 95% confidence intervals.
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Figure 5: PCC, NRMSE and NMAE values for Scenario 1 after 20 (blue), 30 (red) and 40 (green)
infill samples
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Scenario 2

The global optimal objective function value (f ∗) has been estimated to 580 195 for
Scenario 2. Mean improvements of the social surplus are presented in Figure 6 after 40,
60 and 80 sampled sets of toll levels, and NRMSE, NMAE and PCC mean values are
presented in Figure 6.

After a total of 80 sampled sets of toll levels, all surrogate models result in mean
ΔS(τ̂ ) around 97 to 98% of f ∗. The differences between the best and worst performing
configuration are larger after 40 sampled set of toll levels, where the Kriging model with
ED-11U clearly the best performing one, followed by Kriging with ED-22U and RBF
with ED11-U.
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Figure 6: Mean social surplus for Scenario 2, ΔS(τ̂ ) in SEK, after 20 (bottom), 30 (middle) and
40 (top) sampled sets of toll levels, together with 95% confidence intervals.
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4.4 Analysis

In terms of mean social surplus improvement (Figure 4), the top five combinations from
Table 1, after 20 iterations, are number 17, 25, 18, 10 and 26. They all provide mean
objective function values in the range of 94.3% to 97.7% of f ∗. Based on the 95%
confidence intervals we can with 95% confidence reject the hypothesis that all of the
combinations are as good as number 17. In fact, only when comparing number 17 with
25, 18 and 10 we cannot reject this. These four combinations are all Kriging models
with EI sampling and ED-7, with or without the additional five uniform toll levels, and
they are also among the best performing ones after 40 samples.

Comparing the different combinations based on their PCC, NRMSE and NMAE
values after 20 sampled sets of toll levels, it is difficult to draw any conclusions. This
difficulty is illustrated in Figure 8, in which the PCC, NRMSE and NMAE values
are plotted against ΔS(τ̂) for each individual repetition after 20 sampled sets of toll
levels in Scenario 1. The solutions with ΔS(τ̂) within 2% of f ∗ are marked in read.
Clearly there are combinations which produce good solutions with a rather low value
on PCC and high values on NRMSE and NMAE. The opposite holds for solutions with
lower objective function value. Thus one should use these measurements carefully when
discussing which combination is the best one.

CAND sampling in general result in large confidence intervals for ΔS(τ̂). Thus there
is a less chance of actually returning high objective function values if the method is run
only once. In contrast, Kriging with Gaussian function and EI sampling has the smallest
confidence interval after 20, 30 and 40 samples (with the exception of ED-14U after 20
samples). This combination is also the best performing one when the number of samples
is increased.

Comparing RBF and the Kriging models with CAND sampling, they produce similar
results in term of ΔS(τ̂). Thus it seems that the main contribution from using Kriging
models comes from the possibility to use EI sampling. While CAND sampling includes
generation of random numbers, EI sampling is purely deterministic (not considering
solving problem (10) with stochastic search methods). This is reflected in the results,
as the confidence intervals are smaller for all but a few cases of EI sampling.

One interesting aspect of using EI sampling is that it relies on approximation of
uncertainties from the Kriging model. It is known [42] that this uncertainty is in general
underestimated with few samples, and an underestimation of the uncertainty will lead
to a more local optimizing behavior. In Figure 5 we can see that the NMAE values
are increasing when adding infill samples with the EI sampling, and decreasing with
additional infill samples when using CAND sampling This is an effect from the local
optimizing behavior, generating infill samples in a small region for which the response
surface will have a good fit but which will give a worse fit in areas with less samples
(increased NMAE value). This behavior is not entirely bad, and will at some point
appear when using EI sampling, as we can always expect a local behavior eventually
with this sampling technique. If zooming in on a small area early, this might, however,
lead to local optimal solutions.
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Given the differences between our experiments and the DynusT experiments in [18]
it is still interesting to compare the results presented in Table 2. In terms of NMAE the
results are similar, but considering the mean error across the domain, NRMSE, it seems
that it is more difficult to approximate our problem (with static assignment and elastic
demand) compared with the problem in [18] (using DynusT traffic assignment and fixed
demand). This limited comparison is not enough to make any definitive conclusions,
but it is still an interesting observation.

It is also interesting to see that with 67 initial samples and 30 infill samples, the
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Figure 8: PCC, NRMSE and NMAE plotted against ΔS(τ̂) after 20 sampled sets of toll levels.
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Kriging models with p = 1 and p = 2 achieve an objective function value within 1%
of f ∗. It is also clear that after the initially 67 sampled points, the RBF surrogate
model is the best performing one, but the CAND infill sampling strategy is inferior in
comparison with EI sampling, in terms of improving the costly objective function value.

In Scenario 2, the problem of few samples becomes apparent. With few samples
at hand, the actual variability of the costly objective function value is not captured,
which leads to over-fitted response surfaces, and especially to an underestimation of the
uncertainty in the Kriging model. This result in a more local optimizing behavior of
the EI sampling when the initial set of samples is given by ED-11U compared to ED-
33U. The local optimizing behavior can be seen from the rapid increase in the NMAE
value and decrease in the NRMSE value as the infill samples are added. Still, with
the more local behavior, good solutions are obtained more rapidly in comparison to the
two alternative sets of initial samples, for which the EI-sampling will spend more time
generating samples in less explored areas. The CAND sampling used with the RBF has
a built-in mechanism of always sampling in less explored areas at certain intervals, and
the effect of increasing NMAE with additional infill samples is not appearing for the
RBF case. Over all, the RBF response surface results in much smaller NMAE values
and higher PCC values in comparison with the Kriging model. This difference, however,
does not seem to affect the performance of the response surfaces in terms of mean social
surplus improvements. Comparing the NMAE and PCC values between Scenario 1 and
2, it is clear that the RBF response surface produce lower NMAE values and higher PCC
values for Scenario 2, without performing better than the Kriging response surface. This
suggests that the RBF response surface is more sensitive to over-fitting, in comparison
to the Kriging response surface.

5 Application to a dynamic traffic model for the

Stockholm region

5.1 The Regent/VisumDUE model

The dynamic model of Stockholm, used within this project, has a demand module
(Regent) and supply module (VisumDUE), and includes 1 240 demand zones and 17 000
links. An overview of the modeling system is given in [28].

The Regent demand module includes trip generation, mode choice (car driver, car
passenger, public transport, bicycle and walk) and destination choice. Regent exists
in different version, and the version used within this work only includes commuting
trips. VisumDUE is the supply module and includes dynamic route choice and network
loading for fixed demand. The network loading is based on a macroscopic traffic flow
model, capable of handling large networks. VisumDUE can take turning capacities in
intersections and blocking back from queues at congested links into account. Thus it is
capable of describing both temporal and spatial evolution of congestion in the network,
in contrast to the STA model applied in the previous section. On the other hand,
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deterministic route choice, and macroscopic attributes and variables are similar to what
is used in the STA model. The VisumDUE model includes fixed demand matrices for
other trips and commercial traffic, which together with commuting trips from Regent
results in three different user classes. VOT for each user class is given in Table 3.

Table 3: Value of time for each demand segment.

Demand segment Value of time (SEK/h)
Commuting trips 87
Other private trips 59
Commercial car trips 100

For each evaluated congestion pricing scenario, five iterations have been carried out
between Regent and VisumDUE, the demand for commuting trips has been updated
with the method of successive averages (MSA) between each iteration. Each traffic as-
signment carried out with VisumDUE takes between 1.5 and 3 hours computing time,
depending on the level of congestion in the road network, which results in a total com-
putational time for evaluating one scenario with Regent/VisumDUE of 8 to 15 hours
(the demand calculation in Regent is done within a few minutes of computational time).
Typical computational time of 10 hours has been observed.

The evaluation of each scenario is done for the morning, 6:30-9:00. Within this timer
period, a time discretization of 15 minute periods is applied in the peak-hour (7:30-
8:30) and half-hour periods outside this period. The currently implemented congestion
charging scheme in Stockholm is applied with a time profile of 50%, 75% and 100% of
the maximum fee (See Table 4 for the profile of the morning period). We have chosen to
keep this profile as it is chosen by the assumption that a sharp increase/decrease of the
fee might result in undesirable effects. Alternatively, it is possible to let the time profile
of the pricing scheme be variable, as is done in [18]. The computation of the social
surplus is however only based on the peak-hour, due to limitations in the VisumDUE
software.

Table 4: Morning period time profile for the congestion pricing scheme in Stockholm (2007-2015).

Time period Fee as % of maximum fee
06:30-07:00 50%
07:00-07:30 75%
07:30-08:30 100%
08:30-09:00 75%

Figure 9 shows the central part of the Stockholm network in VisumDUE, with
charged links marked in purple. The Lidingö exemption [4] has not been implemented
in the model. Charged links belong to one of the six cordons included in Scenario 1,
previously presented in Section 4.2 and illustrated in Figure 10.
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The computation of the change in social surplus follows (1), where the change in
revenues, ΔR, is the sum of the collected tolls during the morning peak-hour. For the
commuting trips, the change in consumer surplus is given by the logsum from Regent
and for other trips and commercial traffic the change in consumer surplus is given by
the change in total user costs during the morning peak-hour for each user class, with
travel time converted to SEK by the VOT.

Figure 9: VisumDUE.

5.2 Experimental setup

The best performing experimental design with the STA model was ED-7. We will,
however, not use this experimental design as we believe there are differences between
the static and dynamic models which should be taken into account in this choice. The
ED-7 will produce toll sets to sample on the boundary of the feasible set. For the STA
model, high objective function values are obtained for solutions on the boundary. For the
Regent/VisumDUE model sampled sets of toll levels on the boundary instead return low
objective function values (all sampled toll levels with ED-7 returned negative objective
function values). Therefore ED-7U will instead be used, augmented with two additional
sets of toll levels which were already available. One is the current pricing scheme in
Stockholm, which is to set the peak toll to 0 for all cordons but the ones corresponding
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to the current pricing scheme, which in turn are set to 20 SEK. The other one consists
of a pricing scheme suggested by one of the experts involved in designing the Stockholm
congestion pricing scheme.

Table 5 presents the 14 sets of initially sampled toll levels. Set 1-7 are sampled
using ED-7, set 8 and 9 are sampled from the two corner points given by minimum and
maximum toll levels, set 10-12 are the three additional interior points with uniform toll
levels and set 13 and 14 are the two additional points.

Based on the experiments with the STA model, a Kriging model with Gaussian cor-
relation function has been chosen as surrogate model and EI sampling as infill strategy.
Good performances with the STA model were also achieved with both the exponential
and generalized exponential correlation functions. Due to the computational burden of
running Regent/VisumDUE we can, however, only afford evaluating one combination
of response surface, experimental design and infill strategy. Our choice of the Gaussian
correlation function is mainly based on the high objective function values returned, to-
gether with the smallest confidence intervals (considering only ED-7/ED-7U) after 20
samples. For comparison, Kriging models with exponential and generalized exponential
functions, as well as the RBF interpolation function, have been constructed and eval-
uated as response surfaces fitted to the finally sampled sets of toll levels. This will,
however, not give a fair comparison since the infill samples are generated based on the
Kriging model with Gaussian correlation function.

Experiments with the STA model have been evaluated after 20, 30 and 40 iterations.
With ED-7U this corresponds to eight additionally sampled sets of toll levels. From
these experiments we can also see that infill points with EI sampling is important. For
a fair comparison, we will therefore evaluate the experiment with Regent/VisumDUE
after eight infill points as well, resulting in a total of 22 samples.

5.3 Results

The eight generated toll sets (numbered 15 to 22) are displayed in Table 6 together with
their corresponding costly objective function value. Optimal toll levels obtained with
the four different response surfaces, fitted to the final 22 toll set samples are also shown
in Table 6. For the final sets of sampled toll levels, Table 7 presents PCC, NRMSE and
NMAE values with the four different response surfaces.
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Table 5: Toll levels (in SEK) from the 14 initially sampled sets of toll levels.

Toll Bypass highway Inner city bridges Toll ring
ΔS(τ̂ )

set Southbound Northbound Soutbound Northbound In Out
1 10 30 0 20 50 0 -536 424
2 60 10 10 30 40 40 -7 402
3 0 0 20 0 0 30 -16 648
4 0 0 30 60 30 20 -416 996
5 20 50 40 40 60 50 -438 640
6 30 20 60 10 20 60 -271 827
7 50 40 50 50 10 10 -174 695
8 0 0 0 0 0 0 0
9 60 60 60 60 60 60 -817 633
10 30 30 30 30 30 30 45 047
11 15 15 15 15 15 15 349 560
12 45 45 45 45 45 45 -335 677
13 20 50 10 20 30 10 -54 157
14 0 0 0 0 20 20 232 562

5.4 Analysis

While it is difficult to evaluate the performance of the surrogate-based optimization
framework without knowing the global optimal solution, it is still clear that the frame-
work is successful in generating infill samples and fitting a response surface which can
be used to generate toll levels which produce higher social surplus, in comparison to the
initial samples. Comparing the best set of toll levels among the initial samples with the
best found solution an improvement of 16.2% is obtained.

Comparing the static and dynamic models, we can see the PCC and NMAE values
are in the same range for both type of models. The NRMSE value is, however, more
than doubled when using the dynamic model. This suggests that the DTA used within
this work, results in a costly function which is much more difficult to approximate with
the evaluated response surfaces, with a similar number of total samples.

Finally comparing the four different interpolation functions applied to the final set
of sampled toll levels (both initial and infill samples), they all show PCC, NRMSE
and NMAE values in the same region. The Kriging model with exponential correlation
function (p = 1), has lowest PCC value and highest NRMSE value. This is also the
interpolation function which produce the lowest estimation (s∗) of the optimal costly
objective function value, as well as the lowest actual best obtained costly objective
function value (ΔS(τ̂)). The best performing response surface is the Kriging model
with Gaussian correlation function (p = 2). It has a PCC value in the upper region of
obtained PCC values, and NRMSE value in the region of obtained NRMSE values, and
the lowest obtained NMAE value of all evaluated response surfaces.

29



Table 6: Infill samples and optimal solutions with their corresponding costly objective function
value.

Toll Bypass highway Inner city bridges Toll ring
ΔS(τ̂ )

set Southbound Northbound Soutbound Northbound In Out
Infill samples using EI sampling

15 28.74 8.12 0.00 11.22 19.23 15.19 234 804
16 6.62 19.37 0.00 8.95 15.49 25.93 123 848
17 12.43 4.82 18.25 11.83 17.92 8.00 262 760
18 37.08 24.94 23.05 11.06 12.74 12.25 89 116
19 21.13 3.25 12.17 13.69 20.26 28.29 234 617
20 19.68 13.13 10.34 32.66 10.86 9.78 181 917
21 2.20 9.93 10.83 7.54 19.52 16.77 346 589
22 14.63 11.38 16.11 4.81 18.94 19.03 262 519

Optimal solutions
p = 1 15.00 9.93 10.83 11.83 17.92 15.00 353 927
p = 2 6.07 10.15 10.23 14.93 16.72 14.16 406 300

1 ≤ p ≤ 2 10.40 8.63 8.78 13.68 16.53 15.92 357 588
RBF 5.45 13.14 14.97 14.61 16.62 15.21 396 307

Table 7: PCC, NRMSE, NMAE and s∗ values for the four fitted response surfaces.

Responce surface PCC NRMSE NMAE s∗ Evaluated
p = 1 0.72 0.71 1.94 355 948 353 927
p = 2 0.77 0.65 1.76 411 230 406 300

1 ≤ p ≤ 2 0.78 0.64 2.12 400 786 357 588
RBF 0.78 0.68 2.13 369 608 396 307
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6 Discussion

For both the static and dynamic model it is clear that the surrogate-based optimization
framework, with evaluated infill strategies, is able to find solutions with higher costly
objective function value, in comparison to what were known after the initial sampling.
There is, however, a question whether the thorough evaluation conducted in Section 4
with the STA model can contribute when choosing response surface, experimental design
and infill strategy.

There are two alternative approaches, which have not been used within this work:

i) To use the same network layout, the same definition of user classes and OD pairs,
and the same demand model, for both static and dynamic assignment. This would
facilitate the isolation of the effects of introducing dynamic assignment.

ii) To use a less computational demanding dynamic model (for instance by considering
smaller network). This would allow comparisons with global optimal solutions also
for the case of a DTA model.

For (i) the main difficulty to overcome is that even with a STA model, the computa-
tional time using the more detailed network from our Regent/VisumDUE model, would
be too long in order to carry out the evaluation in Section 4. The main difficulty for (ii)
is whether a smaller network contains the complexity of a network of real size, and
thus whether any conclusions drawn from experiments on this smaller network would be
valid for a case with a larger network. Our approach is similar to the one used in [18],
but with the difference that the evaluations with the STA model is done on a network
representing an actual traffic system, rather than a toy network. Also, the structure of
the demand models used within both the DTA and STA models are similar (logit choice
models).

In terms of applicability of the surrogate-based optimization framework, it is only
relying on the computation of the costly objective function value. Thus it can easily
be applied to any traffic modeling system capable of returning this information for a
given set of toll levels. For the small number of samples considered in this paper, 20–40
samples, it might not even be worth the trouble to integrate the computation of the
costly function with the surrogate-based optimization framework, especially if one will
only evaluate one cordon design.

7 Conclusions and further research

This paper has focused on the performance of a surrogate-based optimization frame-
work for optimizing toll levels in cordon pricing schemes, when the number of possible
evaluations of the costly objective function is limited to a small number. We have for
the STA model shown that for a case with six different cordon tolls to optimize, close
to global optimal solutions can be computed with as few as 20 evaluations of the costly
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objective function. The approach is, however, sensitive to the problem dimension, and
might show a more local optimizing behavior when the problem dimension is increased,
if the number of initial samples is not increased. For the DTA model the surrogate-based
optimization framework has been successfully applied. The experiments, however, sug-
gest that the approximation of the costly objective function using any of the evaluated
response surfaces, becomes more difficult for the DTA in comparison with the STA.

While the Regent/VisumDUE DTA model is based on macroscopic deterministic
assignment, further research is needed in order to evaluate the approach for mesoscopic
and microscopic models based on simulation. Using simulation-based models will intro-
duce stochasticity to the costly objective function, why other response surfaces, better
equipped for handling noisy functions, might be more suitable. Also, allowing variations
of toll levels over time will affect the performance of the optimization approach, and the
inclusion of time profile as a variable is an important area for further evaluation.

The introduction of more dynamic traffic assignment models for larger urban areas
makes decision support tools for infrastructure investment and pricing policies, based on
DTA models, an important area for future research. How to combine information from
the less computational demanding STA with information from the more computational
demanding DTA model then becomes an interesting question for further research.
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A Cordon layouts

Figure 10 and 11 illustrate the cordon layouts in Scenario 1 and 2, with red marks
indicating a tolled link (direction of flow given by the arrow) and toll level variable
indicated by τc.

 
 

   

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Cordon layout for Scenario 1. This scenario includes 6 toll levels.

 
  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Cordon layout for Scenario 2. This scenario includes 10 toll levels.
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