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Effect Oriented Planning

Nils-Hassan Quttineh, Kristian Lundberg
Kaj Holmberg, Torbjörn Larsson

January 24, 2012

Abstract The problem setting concerns the tactical planning of a mili-
tary operation. Imagine a big wide open area where a number of interesting
targets are positioned. It could be radar stations or other surveillance equip-
ment, with or without defensive capabilities, which the attacker wishes to
destroy. Moreover, the targets are possibly guarded by defending units, like
Surface-to-Air Missile (SAM) units. The positions of all units, targets and
defenders, are known. We consider the problem of the attacker, where the
objective is to maximize the expected outcome of a joint attack against the
enemy, subject to a limited amount of resources (i.e. aircraft, tanks). We
present a mathematical model for this problem, together with alternative
model versions which provide optimistic and a pessimistic approximations.
The model is not efficient for large problem instances, hence we also provide
heuristic solution approaches and successfully provide solutions to a number
of scenarios.

Keywords: Targeting Problem, Weapon-Target Assignment, Military Op-
erations Research, Decision Support.

1 Introduction

Effect Based Operations (EBO) is a military concept which emerged during
the 1991 Gulf war for the planning and conduct of operations combining mil-
itary and non-military methods to achieve a particular effect. The doctrine
was developed to take advantage of advancements in weaponry and tactics,
from an emerging understanding that attacking a second-order target may
have first order consequences for a variety of objectives. The Commander’s
intent can be satisfied with a minimum of collateral damage or risk to his
own forces, it follows that EBO embrace political factors as well as economic
which makes the whole problem complex and hard to solve.
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Despite its complexity, this not an impossible task. We have been dealing
with these challenges on an ad hoc basis throughout history. The good news
is that we now can use modern technologies and process thinking to provide
all ingredients of successful effect based operations.

A network-centric system is a system-of-systems concept where a number
of actors are attached to each other in a network sharing information in
an adaptable and interoperable manner. Obviously networking enables an
enormous rise in accessible information and the intrinsic challenge is the de-
velopment of systems and functions to shape this information into guidance
and control of a variety of operations with multiple objectives. For exam-
ple, an optimization methodology is presented in [5] for finding the correct
balance between weapons and attack damage assessment sensors.

The above mentioned pinpoints the trend in military operational planning,
also at the Swedish military arena. In our case we can use this paradigm
shift to put functional and algorithmic requirements on planning of air to
ground missions. This leads to adaptation to new doctrines of command
and control and to a tool that contains the most of planning experience im-
plemented by planning specialist personnel in cooperation with algorithm
experts. Mission performance can be driven to its limits with a model based
planning which simultaneously keeps control of both objective and system
performance, which is probably the most cost effective way to gain perfor-
mance.

1.1 Network Centric Framework

In a network centric framework, a resource is not an entity tightly coupled
to a sluggish hierarchical organization but a resource with own intelligence
to offer specific effects to a variety of effect customers. Our work is enti-
tled Effect Oriented Planning which indicates that it does not embrace the
full meaning of EBO but is guided by quantifying and responding to effect
requests and hence becoming a true entity of a network centric system. In
order to understand the paradigm shift in EBO planning or network centric
planning, Figure 1 shows the principles of future effect based operations.

Initially an effect must be achieved in order to answer what to do. There-
after possible systems are considered and how theses systems could manage
to do it. The last issue of the effect chain is to decide the resources alloca-
tion. As can be noticed, resource owners are considered in the later planning
stages which is quite a change from traditional planning. Obviously there
are two dimensions in the Effect chain, the mission-conduction and the re-
source owner dimension. The resource owner dimension keeps and conducts
resources supply chain as well as allocation schemes and schedules. The
mission-conduction states individual missions and how they shall be imple-
mented.

Actually if a future EBO planning system shall apply to the above picture
some extra requirements must be considered.
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- Weapon systems must estimate associated effects and time duration
of a mission

- Estimations must be performed rapidly
- Weapon systems must communicate actual state parameters such as

position, health, endurance e.t.c.

Assets (Resource owner)

Competence

Capability

Effectforms

Desired Effect

Target Area

"Who is doing it"

"How to do it"

"What System"

"What to do"

Figure 1: The effect chain including an EBO principle of a split up of the planning
process into stages from the target to allocation of individual platforms

In order to fulfill these requirements on demand, effort must be put on scal-
able model-based algorithms which promotes an easy workflow and a high
speed planning performance. Each scenario shall be individually stated by
the set of input data, but planning shall always be performed via imple-
mented tactics and knowledge of actual resource performance and mission
pattern.

1.2 Mission Planning

An Air to Ground mission planning system is modular and contains a plan-
ning system and weapon systems, hosted by a variety of carriers such as
UAV’s or fighter aircraft. In order to perform effect oriented planning in
line with Figure 1 we transform the planning process according to Figure 2
where each platform is separated into carrier and weapon performance and
tactics producing a certain effect which can be matched with the effect cus-
tomers needs.

Initially we maximize system effect in the target area by optimally allocating
the number of weapons to suppress enemy defense and destroy vital targets.
A target area can consist of different ground based targets and sheltering
air defense units. Each target has a specific value which indicates the im-
portance of the target. The effect oriented weapon allocation of the target
area is followed by a search for appropriate platforms, where platform loca-
tion and other scheduling parameters are considered. Further each platform
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Route Planning Carrier Platform

Target Area

Desired Effect

Figure 2: A resource, a fighter with weapon system, has a relationship between route
planning, type of weapon and a set up of tactics which forms the final
effect.

must have a route to the firing position including tactical features such as
hiding and a limited exposure of radar cross section during the flight phase.

These planning aspects are coupled but with an acceptable loss of generality
the effect planning task can be separated from the platform in order to start
an overall planning process. The following paper address a model based
approach to rapidly calculate weapon allocation to optimize system effect in
an hostile ground based target area. Early work on a similar problem was
done by Miercort and Soland in [4], but they consider a less complicated
model without intricate dependencies. In a more recent paper by Kwon
et. al [3], a new weapon-target allocation problem is presented together with
a branch-and-price algorithm for solving it. In contrast, Kaminer and Ben-
Asher present a model in [2] for maximizing the effectiveness of a defense.

These key issues in effect based planning shall of course be followed by other
planning tasks but shall be seen as potential future work.

1.3 Paper Overview

Here follows a guide for the reader. In Section 2 we define and describe the
problem at hand, basically a weapon-targeting problem, together with some
basic concepts that will be used throughout the paper. The section ends
with a generic mathematical model for the problem, found on page 12. The
model is straight forward with only two linear constraints, but comes with
a nasty non-convex and non-linear objective. In Sections 2.5 and 2.6 follows
optimistic and pessimistic models that can be used to find upper and lower
bounds on the true optimal objective value. These models are Linear Binary
Problems and easy to solve.

In order to actually use the generic model and to solve real scenarios, it is
necessary to specify in detail how to evaluate a given situation. One possible
way to do this is presented in Section 3, where we state how the defenders
act in different situations. A graphical example is found on page 17.

In Section 4 we present a Non-Linear Integer Programming model adapted
to the rules defined in Section 3, followed by a Mixed Integer Linear Pro-
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gramming model in Section 5 where the non-linear objective function is
approximated using piece-wise linear functions. In Section 6 we present
some results on small and midsized scenarios, involving 2-6 units.

To solve bigger scenarios in practice, involving 5 to 20 units, Section 7 looks
into different heuristic approaches who cannot guarantee optimality but find
high quality solutions within a reasonable time frame. Sections 8 and 9
contain tests and results for the different heuristics considered in Section 7.
Finally, in Section 10, we present some remarks and conclusions together
with suggestions on future work.

2 The problem

Imagine a big wide open area, like a desert, where a number of interest-
ing targets are positioned. It could be radar stations or other surveillance
equipment, with or without defensive capabilities, which the attacker wishes
to destroy. Moreover, the targets are possibly guarded by defending units,
like Surface-to-Air Missile (SAM) units.

The positions of all units, targets and defenders, are known. The set of
all units is denoted S, and the subset S̄ denotes those units with defensive
capabilities defined by radius of defense and armament. Each unit is given
a specified reward rs, where important units get high values and the other
units are given low values.

This is the problem of the attacker, where the objective is to maximize the
expected outcome of a joint attack against the enemy, subject to a limited
amount of resources R, for example tanks and aircraft.

Figure 3: A possible attack scenario. Some units, here shown in black, are air defense
units. The other units are radar stations or similar surveillance units who
are valuable to destroy.

Each unit s ∈ S should be assigned an attack plan which specifies the
number of resources to be used against it, and also from which direction.
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As seen in Figure 3, some units does not have a defensive system of their
own, but depends on the defense of other units. Also, the radius of defense
for different units might overlap. A unit will always protect itself primarily,
and then engage resources passing by inside its radius of defense towards
other units.

2.1 Tactics

Each unit s, if attacked, is done so by a predefined tactic t, chosen from a
set of tactics T . Each such tactic have its own features, such as the number
resources needed (nt) and the number of attacking directions involved (Vt).

More important, each tactic t gives rise to a probability of success, for each of
the nt resources, against an isolated unit s. This probability is denoted pst
and might vary between each unit s ∈ S, depending on their respective
defensive capabilities.

X

1.

X

2.

X

3.

4.

X X

5.

w
w

Figure 4: A graphical description of the 5 tactics considered.

At the moment, we limit ourselves to the set of tactics T described graphi-
cally in Figure 4. The idea behind these tactics is to overload the defensive
system of a single unit. This is done by either sending multiple resources
from the same direction (tactics 1-3), or by attacking simultaneously from
multiple, evenly spread, angles (tactics 4-5).

In real life there is obviously an unlimited number of ways to perform an
attack. The reason for limiting the attacks to predefined tactics is related to
the difficulty of finding input data to the problem, in this case the probability
of success for different attacks.

Each tactic t ∈ T is associated with a reference angle of attack, w, which
defines from which direction the attack is launched. Since we only consider
evenly spread angles of attack, one reference angle is enough.
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2.2 Angle of attack

For tactics which involve more than one angle of attack, Vt > 1, multiple
angles w might give rise to exactly the same attack since we consider evenly
spread angles. To avoid such symmetries, we introduce a subset Wst which
contains all valid reference angles w to be used together with tactic t against
unit s.

In this paper, we consider a coarse angle discretization, consisting of evenly
spread angles v defined by the set V. For tactics involving multiple angles,
we define

wj = w + (j − 1) · 2π

Vt
, j = 1, . . . , Vt

We also introduce the concept of an engagement path (s, v), which is the
line emanating from unit s at angle v. In total, there are |S| · |V| different
engagement paths. For a certain tactic and angle, though, only a few of
these paths will be used. If there is at least one resource on the path, we
call it an active path.

w1 = ww2

w3

X X

Figure 5: To the left, all possible engagement paths (s, v) toward a unit for a given
angle discretization, here 12 evenly spread angles. To the right, the unit is
attacked using tactic number 5 and reference angle of attack w. This gives
rise to three active engagement paths toward the unit.

For the given angle discretization V shown in Figure 5, the setWst for tactic
t = 5 would consist of only the first four angles in order to avoid redundant
attacks (symmetry). Although Ws5 = {1, 2, 3, 4}, engagement paths along
all angles v ∈ V become active as multiple angles are involved for this tactic.

Throughout this paper, a reference angle of attack is always denoted w and
defined by the set Wst, whereas an angle v refers to an individual angle in
V used for general discussions involving engagement paths (s, v).

2.3 The objective

The essence of this problem is to decide, for each unit s, which tactic t
that should be used (if any) and specify a reference angle of attack w. We
introduce the binary variable zstw to be one if unit s should be attacked by
tactic t from reference angle w.
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zstw =

{
1 if unit s is attacked using tactic t from angle w.
0 otherwise

A collection of such decisions, at most one for each unit s, is defined as an
attack plan z. Let pkill

stw(z) be the probability of successfully incapacitate
unit s when attacked by tactic t from reference angle w. As will be clear
from the upcoming analysis, this probability depends on the overall attack
plan z, a fact which complicate things.

The objective is to maximize the expected reward of the attack, found by
multiplying the probability of success of an attack against a unit with its
reward. Since we want to optimize the whole attack, these expected values
should be added. The objective becomes

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]
· rs

where rs is the associated reward (or price) for each unit s ∈ S.

2.3.1 The probability of success

In order to define the expression for pkill
stw(z), let us analyze the situation in

Figure 6. Unit 2 is attacked with tactic t = 2, i.e. two resources from the
same angle of attack w2. This engagement path (s2, w2) does not intersect
the area of defense for unit 1, hence the only threat for our resources is the
defense of unit 2. For a single resource, pkill

stw(z) is the given probability pst.

p
1

w
1

w
2

p
2

1

2

Figure 6: A possible attack situation. Unit 2 is attacked by two resources from the
same angle, i.e. tactic 2. Unit 1 is attacked using tactic 5, i.e. one resource
from three different angles.

For two resources, the probability of incapacitating the unit is equal to 1
minus the probability that neither resource survives the defense of unit 2.
That is,

pkill = 1− (1− pst)2 for s = 2, t = 2
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The case for unit 1 is more complicated since one of the active engagement
paths intersects the area of defense for unit 2. The probability for our
resource to survive this defense will vary depending on how busy unit 2 is
defending itself, since we assume that a unit always defend itself primarily.

The probability for a resource to survive the defense of a unit i which it
passes by on its way towards the target s on path (s, v) depends on the
attack plan z, i.e. what tactics are used against the surrounding units. We
denote this dependence by pisv(z).

In all, the probability of success using the tactic in Figure 6 against unit 1
is equal to 1 minus the probability that none of the three resources survive.
That is,

pkill = 1− (1− pst)2 · (1− pst · pisv)

Two of the engagement paths only intersect the area of defense for unit 1
and the third path intersects also the area of defense for unit 2, which is
reflected in the expression above.

We now generalize this way of calculating the probability of success for a
certain tactic and reference angle of attack. For a given unit s, tactic t and
angle of attack w the probability of successfully eliminating unit s is:

pkill
stw(z) = 1−

Vt∏
j=1

[
1− pst

∏
i∈S
i 6=s

piswj (z)
]mt

(1)

For the given tactic t, the number of resources that is launched from each
of the angles Vt is denoted by mt. Naturally, whenever an engagement path
(s, v) doesn’t intersect the area of defense for unit i, we set pisv(z) = 1.

The expression for pkill
stw(z) is very complex, since it needs to incorporate

many things. The success of an attack against a certain unit depends on

1. the number of resources used against the unit (nt = Vt ·mt).

2. the units ability to defend itself against incoming resources (pst).

3. the probability of successfully survive the defense of every other unit
which the resource pass by on its way towards the target (piswj ).

Both nt and pst are given data for the problem, so they pose no problem. It
is the third one, piswj , which makes this problem very complicated.

That is, everything is connected since the probability of success for a tactic t
and angle w against a unit s depends on which tactics are applied against
every other unit. This dependence is the core of the problem and is very
troublesome.
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2.4 A generic model

Let pkill
stw(z) be the probability of successfully incapacitate unit s when at-

tacked by tactic t from reference angle w, defined as in (1). The probability
for a resource to survive as it passes by unit i towards unit s on path (s, v),
denoted pisv(z), depends on the attack plan z, but for the generic model we
make no assumptions on the exact nature of this dependence.

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]
· rs [GENERIC]

s.t.
∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (1)

∑
t

∑
w∈Wst

zstw ≤ 1 ∀ s ∈ S (2)

zstw ∈ {0, 1} ∀ s ∈ S, t ∈ T , w ∈ Wst

Notice that it is not necessary to attack all units. Depending on the rewards
specified for each unit, this might not be optimal. Constraint (1) states that
we cannot use more resources than we have. Constraint (2) makes sure that
each unit is attacked at most once. Both constraints are linear, but the
objective is definitely not. In Section 5, we present a way to approximate it
using some clever rewriting and piecewise linear approximations. In all, we
manage to present a linear model which approximates the nasty objective
arbitrarily well.

2.5 Optimistic model

It is possible to construct two auxiliary problems, providing an upper and
lower bound to the generic problem. Let us analyze (1), the expression for
pkill
stw(z), under two specific assumptions.

Assume that no unit will shoot against resources passing by towards other
units, just against resources towards themselves. This means that pisv(z) ≡
1 for all units s ∈ S, and pkill

stw(z) collapses to

pkill
stw(z) = 1−

Vt∏
j=1

[
1− pst

∏
i∈S̄
i 6=s

1
]mt

= 1− (1− pst)nt

This expression does not depend on the angle w anymore, hence we only
have to decide which tactic t to use against each unit s, if any tactic at
all. The most important thing is that the probabilities of success no longer
depend on the overall attack plan z. Since pkill

stw(z) only depends on the
given probabilities pst, they are also (implicitly) given as input data. The
probabilities are now separable in s.
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We define Pst = 1− (1− pst)nt , and the optimization model becomes

max
∑
s

∑
t

rs · Pst · zst [OPTIMISTIC]

s.t.
∑
s

∑
t

nt · zst ≤ R (1)∑
t

zst ≤ 1 ∀ s ∈ S (2)

zst ∈ {0, 1} ∀ s ∈ S, t ∈ T

This linear binary problem is easily solved using CPLEX. Solutions to this
optimistic model are valid upper bounds for the original problem since the
values of all coefficients in the objective are systematically increased. Even
more, this is a valid upper bound for all choices of discretization V.

The solution found is also a feasible solution to the original problem, if com-
plemented with an arbitrary reference angle of attack for each tactic used.
It means that we can easily calculate the “true” objective value and also get
a lower bound. This bound is only valid for the considered discretization V
though.

2.6 Pessimistic model

It is also possible to find a pessimistic model, generating lower bounds to
the original problem. By assuming that each unit will shoot against all
resources passing by towards other units with full force, one can find a
pessimistic value for the probability of surviving the defense of other units,
pisv(z) ≡ p̃isv. The expression for pkill

stw(z) thus become

pkill
stw(z) = 1−

Vt∏
j=1

[
1− pst

∏
i∈S̄
i 6=s

p̃iswj

]mt

Using Pstw = pkill
stw(z) as above, the optimization model becomes

max
∑
s

∑
t

∑
w∈Wst

rs · Pstw · zstw [PESSIMISTIC]

s.t.
∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (1)∑
t

∑
w∈Wst

zstw ≤ 1 ∀ s ∈ S (2)

zstw ∈ {0, 1} ∀ s ∈ S, t ∈ T , w ∈ Wst

and is easily solved using CPLEX.
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The values of p̃isv might become unrealistically pessimistic, since the as-
sumption is extreme, and hence the solution will probably provide bad lower
bounds on the optimal objective value.

Hopefully, though, the structure of the solution (the attack plan z) is close
to the optimal one, and by evaluation in the real objective one can find a
better pessimistic bound.

3 Simulation details

In order to actually solve the generic model presented in Section 2.4, one
needs to specify how the probability pisv(z) depends on the attack plan z. It
is obviously an impossible task to model a fully realistic case, and not very
meaningful in practice due to the amount of input data needed for such a
model.

We will analyze the different factors that affects pisv(z), the probability for
a resource to survive the defense of a unit as it passes by toward its target,
and how it depends on z. To do this, we look into the details of the defensive
systems of the units and define their rules of engagement.

Some factors are the amount of defensive capacity, distance between the unit
and the engagement path as well as limitations in the defensive systems.

3.1 Residual Defensive Capacity

To start with, each unit s has a specified number of defensive channels, i.e
cannons and anti-missile systems, denoted Cs. We define the set S̄ as the
set of units with Cs > 0, i.e. units with any defensive capability. Units in S̄
will be indexed by i from now on, and their radius of defense is denoted ρi.

For each unit i ∈ S̄ and defined tactics t ∈ T , the parameter dit states how
many of these defensive channels will be occupied when unit i takes on the
incoming resources defined by tactic t.

Since a unit always defend itself primarily, we define the residual defensive
capacity Di for each unit i ∈ S̄ as the number of defensive channels available
after the allocation of dit channels required to handle the incoming attack.

These residual channels should be used to defend the other units, by engag-
ing resources passing by inside their area of defense. So for each unit i ∈ S̄,
we introduce integer variables uisv to decide how many defensive channels
that should be allocated against the resources on each active path (s, v)
passing by.
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3.2 Active Paths and Distance Measure

The number of active engagement paths passing by a unit i is denoted Bi and
defined as the number of active paths that intersect the area of defense for
each unit i ∈ S̄, i.e. possible targets for the unused defensive channels. The
area of defense for each unit i is the circle defined by its defense radius ρi.

The number of resources on each path, denoted Nsv, also affects the proba-
bility of success. We define K = maxt∈T {nt : Vt = 1} to be the maximum
number of resources traveling on a single engagement path. Hence, Nsv is
in the range k = 0, . . . ,K.

We define parameter disv to be the orthogonal distance between unit i and
the engagement path (s, v). For units with positions inside the area of
defense of unit i, the distance to the mid-point of this path is used. This is
illustrated in Figure 7.

3.3 Ranking

Each active path is given a rank number, where the path closest to unit i
gets rank 1, second closest path is ranked 2 and so on. Closest path refers
to the smallest distance disv and is thus relative to each unit i. This ranking
will be used when the defense units need to prioritize, i.e. when they cannot
engage all paths passing by.
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β = 2

β = 1.5

Figure 7: To the left, an illustration on how the distance between a unit and the
active engagement path is measured. To the right, an example on how the
design parameters βik and θik affects the probability pkisv.

3.4 Introducing pkisv

The probability pisv is a function of the distance disv and the number of
resources on the path Nsv, who are both a direct consequence of the attack
plan z. The obvious way to model this dependence would be to demand
values for all such combinations as input data, but this is not possible in
practice. We introduce an analytical function instead, based on both disv
and Nsv.
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We define pkisv to be the probability for a resource to successfully pass by
one defensive channel of unit i, which also depends on k = Nsv, the number
of resources that are traveling on the active path (s, v).

These probabilities are derived from the values of pst, for tactics t ∈ T where
all k = nt resources are sent from the same angle (Vt = 1). Since this is only
relevant for units in S̄, we denote this pik for all i ∈ S̄, k = 1, . . . ,K.

pkisv = 1−
(

1− disv
ρi

)βik
· (1− θik · pik) (2)

Here, βik and θik are design parameters used to model the defensive capac-
ities of each unit i against different number of resources k. In Figure 7, one
can see in the left picture how the distance between a unit and an active
engagement path is defined. This distance, denoted disv, is then used to
derive a value for pkisv. The rightmost plot in Figure 7 shows the probability
pkisv on the y-axis as a function of the distance disv on the x-axis.

For this example, probability pik = 0.7 is used, and the black line corre-
sponds to parameter values βik = 1 and θik = 1. The dash-dotted line
(blue) illustrates the effect of parameter θik, as its value is set to 0.95. The
two dashed curves (blue) correspond to the values of 1.5 and 2 respectively
for parameter βik.

In all, this analytical function shows a natural behaviour. For disv = 0, its
value becomes θik · pik and for disv = ρi the probability becomes 1. For
distances in between, the parameter βik is used to control the effectiveness
of the defensive system of unit i.

3.5 Specifications of the defense system

Since we consider the problem of the attacker, we need to assume and specify
a set of deterministic engagement rules for the defenders. We make the
following assumptions for each unit i ∈ S̄:

1. A unit i will primarily defend itself.

2. If there are some residual defensive channels, Di > 0, they will be
evenly
allocated against the active engagement paths that pass by the unit.

3. At most Fi channels might be used against a single engagement path.

4. At most Gi different engagement paths might be engaged.

5. All defensive channels should be used if there is something to shoot at.

6. If there are more active paths than defensive channels, one defensive
channel is allocated to each path as long as possible with respect to
their ranking, i.e. starting with the path closest to the unit.
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To make sure that variables uisv follow these rules, we need to introduce
auxiliary variables and numerous logical constraints. These are found in
Section 4 where we present a mathematical model for this problem.

3.6 Defining pisv(z)

Now finally, we are able to define pisv, the probability for a resource to
survive as it passes by unit i ∈ S̄ towards unit s ∈ S on path (s, v):

pisv =
K∏
k=1

(
pkisv

)ukisv
(3)

Variable ukisv is an auxiliary integer variable, equal to uisv if k = Nsv and
zero otherwise. This construction is necessary in order to keep all constraints
linear. A mathematical model is presented in the upcoming Section 4.

Since uisv, and thus also ukisv, might be greater than one the probability
of success decreases with the number of defensive channels assigned to the
engagement path. This is realistic as the defensive channels can be seen
as independent, and the probability for a resource to survive two channels
should be equal to the probability of surviving them both.

3.7 Illustrative Example

In this example, we focus on a unit i with some given defensive radius.
Assume that we name all paths (s, v) intersecting the area of defense in
accordance with their rank, i.e. the path with rank 1 is also named path 1
(and so on).

Furthermore, we assume defensive parameters Gi = 4 and Fi = 3, and that
the number of residual defensive channels Di = 5.

The situation is illustrated in Figure 8. Notice that one of the engagement
paths never intersect the area of defense. This path is never considered when
the residual defensive channels are assigned.

Case I, all paths are active

Consider the case where Bi = 4, i.e. all four paths passing by unit i are
active (at least one resource travelling on the path). Since Bi ≤ Gi all
paths should be engaged. Also, since Di > Bi, each path get at least one
defensive channel locked against them. The remaining one is assigned to the
path closest to unit i, i.e. path 1 with rank 1. The variables uisv for unit i
becomes ui1 = 2, ui2 = 1, ui3 = 1 and ui4 = 1.
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Figure 8: A situation where multiple engagement paths intersect the area of defense
for a unit i. There is also one path that does not affect unit i.

Case II, three active paths

In the case where either Bi or Gi (or both) decreases to 3, unit i can only
engage 3 engagement paths.

For Bi = 4 and Gi = 3, the path with highest rank (most far away) will no
longer be engaged. The residual defensive channels are then distributed as
follows: ui1 = 2, ui2 = 2, ui3 = 1 and ui4 = 0.

If Bi = 3 and Gi = 3 (or 4), it means that only three engagement paths
are active. Depending on which path that is not active, the other paths are
assigned defensive channels like before, with respect to rank. Assume that
for example path 2 (with rank 2) is not active, then we get: ui1 = 2, ui2 = 0,
ui3 = 2 and ui4 = 1.

Case III, only one active path

Finally, ifBi < 2, all defensive channels cannot be assigned to an engagement
path since Fi = 3. With only one (or none) active path, at most Bi · Fi ≤
1 · 3 = 3 channels could be assigned. For example, if only path 3 is active,
we get: ui1 = 0, ui2 = 0, ui3 = 3 and ui4 = 0.

In the mathematical model, a slack variable is introduced to handle these
cases.
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4 Mathematical Model

In this section, we introduce the mathematical model and describe the con-
straints whom are divided into five groups. This should improve the read-
ability of the model, and also ease the comparison of the different model
versions that will be described. In most cases some groups are unchanged
or just slightly modified, whereas other groups are changed drastically.

It should be stated that if one aims at solving the problem using some
meta-heuristic, it suffices to consider constraints (1) and (2), i.e. the generic
problem described on page 12. These are the only real constraints of the
problem, all the rest are used to model the behaviour of the units with
defensive capabilities and are uniquely defined for a given attack plan z.

4.1 Notation

Variables

integer

Bi number of active engagement paths (s, v) passing by unit i.

Di residual defensive capacity for unit i.

Si slack variable for the residual defense quota for unit i.

Ni help variable, Ni = min{Bi, Gi}.
uisv number of defensive channels that unit i will use against

resources on path (s, v).

ukisv equal to uisv if nsvk = 1, zero otherwise.

Nsv number of resources on path (s, v).

binary

zstw 1 if unit s is attacked using tactic t and angle w, where w ∈ Wst.

xsv 1 if any resource travels toward unit s on path (s, v).

nsvk 1 if Nsv = k, zero otherwise.

yi 1 if Bi ≥ Di for each unit i.

qi 1 if Di ≤ Fi ·min{Gi, Bi} for each unit i.

zi 1 if Bi ≥ Gi for each unit i.

Uisv 1 if unit i will use any defensive channel against path (s, v).

Definitions

engagement path (s, v) := the line emanating from unit s at angle v.

attack plan z := a collection of z-variables, one for each unit s,

which defines a tactic t and angle w.
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Sets

given

S, T , V set of units S, tactics T and angle discretization V.

S̄ set of units with defensive capabilities. Subset of S.

pre-processed

Wst set of feasible angles w for tactic t against unit s.

∆i set of paths (s, v) that passes by unit i ∈ S̄.

Ri set of triplets (i, sv, s̄v̄) where risv < ris̄v̄.

Parameters

given as input data

R total resource available, the amount of resources.

rs reward (value/price) of unit s.

nt # resources used by tactic t.

Vt # angles used by tactic t.

mt # resources/angle used by tactic t.

Ci number of defensive channels for unit i ∈ S̄.

Fi maximum number of defensive channels against a path.

Gi maximum number of paths that unit i can engage.

ρi radius of defense for unit i.

dit # defensive channels used by unit i when attacked by tactic t.

pst probability that a resource survives the defense of unit s when

part of tactic t.

pre-processed, i.e. derived from the given parameters

K maximum number of resources/angle, i.e. max{mt, t = 1, . . . |T |}.
Mi maximum number of engagement paths that passes by unit i.

Avtw 1 if path (s, v) is active when the combination of tactic t

and angle w is used against some unit s, where w ∈ Wst.

disv distance from unit i to center point of path (s, v) inside ρi.

δisv 1 if disv < ρi. Indicates which paths unit i might engage.

Used to define set ∆i.

risv ranking of paths (s, v) passing by each unit i, where δisv = 1.

The shorter distance disv, the closer to the unit and lower ranking.

pik probability pst, defined only for units i ∈ S̄, where Vt = 1

and mt = k, for k = 1, . . . ,K.

pkisv probability of surviving the defense of unit i for a resource

on path (s, v) who is part of an attack t where mt = k.
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4.2 The Non-Linear Integer Programming Model

In this general model we assume limiting values for both parameter Fi
and Gi. Although, since it is possible to find out in advance if Mi ≤ Gi
or Ci ≤ Fi, or both, for each unit i ∈ S̄, many constraints are redundant
and some variables are unnecessary. In these cases, it is possible to refor-
mulate some of the constraints in order to avoid unnecessary work.

All constraints are linear, it is the nasty objective which makes the problem
non-linear. Constraints (1) and (2), found already in the generic model,
make sure we use no more resources than available and that each unit s is
attacked at most once.

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]
· rs [NLIP ]

s.t.
∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (1)

∑
t

∑
w∈Wst

zstw ≤ 1 ∀ s ∈ S (2)

The rest of the constraints are divided into five groups and presented in the
following subsections. The full NLIP model can be found on page 56.

4.2.1 The Objective

The non-linear function pkill
stw(z) is part of the objective, and defined below.

Since it is only units i ∈ S̄ that can defend other units, the general formula
from Section 2.3 is now altered somewhat.

pkill
stw(z) = 1−

Vt∏
j=1

[
1− pst

∏
i∈S̄
i 6=s

K∏
k=1

(
pkiswj

)ukiswj
]mt

The values of variables ukisv are dependent on the entire attack plan z, which
makes the problem very difficult. Once their values are known, it is straight
forward to evaluate the objective.

4.2.2 Group I

The constraints in this first group are mostly constraints used to define
auxiliary variables and might actually be removed, but are kept for the sake
of readability.
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∑
t

∑
w∈Wst

Avtw · zstw = xsv ∀ s ∈ S, v ∈ V (3)

Ci −
∑
t

∑
w∈Wit

dit · zitw = Di ∀ i ∈ S̄ (4)

∑
(s,v)∈∆i

xsv = Bi ∀ i ∈ S̄ (5)

∑
s

∑
v

uisv + Si = Di ∀ i ∈ S̄ (6)

Constraints (3) − (5) defines help variables xsv, Di and Bi. Variable Di

defines the number of residual defensive channels for each unit i. Variable xsv
keeps track of which engagement paths that are active for the current attack
plan z. Variable Bi defines the number of active paths (s, v) which pass by
unit i. Constraint (6) forces each unit i to allocate the correct number of
residual defensive channels Di. Also, in order to handle the case where no
engagement paths (s, v) are active, and hence all uisv will become 0, a slack
variable Si is introduced. Further constraints are introduced in order to
make sure that variable Si is used only when this is the case.

4.2.3 Group II

The second group of constraints defines all logical variables and implications.

Di − Fi ·Ni + (FiMi) · qi ≥ Si ∀ i ∈ S̄ (7a)

Di − Fi ·Ni ≤ Si ∀ i ∈ S̄ (7b)

Ci · (1− qi) ≥ Si ∀ i ∈ S̄ (7c)

Fi ·Ni + Ci · (1− qi) ≥ Di ∀ i ∈ S̄ (8a)

Di − 1 + (FiMi + 1) · qi ≥ Fi ·Ni ∀ i ∈ S̄ (8b)

Di +Mi · yi ≥ Bi ∀ i ∈ S̄ (9a)

Bi + Ci · (1− yi) ≥ Di ∀ i ∈ S̄ (9b)

Gi ≥ Ni ∀ i ∈ S̄ (10a)

Bi ≥ Ni ∀ i ∈ S̄ (10b)

Gi −Mi · (1− zi) ≤ Ni ∀ i ∈ S̄ (10c)

Bi −Mi · zi ≤ Ni ∀ i ∈ S̄ (10d)

Constraints (7a) − (7c) are used to assign the correct value to the slack
variable Si. If variable qi = 0, the slack becomes Si = Di − Fi · Ni which
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is exactly the number of channels that cannot be assigned. Otherwise, it
means that no slack is necessary and forces Si = 0.

Constraints (8a) − (8b) defines the value of qi. Either Di ≤ Fi · Ni which
means that it is possible to assign all channels to active engagement paths,
and hence the slack should be zero. Otherwise it is not possible to assign
all residual defensive channels and the slack variable should become active.

In a similar way, constraints (9a) − (9b) defines the value of yi. If Bi ≥ Di

variable yi is forced to become 1, which in upcoming constraints might
restrict variable uisv to either 0 or 1. Constraints (10a) − (10d) defines
the value of Ni, which is a linear way of rewriting the constraint Ni =
min{Bi, Gi}.

4.2.4 Group III

Constraints (11) − (17) make sure that each unit i allocate their residual
defensive channels Di according to the set of rules defined and motivated in
Section 3.5.

Fi · Uisv ≥ uisv ∀ i, (s, v) ∈ ∆i (11a)

Fi · xsv ≥ uisv ∀ i, (s, v) ∈ ∆i (11b)

1 + (Fi − 1) · (1 + zi − yi) ≥ uisv ∀ i, (s, v) ∈ ∆i (12)

uisv + Fi · (1− xsv) ≥ uis̄v̄ ∀ i, (sv, s̄v̄) ∈ Ri (13a)

Uisv + (1− xsv) ≥ Uis̄v̄ ∀ i, (sv, s̄v̄) ∈ Ri (13b)

uis̄v̄ + 1 + (Fi − 1) · (1− Uis̄v̄) ≥ uisv ∀ i, (sv, s̄v̄) ∈ Ri (14)

Fi · (Uisv − qi) ≤ uisv ∀ i, (s, v) ∈ ∆i (15)

Uisv ≤ xsv ∀ i, (s, v) ∈ ∆i (16)∑
(s,v)∈∆i

Uisv = Ni ∀ i ∈ S̄ (17)

Since we assume Mi > Gi it means that we might need to limit the number
of engagement paths to which we assign defensive channels. This is taken
care of by constraint (17) where we limit the number of Uisv that can be set
to one.

Constraint (16) states that if a path is not active, we cannot assign defensive
channels to it. Constraint (11a) forces uisv to be zero if the corresponding
Uisv is zero, i.e. no defensive channels will be assigned. Otherwise, uisv is
limited by Fi. Constraint (11b) is actually redundant and should probably
be removed.
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Constraint (15) forces the value of uisv to Fi if all paths that we decide to
engage should be engaged fully. For this case to happen, Uisv = 1 and qi = 0,
which means that the path should be engaged and there is more residual
defensive capacity than could be used. This is a redundant constraint.

Constraint (12) limits the value of uisv to zero or one, depending on the
values of yi and zi. In the case where yi = 1 and zi = 0, there are more
active engagement paths than defensive channels, but not more than Gi,
and hence each path should get at most one defensive channel assigned to
it.

Finally, constraints (13) − (14) are precedence constraints which forces the
assignment of resources to be done according to the rules from Section 3.5.
That is, shoot against engagement paths in decreasing order with respect to
distance. Hence, the further away from unit i, the less likely to be shot at.

4.2.5 Group IV

Constraints (18) − (22) are used to model how pisv, the probability for a
resource to survive as it passes by unit i on path (s, v), is affected by the
number of resources on the active path.

∑
t

∑
w∈Wst

Avtw ·mt · zstw = Nsv ∀ s ∈ S, v ∈ V (18)

K∑
k=1

k · nsvk = Nsv ∀ s ∈ S, v ∈ V (19)

K∑
k=1

nsvk ≤ 1 ∀ s ∈ S, v ∈ V (20)

K∑
k=1

ukisv = uisv ∀ i, (s, v) ∈ ∆i (21)

Fi · nsvk ≥ ukisv ∀ i, (s, v) ∈ ∆i

k = 1, . . . ,K (22)

Constraint (18) defines Nsv, the number of resources on path (s, v), and in
constraint (19) the appropriate nsvk is set to 1. These two constraints can
of course be combined, and hence eliminating variable Nsv. Constraint (20)
makes sure that for example Nsv = 3 is not represented as 1 + 2.

Constraint (21) in combination with constraint (22) assigns the correct num-
ber of defensive channels to the correct variable ukisv, i.e. the one correspond-
ing to nsvk = 1.
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4.2.6 Group X

Defines all variables. In an upcoming section, there will be a fifth group
of constraints, used to linearize the objective. This is the reason for the
strange numbering of constraints in Group X.

Bi, Di, Ni, uisv, u
k
isv, Nsv, Si ∈ Z+ ∀ i, s, v, k (30)

zstw, xsv, yi, qi, zi, nsvk, Uisv ∈ {0, 1} ∀ i, s, t, v, w, k (31)

5 A Mixed Integer Linear Model

In this section, we present a way to linearize the objective, which results in an
overall linear model. It is possible to get arbitrarily good approximations,
both optimistic and pessimistic, but at the cost of more variables in the
model. The reason and justification for doing this is to be able to find
optimal solutions for small and mid-size problems, needed to evaluate and
validate the meta-heuristic approaches proposed in Section 7.

5.1 Linearization of the objective

In order to linearize the objective, we dissect it into smaller components and
approximate them separately. Recall the nasty structure of the objective

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]
· rs

where pkill
stw(z) is found by combining (1) and (3).

pkill
stw(z) = 1−

Vt∏
j=1

[
1− pst

∏
i∈S̄
i 6=s

K∏
k=1

(
pkiswj

)ukiswj
]mt

We note that if a certain zstw is zero then obviously pkill
stw(z) should also be

zero, independent of what happens to other units. By introducing a new
variable Pstw and two extra constraints, we present an equivalent formulation

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

Pstw

]
· rs

s.t. Pstw ≤ zstw

Pstw ≤ pkill
stw(z)

This is valid since Pstw represents a probability and hence limited to values
between zero and one. The objective is now linear, but pkill

stw(z) is still not,
now part of the new constraint instead.
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To linearize an expression like pkill
stw(z), which includes products, the key

observation is that one needs to use logarithms in order to transform them
into sums (i.e. linear).

Here follows a mathematically equivalent expression of pkill
stw(z). First we

define the following auxiliary variables:

Ystw = log
( Vt∏
j=1

[
1− pst

∏
i∈S̄
i 6=s

K∏
k=1

(
pkiswj

)ukiswj
]mt
)

= mt ·
Vt∑
j=1

log
(

1− pst
∏
i∈S̄
i 6=s

K∏
k=1

(
pkiswj

)ukiswj
)

Each angle wj corresponds to an angle v ∈ V, and we define:

Xstv = log
(
pst
∏
i∈S̄
i 6=s

K∏
k=1

(
pkisv

)ukisv)

= log(pst)︸ ︷︷ ︸
LPst

+
∑
i∈S̄
i 6=s

K∑
k=1

ukisv · log(pkisv)︸ ︷︷ ︸
LPk

isv

We note that since pst and pkisv are parameters to the model, hence known
in advance, we can save the logarithm of these values in the new LPst and
LP kisv parameters. The expression for pkill

stw(z) can now be written as:

pkill
stw(z) = 1− eYstw (I)

Ystw = mt ·
Vt∑
j=1

Y stwj

Y stv = log(1− eXstv) (II)

Xstv = LPst +
∑
i∈S̄
i 6=s

K∑
k=1

LP kisv · ukisv

Apart from equations (I) and (II), who define non-linear functions, the
expression for pkill

stw(z) consists of linear relations. To get an overall linear
expression, we need to approximate (I) and (II) somehow, using only linear
relations. Lets analyze these equations in detail.
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5.2 Function (I)

Equation (I) defines a relationship between pkill
stw(z) and the new variable Ystw.

It is straightforward to show that all feasible values of Ystw must be non-
positive, hence we are interested in an approximation of the concave but
non-linear function p(y) = 1− ey, y ≤ 0.

The idea is to approximate p(y) using a piecewise linear function, composed
of LY pieces. With an increasing number of linear pieces, this approximation
can be made arbitrarily good. There exist standard methods for modeling
piecewise linear approximations, and we will utilize SOS-constraints.

As seen in Figure 9, function p(y) is concave with function values between
0 and 1 for non-positive arguments. Using the fact that our objective is to
maximize the probability of success, and that p(y) is concave, it is sufficient
to use so called SOS1-constraints. Even if not forced, the approximation will
be tight. The approximation in Figure 9 is an outer approximation, hence
giving optimistic estimates of the function.

−6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

p = 1 − e
y

Figure 9: The concave function p(y) = 1− ey. The piecewise linear approximation is
seen in black, based on the sample points represented by the black circles.
This coarse approximation uses only 4 line segments. Using more segments,
it is possible to get arbitrarily good approximations.

Let ỹ and p̃ denote the sample points and function values respectively. The
new variables 0 ≤ λstwl ≤ 1 are defined by the first equation, since Ystw is
the given argument, and used to find the linear approximation of pkill

stw(z).

Ystw = ỹ0 +

LY∑
l=1

(ỹl − ỹl−1) · λstwl = ȳ0 +

LY∑
l=1

ȳl · λstwl (4)

Pstw = p̃0 +

LY∑
l=1

(p̃l − p̃l−1) · λstwl = p̄0 +

LY∑
l=1

p̄l · λstwl (5)

Note that the same constants ȳl and p̄l, l = 0, 1, . . . , LY can be used for
all (s, t, w) combinations since it is the same function that is approximated,
only evaluated with different arguments.
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How to choose the points ỹl where the function is sampled is itself a difficult
optimization problem, where the objective is (for example) to minimize the
maximum error. But once done, we only need the points and corresponding
function values in order to do this approximation.

5.3 Function (II)

Equation (II) defines a relationship between variable Y stv and the argument
Xstv, which is an auxiliary variable. It is straightforward to show that for
a feasible solutions, variable Xstv will be non-positive. Hence, as seen in
Figure 10, we are interested in an approximation of the concave function
y(x) = log(1− ex), x < 0.

The objective is to maximize the probability of success, which depends on
the auxiliary variable Ystw. We see from Figure 9 that a smaller value of Ystw
is preferable, hence we want to minimize the concave function y(x) which is
not a convex problem.

−8 −7 −6 −5 −4 −3 −2 −1 0
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 )

Figure 10: The concave function y(x) = log(1−ex). The piecewise linear approxima-
tion is seen in black, based on the sample points represented by the black
circles. This is an inner approximation, resulting in slightly pessimistic
function values, i.e. more negative than they should.

Once again, we wish to approximate y(x) using a piecewise linear function
(LX pieces). This time, we need to use so called SOS2-constraints and add
some extra constraints in order to force the approximation to be tight.

Xstv = x̃0 +

LX∑
l=1

(x̃l − x̃l−1) · αstvl = x̂0 +

LX∑
l=1

x̂l · αstvl (6)

Y stv = ỹ0 +

LX∑
l=1

(ỹl − ỹl−1) · αstvl = ŷ0 +

LX∑
l=1

ŷl · αstvl (7)

αstvl ≤ πstvl l ∈ LX = {1, . . . , LX}

πstv(l+1) ≤ αstvl l ∈ L−1
X = {1, . . . , LX − 1}
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Like before, x̂ and ŷ denote sample points and function values of y(x). The
new variables 0 ≤ αstvl ≤ 1 and πstvl ∈ {0, 1} are defined by the first
equation, since Xstv is the given argument, and then used to find the linear
approximation of Y stv. Again, the same constants x̂l and ŷl, l = 0, 1, . . . , LX
can be used for all (s, t, v) combinations.

5.4 Optimistic and pessimistic estimates

It is possible to construct both an optimistic estimate and a pessimistic
estimate of the objective function, depending on the combination of inner
and outer approximations of the functions (I) and (II). We use the following
terminology:

P = Function (I) I = Inner approximation
Y = Function (II) O = Outer approximation

The following combinations yield valid estimates:

PO + YI =⇒ Optimistic estimate
PI + YO =⇒ Pessimistic estimate

All these approximations can be done arbitrarily accurate, at the cost of
more line segments, i.e. more variables in the model.

5.5 A MILP model

With the general model presented in Section 4 in mind, where the only non-
linear part is the objective, we are now ready to present a mixed integer
linear model for the problem.

Using the approximation steps described in the previous section, together
with the fact that all constraints are linear, the result is a linear model which
approximates the real problem arbitrarily well. Also, using inner and outer
approximations in the suggested combinations, the linear approximation can
be either optimistic or pessimistic.

Notation, such as parameter names, are kept from Section 4, we just extend
the model with the new auxiliary parameters and variables introduced for
the linearization process. These constraints are found in the new Group V.

The full MILP model can be found on page 58.
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5.5.1 Objective function

The new objective includes the auxiliary variables Pstw, the approximated
contribution of each attack.

max
∑
s

∑
t

∑
w∈Wst

rs · Pstw [MILP ]

The objective does not involve variable zstw anymore, which is instead taken
care of by constraints (23) and (24) in the new Group V. This is a valid
reformulation since we want to maximize Pstw.

5.5.2 Group V

Constraints (1)−(22) are the same as before. The NLIP model is augmented
with Group V, where the approximation of the non-linear objective is taken
care of in constraints (24)− (27).

V

zstw ≥ Pstw ∀ s, t, w (23)

LY∑
l=1

p̄l · λstwl + p̄0 ≥ Pstw ∀ s, t, w (24a)

LY∑
l=1

ȳl · λstwl + ȳ0 = Ystw ∀ s, t, w (24b)

Vt∑
j=1

mt · Y stwj
= Ystw ∀ s, t, w (25)

LX∑
l=1

ŷl · αstvl + ŷ0 = Y stv ∀ s, t, v (26a)

LX∑
l=1

x̂l · αstvl + x̂0 = Xstv ∀ s, t, v (26b)

αstvl ≤ πstvl ∀ s, t, v, l ∈ LX (26c)

πstv(l+1) ≤ αstvl ∀ s, t, v, l ∈ L−1
X (26d)

∑
i∈S̄
i6=s

K∑
k=1

LPk
isv · ukisv + LPst = Xstv ∀ s, t, v (27)

Constraint (23) makes sure we get no contribution to the objective as soon
as the corresponding zstw is zero. Otherwise, variable Pstw is limited above
by the linear approximation.
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Finally, constraints (32) − (34) are added to Group X, which defines the
variables needed for the linearization.

Pstw, λstwl, αstvl ∈ [0, 1] ∀ s, t, v, w, l (32)

Ystw, Y stv, Xstv ≤ 0 ∀ s, t, v, w (33)

πstvl ∈ {0, 1} ∀ s, t, v, l ∈ LX (34)

5.5.3 Group VI, strengthening the model

In order for computer software to solve the mathematical models efficiently,
one often need to add redundant constraints to strengthen the model. This
means that although the extra constraints are redundant, when considering
the LP relaxation of the MILP problem, these constraints will push solutions
towards integer solutions.

Our first observation is that as soon as any zstw is zero, the corresponding
probability Pstw will also become zero. In this case, all the extra equations
that linearizes the objective are unnecessary, and we wish to speed up this
process.

In our linearization of the function y(x) = log(1 − ex), independent of the
number of line segments we wish to use, we add the extreme sample point
(x = −10, y = 0). Although this is not true strictly mathematical, y(−10)
is in practice equal to zero.

We do the following changes and additions to our model:

∑
i∈S̄
i6=s

K∑
k=1

LPk
isv · ukisv + LPst ≥ Xstv ∀ s, t, v (27)

VI

(1− zstw) ≤ λstwl ∀ s, t, w, l ∈ LY (28)

−10 · (1− zstw) ≥ Xstwj
∀ s, t, w, j ∈ Vt (29)

Constraint (27) is changed from an equality into an inequality. This is valid
since we wish to maximize the objective, and the larger Xstwj is the greater
becomes the probability Pstw. Hence, the objective makes sure that our X
variables attains the correct value. This change is necessary in order to add
constraints (28) and (29), which forces all λstwl = 1 and Xstwj = −10 as
soon as zstw is zero.
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6 Model validation

To validate the MILP model and test its efficiency, a small benchmark with
6 cases were set up and solved. The smallest test case include 2 defender
units and 2 target units, and the largest test case include 4 defender units
and 3 target units. Rewards are set to 1 for defender units and 2 for target
units. All test cases are shown in Figures 11–12 on page 32, and one unit in
the pictures correspond to 1000 meters.

In the tests, a pessimistic estimation is used, that is an inner approximation
for Function I and an outer approximation for Function II. Hence all objec-
tive values found by the model are somewhat lower than the true objective
values.

To get accurate and sound linear approximations, 15 line segments were used
for Function I and 25 line segments for Function II. The reason for using
so many segments is due to the nature of probabilities, they are bounded
between zero and one, hence in order to get trustworthy solutions one need
to use a good approximation.
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Figure 11: To the left: Test case 1 with 2 defender units and 2 target units.
To the right: Test case 2 with 3 defender units and 2 target units.
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Figure 12: To the left: Test case 3 with 4 defender units and 3 target units.
To the right: Test case 4 with 4 defender units and 3 target units.

The optimal solutions found by the MILP model are evaluated using the
true objective, and these objective values are compared with the ones from
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the MILP model. The tests were performed on a HP DL160 server with two
6-core Intel Xeon CPUs and 72 GB of RAM memory, running Linux, and
the MIP solver used were CPLEX/12.2 for 64 bit environment.

The results of the benchmark are presented in Table 1, and one can see
that the model is correct and finds optimal solutions. The MILP objective
value is correct up to the second digit, compared to the real objective value.
The number of constraints (rows), variables (columns) and binary variables
(bins) reported are taken from the CPLEX output, which is the size of the
reduced model after various presolve steps from both CPLEX and AMPL.

Table 1: Results for the evaluation of the MILP model. Number of constraints (rows)
and variables (cols), as well as number of binary variables, are stated together
with solution time and objective value. The units column state number of
defender units and target units respectively.

Case units rows cols bins objective real obj. time

1 2/2 13145 8344 2579 5.60474 5.6249 28 min

2 3/2 23571 12031 3928 6.55110 6.5854 11 h

3 3/3 32629 15024 5014 8.83264 8.8454 19 h

4 4/3 48025 18541 6240 - - -

The size of the model do increase drastically for each additional unit and the
time required for solving the model grows drastically, hence this approach
is not tractable for cases involving even as few as 5–6 units. For the largest
test instance, including 7 units, CPLEX ran out of memory (72 GB) after
20 hours. A good feasible solution was available, but the duality gap were
still as big as 2%.

Further tests were done, using less line segments for Function I and Func-
tion II, 8 and 17 respectively, at the loss of good approximation of the ob-
jective function. The number of constraints, variables and binary variables
did decrease, but without any major effect on solution times.

It is possible for AMPL to represent these linear approximations in such a
way that CPLEX will treat them explicitly as SOS constraints. It seems
reasonable that it would increase the efficiency of CPLEX, as many auxil-
iary variables can be skipped, but the result turned out to be the opposite.
The upper bound became worse, making it even tougher to close the duality
gap, hence prolonging the solution times. The explanation is probably due
to the extra constraints (28) and (29), found in Group VI, as they disap-
pear together with the auxiliary variables. These constraint strengthen the
model, and without them the LP relaxation is much weaker, hence affecting
the upper bound.
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7 Meta-Heuristics

A problem like this, with only a few natural constraints (one attack per unit
and shared resources) and a nasty non-linear objective function (non-costly
though), is well suited for meta-heuristics. Throughout this section, we base
our work on the following assumptions:

1. The number of available resources is limited, i.e. it is not possible to
use the maximum number of resources against all unit.

2. It is optimal to use all available resources.

The first assumption is reasonable, otherwise the problem is reduced to
choose between tactics 3 and 5, either assigning all resources on the same
path or split them on 3 different paths. One would still need to figure out
the optimal combination of tactics and angle of attack for each unit, so it
would still be a non-trivial problem though.

The second assumption is very reasonable and simplifies the work of defining
neighbourhoods and setting up heuristic schemes.

7.1 Neighbourhoods

Regardless of the meta-heuristic one wishes to use, we need to define a
neighbourhood for a solution z. Under the assumptions stated above, all we
need is to work with feasible attack plans z that uses all available resources.
Hence we define five neighbourhoods of an attack plan z, denoted Nk(z), in
the following ways:

N1. The angle of attack w is changed for one unit s and tactic t in the
attack plan, that is zstw → zstw̄.

N2. The tactic against one unit is changed by switching between one angle
and multiple angles, that is zstw → zst̄w̃. If necessary, the reference
angle w is adjusted. For example, instead of two resources attacking
from the same angle, they attack from different angles. Notice that
the number of resources involved in the attack is still the same though.

N3. Pick two units at random and switch their tactics and angle of attack.
For example, variables zs1t1w1 and zs2t2w2 become zs1t2w2 and zs2t1w1

instead.

N4. Pick two units at random and exchange their angle of attack. For ex-
ample, variables zs1t1w1 and zs2t2w2 become zs1t1w2 and zs2t2w1 instead.

N5. Pick two units at random, which does not use the same number of re-
sources, and change to new tactics which increase/decrease the number
of resources used respectively. For example, one unit is changed to be
attacked by two resources instead of one, while another unit is attacked
by two resources instead of three.
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By continuously changing between these neighbourhoods, all feasible solu-
tions can be reached. Notice that neighbourhood N5 is crucial, since without
it the number of resources allocated against each unit would remain fixed
to that of the initial solution throughout the search.

7.2 Simulated Annealing

One popular meta-heuristic, which is easy to implement, is Simulated An-
nealing (SA). The basic idea, which makes it a meta-heuristic and not a local
search method, is to accept solutions which are non-improving in order to
escape local optima. This is done by chance, where the probability to accept
the non-improving value is connected to the difference in objective values
between the new solution and the current one.

Also, in order to assure a local optimum, the probability of accepting worse
solutions decrease over time. This is done by parameter T, the so called tem-
perature, which decreases as the iterations goes by. A Simulated Annealing
approach is successfully used for a Weapon Target Allocation Problem in [1],
further motivating this section.

7.2.1 SA algorithm

In Algorithm 1 we describe the implemented SA heuristic to be used later
on in the Benchmark. Iteration counter t represents the outer iteration, and
at the end of this loop the temperature T is updated (decreased). Inside
each outer iteration loop, we cycle through the different neighbourhoods,
defined in the user-given NBH sequence.

For each neighbourhood, we generate 100 new solutions who are evaluated
and possibly saved as the current solution. The use of multiple neighbour-
hoods provide diversity to the search, and we also keep track of the overall
best found solution.

7.3 Post Processing

For a problem like this, it is natural to consider some sort of post processing.
Given a solution z, found by some heuristic scheme, one should definitely
try to improve it locally, i.e. perform a local search.

For this problem, where a solution z states which tactic t and angle w to be
used for each unit s, it is straightforward to test all feasible angles w ∈ Wst

for the assigned tactic t, one unit at a time, and save the best improvement
(if any). Then, if there were some improvement, one could repeat the same
process again (since one unit is now attacked from a different angle, and
further improvements might be possible) until the process converges.
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Algorithm 1 Simulated Annealing (SA)

Define Neighbourhood sequence: NBH := {5, 2, 1, 3, 4, 1, 5, 2, 1}.
Define Initial Temperature T = 0.9. Cooling factor COOL = 0.7.
Generate Initial solution z (randomly) with objective value f .
Initialize Best found solution zb = z with objective value fb = f .

1: for t = 1 . . . 8 do
2: for k = 1 . . . 9 do
3: for n = 1 . . . 100 do
4: Get new solution: zn = Nk(z) with objective value fn.
5: If fn > fb, update best found solution.
6: Calculate diff: ∆ = fn − f . Generate random number: r ∈ [0, 1].
7: if r < exp(∆/T ) then
8: f = fn
9: z = zn

10: end if
11: end for
12: end for
13: Update temperature: T = T · COOL.
14: end for

At the same time as one tries all angles, one could also test to switch between
all tactics using the same number of resources in total, hence conserving the
overall usage of resources (assumed to be at its upper limit). We present
the local search procedure in Algorithm 2.

Algorithm 2 Post Processing (PP)

Given Starting solution z0 with objective value f0.
Initialize Best found solution zb = z0 with objective value fb = f0.

1: for s ∈ S do
2: Get t̃ = Tactic currently used against unit s.
3: Find Ts := {t ∈ T : nt = nt̃}.
4: for t ∈ Ts do
5: for w ∈ Wst do
6: Set zn = z0, but with tactic t and angle w used against unit s.
7: Evaluate zn. If fn > fb, update best found solution (zb = zn).
8: end for
9: end for

10: end for

11: if fb > f0 then {Check if any improvement has been found}
12: Set z0 = zb and call the PP algorithm again.
13: end if

This has proven to be a very powerful tool, often providing good solutions
for almost any starting solution with an allocation of resources close to the
optimal one. This is crucial since the number of resources are never shifted
throughout the post processing.
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7.4 Augment Solution

Another intuitive strategy is to iteratively augment a previous solution,
adding one extra resource in each iteration. It seems plausible that the
optimal solution using, lets say, 8 resources is close to the optimal solution
for 7 resources.

Provided a solution using k resources, denoted zk, we seek a solution zk+1.
This is done by considering one unit at a time in the solution zk, adding
one resource if not K = 3 resources are already in use, and then perform-
ing a local search. The best such augmentation is saved and returned as
the new solution zk+1. The Augmented Solution procedure is described in
Algorithm 3.

As a bonus, this approach will generate a Pareto-like solution, stating the
expected outcome of the attack for a given number of resources. Such a
solution is very useful as a decision support for choosing the number of
resources to use for an attack. As will be seen in the forthcoming results, the
gain in expected outcome when augmenting an additional resource decreases
as a function of the number of resources already in use.

Algorithm 3 Augmented Solution (AS)

Given Starting solution zk, using k resources, with objective value fk.
Initialize Best found solution zb = zk with objective value fb = fk.

1: for s ∈ S do
2: Find Ms, the number of resources used against unit s in zk.
3: if Ms < K then
4: Let zk+1 = zk but add one resource against unit s.
5: Perform a Post Processing step. zPP = PP(zk+1).
6: If fPP > fb, update best found solution (zb = zPP ).
7: end if
8: end for

This procedure can be applied to any feasible solution zk using k resources
and will produce a locally optimal solution zk+1 using k+ 1 resources. It is
thus possible to find good solutions in the following manner. Initially find
a really good solution zk, which is efficient for very small k, and then use
Algorithm 3 to find zk+1. Repeat the process to find a solution zk+2, and
so on until a requested upper limit.

The algorithm performs |S| post processing searches, one for each unit. The
time needed will therefore increase with respect to the number of enemy
units. Even so, Algorithm 3 should spend less time than the Simulated
Annealing.
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8 Benchmark

In order to test the SA approach, we define a set of problems to be part of a
benchmark. In these tests we like to cover some different characteristics like
the number of defending units and targets units, as well as some different
reward settings for these two kinds of units. A coarse angle discretization
of 12 angles, as in Figure 5, is used for all problems in the benchmark.

It is also interesting to perform a sensitivity analysis with respect to the
number of available resources. Hence all problem instances are solved having
from 1 up to 30 resources available. In all, a total of 1080 problem instances
are solved.

We also test some other methods to compare with the Simulated Annealing
heuristics. All these features of the benchmark are described in more detail
in the upcoming sections.

8.1 Scenarios and Cases

A total of three different scenarios are considered, where the number and
positions of the defender units differ. Also, for each of these scenarios, four
different versions of positions and number of target units are solved. In all
cases, one unit step in the pictures corresponds to 1 km.

8.1.1 Scenario 1

The first scenario includes two defender units positioned 10 km apart, each
with a defensive radius of 10 km. In the different cases, we consider 5, 7, 8
and 14 target units respectively, positioned in a fashion similar to Figure 13.
The distance between the target units is 300-500 meters.

8.1.2 Scenario 2

The second scenario includes five defender units positioned in an x-shaped
formation as in Figure 14. In the different cases, we consider 5, 8, 12 and 16
target units respectively. The distance between the target units is 300-500
meters.

8.1.3 Scenario 3

The third scenario includes four defender units positioned as in Figure 15.
In the different cases, we consider 5, 8, 12 and 16 target units respectively,
and like before the distance between them is 300-500 meters.
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Figure 13: Test case 114. 2 defender units and 14 target units.
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Figure 14: Test case 216. 5 defender units and 16 target units.
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Figure 15: Test case 316. 4 defender units and 16 target units.

8.2 Rewards

To make sure our model responds to the reward of each unit, we define three
different reward settings. As seen in Table 2, the first setting only premiere
target units. It might still be optimal to attack the defender units though,
in order to reduce their defensive capabilities and thus increase the overall
profit.

Table 2: The different reward settings.

Reward

Setting Defender units Target units

1 0 1

2 1 2

3 1 5

In the second setting, defender units are now also considered valuable but
only second to the target units. The third setting is just a different version
where the two groups of units are differentiated even more.

8.3 Tests

Here follows a short description of all tests performed in the benchmark.
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8.3.1 Optimistic and pessimistic model

The Optimistic and Pessimistic models presented in Sections 2.5 and 2.6
are easily solved using some linear IP solver, in our case CPLEX. These
solutions provide an upper and lower bound on the objective value and are
found in fractions of a second. In order to improve the lower bound, the
pessimistic solution provided by the solver is simply evaluated using the real
objective. This simple action improves the bound significantly and is also
done instantly.

Moreover, if a local search is performed from the pessimistic solution, an
even better (at least as good) solution is found. This comes with the cost of
one local search, which might take up to half a minute depending on the size
of the instance and depending on how many improvements that are done.
The Post Processing (PP) procedure described in Algorithm 2 is used. In
all, this is fairly inexpensive and improves the bound even more in most
cases.

8.3.2 Random solutions with and without local search

These experiments generate feasible solutions in a random fashion. Each
solution is evaluated and the best found solution is returned. In the first
test, 5000 solutions are generated and evaluated. This is fairly inexpensive
timewise, which can be seen in the results later on.

The second test generates 100 feasible solutions and a local search (Post
processing) is performed from each solution. Compared to first test, this is
a quite expensive approach. The time used to perform 100 local searches
widely exceeds the time for generating and evaluating 5000 feasible solutions,
but superior solutions are expected.

8.3.3 Simulated Annealing

The SA heuristic has already been described in detail in Section 7.2 and
Algorithm 1. This is a fairly expensive method, but should generate the
best quality solutions of all methods.

8.3.4 Augmented Solution

Using the locally improved pessimistic solution for k = 2 resources, this
test simply applies Algorithm 3 to augment one resource at a time, finally
solving the problem with the maximum number of resources. The procedure
should generate near-optimal solutions to the cost of a Post processing step
for each new resource.
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9 Results

In this section, we present some results and conclusions for the different
approaches discussed in Section 8. A limited but representative number of
graphs are shown.

9.1 Case 105

To analyse the results of the benchmark, we take a closer look at Case 105
where we have 2 defender units and 5 target units, positioned as in Figure 16.
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Figure 16: Test case 105. 2 defender units and 5 target units.

In the upcoming sections, we present and analyze the result for the different
reward settings.

9.1.1 A typical solution

In Figure 17 we see a graphical representation of the best found solution for
Case 105 with reward setting 3 and 14 resources available. Both defender
units, numbers 1 and 2, are attacked by tactic 5 which means 3 resources
from different directions. Target units 5 and 6 are attacked using tactic 4,
were 2 resources attack from opposite directions. Target unit 3 is attacked
using tactic 2, i.e. 2 resources from the same direction, indicated by the
dashed line. Finally, target units 4 and 7 are attacked by a single resource
respectively.

The solutions are not always intuitive at first glance. For example, one of
the attack paths toward unit 1 intersects the defensive area of unit 2 for a
long distance, and vice versa. Is it not better to attack with all 3 resources
from the same angle and avoid the defense of the other defender unit?

The explanation is logical. Consider the resource attacking defender unit 1.
By traveling inside the defensive area of defender unit 2, some of the defen-
sive capabilities of unit 2 will be allocated against this resource. As one of
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three resources taking part of the attack against unit 1, the total expected
probability of success will be quite high even though this specific resource
face great danger. In this way, the defensive capabilities available for unit 1
to use against other resources are reduced, and the overall objective will
gain from it.
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Figure 17: Test case 105. 2 defender units and 5 target units. The solution requires
14 resources, who are used in different ways, according to the tactics used.

Figure 18 shows a graphical representation of the best found solution for
the same case but with 17 resources available. The objective is improved
somewhat, but not much.

−5 0 5 10 15 20

−5

0

5

10

15

Expected Reward:  26.988954  out of  27    [99.9591%]

Resources:  17  out of  17

1 2
3

4 5

6 7

Figure 18: Test case 105. 2 defender units and 5 target units. The solution requires
17 resources, who are used in different ways, according to the tactics used.
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9.1.2 Reward setting 1

The use of reward setting 1, i.e. reward 0 for all defender units and reward 1
for all target units, render the result seen in Figure 19. The x-axis represents
the number of resources available and the y-axis the corresponding objective
values.

The blue lines represent the upper and lower bounds found by CPLEX,
where the pessimistic solutions have been evaluated using the real objective
function. The green dots represent the pessimistic value given by CPLEX.

The black dots, found in between the blue lines, are the locally improved
pessimistic solutions. We can see that for most of the instances, this im-
provement is substantial. The black line with crosses indicate the best found
solutions from the SA heuristic.

The red line with dots show the result of the Augmented Solution approach.
The solutions are in general the best ones found for all instances, sometimes
coinciding with the Simulated Annealing solutions. The magenta colored
lines show the range for the 100 local searches performed, together with
a cross indicating the best objective of the 5000 solution generated in the
other test.

9.1.3 Reward settings 2 and 3

Similar results compared with reward setting 1. The same behaviour can be
observed in Figure 20 and Figure 21 respectively. Obviously, the objective
value itself differs due to the different reward settings, but the overall trend
is the same.

9.1.4 Time Case 105

In Figure 22, we find the solution times in minutes for the different tests.
The results are the mean over the three different reward settings, as they
were all very similar.

The time needed for CPLEX to find all optimistic and pessimistic solutions
are less than a second, even though each problem is solved 30 times. The
local search for each pessimistic solution do take some time, but varies from
a few seconds as for this case up to at most 30 seconds for big instances
where 12-16 units are involved. This is found in Figure 22 as the small red
bars, not even visible for some of the instances.

To generate and evaluate 5000 feasible solutions take about 5-15 seconds,
seen as the blue bars. Even though the solution time is relatively quick,
the results are not very promising as seen in Figures 19-21. For some of
the instances (5,10,15 and 20 resources), 100 feasible solutions have been
generated and evaluated, followed by a local search. Solution times are
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Figure 19: Test case 105. 2 defender units and 5 target units. To get a better view,
the lower picture provides a zoom of the black box from the upper picture,
the area of interest.
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Figure 20: Test case 105. 2 defender units and 5 target units.
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Figure 21: Test case 105. 2 defender units and 5 target units.
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Figure 22: Test case 105. 2 defender units and 5 target units.

represented by the yellow bars, and as seen, this approach is quite time
consuming.

The pink (magenta) bars represent solution times for the SA heuristic, and
are around 1.5 minutes. Although considerably more expensive than the first
two approaches, SA provides in general very good solutions. The difference
in objective value is sometimes significant compared with the other methods,
and the additional time might be well spent. It is also possible to stop the
SA heuristic at any time, opening up for the alternative of running it as long
as time permits.

Finally, the green bars show the solution time for the Augmented Solution
algorithm which provides the best solutions. Since this method builds a
solution recursively, the solution times are accumulated over the number of
resources. So even though each step is time efficient, the total time to find a
solution for many resources, say R, do get expensive, but at the same time
all solutions using up to R resources are generated.

All implementations are done in MATLAB at the moment. If implemented
in a more efficient language, the computation times would most certainly
decrease significantly.

9.2 Remarks Case 105

The behaviour is very similar for the different reward settings. The upper
and lower bounds found by CPLEX are not extremely tight for 1-15 re-
sources, but improves after the local search. For this small case, involving
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a total of 7 units, using more than 15 resources is not very interesting. As
seen in the graphs, the optimistic and pessimistic bounds are tight.

For larger instances, with 10-20 units involved, the situation is somewhat
different. We do suspect that the lower bound is near optimal for up to
10 resources, and that the strength of the upper bound improves with an
increasing number of resources. For instances where 10-20 resources are
available, none of the bounds seems to be tight. This can be seen in the
results for Case 212, found in the Appendix on page 80.

The random generation of 5000 feasible solutions is not very successful,
most of the time far worse than the locally improved pessimistic solution.
The best found solutions of 100 local searches are on the other hand quite
impressive, ranging from comparable with the lower bound up to the overall
best found solution, even better than the solution provided by Simulated
Annealing.

The Simulated Annealing algorithm performs very well, and provide so-
lutions comparable with the Augmented Solution approach, but requires
comparable long time for moderate number of resources. The Augmented
Solution approach do find the best found solutions most of the time, only
beaten by the SA method on single occasions, but requires even more time
than the SA algorithm when considering many resources.

9.3 Summary of Benchmark Results

The analysis of Case 105 is representative for all scenarios and cases. To
compare results for the 12 different scenarios, the objective values are nor-
malized with respect to the optimistic value found for each instance. The
mean objective for each method is then presented in Figure 23, and also in
Table 3 for some specific number of resources.

Table 3: Mean objective values for each method. Best values are boldfaced and second
best values are emphasized.

Resources

Method 5 10 15 20 25 30

Opt. CPLEX 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pess. Exact 0.6702 0.7691 0.8399 0.8894 0.9209 0.9463

Pess. Post 0.6893 0.8300 0.9023 0.9522 0.9737 0.9834

Sim. Ann. 0.6845 0.8545 0.9369 0.9840 0.9918 0.9940

Aug. Sol. 0.6999 0.8599 0.9382 0.9852 0.9941 0.9988

Stat. Light 0.6185 0.7786 0.8771 0.9472 0.9506 0.9696

Stat. Heavy 0.6793 0.8514 0.9338 0.9824 0.9882 0.9926
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Figure 23: Mean of normalized objective values for all methods.

The Augmented Solution approach is the most stable of all solution methods,
providing top quality solutions for all different scenarios and reward settings.
The Simulated Annealing method is also very successful, with a clear second
place after the Augmented Solution approach.

The random generation of a large number of feasible solutions is not success-
ful at all, even beaten by the locally improved pessimistic solutions when
using few resources. The 100 local search approach, Heavy Statistic, do
provide excellent results but is very time consuming. This approach is 100%
parallelizable though, so if computer power is no issue Heavy Statistic is a
good and straightforward alternative.

Because of the long calculation times required for a single run of the SA
method, it is only competitive with the Augmented Solution approach when
seeking a single solution for one specific number of resources, which also
needs to be quite large. Otherwise, the Augmented Solution approach pro-
vides both better calculation times and solution quality, with the extra fea-
ture of providing a whole set of solutions. In all, the Augmented Solution is
the clear winner.

For a comprehensive list of results, we refer to Section 12 on page 61, found
in the Appendix.

10 Conclusions and Future Work

In this paper, we have introduced and defined a mission planning problem.
The mathematical model of the problem is presented, and the complex ob-
jective function is analyzed in detail. This results in a generic model, later
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used to derive optimistic and pessimistic models. Such models are an im-
portant tool since they provide upper and lower bounds on the objective
value, hence limiting the uncertainty of the quality of solutions.

However, in order to solve real life problem sizes, it is necessary to use
heuristic methods. We have proposed a Simulated Annealing heuristic and
an Augmented Solution method to solve this difficult problem. The methods
were tested on a benchmark of problems, along with some other methods,
and the results are very promising.

Solution times are quite slow for the SA algorithm, but a more professional
implementation of the heuristic will surely improve them substantially. The
Augmented Solution method has good solution times as it is, but they can
surely be improved as well. All methods are generic and can handle different
objective functions. It is actually sufficient to provide a black-box function to
call whenever the objective needs to be evaluated. Hence, if the assumptions
in Section 3 are inadequate, or needs to be modified in any way, the given
framework will still be applicable.

Future Work

Consequently, this paper has focused on the development of a planning sys-
tem only considering target scene parameters such as unit location and de-
fense system description, and how they react upon attack. Resource perfor-
mance is certainly included in the analysis but just in the sense of a static
set up of effect-on-target as a function of tactics, and the ability to survive
in a surface-to-air defense system environment.

This approach is carefully chosen to comply with future command and con-
trol doctrines which promote a separation of effect planning and resource
allocation planning.

To extend the mission scope we can include planning aspects of the platform.
Route planning can be conducted in a flexible way with its own objectives to
conclude the overall mission success. Obvious aspects are minimizing radar
cross section exposure during route phase, and minimize time to target, i.e.
explore hiding possibilities or by clever surveillance tactics during the cruise
phase.

Also, since there is a strong separation, firing platforms must not be given in
advance, instead maximizing the effect of the target area can be the driver
to find the best platforms from a larger set.

Based on this fact, future work could address at least two obvious scenarios:

- The first case is when the target scene is known and there are a pre-
defined number of platforms where route planning is included in the
overall mission.
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- A second case consider when several platforms are available. In this
case we must allocate good firing units from a set of platforms but also
decide firing position and route planning.

An obvious continuation from our work within this paper, is to investigate
the coupling between route and effect planning. If this is solved properly a
large step is taken to control and comprise vital aspects of ground attack
planning.
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Appendix

The appendix consists of two parts. In the first section, the full NLIP and
MILP mathematical models are given, and in the second part a comprehen-
sive collection of benchmark results are presented.

11 Mathematical Models

In this section, we introduce the full NLIP and MILP mathematical models.

It should be stated that if one aims at solving the problem using some
meta-heuristic, it suffices to consider constraints (1) and (2), i.e. the generic
problem described on page 12. These are the only real constraints of the
problem, all the rest are used to model the behaviour of the units with
defensive capabilities and are uniquely defined for a given attack plan z.

11.1 The Non-Linear Integer Programming Model

For the general model presented here we assume limiting values for both
parameter Fi and parameter Gi. Although, since the parameters Mi, Gi,
Ci and Fi are known in advance, it is possible to check whether Mi ≤ Gi or
Ci ≤ Fi, or both, for each unit i ∈ S̄. If so, many constraints are redundant
and some variables are unnecessary, and it is possible to reformulate some
constraints in order to avoid extra work.

All constraints are linear, it is only the nasty objective which makes the
problem extremely non-linear. Constraints (1) and (2), found already in
the generic model, make sure we use no more resources than available and
that each unit s is attacked at most once. All other constraints are divided
into five groups, and a thorough description of each group can be found in
Section 4.2.

11.2 The Mixed-Integer Linear Programming Model

Using the linear approximations derived in Section 5, the nasty objective is
reformulated and a Mixed Integer Linear Programming (MILP) problem is
presented. All constraints from the NILP model is kept, but the objective
function is reformulated and additional constraints and variables for the
piecewise linear approximations are added.
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11.3 Notation

Parameters

given

R total resource available, the amount of resources.

rs reward (value/price) of unit s.

nt # resources used by tactic t.

Vt # angles used by tactic t.

mt # resources/angle used by tactic t.

Ci number of defensive channels for unit i ∈ S̄.

Fi maximum number of defensive channels against a path.

Gi maximum number of paths that unit i can engage.

ρi radius of defense for unit i.

dit # defensive channels used by unit i when attacked by tactic t.

pst probability that a resource survives the defense of unit s when

part of tactic t.

LY number of linear pieces in the approximation of Function (I).

LX number of linear pieces in the approximation of Function (II).

pre-processed

K maximum number of resources/angle, i.e. max{mt, t = 1, . . . |T |}.
Mi maximum number of engagement paths that passes by unit i.

Avtw 1 if path (s, v) is active when the combination of tactic t

and angle w is used against some unit s, where w ∈ Wst.

disv distance from unit i to center point of path (s, v) inside ρi.

δisv 1 if disv < ρi. Indicates which paths unit i might engage.

Used to define set ∆i.

risv ranking of paths (s, v) passing by each unit i, where δisv = 1.

The shorter distance disv, the closer to the unit and lower ranking.

pik probability pst, defined only for units i ∈ S̄, where Vt = 1

and mt = k, for k = 1, . . . ,K.

pkisv probability of surviving the defense of unit i for a resource

on path (s, v) who is part of an attack t where mt = k.

Definitions

engagement path (s, v) := the line emanating from unit s at angle v.

attack plan z := a collection of z-variables, one for each unit s,

which defines a tactic t and angle w.
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Sets

given

S, T , V set of units S, tactics T and angle discretization V.

S̄ set of units with defensive capabilities. Subset of S.

pre-processed

Wst set of feasible angles w for tactic t against unit s.

∆i set of paths (s, v) that passes by unit i ∈ S̄.

Ri set of triplets (i, sv, s̄v̄) where risv < ris̄v̄.

linearization

LX the set {1, . . . , LX}.
L−1
X the set {1, . . . , LX − 1}.

Variables

integer

Bi number of active engagement paths (s, v) passing by unit i.

Di residual defensive capacity for unit i.

Si slack variable for the residual defense quota for unit i.

Ni help variable, Ni = min{Bi, Gi}.
uisv number of defensive channels that unit i will use against

resources on path (s, v).

ukisv equal to uisv if nsvk = 1, zero otherwise.

Nsv number of resources on path (s, v).

binary

zstw 1 if unit s is attacked using tactic t and angle w, where w ∈ Wst.

xsv 1 if any resource travels toward unit s on path (s, v).

nsvk 1 if Nsv = k, zero otherwise.

yi 1 if Bi ≥ Di for each unit i.

qi 1 if Di ≤ Fi ·min{Gi, Bi} for each unit i.

zi 1 if Bi ≥ Gi for each unit i.

Uisv 1 if unit i will use any defensive channel against path (s, v).

linearization

Pstw linearized approximation of pkill
stw(z).

Ystw input argument to the approximation of Function (I).

Y stv function value of the approximation of Function (II).

Xstv input argument to the approximation of Function (II).

λstwl weight of each linear piece for Function (I).

αstvl weight of each linear piece for Function (II).

πstvl binary variable used to force certain αstvl to zero or one .
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The Non-Linear Integer Programming Model

max
∑
s∈S

[∑
t∈T

∑
w∈Wst

pkill
stw(z) · zstw

]
· rs [NLIP ]

s.t.
∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (1)

∑
t

∑
w∈Wst

zstw ≤ 1 ∀ s ∈ S (2)

I ∑
t

∑
w∈Wst

Avtw · zstw = xsv ∀ s, v (3)

Ci −
∑
t

∑
w∈Wit

dit · zitw = Di ∀ i ∈ S̄ (4)

∑
(s,v)∈∆i

xsv = Bi ∀ i ∈ S̄ (5)

∑
s

∑
v

uisv + Si = Di ∀ i ∈ S̄ (6)

II

Di − Fi ·Ni + (FiMi) · qi ≥ Si ∀ i ∈ S̄ (7a)

Di − Fi ·Ni ≤ Si ∀ i ∈ S̄ (7b)

Ci · (1− qi) ≥ Si ∀ i ∈ S̄ (7c)

Fi ·Ni + Ci · (1− qi) ≥ Di ∀ i ∈ S̄ (8a)

Di − 1 + (FiMi + 1) · qi ≥ Fi ·Ni ∀ i ∈ S̄ (8b)

Di +Mi · yi ≥ Bi ∀ i ∈ S̄ (9a)

Bi + Ci · (1− yi) ≥ Di ∀ i ∈ S̄ (9b)

Gi ≥ Ni ∀ i ∈ S̄ (10a)

Bi ≥ Ni ∀ i ∈ S̄ (10b)

Gi −Mi · (1− zi) ≤ Ni ∀ i ∈ S̄ (10c)

Bi −Mi · zi ≤ Ni ∀ i ∈ S̄ (10d)
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III

Fi · Uisv ≥ uisv ∀ i, (s, v) ∈ ∆i (11a)

Fi · xsv ≥ uisv ∀ i, (s, v) ∈ ∆i (11b)

1 + (Fi − 1) · (1 + zi − yi) ≥ uisv ∀ i, (s, v) ∈ ∆i (12)

uisv + Fi · (1− xsv) ≥ uis̄v̄ ∀ i, (sv, s̄v̄) ∈ Ri (13a)

Uisv + (1− xsv) ≥ Uis̄v̄ ∀ i, (sv, s̄v̄) ∈ Ri (13b)

uis̄v̄ + 1 + (Fi − 1) · (1− Uis̄v̄) ≥ uisv ∀ i, (sv, s̄v̄) ∈ Ri (14)

Fi · (Uisv − qi) ≤ uisv ∀ i, (s, v) ∈ ∆i (15)

Uisv ≤ xsv ∀ i, (s, v) ∈ ∆i (16)∑
(s,v)∈∆i

Uisv = Ni ∀ i ∈ S̄ (17)

IV ∑
t

∑
w∈Wst

Avtw ·mt · zstw = Nsv ∀ s ∈ S, v ∈ V (18)

K∑
k=1

k · nsvk = Nsv ∀ s ∈ S, v ∈ V (19)

K∑
k=1

nsvk ≤ 1 ∀ s ∈ S, v ∈ V (20)

K∑
k=1

ukisv = uisv ∀ i, (s, v) ∈ ∆i (21)

Fi · nsvk ≥ ukisv ∀ i, (s, v) ∈ ∆i

k = 1, . . . ,K (22)

X

Bi, Di, Ni, uisv, u
k
isv, Nsv, Si ∈ Z+ ∀ i, s, v, k (30)

zstw, xsv, yi, qi, zi, nsvk, Uisv ∈ {0, 1} ∀ i, s, t, v, w, k (31)
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The Mixed Integer Linear Programming Model

max
∑
s

∑
t

∑
w∈Wst

rs · Pstw [MILP ]

s.t.
∑
s

∑
t

∑
w∈Wst

nt · zstw ≤ R (1)

∑
t

∑
w∈Wst

zstw ≤ 1 ∀ s ∈ S (2)

I ∑
t

∑
w∈Wst

Avtw · zstw = xsv ∀ s, v (3)

Ci −
∑
t

∑
w∈Wit

dit · zitw = Di ∀ i ∈ S̄ (4)

∑
(s,v)∈∆i

xsv = Bi ∀ i ∈ S̄ (5)

∑
s

∑
v

uisv + Si = Di ∀ i ∈ S̄ (6)

II

Di − Fi ·Ni + (FiMi) · qi ≥ Si ∀ i ∈ S̄ (7a)

Di − Fi ·Ni ≤ Si ∀ i ∈ S̄ (7b)

Ci · (1− qi) ≥ Si ∀ i ∈ S̄ (7c)

Fi ·Ni + Ci · (1− qi) ≥ Di ∀ i ∈ S̄ (8a)

Di − 1 + (FiMi + 1) · qi ≥ Fi ·Ni ∀ i ∈ S̄ (8b)

Di +Mi · yi ≥ Bi ∀ i ∈ S̄ (9a)

Bi + Ci · (1− yi) ≥ Di ∀ i ∈ S̄ (9b)

Gi ≥ Ni ∀ i ∈ S̄ (10a)

Bi ≥ Ni ∀ i ∈ S̄ (10b)

Gi −Mi · (1− zi) ≤ Ni ∀ i ∈ S̄ (10c)

Bi −Mi · zi ≤ Ni ∀ i ∈ S̄ (10d)
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III

Fi · Uisv ≥ uisv ∀ i, (s, v) ∈ ∆i (11a)

Fi · xsv ≥ uisv ∀ i, (s, v) ∈ ∆i (11b)

1 + (Fi − 1) · (1 + zi − yi) ≥ uisv ∀ i, (s, v) ∈ ∆i (12)

uisv + Fi · (1− xsv) ≥ uis̄v̄ ∀ risv < ris̄v̄ (13a)

Uisv + (1− xsv) ≥ Uis̄v̄ ∀ risv < ris̄v̄ (13b)

uis̄v̄ + 1 + (Fi − 1) · (1− Uis̄v̄) ≥ uisv ∀ risv < ris̄v̄ (14)

Fi · (Uisv − qi) ≤ uisv ∀ i, (s, v) ∈ ∆i (15)

Uisv ≤ xsv ∀ i, (s, v) ∈ ∆i (16)∑
(s,v)∈∆i

Uisv = Ni ∀ i ∈ S̄ (17)

IV ∑
t

∑
w∈Wst

Avtw ·mt · zstw = Nsv ∀ s ∈ S, v ∈ V (18)

K∑
k=1

k · nsvk = Nsv ∀ s ∈ S, v ∈ V (19)

K∑
k=1

nsvk ≤ 1 ∀ s ∈ S, v ∈ V (20)

K∑
k=1

ukisv = uisv ∀ i, (s, v) ∈ ∆i (21)

Fi · nsvk ≥ ukisv ∀ i, (s, v) ∈ ∆i

k = 1, . . . ,K (22)
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V

zstw ≥ Pstw ∀ s, t, w (23)

LY∑
l=1

p̄l · λstwl + p̄0 ≥ Pstw ∀ s, t, w (24a)

LY∑
l=1

ȳl · λstwl + ȳ0 = Ystw ∀ s, t, w (24b)

Vt∑
j=1

mt · Y stwj
= Ystw ∀ s, t, w (25)

LX∑
l=1

ŷl · αstvl + ŷ0 = Y stv ∀ s, t, v (26a)

LX∑
l=1

x̂l · αstvl + x̂0 = Xstv ∀ s, t, v (26b)

αstvl ≤ πstvl ∀ s, t, v, l ∈ LX (26c)

πstv(l+1) ≤ αstvl ∀ s, t, v, l ∈ L−1
X (26d)

∑
i∈S̄
i 6=s

K∑
k=1

LPk
isv · ukisv + LPst ≥ Xstv ∀ s, t, v (27)

VI

(1− zstw) ≤ λstwl ∀ s, t, w, l ∈ LY (28)

−10 · (1− zstw) ≥ Xstwj ∀ s, t, w, j ∈ Vt (29)

X

Bi, Di, Ni, uisv, u
k
isv, Nsv, Si ∈ N+ ∀ i, s, v, k ∈ K (30)

zstw, xsv, yi, qi, zi, nsvk, Uisv ∈ {0, 1} ∀ i, s, t, v, w, k (31)

Pstw, λstwl, αstvl ∈ [0, 1] ∀ s, t, v, w, l (32)

Ystw, Y stv, Xstv ≤ 0 ∀ s, t, v, w (33)

πstvl ∈ {0, 1} ∀ s, t, v, l ∈ LX (34)
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12 Comprehensive Results

Here follows a complete set of graphs for all Scenarios and Cases considered
in the benchmark. In all result graphs, the x-axis represents the number
of resources available, while the y-axis correspond to objective values or
solution times in minutes.

Defender Unit Settings

For this benchmark, all defender units have identical defensive capabilities.
They have a 10 km defensive radius in which they can defend themselves,
and other units, using one or more of their 8 defensive channels. Table 4
defines the probability of success for each resource part of the considered
tactics, along with the number of defensive channels occupied.

Table 4: Full characteristics of all considered tactics.

Defenders Targets Tactics

t pit dit pst nt Vt mt

1 0.700 2 0.999 1 1 1

2 0.736 3 0.999 2 1 2

3 0.753 4 0.999 3 1 3

4 0.776 3 0.999 2 2 1

5 0.830 6 0.999 3 3 1

At most Gi = 3 number of active paths might be engaged and no more than
Fi = 4 defensive channels can be used against a single engagement path.
Further, the defensive parameters θik = 0.7 and βik = 2 for all units i ∈ S̄
and k = 1, . . . ,K.

Objective value graphs

Starting with result graphs for the objective, the upper and lower blue lines
represent the optimistic and pessimistic bounds found by CPLEX, where the
pessimistic solutions have been evaluated using the real objective function.
The green dots represent the pessimistic value given by CPLEX.

The black dots, found in between the blue lines, are the local search improved
solutions. We can see that for most of the instances, this improvement is
substantial. The black line with crosses indicate the best found solutions
from the SA heuristic. The red line with dots show the result of the Aug-
mented Solution approach.

The magenta colored lines show the range for the 100 local searches per-
formed, together with a cross indicating the best objective of the 5000 solu-
tion generated in the other test.
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Solution Time graphs

Solution times for CPLEX to find all the optimistic and pessimistic solutions
are instant. The local search for each pessimistic solution do take some time,
and the solution times are represented by the small red bars, not even visible
for some of the instances.

The blue bars represent the time needed to generate and evaluate 5000 fea-
sible solutions. Solution times for generation and evaluation of 100 feasible
solutions, followed by a local search, are represented by the yellow bars.
Since this is extremely time consuming for most instances, they are only
found for 5, 10, 15 and so on up to 30 resources for the biggest scenarios.

The magenta bars represent solution times for the SA heuristic. Finally, the
green bars show the solution time for the Augmented Solution algorithm.

The MILP formulation

The MILP model, presented in the previous section, is not very helpful in
practice. Even for a small sized problem including 5 units, it takes CPLEX
considerable time (hours) to solve the model to optimality. Although good
solutions are found quickly, the duality gap is closed slowly, and memory
becomes an issue as well. Even if one had several hours or days at hand,
the memory requirements would be substantial.

In order for the linearization to be accurate enough to be helpful, at least 10
to 15 line segments are needed for each of the approximations. This yields
a lot of extra variables to the model, where some of them are binary, which
introduces even more branching possibilities than before.

It would be interesting to tailor a restricted model, for situations where there
are few resources compared to the number of units with positive reward. For
such cases, it is most probable that only tactic 1 will be used in the optimal
solution. And even if this is not optimal, such a model still provides valid
pessimistic solutions.

Scenarios

A total of three different scenarios are considered, where the number and
positions of the defender units differ. Also, for each of these scenarios, four
different versions of positions and number of target units are solved.

Each of these 12 cases are solved for many different number of resources,
ranging from 1 to 30 available resources. The distance between the target
units is between 300-500 meters.
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Scenario 1

The first scenario includes two defender units positioned 10 km apart, each
with a defensive radius of 10 km. One unit in the picture corresponds
to 1 km. In the different cases, we consider 5, 7, 8 and 14 target units
respectively.
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Case 107:   2 Defender units  and  7 Target units
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Case 108:   2 Defender units  and  8 Target units
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Case 114:   2 Defender units  and  14 Target units

Figure 24: Scenario 1 and the 4 different cases. The top left figure presents Case 105
with 5 target units, represented by the blue dots, followed by Case 107 to
the right. The bottom left figure is Case 108 and to the right Case 114.
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Scenario 2

The second scenario includes five defender units positioned in an x-shaped
formation, each with a defensive radius of 10 km. One unit in the picture
corresponds to 1 km. In the different cases, we consider 5, 8, 12 and 16
target units respectively.
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Figure 25: Scenario 2 and the 4 different cases. The top left figure presents Case 205
with 5 target units, represented by the blue dots, followed by Case 208 to
the right. The bottom left figure is Case 212 and to the right Case 216.
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Scenario 3

The third scenario includes four defender units, each with a defensive radius
of 10 km. One unit in the picture corresponds to 1 km. In the different
cases, we consider 5, 8, 12 and 16 target units respectively.
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Figure 26: Scenario 3 and the 4 different cases. The top left figure presents Case 305
with 5 target units, represented by the blue dots, followed by Case 308 to
the right. The bottom left figure is Case 312 and to the right Case 316.
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12.1 Case 105
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Figure 27: Test case 105. 2 defenders and 5 targets.
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Figure 28: Test case 105. 2 defenders and 5 targets.
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Figure 29: Test case 105. 2 defenders and 5 targets.
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Figure 30: Test case 105. 2 defenders and 5 targets.

67



12.2 Case 107
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Figure 31: Test case 107. 2 defenders and 7 targets.
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Figure 32: Test case 107. 2 defenders and 7 targets.
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Figure 33: Test case 107. 2 defenders and 7 targets.
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Figure 34: Test case 107. 2 defenders and 7 targets.
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12.3 Case 108
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Figure 35: Test case 108. 2 defenders and 8 targets.
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Figure 36: Test case 108. 2 defenders and 8 targets.
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Figure 37: Test case 108. 2 defenders and 8 targets.
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Figure 38: Test case 108. 2 defenders and 8 targets.
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12.4 Case 114
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Figure 39: Test case 114. 2 defenders and 14 targets.
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Figure 40: Test case 114. 2 defenders and 14 targets.
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Figure 41: Test case 114. 2 defenders and 14 targets.
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Figure 42: Test case 114. 2 defenders and 14 targets.
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12.5 Scenario 1, Solution Times

12.5.1 Time Case 105
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Figure 43: Test case 105. 2 defenders and 5 targets.
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Figure 44: Test case 107. 2 defenders and 7 targets.

74



12.5.3 Time Case 108
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Figure 45: Test case 108. 2 defenders and 8 targets.
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Figure 46: Test case 114. 2 defenders and 14 targets.
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12.6 Case 205
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Figure 47: Test case 205. 5 defenders and 5 targets.
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Figure 48: Test case 205. 5 defenders and 5 targets.
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Figure 49: Test case 205. 5 defenders and 5 targets.
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Figure 50: Test case 205. 5 defenders and 5 targets.
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12.7 Case 208
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Figure 51: Test case 208. 5 defenders and 8 targets.
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Figure 52: Test case 208. 5 defenders and 8 targets.
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Figure 53: Test case 208. 5 defenders and 8 targets.
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Figure 54: Test case 208. 5 defenders and 8 targets.
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12.8 Case 212
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Figure 55: Test case 212. 5 defenders and 12 targets.
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Figure 56: Test case 212. 5 defenders and 12 targets.
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Figure 57: Test case 212. 5 defenders and 12 targets.
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Figure 58: Test case 212. 5 defenders and 12 targets.
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12.9 Case 216
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Figure 59: Test case 216. 5 defenders and 16 targets.
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Figure 60: Test case 216. 5 defenders and 16 targets.
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Figure 61: Test case 216. 5 defenders and 16 targets.
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Figure 62: Test case 216. 5 defenders and 16 targets.
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12.10 Scenario 2, Solution Times

12.10.1 Time Case 205
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Figure 63: Test case 205. 5 defenders and 5 targets.

12.10.2 Time Case 208
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Figure 64: Test case 208. 5 defenders and 8 targets.
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12.10.3 Time Case 212
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Figure 65: Test case 212. 5 defenders and 12 targets.
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Figure 66: Test case 216. 5 defenders and 16 targets.
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12.11 Case 305
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Figure 67: Test case 305. 4 defenders and 5 targets.
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Figure 68: Test case 305. 4 defenders and 5 targets.
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Figure 69: Test case 305. 4 defenders and 5 targets.

12.11.3 Reward setting 3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Resources

E
x

p
e

c
te

d
 R

e
w

a
rd

Case 305:   4 Defender units (r=1),  5 Target units (r=5)

 

 

Optimistic CPLEX

Pessimistic CPLEX

Pessimistic Exact

Pessimistic Post

Simulated Annealing

Augmented Solution

Statistic Light Maximum

Statistic Heavy

Statistic Heavy Median

Figure 70: Test case 305. 4 defenders and 5 targets.
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12.12 Case 308
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Figure 71: Test case 308. 4 defenders and 8 targets.
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Figure 72: Test case 308. 4 defenders and 8 targets.
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Figure 73: Test case 308. 4 defenders and 8 targets.
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Figure 74: Test case 308. 4 defenders and 8 targets.
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12.13 Case 312
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Figure 75: Test case 312. 4 defenders and 12 targets.
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Figure 76: Test case 312. 4 defenders and 12 targets.
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12.13.2 Reward setting 2
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Case 312:   4 Defender units (r=1),  12 Target units (r=2)
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Figure 77: Test case 312. 4 defenders and 12 targets.

12.13.3 Reward setting 3
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Case 312:   4 Defender units (r=1),  12 Target units (r=5)
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Figure 78: Test case 312. 4 defenders and 12 targets.
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12.14 Case 316
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Figure 79: Test case 316. 4 defenders and 16 targets.
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Case 316:   4 Defender units (r=0),  16 Target units (r=1)
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Figure 80: Test case 316. 4 defenders and 16 targets.
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12.14.2 Reward setting 2
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Case 316:   4 Defender units (r=1),  16 Target units (r=2)
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Figure 81: Test case 316. 4 defenders and 16 targets.
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Case 316:   4 Defender units (r=1),  16 Target units (r=5)
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Figure 82: Test case 316. 4 defenders and 16 targets.
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12.15 Scenario 3, Solution Times

12.15.1 Time Case 305
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Case 305:   4 Defender units  and  5 Target units
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Figure 83: Test case 305. 4 defenders and 5 targets.

12.15.2 Time Case 308
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Case 308:   4 Defender units  and  8 Target units
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Figure 84: Test case 308. 4 defenders and 8 targets.
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12.15.3 Time Case 312
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Figure 85: Test case 312. 4 defenders and 12 targets.

12.15.4 Time Case 316
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Case 316:   4 Defender units  and  16 Target units
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Figure 86: Test case 316. 4 defenders and 16 targets.

95


