
Implementation of a One-Stage Efficient
Global Optimization (EGO) Algorithm

Nils-Hassan Quttineh∗ and Kenneth Holmström∗

Abstract Almost every Costly Global Optimization (CGO) solver utilizes a surro-
gate model, or response surface, to approximate the true (costly) function. The EGO
algorithm introduced by Jones et al. utilizes the DACE framework to build an approx-
imating surrogate model. By optimizing a less costly utility function, the algorithm
determines a new point where the original objective function is evaluated. This is
repeated until some convergence criteria is fulfilled. The original EGO algorithm finds
the new point to sample in a two-stage process. In its first stage, the estimates of
the interpolation parameters are optimized with respect to already sampled points. In
the second stage, these estimated values are considered true in order to optimize the
location of the new point. The use of estimate values as correct introduces a source of
error. Instead, in the one-stage EGO algorithm, both the parameters and the location
of a new point are optimized at the same time, removing the source of error. This
new subproblem becomes more difficult, but eliminates the need of solving two sub-
problems. Difficulties in implementing a fast and robust One-Stage EGO algorithm in
TOMLAB are discussed, especially the solution of the new subproblem.

Keywords: Black-box, Surrogate model, Costly functions, Latin Hypercube Designs,
Experimental Design.

1 Introduction

Global optimization of continuous black-box functions that are costly (computationally
expensive, CPU-intensive) to evaluate is a challenging problem. Several approaches
based on response surface techniques, most of which utilize every computed function
value, have been developed over the years.

Problems that are costly to evaluate are commonly found in engineering design, in-
dustrial and financial applications. A function value could be the result of a complex
computer program, an advanced simulation, e.g. computational fluid dynamics (CFD).

∗Department of Applied mathematics, Mälardalen University, SE-721 23 Väster̊as, Sweden.

1

N-H. Quttineh & K. Holmström

One function value might require the solution of a large system of partial differential
equations, and hence consume anything from a few minutes to many hours. In the ap-
plication areas discussed, derivatives are most often hard to obtain and the algorithms
make no use of such information.

From an application perspective there are often restrictions on the variables besides
the lower and upper bounds, such as linear, nonlinear or even integer constraints.
These complicated problems are formulated as follows:

The Mixed-Integer Costly Global Black-Box Nonconvex Problem

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU <∞
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

(1)

where f(x) ∈ R and xL, x, xU ∈ Rd. Matrix A ∈ Rm1×d, bL, bU ∈ Rm1 ; defines the
m1 linear constraints and cL, c(x), cU ∈ Rm2 defines the m2 nonlinear constraints.
The variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}.

1.1 Surrogate Models

One approach for solving CGO problems is to utilize response surfaces. The basic
idea is to start with an initial sample of points (experimental design), where the costly
function values are calculated. A surrogate model (response surface) is built from the
sampled points, using for example radial basis functions (RBF) or the DACE frame-
work. Use this interpolated surface to approximate the true function, and decide a new
point to sample by some algorithmic strategy. Then iterate until some convergence
criteria is fulfilled.

Surrogate Model Algorithm (pseudo-code)

. Find initial set of n ≥ d+ 1 points x using Experimental Design.

. Compute costly f(x) for initial set of n points. Best point (xMin, fMin).

. Use the sampled points x to build a response surface model as an
approximation of the f(x) surface.

. Choose next point xn+1 to be added:

- Decided by the algorithm used, like EGO, ARBF or rbfSolve.

- Update best point (xMin, fMin) if f(xn+1) < fMin.

. Iterate until fGoal achieved, n > nMax or maximal CPU time used.

2

Implementation of a One-Stage EGO Algorithm

2 Background to DACE and EGO

Suppose we want to predict the function value at a point x̄ not already sampled. The
DACE framework, short for ”Design and Analysis of Computer Experiments” and
also referred to as Kriging, is based on modeling a function as a realization of random
variables, normally distributed with mean µ and variance σ2.

The original EGO algorithm, introduced by Jones, Schonlau and Welch [7] in 1998,
is a two-stage method. Such methods fit a response surface to sampled points in the
first step, then utilize the surface to find new search points in the second step.

Some years later, Jones presents the idea of a one-stage approach [6]. Except for an
implementation by Jones himself, the one-stage approach have not been explored.

2.1 The Correlation function

Before going into mathematical details and formulation of the algorithm, we intro-
duce some notations and variables to be used throughout this paper. Compared with
Euclidean distance, where every variable is weighted equally, the distance formula

D
(
x(i),x(j)

)
=

d∑
k=1

θk ·
∣∣∣x(i)

k − x
(j)
k

∣∣∣pk

θk > 0 , pk ∈ [1, 2] (2)

is designed to capture functions more precise. The parameter θk can be interpreted
as a measure of the importance of variable xk. Even small changes in xk might lead
to large differences in the function values at x(i) and x(j).

The exponent pk is related to the smoothness of the function in the k:th dimension.
Values of pk near 2 corresponds to smooth functions and values near 1 to less smooth-
ness. Based on the distance formula (2), the correlation function

Corr
[
ε(x(i)), ε(x(j))

]
= e−D(x(i),x(j)) (3)

has all the intuitive properties one would like it to have. When the distance between
x(i) and x(j) is small, the correlation is close to one. For large distances, the correlation
approaches zero. A large value for θ will affect the distance to grow faster, which leads
to a decrease in the correlation. In this way active variables are accounted for, giving
a more accurate correlation function.

We denote the evaluated function values by y =
(
f(x(1)), . . . , f(x(n))

)′
, where n is

the number of points sampled so far. Denote the matrix of correlation values by R,

where R(i, j) = Corr
[
ε(x(i)), ε(x(j))

]
. Also, let r denote the vector of correlations

between x̄ and the sampled points, that is ri(x̄) = Corr
[
ε(x̄), ε(x(i))

]
.

3

N-H. Quttineh & K. Holmström

2.2 The DACE interpolation model

To build a surrogate model from the sampled points, we need to estimate parameters
θk and pk. This is done by choosing them to maximize the likelihood of the sampled
points. A more detailed analysis is found in Section 3.

With the parameter estimates in hand, we are now able to construct the DACE model,
or DACE response surface. Using the evaluated function values y and the matrix of
correlation values R, the DACE interpolant is defined by

y(x̄) = µ+ r′R−1(y − 1µ) (4)

where r is the vector of correlations between x̄ and the sampled points x. The first
term µ is the estimated mean, and the second term represents the adjustment to
this prediction based on the correlation of sampled points x. The derivation of this
predictor can be found in [10].

The mean square error of the predictor, denoted by s2(x̄), is given by

s2(x̄) = σ2 ·
[
1− r′R−1r +

(1− 1′R−1r)2

(1′R−11)

]
. (5)

As one would imagine, the mean square error for a sampled point is zero, s2(x(i)) = 0.

We now have a formula for the expected value of a point yet to be sampled, along
with an error estimation. Since this predictor is cheap to calculate, compared to the
costly function, it can be used to locate a new point x̄ with as low expected function
value as possible.

3 The EGO algorithm

The Efficient Global Optimization (EGO) algorithm utilizes the DACE interpolation
surface to approximate the costly function based on already sampled points. In order
to use this for optimization, one must find a way to iteratively choose x∗, the next
point to sample.

In the original EGO algorithm, described in Section 3.1, the Maximum Likelihood
Estimation (MLE) of the parameters θ and p is based on the set of sampled points x.
These estimates are used to decide upon new sample points, found by optimizing some
utility function, which hopefully converges towards the global optimum. This can be
seen as a two-stage process.

A drawback with this approach is that the utility function depends on the estimated
parameters, which might lead to inaccurate decisions. To overcome this flaw, the one-
stage process described in Section 3.2 incorporates x∗ into the MLE step. For a given
target value f∗, the MLE tries to fit the surface to already sampled points, conditional
upon the assumption that the surface goes through the point (x∗, f∗).

4

Implementation of a One-Stage EGO Algorithm

3.1 Two-stage process, Standard EGO

We need to estimate the parameters θk and pk in order to construct an interpolation
surface of our costly function. The estimates are found by choosing them to maximize
the likelihood of the already sampled points x.

The likelihood function

L(θ, p) =
1

(2π)n/2(σ2)n/2|R| 12
· e
−

(y − 1µ)′R−1(y − 1µ)

2σ2 (6)

Note that the dependence on parameters θ and p is via the correlation matrix R.
Assuming we know the values of θ and p, we find the values of µ and σ2 that maximizes
the log-likelihood function:

LL(θ, p) = −n
2

log(σ2)− 1

2
log(|R|)− (y − 1µ)′R−1(y − 1µ)

2σ2
(7)

By taking the derivatives of (7) with respect to µ and σ2 respectively, solving them
equal to zero, the solution is:

µ̂ =
(1′R−1y)

(1′R−11)
(8)

and

σ̂2 =
(y − 1µ̂)′R−1(y − 1µ̂)

n
(9)

Substituting equations (8) and (9) back into (7), one finds the concentrated log-
likelihood function only depending on parameters θ and p via R:

ConLL(θ, p) = −n
2

log(σ̂2)− 1

2
log(|R|) (10)

Maximizing (10) yields the estimates needed. Then use equations (8) and (9) to
calculate the estimates of µ and σ2.

Once the estimates are known, a utility function is optimized in order to find x∗, the
next point to sample. There are many different utility functions that could be used,
but the Expected Improvement (ExpI) is most commonly used.

The Expected Improvement relies on the predicted values of µ and σ2 to find the
location x∗ where the probability of improving the objective value is maximized. For
details on different utility functions and the Expected Improvement, see [11].

5

N-H. Quttineh & K. Holmström

3.2 One-stage EGO, new approach

In his paper [6], Jones introduces the idea of a one-stage EGO algorithm, incorporating
the new point x∗ into the estimation process of parameters θ and p. The estimates
are, like before, found by choosing them to maximize the likelihood of the sampled
points x. But this time we compute the likelihood of the observed data conditional
upon the assumption that the surface goes through the point (x∗, f∗).

The conditional likelihood function

CL(θ, p, x∗) =
1

(2π)n/2(σ2)n/2|C| 12
· e
−

(ȳ − r̄µ)′C−1(ȳ − r̄µ)

2σ2 (11)

where

C = R− rr′ , ȳ = y − r · f∗ , r̄ = 1− r.

The dependence on the parameters θ, p and x∗ is via the conditional correlation
matrix C, as vector r describes correlation between x∗ and the n sampled points.
Both R and r are affected by θ and p.

When using the conditional log-likelihood to evaluate the hypothesis that the surface
passes through (x∗, f∗) we also estimate the values of θ and p, and like before find the
values of µ and σ2 that maximizes the conditional log-likelihood function:

CLL(θ, p, x∗) = −n
2

log(σ̂2)− 1

2
log(|C|)− (ȳ − r̄µ)′C−1(ȳ − r̄µ)

2σ2
(12)

with optimal values for µ and σ:

µ̂ =
(r̄′C−1ȳ)

(r̄′C−1r̄)
(13)

and

σ̂2 =
(ȳ − r̄µ̂)′C−1(ȳ − r̄µ̂)

n
(14)

Substituting equations (13) and (14) back into (12), we find the concentrated form
of the conditional log-likelihood function, depending on parameters θ, p and x∗ via
matrix C and vectors r and ȳ:

ConCLL(θ, p, x∗) = −n
2

log(σ̂2)− 1

2
log(|C|) (15)

Maximizing (15) yields the estimates needed. Then use equations (13) and (14) to
calculate the estimates of µ and σ2.

6

Implementation of a One-Stage EGO Algorithm

To illustrate the nasty nature of (15), consider the equivalent formulation of the full
Conditional Maximum Likelihood (CML) problem. Variable S and matrix C are both
dependent on all other variables in a complicated manner. Matrix R and vector r
depends on variables x∗, θ and p, which also affects vectors r̄ and ȳ.

min
θ,p,x∗

n · log(S) + log(|C|) [CML]

s.t. S = 1
n ·
[
(ȳ − r̄ · µ)′ ·C−1 · (ȳ − r̄ · µ)

]
µ =

(r̄′ ·C−1 · ȳ)
(r̄′ ·C−1 · r̄)

C = R− r · r′

ȳ = y − r · f∗

r̄ = 1− r

R(i, j) = exp

(
−

d∑
k=1

θk ·
∣∣∣x(i)
k − x

(j)
k

∣∣∣pk

)
i, j = 1, . . . , n

r(i) = exp

(
−

d∑
k=1

θk ·
∣∣∣x(i)
k − x

∗
k

∣∣∣pk

)
i = 1, . . . , n

0 < θk k = 1, . . . , d

1 ≤ pk < 2 k = 1, . . . , d

xL ≤ x∗ ≤ xU

bL ≤ Ax∗ ≤ bU

cL ≤ c(x∗) ≤ cU

Parameters :

f∗ given target value

d dimension of problem

n number of sampled points

x sampled points

y evaluated function values

7

N-H. Quttineh & K. Holmström

3.3 Overview

Based on the DACE framework, we have presented two different approaches on how to
perform iterations in order to find new sample points x∗, hopefully converging towards
the global optimum. Each method is connected to good properties as well as some
troublesome issues.

Two-Stage EGO

Stage 1. Find θ and p by MLE, interpolate surface.

Stage 2. Optimize some utility function to find x∗, a new point to sample.

+ Two separate subproblems, easier to solve.

- Relies on estimated parameters.

One-Stage EGO

Stage 1. Given a value for f∗, find θ, p and x∗ by MLE, conditionally that the
surface goes through (x∗, f∗).

+ Only one subproblem to solve. The computation of x* is not dependent
on previous biased estimates, more accurate computation.

- We don’t know the value of f∗. The new CML problem is more difficult.

In the upcoming Sections 4 and 5, we look deeper into the problems connected to a
one-stage process and present methods to handle these issues.

4 Difficulties and Algorithm description

Although the one-stage process is theoretically more appealing, there are some prac-
tical issues that needs to be adressed. To start with, the optimal value f∗ is obviously
not known in advance and must be chosen in some way. This is the least of our troubles
though, and methods to deal with this is presented in Section 4.1.

Section 5 is devoted to ideas on how to solve the challenging CML problem in a robust
and efficient manner. This is essential since the subproblem needs to be solved multiple
times each iteration.

There is also some numerical issues connected to the subproblem. When optimizing
the concentrated conditional log-likelihood function (15) one need to evaluate points
close to already sampled points x, and this causes the function to collapse. Details
and remedies are presented in Section 4.2.

Finally, a pseudo-code for the one-stage EGO algorithm is presented in Section 4.3.

8

Implementation of a One-Stage EGO Algorithm

4.1 Finding f ∗ values

The one-stage approach finds a new point x∗ by computing the likelihood of the
observed data conditional upon the assumption that the surface goes through the
point (x∗, f∗). The value of f∗ is not known in advance and must be chosen somehow.

Fortunately, the use of a target value is not unique for the one-stage EGO algorithm.
When Gutmann introduced the radial basis function (RBF) method [3], he proposed
a cycle of 5 target values lower than the minimum of the interpolated surface, ranging
from far below (global search) to close below (local search). Set the value of f∗ to

f∗k = smin − wk ·
(

max
i
f(xi)− smin

)

where smin is the minimum of the interpolated surface. The weight factor wk is defined
using a cyclic scheme over k like

wk = (1− k/N2), k = 0, 1, . . . , N − 1.

This is successfully done in TOMLABs CGO-solver rbfSolve [1].

A more powerful approach, but also more computer intensive, is to solve the subprob-
lem for a wide range of f∗ values every iteration. Each solution gives an x∗ candidate,
so how to proceed? It turns out that these solutions tend to cluster, and by applying
a clustering process one could proceed with 1-3 new x∗ values each iteration. This is
successfully done in TOMLABs CGO-solver ARBFMIP, and details on the target values
and the clustering process are found in [4] and [5].

Both methods overcome the problem of not knowing the optimal target value f∗ in
advance, but experience from solving a large number of test problems with rbfSolve

and ARBFMIP suggests that using a range of target values adds robustness to the opti-
mization process.

Another advantage of getting a cluster of new points is the possibility to benefit from
parallel calculations, becoming more and more standard for computers today. Hence
our implementation of the one-stage EGO algorithm will adopt the clustering methods
of ARBFMIP.

4.2 Numerical Issues

The EGO algorithm is known to suffer from numerical problems due to the correlation
matrix becoming more and more ill-conditioned as sampled points start to cluster in
promising areas of the sample space. Equation (10) used for the MLE of parameters
θ and p includes the logarithm of the determinant of the correlation matrix R, which
approaches zero as points are sampled close together.

9

N-H. Quttineh & K. Holmström

For the one-stage process, the CML function (15) is optimized, and the numerical
issues have not disappeared. The situation is even worse due to the intricate relations
between sampled points and parameters θ and p, now also affected by parameters x∗

and f∗. The problem with a rank deficient C matrix is that when evaluating (15) its
inverse is needed (although not calculated implicitly, it is still problematic). It also
contains the term log(|C|), which is undefined as the determinant becomes 0. We now
present three situations where numerical issues arise in the one-stage approach.

Solving the MLE

Numerical issues arise when maximizing (10), the standard MLE, to find parameters θ
and p. The upper bound for parameter p is theoretically 2, but Sasena reports in [11]
that a value strict less than two is more numerical stable. Here is an example clearly
supporting the claim.

Figure 1: MLE of θ and p. To the left, p = 1.99 and to the right p = 2.

Figure 1 shows the same ML function to be minimized, but with the parameter p
fixed to 1.99 and 2 respectively. Clearly the function where p = 1.99 is preferable,
motivating the upper bound of p to be adjusted to 1.99.

Evaluating CML close to sampled points

Ill-conditioning of the correlation matrix is inherited from the two-stage approach, but
also enhanced due to the definition of correlation matrix C = R−rr′. The correlation
vector r(i) approaches 1 for x(i)s close to x∗, hence creating a close-to-zero row and
column in C whenever evaluating points close to x, the set of so far sampled points.

In evaluating a point really close to x, the logical thing would be for the CML
function (15) to approach minus infinity. It is certainly unlikelihood for an already
sampled point, with a function value not equal to f∗, to suddenly match f∗. But when
zooming in on the CML function in a very small interval around a sampled point, we
get something else. Figure 2 illustrates the phenomenon, showing pictures of (15) close
to a sampled point. The CML functions are displayed as minimization problems.

10

Implementation of a One-Stage EGO Algorithm

Figure 2: Evaluating CML close to an already sampled point. The function should in-
crease continuously, but suddenly drop to a constant value.

So what happens when matrix C becomes very close to singular, due to reasons
explained before, and we try to evaluate (15). In our implementation, first the QR-
factorization of matrix C is found, then its determinant is calculated as the product
of the diagonal elements of R which are greater than a specified lower bound ε, i.e.

det C =
∏
i∈I

R(i, i) where I = {i : |R(i, i)/R(1, 1)| > ε}.

This pseudo-rank determinant causes the “valley” surrounding the sampled point,
clearly seen in the one-dimensional example. The width of the valley depends on the
value of ε, becoming more narrow as ε goes to zero. So by using a smaller value of ε
than normally necessary, we at least decrease the critical region. To compensate for
the pseudo-rank, we subtract a big number to the objective for all points inside the
valley.

It is important to clarify the need of evaluating points close to already sampled points.
If a function value y(i) corresponding to a sampled point x(i) is much larger than fmin,
the best found function value so far, it is not desirable to sample points close to x(i).
On the other hand, in search for a new point x∗ that improves the objective value,
it is natural to evaluate points close to sampled points with low function values. In
order to find solutions with many digits of accuracy, it is even necessary.

Bad combinations

After some iterations, when having sampled some points, another numerical issue
arises when maximizing both (10) and (15). In contrast to the previous problem, this
is due to a very natural cause. Independent of the optimization method used to solve
the MLE, many combinations of parameters θ and p are tested, and some of them are
simply not feasible for the given set of sampled points x.

11

N-H. Quttineh & K. Holmström

Although the reasons are completely different, the result is the same as before. When
matrix C becomes singular and its determinant is zero, the CML function returns
minus infinity when taking the logarithm, causing the optimization process to halt. A
numerical example is presented to the left in Figure 3.

Figure 3: MLE of θ for a fixed value of p. To the left, the ML function without safeguard.
To the right, the same ML function with safeguarded logarithm calculations.

To handle this situation, we safeguard the calculations of the logarithm. Whenever the
determinant is zero, return a large negative value instead of calculating the logarithm.
By investigation, MATLAB evaluates log(10−323) as -743.7469 but a smaller value like
log(10−324) = −∞, so whenever |C| < 10−323 we replace the term log(|C|) by -743.75.

As seen in Figure 3, this removes the discontinuity caused by the determinant cal-
culations breaking down. The CML function will act linear in the infeasible area.
This might not be entirely satisfactory, but it prevents the optimization process from
breaking down which is the important thing.

4.3 Pseudo Code

When implementing the one-stage EGO, the algorithmic structures are coded in MAT-
LAB but all heavy calculations are implemented in Fortran and C code, and interfaced
using so called mex file interfaces. Here follows a description of the one-stage EGO
algorithm together with a pseudo-code presented in Algorithm 1.

After finding the initial set of n sample points, we estimate parameters θ and p by
optimizing (10) and build an interpolation surface. We do this in order to find the
surface minimum smin, used to define the range of target values F . Then begins
the process of solving the Conditional Maximum Likelihood (CML) for each target
value f∗k ∈ F , cluster the result and pick new points to sample. One could optionally
add smin as well, since the idea of the interpolation surface is to approximate the true
costly function. This is repeated until the global optimum is found, or the maximum
number of function evaluations is reached.

Our MATLAB implementation is named osEGO.

12

Implementation of a One-Stage EGO Algorithm

Algorithm 1 The one-stage EGO algorithm

1: Find n ≥ d+ 1 initial sample points using some Experimental Design.

2: while n < MAXFUNC do

3: Estimate parameters θ and p by optimizing the ML-function (10).

4: Use θ and p to build the interpolation surface s(x).

5: Find the minimum of the surface, denote it smin.

6: Define F , a range of f∗-values.

7: for all f∗k ∈ F do

8: Maximize the Conditional ML (15) defined by f∗k .

9: end for

10: Apply a clustering process on the results, add new points and update.

11: Optionally add smin and update.

12: end while

5 The CML problem

Instead of solving two consecutive subproblems, the one-stage EGO combines all work
into a single subproblem. This eliminates the use of estimated values for parameters
θ and p, the main drawback of the original two-stage EGO algorithm. But incorporat-
ing x∗ into the MLE complicate things. Not only is the dimension of the subproblem
increased by d+ 1, we need to guess the value of f∗.

In order to solve this new, more complicated, conditional MLE problem efficiently for
a whole range of f∗ values, we need to find ways of generating good initial values for
our parameters x∗, θ and p, and then solve the full problem. We do this by solving a
series of restricted subproblems.

One might argue that in this way we still solve more than one subproblem, hence not
gaining anything compared to the two-stage EGO algorithm. But the point is that
while standard EGO first approximates the interpolation surface to already sampled
points and then search for x∗ in a separate problem, we do not separate x∗ from the
MLE of θ and p although solving the CML problem in several steps.

Subproblem 1

To get started, we solve a restricted version of CML where pk is fixed to 1.99 for
all k, and both x∗ and θ are considered univariate, i.e. θ = θ1 = θ2 = . . . = θd

and x∗ = x∗1 = x∗2 = . . . = x∗d. The most difficult variables are x∗, so by scanning
the space using a parametrization we find a suitable initial value of x∗. Notice that
Subproblem 1 will always be a two-dimensional problem independent of the original
problem. The peaks seen in Figure 4 on page 14 correspond to x lying close to the
diagonal. To solve the subproblem, use starting points in between the peaks.

13

N-H. Quttineh & K. Holmström

Figure 4: To the left, subproblem 1 with univariate x∗ and θ for p = 1.99 fixed. To the
right, subproblem 2 with univariate θ and p, using x∗ found in subproblem 1.

Subproblem 2

Having found an initial guess x∗0, we progress by keeping x∗ fixed and consider uni-
variate values for θ and p instead, solving another two-dimensional problem. From
Subproblem 1 we get a good initial guess for θ, which makes Subproblem 2 relatively
easy to solve. In Figure 4, to the right, a numerical example.

Subproblem 3

At this point, we have univariate initial values for all parameters. From solving Sub-
problem 1 we get values for x∗0 and θ0, and the latter is refined in Subproblem 2
together with p0. We are now ready to solve the full subproblem, with no parame-
terizations or fixations. The solution of CML, which is defined by the current target
value f∗k , is a suggestion for a new point to sample, denoted x∗k. Figure 5 and Figure 6
show pictures of the CML problem, displayed as a maximization problem for best
possible visualization.

Resolving for a new f∗k .

Since we need to solve CML for f∗k ∈ F , where F denotes a range of target values for
the current iteration, one should exploit the possibility of an efficient reoptimization
process. We notice that a relative small change in the value of f∗k results in a very
similar problem to solve. Therefore, if f∗k − f∗k+1 is small, the solution x∗k serves as a
good initial guess for x∗k+1. In this way, by keeping track of when consecutive values
of f∗k differ a lot, it suffices to solve all subproblems only a few times. Whenever the
change in f∗ value is relatively small, solve the full problem directly using the previous
solution as starting point. This will speed up the solution process significantly.

14

Implementation of a One-Stage EGO Algorithm

Figure 5: The full CML subproblem for fixed values of parameters θ and p. At this stage,
the number of sampled points n is relatively small. Black dots indicate starting
points for the solver used to maximize CML.

Figure 6: The full CML subproblem for fixed values of parameters θ and p. The number
of sampled points n is much larger than before, and the problem has become
much more difficult. Black dots indicate starting points used by the solver.

15

N-H. Quttineh & K. Holmström

Modifications

It is possible to solve a restricted version of CML and accept the solution as x∗k without
solving the full subproblem. The most straightforward way is to consider univariate
values for θ and p throughout the whole algorithm, hence decreasing the problem
dimension from 3·d to d + 2. This will most likely be necessary when attempting to
solve higher dimensional problems.

Experience over the years using the EGO algorithm also suggests that keeping p fixed
to a single value at all times, eliminating this parameter completely from the optimiza-
tion process, does not affect the results significantly. A value close to 2 is suggested,
and from the earlier discussion in Section 4.2 on numerical issues, an upper bound of
p = 1.99 is strongly recommended.

6 Benchmark and Tests

This paper aims at evaluating the one-stage EGO implementation osEGO by solving
a set of test problems and compare the results with other algorithms. Three solvers
from the TOMLAB/CGO environment are used. The rbfSolve and arbfmip solvers
utilize radial basis functions, and the EGO solver is an implementation of the standard
two-stage EGO algorithm.

All solvers run with their default parameter settings, controlling algorithmic options
like variable scaling and the choice of merit function.

Following the definition of Dolan and Moré [2], a benchmark consists of a set P of
benchmark problems, a set S of optimization solvers and a well defined convergence test.
Since the problems are considered costly, we define a performance measure ts,p > 0,
the number of function evaluations required for problem p ∈ P to converge using
solver s ∈ S.

All solvers are set to break after 200 function evaluations or earlier if convergence to
the known global optimum is obtained. The relative error is defined as

Er =
fmin − fopt

|fopt|
,

where fmin is the currently best feasible function value and fopt is the known global
optimum. Convergence is assumed if the relative error Er is less than 10−4. When
fopt = 0, stop when fmin is less than 10−4. If convergence is not reached after 200
iterations, declare failure.

All CGO solvers need an initial set of points, or experimental design, in order to start
the algorithm. Since the behavior of any such algorithm often depends heavily on this
set, we solve each problem for a set of experimental designs E, summarized in Table 1
on page 17.

We consider two kinds of test problems in this benchmark, unconstrained box-bounded
problems PU and constrained problems PC . A thorough presentation of the problems
is found in Section 6.2, summarized in Table 2 on page 18.

16

Implementation of a One-Stage EGO Algorithm

6.1 Experimental Designs

Here follows a short description of the five different experimental designs (ExD) used
in this benchmark. All but one design are defined by the number of initial points to
sample, denoted by N . Some of them are able to handle constraints, while others can
do this optionally.

The Corner Point Strategy (CPS) generates a fixed number of initial sample points,
one for each corner point of the bounding box. This method is not able to handle
constraints. The Deterministic Global Solver (DGS) approach applies the DIRECT
algorithm to find N initial points, and is able to handle constraints.

The Maximin LHD strategy apply a Latin Hypercube Design of any given size N ,
where the points are separated subject to the maximin distance. This method could
optionally handle constraints, using a method by Quttineh presented in [9]. The LHD
designs used are taken from the webpage http://www.spacefillingdesigns.nl where
a large collection of optimal maximin designs are available.

Finally, we also consider a combination of the CPS strategy with the Maximin LHD
and DGS methods respectively. The N = 2d corner points of the bounding box are
added to the designs generated by the Maximin LHD and DGS methods.

Table 1: The set of Experimental Designs (E). Five different ExD methods are listed,
together with the available options. The Maximin LHD method can handle
constraints optionally, hence EC = 4 combinations for the constrained problems.

ExD Experimental Design Size of N Constraints EU EC

CPS Corner Points Fixed No 1 1

DGS DG Solver N1 and N2 Yes 2 2

LHD Maximin LHD N1 and N2 Yes/No 2 4

CP+DGS Corners + DGS N1 and N2 Yes 2 2

CP+LHD Corners + LHD N1 and N2 Yes/No 2 4

For all designs, except the CPS strategy, we use the settings N1 = (d + 1)· (d + 2)/2
and N2 = 10 ·d + 1, where d is the dimension of the problem to be solved. For the
Maximin LHD design, it is possible to choose whether constraints should be considered
or not. Therefore, each constrained problem will be solved in total 4 times using the
Maximin LHD design, with and without constraints taken into account and for the
options N1 and N2.

To summarize, we solve each box-bounded problem using nine different designs, nine
being the sum of column EU in Table 1. The constrained problems are solved using 13
different designs, the sum of column EC . For a thorough description on the different
experimental designs, see [9].

17

N-H. Quttineh & K. Holmström

6.2 Test Problems

We define a set of 13 box-bounded unconstrained problems PU , each solved for EU

different designs, and a set of 6 constrained problems PC , each solved for EC different
designs. Most of them are 2-dimensional, except a few problems in 3 dimensions.

Table 2 and Table 3 give a compact description of the test problems. Column d is
the number of variables, Ax the number of linear inequality constraints and c(x) the
number of nonlinear inequality constraints. In the Domain column, the lower and
upper bounds for all variables are shown. The Range column shows the order of the
objective.

None of the test problems have a global minimum in a corner point or midpoint.

Table 2: The set of box-bounded test problems PU .

Nr. Problem Name d Domain Range

B4 Hartman 3 3 [0, 0, 0] − [1, 1, 1] 4·100

B6 Branin RCOS 2 [5, 0] − [10, 15] 3·102

B7 Goldstein and Price 2 [2, 2] − [2, 2] 1·106

B8 Six-Hump Camel 2 [3, 2] − [3, 2] 2·102

B16 Shekels foxholes 2 2 [0, 0] − [10, 10] 1·101

B19 Michalewiczs function 2 2 [0, 0] − [π, π] 2·100

B30 Myers smoothly fluctuating 2 [0.5, 0.5] − [3.5, 3.5] 6·100

B32 LOG-Goldstein and Price 2 [2, 2] − [2, 2] 1·101

B53 Dixon and Price 2 [10, 10] − [10, 10] 9·105

L20 M20 2 [0, 0] − [5, 5] 3·100

L25 M25 2 [2, 2] − [2, 2] 1·100

L28 M28 2 [3, 3] − [9.99, 9.99] 1·102

L49 M39 2 [500, 500] − [500, 500] 2·103

Table 3: The set of constrained test problems PC .

Nr. Problem Name d Ax c(x) Domain Range

C2 Gomez 3 2 0 1 [1, 1] − [1, 1] 4·100

C3 Hock-Schittkowski 59 2 0 3 [0, 0] − [75, 65] 1·102

C4 Hock-Schittkowski 65 3 0 1 [4.5, 4.5, 5] − [4.5, 4.5, 5] 2·102

C13 Schittkowski 343 3 0 2 [0, 0, 0] − [36, 5, 125] 2·102

C19 Bump 2 2 1 1 [ε, ε] − [10, 10] 1·100

C22 HGO 468:1 + constraint 2 0 1 [0, 0] − [1, 1] 6·100

18

Implementation of a One-Stage EGO Algorithm

6.3 Numerical Results

To present the benchmark results in a standardized manner, we utilize data profiles
suggested by Moré and Wild [8], a kind of probability density function. Since function
evaluations are expensive we are interested in the percentage of problems solved to
a given accuracy within k function evaluations. Data profiles are designed to handle
this, and are defined for a set of test problems P and a solver s ∈ S by

ds(k) =
1

|P | ·
∣∣∣∣{p ∈ P :

tp,s

np + 1
≤ k

}∣∣∣∣
where np is the number of variables for each problem p ∈ P .

Our benchmark is defined by the set S of CGO solvers rbfSolve, arbfmip, ego, and
osEgo, and the set of test problems defined by P̄ = {P ×E}. Since the choice of initial
set of sample points have such a big impact on the performance of CGO solvers, each
combination of test problem p ∈ P and experimental design e ∈ E is considered as a
unique problem. In this way, the data profiles will show if a solver is robust or not
with respect to the initial set of sample points.

Unconstrained problems

Figure 7 presents data profiles for the set of unconstrained box-bounded problems
P̄U = {PU ×EU}. It consists of all combinations of the 13 box-bounded problems and
9 experimental designs, i.e. |P̄U | = 117. The tolerance of the relative error Er is set
to 1% in the left picture and to 0.01% in the right picture.

Figure 7: Data profiles for the box-bounded unconstrained problems P̄U show the per-
centage of problems solved as a function of k, the number of function evalua-
tions needed to converge, with tolerance 1% and 0.01%.

The osEgo algorithm is doing quite well, solving more problems to 2 digits of accuracy
than any other solver in S. In finding 4 digits of accuracy, it is beaten by the rbfSolve.

19

N-H. Quttineh & K. Holmström

Constrained problems

Figure 8 presents data profiles for P̄C = {PC×EC}, the set of constrained box-bounded
problems. It consists of all combinations of the 6 constrained problems and the 13
experimental designs, i.e. |P̄C | = 78. The tolerance is set to 1% in the left picture and
to 0.01% in the right picture. All solvers perform very well on this set of constrained
problems, finding the global optimum for almost all instances.

Figure 8: Data profiles for the constrained box-bounded problems P̄C show the percent-
age of problems solved as a function of k, the number of function evaluations
needed to converge, with tolerance 1% and 0.01%.

The osEgo algorithm is the most robust solver in S, converging to 4 digits of accuracy
for all problems in less than 140 function evaluations. The rbfSolve and arbfmip

algorithms are both very close to solve all problem instances as well, only the ego

algorithm has significant failures.

Problem specific analysis

Table 4 and Table 5 present the results separately for each solver in S. The number of
failures (in %) and the mean, min and max for the successful runs out of the total runs
for each problem are reported. That is, the mean, min and max number of function
evaluations needed to converge using the different experimental designs in E for each
solver and problem.

The osEGO algorithm performs well, already confirmed by the data profiles. Some
specific problems seem to cause a lot of trouble though. A common feature for problems
B7 and B53 is the wide range of the objective. It seems like osEGO, just like the other
solvers, is sensitive to such a large span in function values.

Another demanding problem is B16, the classical Shekel Foxholes. All solvers but
EGO finds the global optimum for all experimental designs, in less than 200 function
evaluations, which is impressive. Problem L49 is also challenging, filled with many
local minima, even so both rbfSolve and osEGO are successful.

20

Implementation of a One-Stage EGO Algorithm

Table 4: Number of function evaluations to get within 1% of the optimal value.

Solver % rbfSolve % arbfmip % ego % osEgo

Fail mean min max Fail mean min max Fail mean min max Fail mean min max

B4 0 43 18 58 23 51 38 60 0 41 31 53 0 38 17 49

B6 0 32 24 42 0 39 30 47 0 29 19 35 0 40 29 49

B7 78 169 168 170 34 166 145 200 23 69 26 194 56 162 151 172

B8 0 36 21 46 0 45 28 57 23 30 21 41 0 58 35 70

B16 0 99 38 130 0 140 37 186 100 - - - 0 113 55 148

B19 0 39 26 64 0 29 19 43 12 24 12 37 0 26 13 40

B30 0 20 10 32 0 26 23 30 0 24 13 33 0 22 13 30

B32 0 42 29 53 0 53 31 65 56 52 48 55 0 64 31 79

B53 0 79 22 133 0 119 68 199 23 40 25 56 0 95 32 193

L20 0 24 13 30 0 23 16 28 0 21 13 30 0 25 15 35

L25 34 36 24 68 45 32 30 38 12 61 9 181 45 18 10 26

L28 34 25 22 27 0 42 26 77 0 21 11 26 0 40 10 103

L49 0 86 61 103 78 71 68 74 45 112 89 141 0 106 21 180

C2 0 22 10 32 0 23 10 33 0 20 10 28 0 23 9 35

C3 0 22 12 35 0 25 15 36 8 21 11 28 0 24 14 31

C4 0 34 20 46 0 32 19 45 0 31 17 48 0 38 20 54

C13 0 28 11 45 0 28 11 45 24 31 13 45 0 33 15 47

C19 8 50 7 145 0 68 15 169 24 89 30 158 0 74 21 117

C22 0 42 32 67 8 59 34 149 0 26 17 36 0 29 19 53

Table 5: Number of function evaluations to get within 0.01% of the optimal value.

Solver % rbfSolve % arbfmip % ego % osEgo

Fail mean min max Fail mean min max Fail mean min max Fail mean min max

B4 0 103 54 160 23 82 58 122 0 51 45 59 0 50 24 63

B6 0 44 30 61 0 55 48 62 0 41 29 55 0 62 50 79

B7 89 185 185 185 56 183 175 191 56 73 28 127 89 187 187 187

B8 0 53 35 71 0 57 38 73 23 34 25 48 0 89 76 110

B16 0 113 48 140 0 147 41 195 100 - - - 0 125 64 165

B19 0 54 40 70 0 35 24 54 12 27 15 39 0 33 24 47

B30 0 22 14 34 0 34 25 48 0 29 16 38 0 26 14 37

B32 0 64 50 81 0 60 39 77 89 52 52 52 0 87 38 137

B53 12 123 71 161 23 121 87 165 67 104 40 161 45 160 118 195

L20 0 34 23 45 0 36 30 42 0 25 16 35 0 39 27 50

L25 34 58 44 110 45 37 32 49 34 32 13 70 45 32 17 41

L28 45 64 39 91 0 136 79 166 0 26 16 35 34 92 25 144

L49 0 100 81 121 78 74 70 78 45 147 120 175 0 118 28 191

C2 0 27 18 36 0 26 15 37 0 22 12 30 0 27 14 39

C3 0 25 12 36 0 31 19 44 8 22 15 29 0 27 17 33

C4 0 44 20 61 0 37 23 47 0 37 21 60 0 50 29 82

C13 0 28 11 45 0 28 11 45 24 31 13 45 0 33 15 47

C19 8 56 11 146 0 72 16 174 24 96 33 160 0 78 25 129

C22 0 45 32 69 8 65 39 157 0 28 20 39 0 35 26 60

21

N-H. Quttineh & K. Holmström

Experimental Designs and the one-stage EGO

Some interesting details were found when analyzing the performance of the osEgo

algorithm with respect to the different experimental designs in E. For the set of
unconstrained problems PU , the CP+DGS experimental design works best with the
option N2 = 10·d+ 1.

For the constrained problem set PC , the Maximin LHD allowing infeasible points and
using the option N1 = (d+1)(d+2)/2 was the most successful design. The results also
indicate, somewhat ambiguously, that one should rather use a constrained LHD when
in combination with the Corner Point Strategy. It should be noted that the set PC is
quite small, hence it is difficult to draw any conclusions.

7 Conclusions

The one-stage EGO approach is promising, although it still needs to be improved. We
have successfully implemented an adaptive scheme for f∗, similar to the one used in
ARBFMIP. From the test results, though, it seems like a good idea to implement and
test the cyclic choice of f∗ as well.

By breaking down the full CML problem into subproblems, using univariate variables
for θ, p and x∗, we are able to find good starting points and find new candidates x∗

in each iteration. Using a clustering process, we find the best candidates from each
cluster and proceed with multiple points each iteration.

Numerical issues are a big problem, and it might not be possible to resolve all of them.
We have presented good fixes for some of the issues, allowing the osEgo implementation
to compete with the other CGO solvers in TOMLAB, outperforming the old ego

implementation.

The nasty subproblem CML increase with the number of sampled points n, since the
size of correlation matrices R and C are n × n. This causes the calculations to get
heavier as the iterations go by, and more parameter combinations become infeasible,
complicating the optimization of the subproblems.

At the moment, the solver used to maximize the full CML subproblem utilize a set
of starting points x0. These points are chosen as the sampled points x, but slightly
perturbed towards the midpoint of the sample space. This is motivated by inspection
of the subproblem, realizing that the optimal solution is often very close to an already
sampled point.

Due to our discussion in Section 4.2, we choose to perturb the starting points, avoiding
numerical issues and not starting in a deep basin surrounding sampled points. By
perturbing towards the midpoint, we keep feasibility with respect to the box-bounds.

7.1 Future work

We need to speed up the subproblem solving phase. As n increases, so does the
number of starting points x0. As points tend to pile up in promising areas, many of

22

Implementation of a One-Stage EGO Algorithm

the points in x0 are very similar (close in Euclidean meaning), a bad feature for a set
of starting points. A possible remedy, partly implemented already, is to cluster the
sampled points x and thus reduce the size of x0 and hence decrease the solution times.

The numerical results indicate that osEGO is sensitive to large spans in function values.
We should consider strategies of transforming the function values, perhaps consider
the log values, in order to reduce the range.

References

[1] M. Björkman and K. Holmström: Global Optimization of costly nonconvex func-
tions using radial basis functions. Optimization and Engineering 1 (4), 373–397
(2000).

[2] E. D. Dolan, J. J. Moré, and T. S. Munson: Optimality Measures for Performance
Profiles. Preprint ANL/MCS-P1155-0504 (2004).

[3] H.-M. Gutmann: A radial basis function method for global optimization. Journal
of Global Optimization 19 (3), 201–227 (2001).

[4] K. Holmström: An adaptive radial basis algorithm (ARBF) for expensive black-
box global optimization. Journal of Global Optimization 41, 447–464 (2008).

[5] K. Holmström, N.-H. Quttineh, and M. M. Edvall: An adaptive radial basis
algorithm (ARBF) for expensive black-box mixed-integer constrained global op-
timization. Optimization and Engineering 41, 447–464 (2008).

[6] D. R. Jones: A Taxonomy of Global Optimization Methods Based on Response
Surfaces. Journal of Global Optimization 21, 345–383 (2002).

[7] D. R. Jones, M. Schonlau, and W. J. Welch: Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization 13, 455–492
(1998).

[8] J. J. Moré and S. M. Wild: Benchmarking Derivative-Free Optimization Algo-
rithms. Preprint ANL/MCS-P1471-1207 (2007).

[9] N.-H. Quttineh and K. Holmström: The influence of Experimental Designs on
the Performance of Surrogate Model Based Costly Global Optimization Solvers.
Studies in Informatics and Control 18 (1), (2009).

[10] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn: Design and analysis of
computer experiments (with discussion). Statistical Science, 4, 409–435 (1989).

[11] M. J. Sasena: Flexibility and Efficiency Enhancements for Constrained Global
Design Optimization with Kriging Approximations. Doctoral Dissertation (2002).

23

