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Abstract. We give a definition of a mother body of a domain in the complex
plane, and prove some continuity properties of its potential in terms of the
Schwarz function (which is explicitly assumed to exist). We end the article by
studying the case of the ellipse, and use the previous results to prove existence
and uniqueness of a mother body in this case, as well as a related existence
result about graviequivalent measures for the ellipse.

1. Introduction

In the paper [2] Björn Gustafsson introduced the notion of a mother body for
a domain Ω ⊂ RN (this was probably the first rigorous definition, although the
notion of a mother body, a kind of potential theoretic skeleton, goes back at least to
Zidarov [6]). The idea of a mother body is also implicit in the theory of quadrature
domains. We will give exact definitions in the next section, but for now we may
think of a mother body for Ω as a positive measure µ such that its logarithmic
potential agrees with that of Ω (considered as a body of density one) in the sense
that

Uµ = UχΩ outside of Ω,

and such that its support has zero Lebesgue-measure, and does not disconnect any
part of Ω from the complement of Ω.

In the paper [2] existence and uniqueness of a mother body in case of convex
polyhedra in arbitrary dimension was proved. In the present article we will focus on
smooth domains in two dimensions. The smoothness will not be explicitly assumed,
but we will assume the existence of a Schwarz function (to be defined), which implies
a high degree of smoothness.

As in [2] we are interested in existence and uniqueness of a mother body for a
given domain. As in the case of convex polyhedra, the natural way to attack the
problem of uniqueness of a mother body makes it necessary to have some continuity
results for the logarithmic potential Uµ. So this will be treated in section 3.

In section 4 we turn to the case of the ellipse to see an example of how a proof
of uniqueness may look. (We start by proving existence, but this proof is standard
and taken more or less directly from [4]).

The mother body for the ellipse is a measure with support on the line between the
two focal points, and one may ask whether every positive measure graviequivalent to
the ellipse as above must have a support encapsulating this line segment, where we
by encapsulating here mean that the intersection between the unbounded compo-
nent of the plane minus the support of the measure with this line segment is empty.
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This question was posed in [1] in connection with one-sided L1−approximation by
harmonic functions. Björn Gustafsson was later able to answer the question in the
negative. His idea of proof was based on the Cauchy-Kowalevski theorem and a
deformation argument (not published). Here we will prove the same result relying
on other methods from the article [5]. This is done in section 5.

2. Basic notation and definitions

We will always be working in the complex plane C, where we denote points
by z = x + iy (with subscripts when necessary). For Ω ⊂ C open we define the
following function classes:

A(Ω) := {analytic functions in Ω}
H(Ω) := {harmonic functions in Ω}
U(Ω) := {superharmonic functions in Ω}
S(Ω) := {subharmonic functions in Ω} .

For A ⊂ C Lebesgue measurable we let

LP (A) := {p-th power Lebesgue integrable functions in A} ,

and m will denote Lebesgue measure. For A ⊂ C general we put

C(A) := {continuous functions in A}
P (A) := {non-negative functions in A} .

We also use superpositioning in the sense that for instance UP (Ω) := U(Ω) ∩
P (Ω). We recall Green’s formula in the plane in complex notation for functions
and boundaries smooth enough:∫

∂Ω

fdz + gdz̄ = 2i

∫
Ω

(
∂f

∂z̄
− ∂g

∂z

)
dm.

In particular if f is replaced by fz̄ where f is analytic in Ω (and sufficiently smooth
up to the boundary), and g by zero in the formula we get:∫

∂Ω

f(z)z̄dz = 2i

∫
Ω

fdm.

The language and basic results from distribution theory will be used extensively,
and the following notation will be employed. In the definition below F stands for
either R or C.

C∞
0 (Ω,F) := {φ : Ω → F : supp(φ) ⊂ Ω, φ is infinitely differentiable}
D′(Ω,F) := {distributions ”from” C∞

0 (Ω,F) to F}
E ′(Ω,F) := {those elements in D′(Ω,F) which have compact support in Ω}.

We have natural injections D′(Ω, R) ⊂ D′(Ω, C) and E ′(Ω, R) ⊂ E ′(Ω, C) which will
also be used whenever needed. We define the logarithmic kernel by

U(z) := log |z|.
(Note that we omit the constant that ought to be in front of this for it to be a
fundamental solution of the Laplace operator). For µ ∈ E ′(R2, C) we now define

Uµ := U ∗ µ,

called the logarithmic potential of µ.
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Now we give the definition of a mother body we will work with in this paper,
and then make some comments on it.

Definition 2.1. Let Ω ⊂ C be a bounded domain. By a mother body for Ω we
mean a positive element µ ∈ E ′(Ω, R) such that

(1) Uµ = UχΩ in Ω
c
.

(2) m(supp(µ)) = 0

(3) each component of C \ supp(µ) intersects Ω
c
.

We remark that every element in E ′(Ω, C) may be seen in an obvious way as an
element in E ′(C, C), and that Uµ is a smooth function outside the support of µ (or
to be precise, has such a representation). By µ being positive we mean that

〈µ, φ〉 ≥ 0 ∀φ ≥ 0,

and any such µ is well known to have a representation as a positive measure (by
measure we will always mean Radon measure).

In [2] the support was allowed to reach the boundary, and that is necessary if we
have a boundary which is not smooth as in the case of polyhedra, but since we aim
at assuming the existence of a Schwarz function this sort of problem will not occur
(the boundary may nevertheless have certain type of singularities though, but will
essentially be real analytic). The existence of a Schwarz function extendable across
the entire boundary actually implies that the support cannot reach the boundary,
but more about this later. Another difference in the definition is that it was also
required that we should have (in our notation)

Uµ ≤ UχΩ

everywhere. We will not assume this simply because we will not have any use of
it, but for certain results, in particular with regards to inverse balayage, this is a
natural part of the definition. We will not motivate the definition further, since
this is already done well in [2].

3. Some continuity results

In this section we will throughout assume that Ω ⊂⊂ C is a domain with piece-
wise C1 boundary (in particular finitely connected, and with Ω = int(Ω)). We also
fix a compact set

K ⊂ Ω
with

m(K) = 0
and such that

each component of C \K intersects Ω
c
.

Furthermore we assume that there is a function

S ∈ C(Ω \K) ∩A(Ω \K)

with
S(z) = z̄ ∀z ∈ ∂Ω,

and such that
S ∈ L1(Ω)
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(since S is defined a.e. on Ω this makes sense). The function S will be referred
to as the Schwarz function of Ω, and we refer the reader to the book [4] for more
information about it.

Before stating and proving our results for this section let us motivate the above
assumptions, and explain what they have to do with mother bodies. So assume
that Ω has a mother body µ. If we put K := supp(µ), then by definition the
assumptions about K above will hold. Now let us define the functions

u := − 1
2π

(Uµ − UχΩ)

and

S(z) := z̄ − 4
∂u

∂z
.

By construction we have

−∆u = −4
∂2u

∂z∂z̄
= µ− 1 in Ω, and S(z) = z̄ on ∂Ω.

Also
∂

∂z̄

(
z̄ − 4

∂u

∂z

)
= 0 in Ω \K,

so we see that
S ∈ C(Ω \K) ∩A(Ω \K)

as above. Finally we have by the local integrability of 1/|z| and Fubini’s theorem
that ∫

Ω

|S| dm =
∫

Ω

∣∣∣∣z̄ − 4
∂u

∂z
(z)

∣∣∣∣ dm(z)

=
∫

Ω

∣∣∣∣z̄ − 1
π

(∫
Ω

1
z − z0

dm(z0)−
∫

1
z − z0

dµ(z)
)∣∣∣∣ dm(z)

≤
∫

Ω

|z̄| dm(z) +
1
π

∫
Ω

∫
Ω

1
|z − z0|

dm(z0)dm(z) +

+
1
π

∫ ∫
Ω

1
|z − z0|

dm(z)dµ(z0) < ∞.

This ends the motivation, since it implies that S ∈ L1(Ω).
We will use the following lemma valid in any number of dimensions.

Lemma 3.1. Suppose B ⊂ RN is open, and u ∈ L1
loc(B). If the distributional

gradient ∇u ∈ (D′(B, R))N has a representative in (L∞(B))N , then u has a repre-
sentative which is Lipschitz-continuous on B.

Proof. Let

ηε :=

{
C
εN exp

(
ε

|x|2−ε

)
|x| < ε

0 |x| ≥ ε,

where C is chosen so that ∫
RN

ηεdm = 1 ε > 0.

Let K ⊂ B be compact, for small ε > 0 we may look at the function

uε(y) := (u ∗ ηε)(y) =
∫

u(x)ηε(x− y)dm(x) y ∈ K.
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Then we get that

|∇uε(y)| = |(∇u ∗ ηε) (y)| =
∣∣∣∣∫ ∇u(x)ηε(x− y)dm(x)

∣∣∣∣ ≤
≤

∫
|∇u(x)| ηε(x− y)dm(x) ≤ ||∇u||L∞(B),

so
||∇uε||L∞(K) ≤ ||∇u||L∞(B).

Since uε is smooth and defined in a neighbourhood of K for small ε we may now
apply the mean value theorem from advanced calculus to get

|uε(x)− uε(y)| ≤ ||∇u||L∞(B)|x− y| ∀x, y ∈ K.

Hence, if we fix a small ε0 we see that the family

{uε : 0 < ε < ε0} ,

is uniformly bounded and uniformly equicontinuous on K. Since uε → u a.e. and
since K was arbitrary it is therefore easy to see from the Ascoli-Arzéla theorem
that we may take a continuous representative for u. But we also get on K

|u(x)− u(y)| ≤ |u(x)− u(y)− uε(x) + uε(y)|+ |uε(x)− uε(y)|
≤ |u(x)− u(y)− uε(x) + uε(y)|+ ||∇u||L∞(B)|x− y|.

So if we let ε → 0 and since K is arbitrary we conclude that

|u(x)− u(y)| ≤ ||∇u||L∞(B)|x− y| ∀x, y ∈ B,

so the proof is done. �

In the following theorem the notation introduced in the beginning of this chapter
is used.

Theorem 3.2. Suppose there is a positive measure η with supp(η) ⊂ K and such
that the function

u :=
−1
2π

(Uη − UχΩ)

is equal to 0 on Ωc. Then we have

∂u

∂z
=

1
4

(z − S(z)) in Ω \K.

If furthermore B ⊂ Ω is open and S is bounded on B \ K, then u is Lipschitz-
continuous on B.

Remark 3.3. We note that, from the definition of u, u ∈ C1(Ω \ K) and this
implies that ∂u/∂z is defined pointwise on Ω \K, and hence m−a.e. on Ω. But it
is also clear from the definition of u that this derivative defined pointwise almost
everywhere on Ω has

∂u

∂z
∈ L1(Ω),

and that this L1 function equals the distributional derivative of u (w.r.t. z) in
D′(Ω, R).
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Proof. We start by proving that
∂u

∂z
=

1
4

(z − S(z)) in Ω \K (and as elements in D′(Ω, R)).

To see this we note that the function

4
∂u

∂z
+ S(z)− z̄

is zero on ∂Ω, and analytic in Ω\K, and from this it follows that the identity holds
pointwise on Ω \ K. The equality in D′(Ω, R) follows from the remark preceding
the theorem.

Since u is real we also have
1
2
|∇u(z)| =

∣∣∣∣∂u(z)
∂z

∣∣∣∣ =
1
4
|S(z)− z| on B \K,

so∇u ∈ (L∞(B))2, and hence u has a representative v that is a Lipschitz-continuous
function. But by standard potential theory it is easy to see that we also have on B

u(x) = lim
r→0

1
m(Br(x))

∫
Br(x)

udm = lim
r→0

1
m(Br(x))

∫
Br(x)

vdm = v(x),

so u ≡ v on B, and the proof is done. �

4. Existence and uniqueness of a mother body for the ellipse

We now turn to the ellipse, and we need to introduce some more notation. We
let a > b > 0, c :=

√
a2 − b2 and

(1) Ω :=
{

(x, y) :
x2

a2
+

y2

b2
< 1

}
.

It is often more convenient to work with z, z instead of x, y, and it is easy to compute
that

P (z, z) :=
x2

a2
+

y2

b2
=

1
4a2b2

(
2(a2 + b2)zz − (a2 − b2)(z2 + z2)

)
.

Then we may write

Ω = {z : P (z, z) < 1} , ∂Ω = {z : P (z, z) = 1} .

In particular the Schwarz function satisfies

P (z, S(z)) = 1 on ∂Ω.

Solving this equation gives the Schwarz function for the ellipse, which is given by
one branch of

S(z) :=
a2 + b2

c2
z − 2ab

c2
(z2 − c2)1/2.

If we replace P above by some other polynomial in z, z it is often possible to find
the Schwarz function explicitly from this formula, and there will only be a finite
number of points which are possible poles and/or branch points of the Schwarz
function in this case. Hence, for algebraic domains (i.e. domains with algebraic
boundary) the continuity of the potential produced by a mother body is not a
problem as our results from the previous section shows. Here we shall only consider
the ellipse. Another interesting article where mother bodies for algebraic domains
are discussed is [3]. We refer to [4] for more information about the Schwarz function.

It is now time to show existence of a mother body for Ω. This construction is
well known, and in this case taken from [4] more or less.
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Suppose now that we remove the segment [−c, c] from C, and let S(z) be the
single-valued branch of the Schwarz-function in C \ [−c, c] which takes the value z̄
on ∂Ω. From Stokes theorem we immediately get for f analytic in a neighbourhood
of Ω: ∫

Ω

fdm =
1
2i

∫
∂ω

f(z)S(z)dz

for any open simply connected set ω which contains −c and c (with reasonable
boundary). Notice that it is only the term

−2ab

c2
(z2 − c2)1/2 = −2ab

c2
|z2 − c2|1/2ei((arg(z+c)+arg(z−c))/2)

of S(z) that contributes to this integral, and if we extend this part of S(z) to [−c, c]
from above we get

−i
2ab

c2

√
c2 − x2,

and from below we get the same thing but with reversed sign. So if we take
ωn ↘ [−c, c] we see that∫

Ω

fdm =
2ab

c2

∫ c

−c

f(x)
√

c2 − x2dx,

for any f analytic in a neighbourhood of Ω. Hence since this is a positive measure
it is easy to verify that this gives us a mother body µ for Ω with

dµ =
2ab

c2

√
c2 − x2dx on [−c, c].

Notice also that the formula above implies that every pair of ellipses of constant
density, having the same focal points and the same total mass, produce the same
potential outside the largest one. So this is another way to see that we without loss
of generality may assume that all our mother bodies have support in Ω.

We now turn to the uniqueness. If we look at the above formula for S(z) and
use that if we are given a mother body η for Ω, then we know from the previous
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section that we must have

S(z) = z̄ − 4
∂u

∂z
(z),

where

u = − 1
2π

(Uη − UχΩ) .

This gives us that 4∂u
∂z = z − S(z), and if we fix z∂Ω ∈ ∂Ω we get (in C \ supp(η)):

4u(z0) = 4
(∫ z0

z∂Ω

∂u

∂z
dz +

∫ z0

z∂Ω

∂u

∂z
dz̄

)
=

∫ z0

z∂Ω

z̄dz +
∫ z0

z∂Ω

zdz̄ −
∫ z0

z∂Ω

S(z)dz −
∫ z0

z∂Ω

S(z)dz̄

= |z0|2 − |z∂Ω|2 − 2Re

∫ z0

z∂Ω

S(z)dz.

(Notice that this is independent of the path of integration in C \ supp(η) and also
of z∂Ω ∈ ∂Ω.)

We now notice that at each point z0 ∈ Ω there are at most two possible values
of u(z0). If say z0 = x0 + iy0 then we can get these two values performing the
integration as above along the curves first starting from ib respectively −ib and
then going along the y−axis to iy0, then in a straight line from iy0 to x0 + iy0.
We should of-course start at the branch of S(z) taking the value z on ∂Ω. There
is however a set where there is only one possible value, for instance is [−c, c] part
of this set. We call this set A and we now determine what it looks like. The set A
is hence determined by the points in which the two integrals along curves such as
the ones described above coincide.

To determine this set we see that by symmetry it is sufficient to consider points
in {(x, y) : x ≤ 0, y ≥ 0} and given a point z0 here we take the integral from −ib
to iy0 and then along the straight line from iy0 to z0 parallel to the real axis, then
we get the other value in the same way but starting from ib instead (see Figure 2).
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The difference of the two integrals is

2Re

∫ y0

−b

S(iy)idy+2Re

∫ x0

0

S(x+iy0)dx−2Re

∫ y0

b

S(iy)idy−2Re

∫ x0

0

S(x+iy0)dx

{notice that the second and fourth integral not are equal because we are on different
branches of S}

= 2Re

∫ y0

−b

2ab

c2

√
y2 + c2ei3π/2idy + 2Re

∫ b

y0

2ab

c2

√
y2 + c2eiπ/2idy+

+4Re

∫ 0

x0

2ab

c2
|(x + iy0)− c2|1/2ei(arg(z+c)+arg(z−c))/2dx =

={here we have changed the branch of S in one integral along the x-direction and
added the two together.}=

=



8ab
c2

(∫ y0

0

√
y2 + c2dy +

∫ 0

x0
|(x + iy0)2 − c2|1/2 cos

(
arg(z+c)+arg(z−c)

2

)
dx

)
if (y0 ≤ b).

8ab
c2

(∫ b

0

√
y2 + c2dy +

∫ 0

x0
|(x + iy0)2 − c2|1/2 cos

(
arg(z+c)+arg(z−c)

2

)
dx

)
if (y0 > b).

This function is obviously zero on −c ≤ x0 ≤ c, y0 = 0, furthermore if x0 = 0 and
y0 > 0 it is strictly positive, and it decreases strictly towards minus infinity as we
let x0 → −∞. Hence this gives us that the set A lies on [−c, c] and four curves
(one in each quadrant) starting at the branch point of S and going towards infinity
(see Figure 3).

Suppose now that z ∈ supp(η) \ A, and we choose a small ε > 0 such that
Bε(z) ∩ A = ∅. Let us in Bε(z) denote the two possible values of u(z) by u1(z)
respectively u2(z), where these functions are chosen to be continuous in Bε(z). Now
we see that if u(z) = u1(z) then this must clearly be true everywhere in Bε(z), since
otherwise u would not be continuous. But this would also imply that −∆u = 1
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in Bε(z), which contradicts that z ∈ supp(η). We therefore may conclude that
supp(η) ⊂ A, and this immediately gives that η = µ, where µ was the mother
body we constructed in the beginning of this section. We may now state this as a
theorem.

Theorem 4.1. For the ellipse Ω =
{

(x, y) : x2

a2 + y2

b2 < 1
}

there is a unique mother
body µ. It is given by

dµ =
2ab

c2

√
c2 − x2dx on [−c, c].

5. Another existence result for the ellipse

We will make some further remarks about the ellipse in this section. A ques-
tion related to the one above, and especially to the uniqueness of the mother body
is the following. Since we have our mother body µ we can produce several posi-
tive measures supported by say a simple closed smooth arc, which give the same
potential as χΩ outside Ω. This can be done by choosing a domain D such that
supp(µ) ⊂ D ⊂⊂ Ω, where ∂D is a simple closed smooth curve, and then choosing
the measure to be Bal(µ, ∂D). This construction relies on that supp(µ) ⊂ D. The
question is now whether there exists any set D ⊂⊂ Ω, where ∂D is a simple closed
smooth curve, and some positive measure η with support on ∂D which gives the
same potential as χΩ outside Ω, but supp(µ) 6⊂ D? The answer is yes, and we
conclude this paper by proving this. This result should be compared with Example
1 in [1]. We still let Ω denote the fixed ellipse given by (1).

Theorem 5.1. There is a domain D ⊂⊂ Ω, where ∂D is a simple closed smooth
curve such that

(1) [−c, c] \D 6= ∅,
(2) there is a positive measure η with supp(η) ⊂ ∂D and

Uη = UχΩ on Ωc.

Proof. Let
ω := Ω \ {x + iy : y ≤ −|x|} .

So ω is simply Ω minus a wedge. The only important thing is that 0 ∈ ∂ω and no
other point of [−c, c] belongs to ∂ω, and also that ω is strongly starshaped with
respect to some point a ∈ ω. We already know that on any C1 Jordan arc in ω
between −c and c there is a complex Radon measure γ s.t.

(2)
∫

fdµ =
∫

fdγ

for every f analytic in Ω. Now by theorem 4.2 in [5] and the fact that any harmonic
function on Ω has a harmonic conjugate it follows that there is a real Radon measure
ν with support in ω such that

(3)
∫

hdµ =
∫

hdν

for every h harmonic in Ω. And by harmonic continuation it is easy to see that (3)
in-fact holds for any h ∈ C(ω) ∩H(ω). If we now let µε := µb([−c,−ε] ∪ [ε, c]) for



MOTHER BODIES 11

some 0 < ε < c we immediately get for any h ∈ C(ω) ∩ HP (ω) which is strictly
positive in ω that:

(4)
∫

hdν ≥
∫

hdµε > 0.

But since ω is strongly starshaped it is trivial to see that this class is dense with
respect to uniform convergence on compact subsets in ω in the class of all positive
harmonic functions in ω. Hence (4) holds for any such h 6= 0. Now we may apply
theorem 5.1 of [5] to get that there is some positive Radon measure η′ with support
in ω s.t. ∫

hdµ =
∫

hdη′

for every h ∈ C(ω) ∩H(ω). But this immediately implies that

Uη′ = Uµ = UχΩ

on Ωc. If we now take D ⊂⊂ ω with ∂D a smooth simple closed curve, and such
that supp(η′) ⊂ D we may choose η as

η := Bal(η′, ∂D),

and the proof is done. �
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