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Convex Polyhedron

The intersection of a finite number of half-spaces is a
geometric object known as a convex polyhedron.

• Every convex polyhedron is a set of feasible solutions
of a system consisting of a finite number of linear
inequalities.

• The set of feasible solutions of any linear
programming problem is a convex polyhedron.

A bounded convex polyhedron is known as a convex
polytope
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An inequality view

Any convex polyhedron K, can be viewed as the set of feasible solution of
some

Dx = d

Fx ≥ g

Note that it can be written as a general system of constraints:

Dx ≥ d

Dx ≤ d ⇐⇒ −Dx ≥ −d
Fx ≥ g

⇐⇒
Ax ≥ b
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A bit of perspective

An affine space of Rn is the set of feasible solutions of a
general system of linear equations. Hence a special case of
a convex polyhedron is an affine space.

Affine spaces are the focus of discussion in linear algebra
textbooks... we will study convex polyhedra that are not
affine spaces. - Murphy
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Active/Inactive constraints at a feasible solution x̄

Let K be the set of feasible solutions of the general
system of constraints (or the solution space of a convex
polyhedron)

Ai·x

{
= bi for i = 1, . . . , p

≥ bi for i = p + 1, . . . ,m
(1)

consisting of inequalities and possibly equality constraints.
For a feasible solution x̄ ∈ K, a constraint is considered

• Active (tight) if it in (1) is satisfied as an equation.

• Inactive (slack) if it in (1) is satisfied as a strict
inequality.
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Example

Example

Consider the following system of constraints in the point
x̄ = (x1, x2) = (3, 9):

2x1 + x2 ≤ 15(Active)

x1 + x2 ≤ 12(Active)

x1 ≤ 5(Non-active)

x1 ≥ 0(Non-active)

x2 ≥ 0(Non-active)
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Minimal representation

General system of constraints K:

Ax ≥ b (2)

An inequality constraint is said to be a redundant inequality
constraint if its removal from the system does not change its
set of feasible solutions.

A system of constraints that does not contains any redundant
constraints is said to be a minimal representation of that convex
polyhedron K.
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Example

Example
Consider the following system of
constraints:

2x1 + x2 ≤ 15

x1 + x2 ≤ 12

x1 ≥ 2

x1 ≥ 0(Redundant)

x2 ≥ 0

Minimal representation:

2x1 + x2 ≤ 15

x1 + x2 ≤ 12

x1 ≥ 2

x2 ≥ 0
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Boundary point/Interior point

Consider a general system of constraints K:

Ax ≥ b (3)

A points x̄ ∈ K is said to be

• A boundary point of k if and only if there is at least
one active constraint at x̄

• An interior point of K if there are no active
constraints at x̄

(Analogous to a convex set)
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Supporting hyper plane

A supporting hyperplane for a convex polyhedron K is a
hyperplane H in Rn satisfying:

• K is completely contained on one of side of K

• H ∩K 6= ∅
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Face of a polyhedron

A face of a convex polyhedron K is either

• The empty set ∅
• K itself

• Intersection H ∩K of K with a supporting
hyperplane H

Faces of K other than ∅ and K are called proper faces.
A single point that by itself is a face of a convex
polyhedron is called an extreme point.
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Theorem

Theorem

The set of optimum solutions of a linear program is a face
of its set of feasible solutions.

The set of optimum solutions of an LP is usually referred
to as its optimum face. (Note: Even if the LP has no
solutions ∅ is still an face of K)
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Algebraic characterisation of extreme point

Let K be the convex polyhedron, which is the set of feasible solution of

Dx = d

Fx ≥ g

Definition
Let x̄ ∈ K. Denote the active constraints at x̄ as S. x̄ is said to be an
basic feasible solution (BFS, extreme point) if and only if it is the unique
solution for S or equivalently the set of column vector of variables in S is
linearly independent. S is called the active system in point x̄.

If x̄ is an BFS of K it is said to be non-degenerate if S is square and
degenerate if the number of linear equalities is larger than the number of
variables.
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Example

Example
Consider the following system of constraints in the point
x̄ = (x1, x2) = (3, 9):

2x1 + x2 ≤ 15

x1 + x2 ≤ 12

x1 ≤ 5

x1, x2 ≥ 0

The point x̄ is an non-degenerate BFS since the active system is a square
matrix of full rank.

2x1 + x2 ≤ 15

x1 + x2 ≤ 12
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System in standard form

Consider the system K in standard form

Ax = b

x ≥ 0

where A is a m× n-matrix. A basic vector for the
standard form is a vector xB of m variables whose
associated column vectors are linearly independent.
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Obtaining a basic solution

The basic solution of the standard form with respect to xB
is obtained by fixing each non-basic variable at its lower
bound 0. Then solve for the values of the basic variables.

Non-basic vector: xD = 0
Basic vector: xB = B−1b
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Characterisation of solutions

In:
Non-basic vector: xD = 0
Basic vector: xB = B−1b
xB, B are said to be:

• Feasible basic vector; feasible basis if the solution is
feasible, i.e., B−1b ≥ 0

• Infeasible basic vector; infeasible basis otherwise

• Non-degenerate if all the entries in B−1b are non-zero

• Degenerate if at least one entry in B−1b is zero



1 Convex Polyhedron
2 Basic feasible solution
3 The purification routine



Polyhedral Geometry Emil Karlsson 161110 21

The purification routine

Importance

• Interior point methods finds a feasible point of an LP,
the purification routine makes it an BFS (or an
optimal BFS)

• It can be shown that if the set of feasible solution of
the system is bounded, then every feasible solution x̄,
is a convex combination of basic feasible solutions of
the system
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General idea of the purification routing

Consider the LP in standard form:

min c′x

s. t. Ax = b

x ≥ 0

1. Start from a feasible solution with r non-active constraints. Check if
the active system is linear dependent, if not: stop (i.e., we have a
BFS!)

2. Since the solution is not unique (the active system is not square).
The non-active constraints can be written as a linear combination of
the active constraints. Hence we have a space where the active
constraints are always for-filled.

3. Move in this active system until a previous non-active constraint gets
active. We have found an extreme point in this particular restricted
space. Now we have r − 1 non-active constraints. Move to step 1.
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Theorems of standard form

Consider the LP in standard form

min c′x

Ax = b

x ≥ 0

Theorem

If an LP in standard form has a feasible solution, then it has a
BFS.

Theorem

If an LP in standard form has optimum feasible solution, then it
has a BFS which is also optimal.
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