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Piecewise Linear (PL) Functions



2.3 Piecewise Linear (PL) Functions

PL Functions in one Variable
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I1 = (−∞, 0], I2 = (0, 2], I3 = (2,∞),
where I1 ∪ I2 ∪ I3 = R.
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2.3 Piecewise Linear (PL) Functions
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2.3 Piecewise Linear (PL) Functions

PL Functions in Several Variable

Intervals is replaced with convex polyhedral regions, K1, . . . ,Kr, s.t.
Rn = K1 ∪ · · · ∪Kr. We have S ⊂ {1, . . . , r}.
f(x) is a PL function iff

f(x) can be written as an affine function, f i(x) = ci0 + ci
T
x on every

region
In every point x ∈

⋂
i∈S Ki , the different functions have the same

value: fi(x)∀i ∈ S.
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2.3 Piecewise Linear (PL) Functions

x

y

-3 -2 -1 1 2 3 40

1

2

3

4

6 / 24



2.3 Piecewise Linear (PL) Functions

Result (2.2)

Let θ(λ) be a PL function of a single variable λ ∈ R. Let λ1, . . . , λr be
the various breakpoints in increasing order where its slope changes. θ(λ) is
convex iff at each breakpoint λt; its slope to the right of λt is strictly
greater than its slope to the left of λt; that is, iff its slopes are monotonic
increasing with the variable.
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2.3 Piecewise Linear (PL) Functions

Theorem (2.5)

Let K1 ∪ . . . ∪Kr be a partition of Rn into convex polyhedral regions, and
f(x) a PL function. Then f(x) is convex iff for each t = 1 to r, and for
all x ∈ Kt

cto + (ct)Tx = max{cpo + (cp)Tx : p = 1, . . . , r}.

In effect, this says that f(x) is convex iff for each x ∈ Rn

f(x) = max{cpo + (cp)Tx : p = 1, . . . , r}.
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Optimizing PL Functions Subject
to Linear Constraints



2.4 Optimizing PL Functions Subject to Linear Constraints

Optimizing general PL function

”PL function subject to linear constraints is a hard problem for which
there are no known efficient algorithms”

Special cases:

Minimizing a PL convex function, or equivalently

Maximizing a PL concave function

”subject to linear constraints can be transformed into LPs by introducing
additional variables, and solved by efficient algorithms available for LPs.”

We will study different ways of transforming into LP.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Separable function

Definition

A real-value function z(x) of decision variables x = (x1, . . . , xn)T is
separable if it can be expressed as a sum of n different functions,
z(x) = z1(x1) + · · ·+ zn(xn) where each functions is dependent on one
variable.

Result

If each function, zj(xj), ∀j = 1, . . . , n is a convex PL function then is
z(x) also a convex PL function.

Result

The negative of a concave function is convex. Maximizing a concave
function is the same as minimizing its negative, which is a convex function

10 / 24



2.4 Optimizing PL Functions Subject to Linear Constraints

Minimizing a Separable PL Convex Function Subject to
Linear Constraints

We want to solve:

min
x

z(x) = z1(x1) + . . .+ zn(x)

s.t.
Ax = b
x ≥ 0,

where zi(x) are convex PL functions. We do not have algorithms for
solving this type of problem.
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2.4 Optimizing PL Functions Subject to Linear Constraints

LP problem of convex PL function

Let θ(λ), λ ∈ R1 be a convex PL function. Then the value θ(λ̄) is the
value as the solution for the problem

min h = c1µ1 + · · ·+ crµr
s.t.

µ1 + · · ·+ µr = λ̄
0 ≤ µt ≤ λt − λt−1, t = 1, . . . , r

λ̄ = 8.5
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2.4 Optimizing PL Functions Subject to Linear Constraints

min
x

z(x) = z1(x1) + . . .+ zn(x) =
∑n

j=1 zj(xj) =
∑n

j

∑rj
k=1 c

k
jx

k
j

s.t. ∑rj
k=1 x

k
j = xj , j = 1, . . . , n

Ax = b
x ≥ 0,
0 ≤ xkj ≤ lkj ∀1 ≤ j ≤ n, 1 ≤ k ≤ rj
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2.4 Optimizing PL Functions Subject to Linear Constraints

Min-max, Max-min Problems

We want to solve:

max z(x) = min{c10 + c1x, . . . , cr0 + crx}
s.t.

Ax = b
x ≥ 0,

Reformulating:
max xn+1

s.t.
xn+1 ≤ c10 + c1x
xn+1 ≤ c20 + c2x

...
xn+1 ≤ cr0 + crx
Ax = b
x ≥ 0,
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2.4 Optimizing PL Functions Subject to Linear Constraints

Example of max-min problem

”Production of products P1 and P2, with resources RM1, RM2 and RM3.
The produced quantity of the products is denoted by x1 and x2”

max p(x) = min{15x1 + 10x2
10x1 + 15x2, 12x1 + 12x2}

s.t.
2x1 + x2 ≤ 1500 (Supply of RM1)
x1 + x2 ≤ 1200 (Supply of RM2)

x1 ≤ 500 (Supply of RM3)
x1, x2 ≥ 0

max p
s.t.

p ≤ 15x1 + 10x2
p ≤ 10x1 + 15x2
p ≤ 12x1 + 12x2

2x1 + x2 ≤ 1500
x1 + x2 ≤ 1200

x1 ≤ 500
x1, x2 ≥ 0,
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2.4 Optimizing PL Functions Subject to Linear Constraints

Minimizing Positive Linear Combinations of Absolute
Values of Affine Functions

We want to solve:
min z(x)
s.t. Ax ≥ b.

where z(x) = ω1

∣∣c10 + c1x
∣∣+ . . .+ ωr |cr0 + crx|, where ωi > 0.

Solve in two steps:

1 Absolute value as linear function of two variables

2 Transform the problem.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Absolute value as linear function of two variables

We consider the affine function ck0 + (ck)Tx and the value in point x̄ ∈ Rn

is denoted by β = ck0 + (ck)Tx̄. Then we formulate the problem

min u+ v
s.t. u− v = β

u, v ≥ 0

We claim that the value of the objective function in the optimal point is
|β|.

Proof (one case)

Consider β ≤ 0, then the solution can be written as (α, |β|+ α), where
α ≥ 0. The value of the objective function 2α+ |β| and the optimal is
α = 0, i.e. the point (0, |β|) is the optimal.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Transform the Problem

max z(x)
s.t. Ax ≥ b.

where z(x) = ω1

∣∣c10 + c1x
∣∣+ . . .+ ωr |cr0 + crx|, where ωi > 0.

max ω1

[
(u+1 ) + (u−1 )

]
+ . . .+ ωr [(u+r ) + (u−r )]

s.t.
c10 + c1x = u+1 − u

−
1

...
cr0 + crx = u+r − u−r

Ax ≥ b
(u+t ), (u−t ) ≥ 0, t = 1, . . . , r.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Minimizing the Maximum of the Absolute Values of
Several Affine Functions

We want to solve:

min
x

z(x) = max{
∣∣c10 + c1x

∣∣ , . . . , |cr0 + crx|}
s.t.

Ax ≥ b.

Model 1: First transform the absolute value and then transform the
max-operator

Model 2: Rewrite problem and then transform the max-operator
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2.4 Optimizing PL Functions Subject to Linear Constraints

min
x

z(x) = max{
∣∣c10 + c1x

∣∣ , . . . , |cr0 + crx|}
s.t.

Ax ≥ b.

Model 1

min z = max{u+
1 + u−

1 , . . . , u
+
r + u−

r }
s.t. c10 + c1x = u+

1 − u
−
1

.

.

.

cr0 + crx = u+
r − u

−
r

Ax ≥ b

u+
t , u

−
t ≥ 0, t = 1, . . . , r.

Model 2

min
x

z(x) = max{c10 + c1x,−c10 − c
1x, . . . ,

cr0 + crx,−cr0 − c
rx}

s.t.
Ax ≥ b.

min z

s.t. z ≥ u+
1 + u−

1 , ∀t = 1, . . . , r

c10 + c1x = u+
1 − u

−
1

.

.

.

cr0 + crx = u+
r − u

−
r

Ax ≥ b

u+
t , u

−
t ≥ 0, t = 1, . . . , r.

min z

s.t. −z ≤ ct0 + ctx, ∀t = 1, . . . , r

z ≥ ct0 + ctx, ∀t = 1, . . . , r
Ax ≥ b

Model 2 has the advantage that only one new variable needs to
be introduced.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Minimizing Positive Combinations of Excesses/Shortages

We also want to model excess and shortage or in more general we want to
model function of the type max{0, z(x)} = (z(x))+ and
−min{0, z(x)} = (z(x))−. To illustrate consider the following problem1.

A company has two plants, P1, P2, which produce the same product. The plants have regular production capacity and cost, ai
and gi respectively and the overtime (extra) capacity and cost bi and hi. The demand is d with a selling price p, but in the
market a dealer can buy excess (over demand) to the price 0 ≤ s ≤ p. The transportation cost from plant i to the market is
ci. The aim is to maximize the net profit.

We introduce xi as the tons shipped from plant i; yi,1 is the tons produced in regular and yi,2 is the tons produced in
overtime. From these we can formulate the problem.

max
(∑2

i=1 xi

)
p−

(∑2
i=1 xi − d

)+
(p− s)− (g1y11 + h1y12 + g2y21 + h2y22)−

∑2
i=1 cixi

s.t.
x1 = y11 + y12
x2 = y21 + y22

0 ≤ yi1 ≤ ai, i = 1, 2
0 ≤ yi2 ≤ bi, i = 1, 2

1Which are a simplified version of Example 2.9 in Murty.
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2.4 Optimizing PL Functions Subject to Linear Constraints

Rewriting the Problem

max
(∑2

i=1 xi

)
p−

(∑2
i=1 xi − d

)+
(p− s)− (g1y11 + h1y12 + g2y21 + h2y22)−

∑2
i=1 cixi

s.t.
x1 = y11 + y12
x2 = y21 + y22

0 ≤ yi1 ≤ ai, i = 1, 2
0 ≤ yi2 ≤ bi, i = 1, 2

max
(∑2

i=1 xi

)
p− u+(p− s) − (g1y11 + h1y12 + g2y21 + h2y22)−

∑2
i=1 cixi

s.t.
x1 = y11 + y12
x2 = y21 + y22

0 ≤ yi1 ≤ ai, i = 1, 2
0 ≤ yi2 ≤ bi, i = 1, 2∑2

i=1 xi = d + u+ − u−

u+, u− ≥ 0.
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Multiobjective LP Models



2.5 Multiobjective LP Models

Multiobjective LP Models

”In most real-world decision-making problems there are usually several
objective functions to be optimized simultaneously”

min z1(x), . . . , zk(x)
s.t. Ax = b

Dx ≥ d
x ≥ 0.

Definition (Pareto optimal)

Pareto optimala solution is a feasible solution, x̄ for which it is impossible
to improve on of the objectives without diminish an other. A feasible
solution which is not pareto optimal is called a dominated solution.

aAlso: vector minimum, nondominated solution, equilibrium solution, efficient solution
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2.5 Multiobjective LP Models

Practical Approaches to resolve the Problem of Optimality

Scale the different objectives to the same scale with an exchange vector

Assign weights to the objective function and sum:
∑k

i=1 ωizi(x), where∑k
i=1 ωi = 1.

Assign ”realistic” values to the different objective functions,
gr, r = 1, . . . , k.

Objective functions where a higher value is the goal - measure shortage
Objective functions where a lower value is the goal - measure excess
Objective functions where a fix value is the goal - measure both
shortage and excess

Original

min z1(x), . . . , zk(x)
s.t. Ax = b

Dx ≥ d
x ≥ 0.

Rewritten

min
∑k

i=1

(
αru

+
r + βrµ

−
r

)
s.t.

zr(x)− gr = u+
r − u

−
r , r = 1, . . . , k

u+
r , u

−
r ≥ 0, r = 1, . . . , k
Ax = b
Dx ≥ d
x ≥ 0
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