ALGORITHMS FOR SOLVING LPs

ULEDI NGULO

Linkoping University

December 1, 2016

イロト イヨト イヨト イヨト

3

1 How to Check if an Optimum Solution is Unique

Mathematical Equivalence of LP to the Problem of Finding a Feasible Solution of a System of Linear Constraints Involving Inequalities

Marginal Values and the Dual Optimum Solution

Revised Simplex Variants of the Primal and Dual Simplex Methods and Sensitivity Analysis

The Primal and Dual Degeneracy of a Basic Vector for an LP in Standard Form

minimize
$$z(x) = cx$$

s. to $Ax = b$ (1)
 $x \ge 0$

 $A \in \mathbb{R}^{m \times n}$; $c \in \mathbb{R}^n$; $b \in \mathbb{R}^m$; $x \in \mathbb{R}^n$

 Primal non-degenerate If every entry in the basic values vector B⁻¹b is nonzero.

イロト イポト イヨト イヨト

• Primal degenerate if at least one entry in the basic values vector $B^{-1}b$ is zero.

- Dual non-degenerate If none of the nonbasic dual slacks $\overline{c_j}$ have 0-value at its dual basic solution ($\overline{c_j} = c_j c_B B^{-1} A_{.j}$ is nonzero for every nonbasic variables x_j).
- Dual degenerate If at least one of the nonbasic dual slacks $\overline{c_j}$ has 0-value at its dual basic solution ($\overline{c_j} = c_j c_B B^{-1} A_{.j}$ is zero for at least one of the nonbasic variables x_j).

			Tab	leau 1			
BV	<i>x</i> ₁	x_2	x_3	x_4	x_5	-z	RHS
x_1	1	0	1	-1	1	0	3
x_2	0	1	$^{-1}$	1	1	0	4
-z	0	0	-2	3	2	1	-10
DV	<i>x</i> ,	; ≥ 0	Tab	leau 2	inimiz	ze z.	DUS
DV	1	12	1	1	1	-2	KIIS
x_1	1	0	1	-1	1	0	3
x_2	0	1	-1	1	1	0	0
-z	0	0	2	3	2	1	-10
	x	; ≥ 0	for all	l j, m	inimi	ze z.	

★ ■ ▶ ★ 国 ▶ ★ 国 ▶

Sufficient Conditions for Checking the Uniqueness of Primal and Dual Optimum Solutions

Theorem

Consider the LP in standard form and let x_B be an optimum basic vector for it. Let x_D be the vector of nonbasic variables(i.e., those not x_B). Let the basic, nonbasic partition of the canonical tableau wrt x_B be("BV" is abbreviation for "basic vector")

BV	x _B	x _D	ical ta —z	bleau Updated RHS
x _B	I	Đ	0	b
-z	0	Ē₽	1	—īz

Theorem(Cont'd)

If $\overline{c_D} > 0$ (i.e., all nonbasic relative cost coefficients are positive or x_B is dual nondegenerate), then $\overline{x} = (x_B, x_D) = (\overline{b}, 0)$ is the unique primal optimum solution for this LP.

If $\overline{b} > 0$ (all updated RHS constants> 0,or x_B is primal nondegenerate), then the dual optimum solution is unique for this problem.

・ロン ・回 ・ ・ ヨン・ ・ ヨン・

Procedure to check if the BFS corresponding to an optimum basic vector x_B is the unique optimum solution

• **Example 1:** consider the following LP in standard form, for which the optimum canonical tableau *wrt* the basic vector (x_1, x_2, x_3) is given.

BV	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	-z	b	Ratio
x_1	1	0	0	-1	1	1	2	0	0	
<i>x</i> ₂	0	1	0	1	$^{-1}$	2	1	0	2	2
<i>x</i> ₃	0	0	1	2	2	4	3	0	6	3
-z	0	0	0	0	0	10	20	1	-100	$\theta = 2$
				$x_i \ge$	0 for a	all j,	min a	2		

- The BFS $\overline{x} = (0, 2, 6, 0, 0, 0, 0)^T$ is an optimum solution with optimum objective value 100.
- $\overline{c}_4, \overline{c}_5$ are zero and $\overline{c}_6, \overline{c}_7$ are positive. so, $x_6 = x_7 = 0$, then any feasible solution of the above LP is an optimum solution.

• *x*₄ enters the basic vector with nondegenerate pivot step.

BV	x_1	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	x7	-z	b	Ratio
x_1	1	1	0	0	0	3	3	0	2	
<i>x</i> ₄	0	1	0	1	$^{-1}$	2	1	0	2	
x3	0	-2	1	0	4	0	1	0	2	
-z	0	0	0	0	0	10	20	1	-100	

This gives us an alternate optimum BFS $\hat{x} = (2, 0, 2, 2, 0, 0, 0)$ wrt new basic vector (x_1, x_4, x_3) .

イロト イポト イヨト イヨト

The Optimum Face for an LP

Definition

The optimum face of any LP is the set of its optimum solutions.

Consider an LP in standard form

minimize
$$z(x) = cx$$

s. to $Ax = b$ (2)
 $x \ge 0$

Let $x \in K$ where K is a convex polyhedron and given x^* as any optimum solution for this LP, then optimum face is the set of feasible solutions of the following system of constraints.

$$Ax = b$$
$$cx = cx^*$$
$$x \ge 0.$$

Mathematical Equivalence of LP to the Problem of Finding a Feasible Solution of a System of Linear Constraints Involving Inequalities

Consider a Primal problem

Let π,μ be dual vectors, then its dual problem is

maximize
$$\pi h + \mu g$$

s. to $\pi F + \mu G = f$ (4)
 $\mu \ge 0.$

- If ξ , (π, μ) are primal, dual feasible solutions, then by weak duality we get, $f\xi \pi h \mu g \ge 0$.
- Any feasible solution satisfying the system containing both primal and dual constraints must satisfy $f\xi \pi h \mu g \leq 0$ as an equation.
- By duality theorem the solution will be a primal, dual pair of optimum solutions. So, instead of finding an optimum solution for (3), is equivalent to find the feasible solution to the system of linear constraints

$$\begin{split} F\xi &= h,\\ \pi F + \mu G &= f,\\ G\xi &\geq g,\\ \mu &\geq 0; \quad -f\xi + \pi h + \mu g &\geq 0. \end{split}$$

・ロット (四) (日) (日)

Marginal Values and the Dual Optimum Solution

Consider an LP in standard form

minimize
$$z(x) = cx$$

s. to $Ax = b$ (5)
 $x \ge 0$

・ロン ・四マ ・ヨマ ・ヨマ

- Marginal values are defined as rates of change of the optimum objective value in this LP per unit change in the RHS constants from their current values.
- Mathematically, MVs is $\frac{\partial f(b)}{\partial b_i} = \lim_{\epsilon \to 0} \frac{f(b_1, \dots, b_{i-1}, b_i + \epsilon, b_{i+1}, \dots, b_m) f(b)}{\epsilon}$

Theorem

If the LP (5) has a primal nondegenerate optimum BFS, then MVs wrt b_i exist for all *i*, and the unique optimum dual solution is the vector of MVs of (5).

イロン イヨン イヨン イヨン

Primal Revised Simplex Algorithm Using the Explicit Basis Inverse

Consider an LP problem in standard form

ľ

minimize
$$z(x) = cx$$

s. to $Ax = b$ (6)
 $x \ge 0$

イロト イヨト イヨト イヨト

x_1	 x_j	 x_n	-z	RHS
a11	 a _{1j}	 a_{1n}	0	b_1
÷	:	:	:	:
a_{m1}	 amj	 amn	0	bm
C1	 Cj	 Cn	1	0

• The extended basis corresponding to $(x_B, -z)$ is

$$\mathcal{B} = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ c_{\mathbf{B}} & \mathbf{1} \end{pmatrix}$$
(7)

・ロン ・回 と ・ ヨン ・ ヨン

• The inverse tableau corresponding to $(x_B, -z)$ is

$$\mathcal{B}^{-1} = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ c_{\mathbf{B}} & \mathbf{1} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{B}^{-1} & \mathbf{0} \\ -\pi & \mathbf{1} \end{pmatrix}$$
(8)

where $\pi = c_{\rm B} {\rm B}^{-1}$ as dual basic vector.

• In general, we have the iverse tableau.

BV	Inverse	Tableau	Basic values
x _B	B ⁻¹	0	b
-z	$-\pi$	1	— <u></u> z

・ロト ・回 ト ・ヨト ・ヨト

æ

Inverse tableau wrt x_B

Steps in an iteration of the primal simplex algorithm when $(x_B, -z)$ is the primal feasible basic vector

- 1. Compute relative cost coefficients of nonbasic variables
- 2. Check the optimality criterion
- 3. Select the entering variable
- 4. Compute the updated column of the entering variable
- 5. Check the unboundedness criterion
- 6. Minimum ratio test to determine the dropping basic variable, and pivot step to update the inverse tableau

- 4 同 6 4 日 6 4 日 6

Example

			Orig	inal ta	bleau	L		
x_1	x_2	x3	<i>x</i> ₄	x5	<i>x</i> ₆	x7	-z	b
1	0	0	0	-1	1	1	0	2
0	1	0	0	1	-1	1	0	1
0	0	1	0	2	20	1	0	5
0	0	0	1	0	-1	1	0	0
0	0	1	1	-1	29	-8	1	0
_		r . >	0 for	all i	minir	nize z		

• The primal BFS corresponding to $x_{\mathbf{B}}$ is $\overline{x} = (2, 1, 5, 0, 0, 0, 0)^T$

・ロン ・回と ・ヨン ・ヨン

				First	inve	rse tablea	u		
Basic		Inv	erse ta	bleau		Basic	PC	Ratios	
var.						values	<i>x</i> 5		
x_1	1	0	0	0	0	2	-1		
x_2	0	1	0	0	0	1	1	1/1	PR
<i>x</i> ₃	0	0	1	0	0	5	2	5/2	
<i>x</i> ₄	0	0	0	1	0	0	0		
-z	0	0	-1	-1	1	-5	-3	Min. =	$\theta = 1$
	-		DC		1	nn '			

PC pivot column, PR pivot row

• The cost coefficient for nonbasic variables x_5, x_6, x_7 is the vector $(\overline{c}_5, \overline{c}_6, \overline{c}_7) = (-3, 10, -10)^T$

• The solution $x(\lambda) = (2 + \lambda, 1 - \lambda, 5 - 2\lambda, 0, \lambda, 0, 0)^T$, $z(\lambda) = 5 - 3\lambda$.

• The minimum ratio is $\theta = \min\{1/1, 5/2\} = 1$, then $\lambda \le 1$. suppose $\lambda = 1$, then we drop x_2 form the present basic variable

Basic		Inve	rse tab	oleau		Basic	PC	Ratios	
var.						values	X7		
<i>x</i> ₁	1	1	0	0	0	3	2	3/2	
<i>x</i> ₅	0	1	0	0	0	1	1	1/1	
<i>x</i> ₃	0	-2	1	0	0	3	-1		
<i>x</i> ₄	0	0	0	1	0	0	1	0/1	PR
-z	0	3	-1	-1	1	-2	-7	Min. =	$\theta = 0$

Second inverse tableau

PC pivot column, PR pivot row

- The new BFS is $\hat{x} = (3, 0, 3, 0, 1, 0, 0)^T$, $\hat{z} = 2$.
- The cost coefficient for nonbasic variables x_2, x_6, x_7 is the vector $(\overline{c}_2, \overline{c}_6, \overline{c}_7) = (3, 7, -7)^T$.

・ロン ・回 とくほど ・ ほとう

I nird inverse tableau										
Basic		Inve	Basic							
var.						values				
x_1	1	1	0	-2	0	3				
x_5	0	1	0	$^{-1}$	0	1				
x_3	0	-2	1	1	0	3				
<i>x</i> ₇	0	0	0	1	0	0				
-z	0	3	-1	6	1	-2				

• The cost coefficient for nonbasic variables x_2, x_4, x_6 is the vector $(\overline{c}_2, \overline{c}_4, \overline{c}_6) = (3, 7, 0)^T$. All are ≥ 0 , the optimality criterion is satisfied.

• The present BFS $\hat{x} = (3, 0, 3, 0, 1, 0, 0)^T$ in an Optimum solution, $\hat{z} = 2$ and $\hat{\pi} = (0, -3, 1, -6)^T$ is the dual solution.

・ロット (四) (日) (日)

Revised primal simplex method(Phase I,II) with Explicit Basis Inverse

Let the original tableau be

x_1	 x_j	 x_n	-z	RHS
a11	 a_{1j}	 a_{1n}	0	b_1
:	:	÷	:	:
a_{m1}	 a_{mj}	 amn	0	b_m
<i>c</i> ₁	 Cj	 Cn	1	0

• Search for a unit basic vector in the original tableau. If a full unit basic vector, *x*_B, is found, then it will be an initial feasible solution and we apply revised simplex algorithm.

- If a full unit basic vector is not attained in the original tableau implies that we don't have feasible solution.
- The simplex method divides the task of solving the problem into two phases.
- Phase 1 focuses on finding a BFS for the problem, ignoring the original objective function.
- The artificial variables are added to the rows that do not have basic variables.
- Then, we minimize the phase I objective function w starting with the unit basic vector x¹_B. with the artificial variables introduced.
- If the sum of all artificial variables w = 0, then we drop all artificial variables and the associated objective function we go to phase II.

			Phase I	origi	nal tableau	1		
	Origin	nal		Artifi	cial			
x_1		x_n	x_{n+1}		x_{n+m-r}	-z	-w	RHS
<i>a</i> ₁₁		a_{1n}				0	0	<i>b</i> ₁
:		:	N	lissing	g unit	:	:	1 :
a_{m1}		amn		vecto	ors	0	0	bm
<i>c</i> ₁		Cn	0		0	1	0	0
0		0	1		1	0	1	0

All variables ≥ 0 , minimize w

Pl	nase I Ir	ivers	e Tabl	eau wrt x_B	
BV	Invers	e tab	Basic values		
x _B	B ⁻¹	0	0	Б	
-z	$-\pi$	1	0	—īz	
-w	$-\sigma$	0	1	$-\bar{w}$	

< □ > < □ > < □ > < □ > < □ > .

Э

• Its relative cost coefficient is given by

$$\overline{d}_j = egin{pmatrix} -\sigma, & 0, & 1 \end{pmatrix} egin{pmatrix} \mathcal{A}_{,j} \ c_j \ d_j \end{pmatrix}$$

- During phase I, the only artificial variables left in the original tableau are those which are still basic variables.
- Phase I termination condition is When the relative cost coefficient $\overline{d}_j \ge 0$ for all original problem variables x_j .

・ロン ・四マ ・ヨマ ・ヨマ

How to find a feasible solution to a system of linear constraints

- if the system consists of linear equations only, then we apply the Gaussian elimination to find the feasible solution.
- If the system involves linear inequalities and/or bounds on the variables, we write it in std form and apply the phase I of the primal simplex method to find afeasible solution.

Infeasibility Analysis

Consider an LP problem in standard form

minimize
$$z(x) = cx$$

s. to $Ax = b$ (9)
 $x \ge 0$

・ロット (四) (日) (日)

- Suppose the problem is infeasible, then it is required to be modified so that to be feasible.
- One way of modifying is making changes in the RHS constants b_i usually involves some expenses, typically proportional to the amount of change, and may be different rates for different *i*.
- We can modify $b = (b_i)$ by considering the final phase I solution.

• Consider the original tableau

x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> 5	-z	b
2	3	1	-1	0	0	10
1	2	-1	0	1	0	5
1	1	2	0	0	0	4
1	2	3	0	0	1	0
$x_i \ge 0$ for all j, minimize z						

• The vector $b = (10, 5, 4)^T$ and in the final phase I solution obtained for this example, only artificial variable t_1 , basic variable, has positive value of 1.

- So, changing the vector b to (9, 5, 4), the becomes feasible.
- The final phase I inverse tableau for this modified problem is obtained from the original problem by changing the final value of the basic variable *t*₁ to 0.

Basic var.		Inverse tableau						
t_1	1	-1	-1	0	0	0		
x_2	0	1	-1	0	0	1		
x_1	0	-1	2	0	0	3		
-z	0	-1	0	1	0	-5		
-w	-1	1	1	0	1	0		

▲ □ ► ▲ □ ►

THANK YOU!

・ロン ・回 と ・ ヨ と ・ ヨ と

3