Revised Simplex Methods Using the Product Form of the Inverse Finding the Optimum Face of an LP (Alternate Optimum Solution)
The Dual Simplex Algorithm

Revised Simplex Variants of the Primal and Dual Simplex Methods and Sensitivity Analysis

ULEDI NGULO

Linkoping University

December 8, 2016
1. Revised Simplex Methods Using the Product Form of the Inverse

2. Finding the Optimum Face of an LP (Alternate Optimum Solutions)

3. The Dual Simplex Algorithm
Pivot Matrices

- Suppose $D = (d_{ij})$ is a matrix of $p \times q$, and consider performing a GJ pivot step on $D$, there will be a square matrix $P$ of order $p \times p$ called the *pivot matrix* corresponding to this pivot step satisfying the property that $\overline{D} = PD$.
- The pivot matrix $P$ will be the same as the unit matrix $I$ of order $p$ except for one column known as its *eta(η) column*. Let $d_{rs} \neq 0$. 

\[
\begin{align*}
\text{PC} & \quad \eta\text{-col.} & \quad \text{Pivot matrix } P \\
\hline
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} & \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array} & \begin{array}{cccc}
1 & \ldots & 0 & -d_{1s}/d_{rs} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 1 & -d_{r-1s}/d_{rs} \\
0 & \ldots & 0 & 1/d_{rs} \\
0 & \ldots & 0 & -d_{ms}/d_{rs} \\
0 & \ldots & 0 & -d_{ms}/d_{rs} \\
\end{array}
\end{align*}
\]
Example

Let $D$ be the matrix $(A : b)$ in the system of linear equations in the top tableau.

\[
\begin{array}{cccccc}
  x_1 & x_2 & x_3 & x_4 & \text{RHS } b \\
 7 & 0 & -1 & 1 & 10 \\
 4 & -6 & 2 & 2 & 4 \\
 5 & -2 & 1 & 0 & 15 \\
 9 & -3 & 0 & 2 & 12 \\
 2 & -3 & 1 & 1 & 2 \\
 3 & 1 & 0 & -1 & 13 \\
\end{array}
\]
Example (cont’d)

- Performing a GJ pivot step in the column of $x_3$ and the pivot element is boxed. The pivot matrix corresponding to this pivot operation is

$$P = \begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1/2 & 1 \end{pmatrix}.$$ 

- The tableau obtained at the bottom of the original tableau say $\bar{D}$ is equivalent to $PD$ (i.e., $\bar{D} = PD$).
A general Iteration in the Revised Simplex Method Using the Product Form of the Inverse

- Suppose $P_0$ is the initial inverse tableau. $P_0$
  
  (i) differs from the unit matrix in the last row only if we begin with phase II and
  
  (ii) differs from the unit matrix in the two last rows only if we begin with phase I.

- $P_0$ is also like a pivot matrix and it can be generated by storing only those one or two rows.

- *Current string of pivot matrices* This is the ordering of the pivot matrices in the storage that the newest is always join the string on the left side of all those generated above.
A general Iteration in the Revised Simplex Method Using the Product Form of the Inverse

- In the various steps in this iteration of the revised simplex method, the inverse tableau is used only twice:
  (i) To get its last row to compute the relative cost coefficients of the nonbasic variables.
  (ii) To compute the pivot column which is the updated column of the entering variable selected.

- Let the string of pivot matrices at this stage be \( P_r, P_{r-1}, \ldots, P_1, P_0 \), then the inverse tableau formula is \( P_r P_{r-1} \ldots P_1 P_0 \).

- The last row of the inverse tableau \( = \) (last row of the unit matrix of the same order as the inverse tableau) (inverse tableau) \( = (0, \ldots, 0, 1)(P_r P_{r-1} \ldots P_1 P_0) \). (This is left-to-right string multiplication)
A general Iteration in the Revised Simplex Method Using the Product Form of the Inverse

- Updating the entering column
  - Let
  - $x_s$ = the entering variable
  - $A_s$ = the column vector in the original tableau of $x_s$
  - $\overline{A}_s$ = the updated column of $x_s$
  - Therefore, $\overline{A}_s = P_r P_{r-1} ... P_1 P_0 A_s$
  - This is left-to-right string multiplication
Transition from Phase I to Phase II

Consider solving the LP in standard form

\[
\text{minimize } \quad z(x) = cx \\
\text{s. to } \quad Ax = b \\
\text{ } \quad x \geq 0
\]  \hfill (1)

- Solving this LP by the revised simplex method using the product form of the inverse (PFI), during phase I, pivot matrices will be of order \(m + 2\) while phase II will be of order \(m + 1\).
- At the end of phase I all \((m + 2)\)th row and column will be deleted from each pivot matrix in the string, then we move to phase II.
- Then the present string becomes the string corresponding to the present basic vector for the phase II problem, and you can begin phase II with it.
Transition from Phase I to Phase II

- This revised simplex method using PFI is quite difficult for hand computation to solve even a small size LPs. However, its computer implementations offer superior performance to solve LP models involving up to several hundreds of constraints.

- **Advantage of the PFI implementation:** When the eta column is sparse (i.e., if the fraction of nonzero entries in it is small) we say the revised simplex method using PFI continues its superior performance.

- The advantage of PFI will disappear if the number of current step (say $r$) over the number of constraints in the model being solved (say $m$) exceeds 2 (i.e., $r/m > 2$). At this stage, the method goes to an operation called *reinversion*. 
Reinversions in the Revised Simplex Method Using PFI

- Let $x_B$ = the present basic vector in the current iteration, with $B, B, c_B$, the associated basis, augmented basis, basic vector, respectively.
- Let $\bar{x}, \bar{\pi}$ be the associated primal and dual basic solutions respectively.
- $\|Ax - b\| \text{ and } \|c_B - \bar{\pi}B\|$ can be used as measures to monitor the effect of round off, if the measures are small than a specified tolerances we continue with the iterations in the method otherwise we go to the reinversions.
- Reinversion involves getting rid of the present string of pivot matrices from the present augmented basis $B$, carry out the pivot operations needed to compute $B^{-1}$.
- The new string of pivot matrices corresponding to the various pivot steps carried out to compute $B^{-1}$ consists of $m + 1$ in phase I or $m + 2$ in phase II. With new string, resume the iterations of the revised simplex method for solving the LP model.
Finding the Optimum Face of an LP

- If some nonbasic relative cost coefficients \( wrt \ x_B \) are 0, by bringing the corresponding nonbasic variables into this basic vector, we can get alternate optimum BFSs for this LP.
- Consider the following LP

\[
\begin{array}{cccccccc}
\text{Original problem} & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & -z & b \\
\hline
x & 0 & 0 & 1 & 1 & -1 & -5 & 3 & 0 & 7 \\
1 & 0 & 0 & -1 & -1 & -3 & -8 & 0 & 9 \\
0 & 1 & 0 & -1 & -1 & 0 & 4 & 0 & 1 \\
-1 & -1 & -1 & 10 & 6 & 8 & 1 & 1 & 0 \\
\end{array}
\]

\( x_j \geq 0 \) for all \( j \), minimize \( z \)

an optimum basic vector is \( x_B = (x_3, x_1, x_2) \). The corresponding inverse tableau is

\[
\begin{array}{ccccccc}
\text{Inverse tableau} & x_3 & \text{Inverse tableau} & x_1 & \text{Inverse tableau} & x_2 & \text{Inverse tableau} \\
\text{Basic } & 1 & 0 & 0 & 0 & 0 & 0 \\
\text{var. } & \text{values} & 7 & 9 & 1 & 17 \\
\hline
x_3 & 1 & 0 & 0 & 0 & 0 & 0 \\
x_1 & 0 & 1 & 0 & 0 & 0 & 0 \\
x_2 & 0 & 0 & 1 & 0 & 0 & 0 \\
-z & 1 & 1 & 1 & 1 & 1 & 17 \\
\end{array}
\]
The primal BFS $\bar{x} = (9, 1, 7, 0, 0, 0)^T$ with $\bar{z} = -17$. So, any feasible solution in which $\bar{z} = -17$ is an optimum solution to this LP.

The set of feasible solutions of the following system of constraints is optimum face of the LP above,

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>$x_6$</th>
<th>$x_7$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>-17</td>
</tr>
</tbody>
</table>

$x_j \geq 0$ for all $j$.

The relative cost coefficients of the nonbasic variables are $(\bar{c}_4, \bar{c}_5, \bar{c}_6, \bar{c}_7) = (9, 3, 0, 0)$. 
Any BFS obtained by performing pivot steps with $x_6, x_7$ entering variables (since $\bar{c}_6 = \bar{c}_7 = 0$) is an optimum solution.

Since $\bar{c}_4, \bar{c}_5 > 0$, then any feasible solution of the original system in which $x_4 = x_5 = 0$ is an optimum solution of the LP. So, an optimum face representation can be, as follows,

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>$x_6$</th>
<th>$x_7$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-5</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-8</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$x_j \geq 0$ for all $j = 1$ to 5.
The Dual Simplex Algorithm

Consider an LP in standard form

\[
\begin{align*}
\text{minimize} \quad & z(x) = cx \\
\text{s. to} \quad & Ax = b \\
& x \geq 0
\end{align*}
\]

(2)

Original tableau

<table>
<thead>
<tr>
<th>(x_B)</th>
<th>(x_D)</th>
<th>(-z)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>(D)</td>
<td>0</td>
<td>(b)</td>
</tr>
<tr>
<td>(c_B)</td>
<td>(c_D)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

All \(x_j \geq 0\), min \(z\)
We find the basic vector $x_B$ which satisfy the following properties:

1. Primal feasibility: $\bar{b} = B^{-1}b \geq 0$,
2. Dual feasibility: $\bar{c}_D = c_D - (c_B B^{-1})D \geq 0$.

Example

To solve LPs like this we use dual simplex method which tries to attain primal feasibility while maintaining dual feasibility by performing a sequence of pivot steps changing the basic vector by one variable in each step.
Steps in a general iteration of the dual simplex algorithm

1. Check optimality (primal feasibility)
2. Select the pivot row.
3. Check primal infeasibility.
4. Dual simplex minimum ratio test.
5. Pivot step.
6. Change in objective value in this iteration.

Example Consider the following LP for which the canonical tableau wrt the basic vector \( x_B = (x_1, x_2, x_3) \) is given below.

<table>
<thead>
<tr>
<th>BV</th>
<th>( x_1 )</th>
<th>( x_2 )</th>
<th>( x_3 )</th>
<th>( x_4 )</th>
<th>( x_5 )</th>
<th>( x_6 )</th>
<th>( -z )</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_1 )</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>( x_2 )</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>( x_3 )</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>( -z )</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>-100</td>
</tr>
</tbody>
</table>

ULEDI NGULO
The various canonical tableau obtained are given below

<table>
<thead>
<tr>
<th>BV</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>$x_5$</th>
<th>$x_6$</th>
<th>$-z$</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>$x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>$x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>$-z$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>-100</td>
</tr>
<tr>
<td>Ratios</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BV</th>
<th>$x_4$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$x_4$</th>
<th>-2</th>
<th>0</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_2$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$x_3$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$-z$</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Ratios</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

PC PR
In the last tableau, all the updated RHS constants are $> 0$, then is an optimum tableau and the method terminates.

the optimal solution is $\bar{x} = (0, 0, 2/3, 2/3, 4/3, 0)^T$, $z^* = 370/3$. 

\begin{table}
\begin{tabular}{|c|cccccc|}
\hline
 & PC & & & & & \\
\hline
$x_4$ & 1 & 0 & 2 & 1 & 0 & 1 & 0 & 2 & \\
$x_2$ & -2 & 1 & -3 & 0 & 0 & -3 & 0 & -2 & \\
$x_5$ & -1 & 0 & -1 & 0 & 1 & -1 & 0 & 2 & \\
\hline
$-z$ & 5 & 0 & 2 & 0 & 0 & 18 & 1 & -122 & \\
\hline
Ratio & 5/2 & 2/3 & 6 & & & \\
\hline
\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{|c|cccccc|}
\hline
 & PC & & & & & \\
\hline
$x_4$ & -1/3 & 2/3 & 0 & 1 & 0 & -1 & 0 & 2/3 & \\
x_3 & 2/3 & -1/3 & 1 & 0 & 0 & 1 & 0 & 2/3 & \\
x_5 & -1/3 & -1/3 & 0 & 0 & 1 & 0 & 0 & 4/3 & \\
\hline
$-z$ & 11/3 & 2/3 & 0 & 0 & 0 & 16 & 1 & -370/3 & \\
\hline
\end{tabular}
\end{table}
THANK YOU!