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Criterion for the LP-dissipativity of second
order differential operators with complex
coefficients

A. Cialdea * V. Maz'ya, |

Abstract. We prove that the algebraic condition |p — 2| [(#m o7, &)| <
2yp —1{Ze o7 £,&) (for any € € R™) is necessary and sufficient for the LP-dis-
sipativity of the Dirichlet problem for the differential operator V(o7 V), where
o/ is a matrix whose entries are complex measures and whose imaginary part is
symmetric. This result is new even for smooth coefficients, when it implies a cri-
terion for the LP-contractivity of the corresponding semigroup. We consider also
the operator V!(«7 V) + bV + a, where the coefficients are smooth and #m o
may be not symmetric. We show that the previous algebraic condition is necessary
and sufficient for the LP-quasi-dissipativity of this operator. The same condition is
necessary and sufficient for the LP-quasi-contractivity of the corresponding semi-
group. We give a necessary and sufficient condition for the LP-dissipativity in R™
of the operator V!(o7/ V) + bV + a with constant coefficients.

Résumé. On montre que la condition algébrique |[p — 2| [(Fm o7 £, &)| <
2p — 1{Ze o7 £,&) (pour tout £ € R™) est nécessaire et suffisante pour la dis-
sipativité LP du probléme de Dirichlet pour 'opérateur différentiel V!(a7 V), ot
o/ est une matrice dont les coefficients sont des mesures complexes et dont la
partie imaginaire est symétrique. Ce résultat est nouveau méme pour des coef-
ficients réguliers, quand il implique un critére pour la contractivité LP du semi-
groupe correspondant. On considére aussi opérateur Vi(o7/ V) + bV + a, ol
les coefficients sont réguliers et .¥m o n’est pas nécessairement symétrique. On
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montre que la condition algébrique précédente est nécessaire et suffisante pour la
quasi-dissipativité LP de cet opérateur. La méme condition est nécessaire et suff-
isante pour la quasi-contractivité LP du semi-groupe correspondant. On donne une
condition nécessaire et suffisante pour la dissipativité LP dans R™ de opérateur
V(a7 V) + bV + a avec des coefficients constants.

1 Introduction

Various aspects of the LP-theory of semigroups generated by linear differential
operators were studied in [4 6, 2, 23], [, 1T, 2711, 8, 9, 5], 19, 141, 13, B, 10, 22, [16]
et al. In particular, it has been known for years that scalar second order
elliptic operators with real coefficients may generate contractive semigroups
in LP [18].

Necessary and sufficient conditions for the L*°-contractivity for general
second order strongly elliptic systems with smooth coefficients were given
in [I2], where scalar second order elliptic operators with complex coefficients
were handled as a particular case. Such operators generating L°°-contractive
semigroups were later characterized in [3] under the assumption that the
coefficients are measurable and bounded.

In the present paper we find an algebraic necessary and sufficient con-
dition for the LP-dissipativity of the Dirichlet problem for the differential
operator

A=Vi(zV)

where g7 is a matrix whose entries are complex measures and whose imag-
inary part is symmetric. Namely in Section Bl after giving the definition of
LP-dissipativity of the corresponding form

Z(u,v) = /QLQ%VU,V@ ,

we prove that & is LP-dissipative if and only if

p—2[[(Im o7 §,6)| < 2vp — 1 (Fe o/ §,E) (1.1)

for any £ € R™. This result is new even for smooth coefficients. An example
shows that the statement is not true if #m o7 is not symmetric.



It is impossible, in general, to obtain a similar algebraic characterization
for the operator with lower order terms

Au = V(o Vu) + bVu + V(cu) + au. (1.2)
In fact, consider for example the operator
Au = Au+ a(z)u

in a bounded domain 2 C R™ Denote by \; the first eigenvalue of the
Dirichlet problem for Laplace equation in €. A sufficient condition for A to be
L2-dissipative is Ze a < \; and we cannot give an algebraic characterization
of A;. However in Section ll we give a necessary and sufficient condition for
the LP-dissipativity of operator ([LZ) in R™ for the particular case of constant
coefficients.

In Section B we consider operator (L2) with smooth coefficients without
the requirement of simmetricity of .#m of. After showing that the concept
of LP-dissipativity of the form _# is equivalent to the usual LP-dissipativity of
the operator A, we prove that the algebraic condition ([LTJ) is, in general, nec-
essary and sufficient for the LP-quasi-dissipativity, i.e. for the LP-dissipativity
of A — wl for a suitable w > 0.

In other words the range of the exponent p admissible for the LP-quasi-
dissipativity is given by the inequalities

242 A= VA2 +1) <p<24+20(A+ VA2 +1),

where

e B )ed)
€n)em [(Fm of (2)E,€)]
and M ={(§,z) e R" x Q | (Sm o/ (2)¢,§) # 0}
Finally we show that ([L1]) is necessary and sufficient for the LP-quasi-
contractivity of the semigroup generated by the Dirichlet problem for the

operator ([C2).
2 Preliminaries

Let © be an open set in R™. By Cy(2) we denote the space of complex valued
continuous functions having compact support in 2. Let CJ () consist of all



the functions in Cy(€2) having continuos partial derivatives of the first order.
The inner product either in C" or in C is denoted by (-,-) and, as usual, the
bar denotes complex conjugation.

In what follows, &7 is a n X n matrix function with complex valued entries
a™ € (Cy(Q))*, o7 is its transposed matrix and ¢7* is its adjoint matrix, i.e.

A= .
Let b= (by,...,b,) and c = (cy, ..., ¢,) stand for complex valued vectors
with b, ¢; € (Co(2))*. By a we mean a complex valued scalar distribution

in (C5())".
We denote by .Z(u,v) the sesquilinear form

Z(u,v) = /Q(LQ{ Vu, Vo) — (bVu,v) + (u,cVv) — alu,v))

defined on C§(Q) x C3(Q).
If p € (1,00), p’ denotes its conjugate exponent p/(p — 1).

Definition 1 Let 1 < p < oo. The form .Z is called LP-dissipative if for all
u € C3(Q)

Fe L (u, [ulP~u) =0 if p > 2; (2.1)
e L (|ulP "2u,u) >0 ifl<p<?2

(we use here that |u|7?u € C3(Q) for ¢ > 2 and u € C}(Q2)).

The form .Z is related to the operator
Au = V' (o7 Vu) +bVu + V(cu) + au. (2.3)

where V* denotes the divergence operator. The operator A acts from C} ()
to (C3(2))* through the relation

L(u,v) = /Q<Au,v>

for any u,v € C3(Q).
We start with the following Lemma



Lemma 1 The form £ is LP-dissipative if and only if for all v € C3(Q)
e [ [t 90,90 = (1= 2/p){(f = 19 (). ol 1790)-
Q

(1= 2/p)* (a7 V(Jo1), V(Jo1))] +/(Jm(b+c),fm(@Vv)) +(24)

/ Re(V' (b/p — c/p) — a)lof > 0.

Q

Here and in the sequel the integrand is extended by zero on the set where v
vanishes.

Proof.

Sufficiency. Let us prove the sufficiency for p > 2. Suppose (Z4]) holds,
take u € C3(€) and set

v = |u|p772u
Since p > 2 we have v € C}(2). Moreover, u = |v\2r%pv and therefore
(o Vu, V([uP~?u)) = (o V(|o| 7 ), V(o] 7 v)) =
(o (Vu—=(1=2/p)lv|" 'V |v]), Vo + (1 = 2/p)|v] "o V]|v]) =
(7 T0,90) = (1= 2/p) (o] o7 Vo], V) = (o Vo, o] w9 o)) -
—(1=2/p)* (o V|v|, V]v)
Since
Re((v.aof V||, Vv) — (o Vv, oV]|v])) =
Fe(v(ef Vv|, Vo) — (v .a7* Vv|, Vo)) = Ze({v(of — o7 )V]|v|, Vv))

we have

Rel ot Vu, V(JulP~2u)) = Ze [W Vo, Vo) —
(1 =2/p){(7 — ")V (|v]), [v|"TVv) = (1 = 2/p)*(a V(|v]), V([0])) |-
Moreover, we have
(bVu, [ulP~?u) = (1 —2/p) |v|bV|v| + TbVv
and then
Fe(dbVu, [ulP~?u) = 2 Ze(b/p) Ze(vVv) — (Fmb) Im(vV0v) =
Ze(d/p)V(|[v]?) — (Fmb) Im(vVo).

bt



An integration by parts gives

/gzg@e(qu, |u|P~?u) = —/gzﬂe(vt(b/p))|v\2 — /Q<fmb, Im(tVv)) .

(2.5)
In the same way we find

Relu, eV (JulP~2u)) = Ze (1 —2/p) |v|cV|v| + veVT) =
2 Fe(c/p') Re(vVv) + (Fmc) Im(vVo) =
ZFe(c/p)V(|[v]*) + (Fmc) Im(OVo)

and then

/Q,Q?e(u,EV(|u|p_2u)> = —/Qﬁe(vt(c/p')|v|2+/g(fmc, Im(vVv)).

(2.6)
Finally, since we have also

Ze(alu, [ul"~*u) = (Ze a)|ul’ = (Zea)|v]?,

the left-hand side in (Z4) is equal to Ze Z(u, |u[P~2u) and [ZTI) follows from
()

Let us suppose that 1 < p < 2. Now (Z2) can be written as

%e/ﬁ((,gz/* Vau, V([ulP ")) + €V, [ul ~2u) — (Vu, bV (JulP ")) —

, (2.7)
—alu, [ul” ~2u)) > 0.
We know that this is true if
e [ [l V.90) = (1= 2/) (" = ) (0], ol 590
—(1=2/p")*(a7* V(|v]), V(IUI))}L
(2.8)

+ /Q<fm(—6 —b), Sm(@Vv)) +
/Q @e [V (<) /- (=B)/p) —a] o > 0

for any v € C}(2). This condition is exactly () and the sufficiency is
proved also for 1 < p < 2.



Necessity. Let us suppose (1) holds. Let v € C3(€) and set

2

ge= (0 +e%%, u.=g! v (2.9)
We have

(o Vu., v(‘us‘p_zue» =
|ua|p_2<527 Ve, Vue) + (p — 2)|ua|p_3<527 Ve, u-Vu.|)

A direct computation shows that

Juc Ve, Vue) = (1= 2/p)° g2 @ oV ]o], V]u])
(1=2/p) g |v["~ ((wV[v], Vo) + (Vo, 0 V|v]) + g2 P o] ~*(Vv, V)

Juc P ( Ve, uViue|) =
[(1=2/p)* g= 2|0 — (1 = 2/p) g o] (V]v], V|o])+
[= (1 =2/p) g |ol"~" + g2 |u =] Vv, oV o)),

Observing that g. tends to |v| as € — 0 and referring to Lebesgue’s
dominated convergence theorem we find

lim [ (& Vue, V(‘u€|p_2u€)> =

e—0 Q

/(MVU,VU>—
L Jo (2.10)
(1—2/p)[)m(<U%V|U|,VU> e Vo, v Vo)) —

—a—sz[}wkuvm>.

Similar computations show that

(bVue, |[ucPu.) = —(1 — 2/p)g=|v[PT bV |v| + g2 P|v[P"*vbVv
(ue, €V (Jue"*ue)) = g27"|o["%e [(1 =) (1 =2/p) = *[v[’V]v|+
+(p— 2)|V|v] +vw]

aue, [ue""*u.) = agZ~|vf?
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from which follows
lir%/<qu€,\u€\p_2u€) :/(—(1—2/p)\v|bV|v\+vbW) (2.11)
e=lJa Q

lim Q(ug,EV(|u5|p_2u€)> = /Q (1=2/p) v|cV|v|+vcVT)  (2.12)

e—0

lim [ a(ue, [uc"~?u.) :/a\v|2 (2.13)
Q

e—0 Q

From (2I0)-ET3) we obtain that

lirr(l) Re L (ue, |ulP~2u.)
E—

exists and is equal to the left-hand side of (24]). This shows that (Z1I) implies
[24) and so the necessity is proved for p > 2.

Let us assume 1 < p < 2. Since (Z2) can be written as (27), replacing
o/, b, € by o7*, —C, —b respectively in formulas (ZI0)—(EZI3) we find that

ll—% Ke g( |u€ |p/_2u€7 ue)

exists and is equal to the left-hand side of (£8). Thus [Z2) implies Z4). 4

Corollary 1 If the form & is LP-dissipative, we have
(Fe ol €,€) 20 (2.14)
for any € € R™.
Proof. Given a function v, let us set
X = Ze(v| wVv), Y = Im(v| v Vo),
on the set {x € Q| v # 0}. We have

Re{of Vv, V) = Fe (o (o] TV), |v| 0 Vv) =
(Fe ot X, XY+ (ReadYV,Y)+ (Im(od — ") X,Y),
Ze((of — ")V (|v]), Vo o| v = Ze((of — /") X, X +1Y) =
(Im(od — ™)X, Y),

He(af Vv|,Vv|) = (Ze o X, X).

8



Since ¢ is LP-dissipative, (24]) holds. Hence,

4
{p—p/(%’edX,X) + (Zed Y,Y)+
Q
p ' Imog +p " Im )X, Y+ (Imb+c), Yo+  (2.15)
e [V (b/p—c/p) — a] [} >0
We define the function
v(z) = ofx) ¥
where p and ¢ are real functions with o € C}(2) and ¢ € C*(£2). Since
0] Vo = |o| H(ee ¥ (Vo +i0Vp) %) = |o| 'oVo +ilo| Ve
on the set {z € Q | o(z) # 0}, it follows from ([ZIH) that

" @edV@,W) /@2<%eﬂvw,vw>+
Q

2/ oA(p™" Im ot +p' ™" Im ")V, Vi) + (2.16)
Q

/Qg<fm(b+c),Vg0> + /Qﬁ’e [Vi(b/p—c/p)—alo®>0

for any o € Cj(2), p € C1(Q).
We choose ¢ by the equality
p= g log(o” +¢)

where 4 € R and € > 0. Then (ZI0) takes the form
1

(%e,Q/VQ, Vo) + u / 97@%% Vo, Vo)+
2

pp (0 + )2
2”/ Q29+€<(P " Imo +p T I m ")V, Vo)+ (2.17)
Q
3
“/ s (Imib ), Vo) +/%€ [V! (b/p—c/p') —a] 0 20
Q0 t¢ Q

Letting ¢ — 07 in (ZI1) leads to
= [ e Vo.v0) i [ (eor VoV

2u/<(p‘1 Imof +p~" Im .o/ )Vo,Vo)+ (2.18)
Q

n [ olsmv o). Vo) + [ w9 (ofp— /i) ~d] & >0

9



Since this holds for any p € R, we have
/(%edV@, Vo) >0 (2.19)
Q

for any o € C3(9).
Taking o(z) = 1(z) cos(¢, z) with a real v € C}(9) and £ € R™, we find

[ e o7 090 cos? €. 0) — (e o7 €. V) +
(e ot V1, €)] sin(€, 7) cos(E, 1) + (Be of €, EWH() sin?(€, 7)) > 0.
On the other hand, taking o(x) = ¥(z) sin(€, z),

/Q{@e%w, V) sin(€, ) + [(Be o7 €, Vi) +
(Be ot V,€)] sin(€, 7) cos(, 1) + (Be of €, EWH) cos (€, )} > 0.

The two inequalities we have obtained lead to

/wedw,vw + /(%edﬁ,i}iﬁ >0,
Q Q

Because of the arbitrariness of £, we find

/(ﬂ’eﬂf,f)wz > 0.
Q

On the other hand, any nonnegative function v € Cy(2) can be approx-
imated in the uniform norm in 2 by a sequence v¥?2, with v, € C§°(Q2), and
then (Ze o7 £, €) is a nonnegative measure. 0

Corollary 2 If the form & is both LP- and L* -dissipative, it is also L"-
dissipative for any r between p and p', i.e. for any r given by

r=t/p+(1—-1t)/p 0<t<). (2.20)

Proof. From the proof of Corollary [l we know that (ZTH) holds. In the
same way, we find

{fi@%e%x,)o A Re V.Y~

Q “PD

2P ' Imag+p  Im )X, Y+ (Imb+c), Yo+  (2.21)
Ze [V' (b/p — c/p) — a] W} > 0.

10



We multiply (ZI3) by ¢, (Z21) by (1 —¢) and sum up. Since
t/p+ (1 —t)/p=1/r" and rr' <pp,

we find, keeping in mind Corollary [,

/{%{%edx,xwwedxm—
20(r P Imag " Im )X, Y)Y+ (Im(b+c),Y)|v|+
+%e [V (b/r —¢/r') — d] |v|2} >0

and & is L"-dissipative by Lemma [l . 0

Corollary 3 Suppose that either
Imaf =0, HeV'b = FeV'ic=0 (2.22)
or
Ima =Img', Imb+c)=0, ZeV'b=RXeVic=0. (2.23)
If & is LP-dissipative, it is also L"-dissipative for any r given by Z20).
Proof. Assume that (222) holds. With the notation introduced in Corol-
lary [, inequality (Z4]) reads as

/ <i,<%eﬂX,X> (Rt Y,V )+
Q \PPp

(Im(b+c),Y)|v| - %ea|v\2) > 0.

Since the left-hand side does not change after replacing p by p/, Lemma [

gives the result.
Let (Z23) holds. Using the formula

prIma +p T Im ot =

prImeg —p T Imagt = —(1-2/p) Im o, (2.24)

we obtain

/(i<@eﬂx,x>+<@eﬂxy>—
Q \Pp

21— 2/p(Imat X,Y) — %ea|v\2> > 0.

11



Replacing v by v, we find

4
/(Zm(%eﬂx,x)—l—(%e;z/}/,}/)—i—
Q

2(1—2/p)(Im ot X,Y) —%ea\v|2> >0

and we have the L?-dissipativity by 1 — 2/p = —1 + 2/p’. The reference to
Corollary B completes the proof. O

We give now a sufficient condition for the LP-dissipativity. This is a direct
consequence of Lemma [I

Corollary 4 Let o, 8 two real constants. If

%%M, &) 1 (Bect )+ 2(p Im o +5 Im o))+

(Fm(b+c),n) — 2(Ze(ab/p — fe/p), &)+ (225)
Ze[V' (1 -a)b/p—(1—-PB)c/p')—a] >0

for any &, m € R™, the form ¥ is LP-dissipative.

Proof. In the proof of Lemma [Il we have integrated by parts in (Z3) and
&d). More generally, we have

2/p /Q (%eb, Be(TV0)) = 2a/p /Q (Feb, Be(TVv))—
(1=a)fp | #e(TD)ofs
2/ /Q (Bec, Re(vVv)) = 28/p' /Q (Fec, Re(vVv))—
(1=8)/1 [ #e(V Ol
This leads to write conditions (22 in a slightly different form:
e [ [t/ V0.90) = (1= 2p){(r = ) (e ol "oV}~
(1= 2/p e V(ol). T1o)] + [ (Sm(b+ ) Sm(@wo)) -

12



2/9(%’6(ab/p — Be/p), Ze(vVv))+
/Q Ze(V' (1 — a)bfp— (1 - B)e/r) — a)uf? > 0.

By using the functions X and Y introduced in Corollary [, the left-hand
side of the last inequality can be written as

/Q Q(X,Y)

where ) denotes the polynomial ([22H). The result follows from Lemma [l
O

Generally speaking, conditions (Z2H) are not necessary for LP-dissipa-
tivity. We show this by the following example, where .#m g7 is not sym-
metric. Later we give another example showing that, even for symmetric
matrices & m ¢f, conditions (Z2H) are not necessary for LP-dissipativity (see
Example Bl). Nevertheless in the next section we show that the conditions
are necessary for the LP-dissipativity, provided the operator A has no lower
order terms and the matrix .#m g7 is symmetric (see Theorem [Mand Remark

m).

Example 1 Let n =2 and

ﬂ=<¥ ”)
—iy 1

where + is a real constant, b = ¢ = a = 0. In this case polynomial (223 is
given by
(m = 7&)* + (2 = v&)* — (v — 4/ (pp')) €.

Taking v* > 4/(pp’), condition (ZZH) is not satisfied, while we have the
LP-dissipativity, because the corresponding operator A is the Laplacian.

3 The operator V(& Vu)

In this section we consider operator (23]) without lower order terms:

Au = V(o V) (3.1)

13



with the coefficients a"* € (Cy(Q2))*. The following Theorem contains an
algebraic necessary and sufficient condition for the LP-dissipativity.

This result is new even for smooth coefficients, when it implies a crite-
rion for the LP-contractivity of the corresponding semigroup (see Theorem
below).

Theorem 1 Let the matriz ¥ m of be symmetric, i.e. Imoft = Imof.
The form

ZL(u,v) = /g)(;zf Vu, Vv)

1s LP-dissipative if and only if

p=2|(Imaz §,6)| < 2¢/p—1(Ze ot £€) (3.2)
for any £ € R™, where | - | denotes the total variation.

Proof.
Sufficiency. In view of Corollary Hl the form & is LP-dissipative if

%(%e%&@ e — 21— 2/p)Imag E) =0 (33)

for any &,n € R".
By putting

2vp—1
A=
p
we write (B3) in the form

p—2
He of N\ \) + (Feagnn ————(Ima \,n)=0.
( R =1 )

Then (B3) is equivalent to

F(6on) = (e €.6) + (Fed ) = TS m 7 €.3) > 0

for any &, € R™.
For any nonnegative ¢ € Cy(£2), define

= min /5”517

€12 +Inl?=1



Let us fix &y, no such that |&|* + o] = 1 and

Ago:/ﬂf(fo,no)w

We have the algebraic system

p—2
2 R B ——2 — o7 =2\
/Q( 6%50 2\/1?1 m(,gz{ «27)770)90 %Oé-o
p—2 . B
A(Q%eﬁno Qme(;zf 42%)50)@—2)\07]0.

This implies

/Q(z ,@e%(fo—nonp;Jm(%_d*)(go_%))@ )

and therefore

p—2 B
/Q<2<L@€«Q{(50—770)750—770>+\/Z)Tl<fm%(§o—ﬁo)a§0—ﬂo>)<ﬂ—

2 >‘go ‘50 - 770|2-

The left-hand side is nonnegative because of (B2). Hence, if A, < 0, we
find £ = ny. On the other hand we have

)‘so:/gy(fmfo)@ =

p—2
/Q (2(%’652%50,5& \/m@ﬂm%fo,fo)) v = 0.
This shows that A\, > 0 for any nonnegative ¢ and the sufficiency is
proved.
Necessity. We know from the proof of Corollary [l that if & is LP-
dissipative, then ([ZIR) holds for any o € C}(2), € R. In the present
case, keeping in mind (ZZ4)), (ZI8) can be written as

/ (#BV0,V) >0,
Q

15



where 1
B = p—p/%’e%jtﬁ%ed—Qu(l —2/p) Im ot

In the proof of Corollary [l we have also seen that from (ZI9) for any o €
C} (), [TIA) follows. In the same way, the last relation implies (&, &) > 0,
i.e.

oy <%e%§ &)+ (Re ot §,€) =21 (1=2/p)(Im ot &) >

for any £ € R, p € R.
Because of the arbitrariness of p we have

[ e oe =0
(1—2/p)? (/wag,w)z <2 (/Q@@e%&@soy

[maeoe ‘ 2 Vo= [(@earcro

for any £ € R™ and for any nonnegative ¢ € Cy(£2).
We have

p—2| ‘/ I o €,€) ' N /%emmwl

for any ¢ € Cy(Q2) and this implies (B.2), because

1.e.

lp — 2|

Ip—2|/|fmd§§|g—lp 2| sup
w‘eﬁo(gﬁ)

2/p—1 sup / (et €,6) ] < 20/p 1 / (Ge o7 €,6)g

PECH(Q)
lel<g

/§2<ﬂm¢§,§>w' <

for any nonnegative g € Co(€2). O

16



Remark 1 From the proof of Theorem [I] we see that condition (B2)) holds
if and only if

pipwwg,@ (Rt ) — 21— 2p)(Im g Em) >0

for any &,n € R™ This means that conditions (Z2H) are necessary and
sufficient for the operators considered in Theorem [

Remark 2 Let us assume that either A has lower order terms or they are
absent and #m g7 is not symmetric. Using the same arguments as in The-
orem [I, one could prove that (B2) is still a necessary condition for A to be
LP-dissipative. However, in general, it is not sufficient. This is shown by the
next example (see also Theorem B below for the particular case of constant
coefficients).

Example 2 Let n = 2 and let €2 be a bounded domain. Denote by ¢ a not
identically vanishing real function in C3({2) and let A € R. Consider operator

@) with -
A = ( —¢A§1(02) M811(U ) )

Au = 81 (81u -+ ’L)\&l (0'2) 8211) + 82(—i)\81 (0'2) 81u + 82u),

where 0; = 0/0z; (i = 1,2).
By definition, we have L2-dissipativity if and only if

i.e.

He /Q((ﬁlu + 401 (0%) Oou) 01T + (—iADy (0) Oru + Opu)DoTi) da > 0
for any u € C3(Q), i.e. if and only if
/Q |Vul*dx — 2)\/981(02) Im(Oudu)dr =0
for any v € C}(€). Taking u = o exp(itxs) (t € R), we obtain, in particular,

2 / o2dz — £\ / (01(0?))2dz + / Voldz > 0. (3.4)
Q Q Q

Since

/9(01(02))2dx > 0,

17



we can choose A € R so that (B4 is impossible for all £ € R. Thus A is not
L2-dissipative, although ([B2) is satisfied.
Since A can be written as

Au = Au — Z)\(agl (0'2) 81u - 811(0'2) 82U),

the same example shows that ([B3Z) is not sufficient for the L2-dissipativity
in the presence of lower order terms, even if .¥m g7 is symmetric.

4 General equation with constant coefficients

In this section we characterize the LP-dissipativity for a differential operator
A, say

Au = V(o7 Vu) + bVu + au (4.1)
with constant complex coefficients. Without loss of generality we assume

that the matrix o7 is symmetric.

Theorem 2 Let €2 be an open set in R™ which contains balls of arbitrarily
large radius. The operator A is LP-dissipative if and only if there exists a
real constant vector V such that

2%e gV + Imb=0 (4.2)
Fea+ (Hea V,V) <0 (4.3)

and the inequality

p—2[[(Im e §,6)| <2¢/p—1{Ze ot £.§) (4.4)
holds for any £ € R™.

Proof. First, let us prove the Theorem for the special case b = 0, i.e.
for the operator
A = V(o Vu) + au.
If A is LP-dissipative, (22) holds for any v € C(Q). We find, by repeating
the arguments used in the proof of Theorem [Il that

4
— | (e o/ Vo,V o) dx + 11 / (Ze o7 Vo,Vo)dr—

' Ja Q (4.5)
2,u(1—2/p)/<ﬂmg{Vg,Vg)dx—(%ea)/dea:EO

Q Q
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for any o € C§°(€2) and for any p € R. As in the proof of Theorem [ this
implies (). On the other hand, we can find a sequence of balls contained
in ) with centres z,, and radii m. Set

on(r) =m0 ((x = wm)/m),

where o € C§°(R"), spto C B;(0) and

/ o?(z)dr = 1.
B1(0)

Putting in (@H) © = 1 and ¢ = ¢,,,, we obtain

4
— (Ze ot Vo, No)dy + / (Ze ot Vo, NVa)dy —

Py JB(0) B1(0)
2(1—2/p)/ (Im o/ Vo,Vo)dy —m*(%ea) >0
B1(0)

for any m € N. This implies Zea < 0. Note that in this case the algebraic
system (EL2) has always the trivial solution and that for any eigensolution V'
(if they exist) we have (Ze o7 V,V) = 0. Then ([3) is satisfied.

Conversely, if (4] is satisfied, we have (see Remark [I])

pip,a@em@ T (Re ot ) —2(1— 2p)(Im g £.6) > 0

for any £, n € R™. If also (3 is satisfied (i.e. if Zea < 0), A is LP-dissipative
in view of Corollary El
Let us consider the operator in the general form EIl). If A is LP-

dissipative, we find, by repeating the arguments employed in the proof of
Theorem [, that

4
= [ e Vo Vo dot [ e Vo V) da
pp Ja 9)
2(1—2/p)/g<ﬂmg{VQ,Vgp>d:)s+
Q

/92(fmb,V¢>dx—%ea/g2dx>O
Q Q

for any o € C}(Q), ¢ € C'(Q). By fixing ¢ and choosing ¢ = t(n,z) (t € R,
n € R") we get
4

" <9?e,;z{Vg,VQ)d:v+(t2<9?e,;z{77,77>+t<ﬂmb,n)—%’ea)/Qde20
0 QO
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for any t € R. This leads to
[{(Imb,n)|* < K (%e o n,n)
for any n € R™ and this inequality shows that system (E2) is solvable. Let

V' be a solution of this system and let

2 = e Vol

One checks directly that
Au = (Va7 V2) + (¢, Vz) + az)eV?)
where
c=2iggV+b, a=a+ibV)—(xgV,V).

Since we have
/(Au, u)|ulP~2dx = /(Vt(,gz/ V2) + (¢, Vz) + az, 2)|2|Pdx,
Q Q

the LP-dissipativity of A is equivalent to the LP-dissipativity of the operator
VA a#Vz)+(c,Vz) +az.

On the other hand Lemma [0 shows that, as far as the first order terms
are concerned, the Zeb does not play any role. Since .#mc = 0 because
of (E2), the LP-dissipativity of A is equivalent to the LP-dissipativity of the
operator

Vi V2) +az. (4.6)

By what we have already proved above, the last operator is LP-dissipative
if and only if (E4) is satisfied and Ze a < 0. From (f2) it follows that Ze «
is equal to the left-hand side of ([E3).

Conversely, if there exists a solution V' of @Z), [E3J), and if @) is
satisfied, operator (HLO) is LP-dissipative. Since this is equivalent to the LP-
dissipativity of A, the proof is complete. 0

Corollary 5 Let €2 be an open set in R™ which contains balls of arbitrarily
large radius. Let us suppose that the matric XZe of is not singular. The
operator A is LP-dissipative if and only if Q) holds and

4Fea < —((Zegof) ' Imb, Imb) (4.7)
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Proof. If Ze o7 is not singular, the only vector V' satisfying (E2) is
V =—(1/2)(Zee)t Fmb

and ([E3) is satisfied if and only if (1) holds. The result follows from
Theorem [ O

Example 3 Let n =1 and Q = R!. Consider the operator

<1+2m

p—2

- " -/
z)u + 2iu" — u,

where p # 2 is fixed. Conditions (E4) and (7)) are satisfied and this operator
is LP-dissipative, in view of Corollary Bl
On the other hand, the polynomial considered in Corollary @l is

V=1

p

2
Q(£,n>=<2 £—n> +2n+1

which is not nonnegative for any &,n € R. This shows that, in general,
condition (ZZH) is not necessary for the LP-dissipativity, even if the matrix
Z'm of is symmetric.

5 Smooth coefficients
Let us consider the operator

Au= V"o Vu) +bVu+au (5.1)

with the coefficients a"* " € C1(Q2), a € C°(Q). Here Q is a bounded domain
in R", whose boundary is in the class C** for some « € [0, 1) (this regular-
ity assumption could be weakened, but we prefer to avoid the technicalities
related to such generalizations).

We consider A as an operator defined on the set

D(A) = W2P(Q) N W, P(Q). (5.2)
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Definition 2 The operator A is said to be LP-dissipative if
%e/(Au,u)\u\p_zdx <0 (5.3)
Q

for any u € Z(A).

We show that the LP-dissipativity of A is equivalent to the LP-dissipativity
of the sesquilinear form

L(u,v) = /((g{ Vu, Vo) — (bVu,v) — alu,v))
)
Lemma 2 The form ¥ is LP-dissipative if and only if

%/ﬂ (et V0, V) — (1= 2/) (o — ")V (o). [o] 0V 0)
(1 —2/p)*(a V(|v]), V(|U|)>]d93+ (5.4)
/Q(fm b, Im(vVv))dx + /Qe%’e(vt(b/p) —a)|v|*dz >0

for any v € HL(Q).

Proof.

Sufficiency. We know from Lemma [0 that & is LP-dissipative if and
only if (B4 holds for any v € C3(Q). Since C§(Q2) C H(?), the sufficiency
follows.

Necessity. Given v € H}(Q), we can find a sequence {v,} C C}(£2) such
that v, — v in H}(2). Let us show that

V| 10, Vo, — xplv|T'oVe  in L*(9) (5.5)

XE,

where E, = {z € Q | v,(x) #0}, E={z € Q| v(z) # 0}. We may assume
() = v(z), Vo, () — Vo(z) almost everywhere in 2. We see that

XE, |Unl ", VO, — xelv| TV (5.6)

almost everywhere on the set EU{z € Q\ E | Vo(z) = 0}. Since the set
{z € Q\ E'| Vu(z) # 0} has zero measure, we can say that (50) holds almost
everywhere in ).
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Moreover, since

/ e [on |15, Vo 2 < / Vo, |2dz
G G

for any measurable set G C Q and {Vv, } is convergent in L*(), the sequence
{I x5, |vn| ™10, Vv, — xE|v| "oV |?} has uniformly absolutely continuos inte-
grals. Now we may appeal to Vitali’s Theorem to obtain (&.H).

From this it follows that (B4) for any v € H}(Q) implies (B4) for any
v € C}(Q). Lemma [M shows that & is LP-dissipative. 0

Lemma 3 The form & is LP-dissipative if and only if
9?6/((,;2/ Vu, V(julP~2u)) — (bVu, [ulP~?u) — a|u’)dz > 0 (5.7)
)

for any u € Z, where Z denotes the space {u € C*(Q) | u|gq = 0}.

Proof.
Necessity. Since & is LP-dissipative, (B4 holds for any v € H}(Q). Let
u € 2. We introduce the function

p=2 .
s2 ifs>e¢

p=2
95(8)2{62 fog<s<e
Setting
ve = 0:(|ul) u
a direct computation shows that u = o.(|v.|) v. and 0?(|u]) u = [o-(Jv:])] 7t ve,

where
2 f0<s<er
UE(S) = 2-p . = p\
s» ifs>ez.
Therefore

(o7 Vu, VI ([u]) ul) = (o V]oe([ve]) ve], V[(oe([ve]) " ve]) =
(o [oc(|ve]) Vve + L(Jve]) ve Vve|] oc([ve]) T Vo —
oL (|velo*(vel)ve V]ve) =
(o Ve, Vo) + ol(|ve])oe(|ve]) ™! ((ve o V]ve|, Vo) — (o Ve, ve Vue])) —
—oL([ve])?oc(ve]) " (ve o Vve|, vV oe]) .
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Since

oi(|ve]) {0 if0<|ul<e
o=(|ve]) —(1-2/p) |U€|_1 if [u| > ¢

we may write

/Q (ot T, V]Gl u]) dx = / (o Vo, V) da—

—(1-2/p) 1 ((ve o V|ve|, Vo) — (o Ve, v V]ve|)) de—

E. |V |

(1 2/p)? /E (o V]ue], nV o) de
where E. = {x € Q | |u(x)| > €}. Then
/Q (ot Vi, V]l u]) dx = / (o Vo, Vo) do—
(1-— 2/p)/ 1 ((ve o V|ve|, Vo) — (o Ve, ve V|ve|)) de—
Q |Ua|
(1 2/p)? / (o V]oel, V]oe) do + R(e)
Q

where

R(e) = (1— 2/p>/ L e VL, Vo) — (o Voo, v, Vo)) da—

O\E: |ve|

(1- 2/p)2/ (o V|ve|, V|ve|) d.
O\E:

It is proved in [T3] that if u € C?(Q2) and u|sq = 0, then

lim 57’/ |Vul?dz =0
e—0 Q\Es

for any r > —1. Since

1.V, p—2
Vo] = \% (— x)\ < [Vo.| = 2| Vu

|V |

in Fy \ E., we obtain

/ (o7 Vv, V|v.|) dx <K£p_2/ |Vul|?dr — 0
O\E: Q\Ee

24
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as € — 0. We have also
|va|_1 |{(v: o V|ve|, Vo) — (o Voo, v V]v])| < K»sp_2|Vu|2

and thus R(e) = o(1) as ¢ — 0.
We have proved that

@e/(2<ﬂvu,V[g§(\u\)u]>dx:@e [/wae,v%) dr—
(1=2/p) [ (o = or") Vel ol 5.V 02)da— (5.9)

(1= 2/p) [ (o7 10l T} da] + o(0)

By means of similar computations, we find by the identity

/(qu, lulP~?u)dr = / (bVu, |ulP~?u)dr—
0 0

E:.

(1—2/p) /E (b [ue] ¥ (Jex)))de + / (bVo, v.)dz

E.
that
%e/(qu, lulP~*u)dr =
Q (5.10)
/(%e(b/p),V(|v€|2)>dx—/(ﬂmb, Im(v.Vv))dx + o(1).
Q Q
Moreover
/|u|pda::/ |u|pd:)3+/ |u|Pdx =

/ |v5|2d:v+/ |u|pdx:/|va|2d:v+0(1).
Es Q\E5 Q
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Equalities (), GI0) and @) lead to
e [ (o Vi VIE(ul) ) = bV o0 = afupdo =
e | /Q (of Voo, Vo) do—
~(0=2/p) [ (et = ") Vil Vo)l o
~(=2/p) [ o Vo], Vil o] +
/Q Fe(V'(b/p)|v.|*dx + /Q (Imb, Im(v.Vv))dz—

/ e alv|*dz + o(1).
0

(5.12)

As far as the left-hand side of (BI2) is concerned, we have

[ s V. VIl )y e =
eP? /Q\E (o Vu,Vu) dx+/ (o7 Vu, V(|ulP~u)) dx.
and then
tim e | (o7 Vu, Vg2 (fu) ) = bV [ul*0) = alul)do =
/Q<Vu, V(|ulP~2u)) — (bVu, [ulP~?u) — alulP)dx.
Letting ¢ — 0 in (212), we complete the proof of the necessity.

Sufficiency. Suppose that () holds. Let v € = and let u. be defined
by [Z3). We have u. € = and arguing as in the necessity part of Lemma [I]

we find (ZI0), Z11) and [ZI3). These limit relations lead to (B54)) for any
v € = and thus (B4) is true for any v € HJ () (see the proof of Lemma ).

In view of Lemma B the form & is LP-dissipative. O

Theorem 3 The operator A is LP-dissipative if and only if the form & is
LP-dissipative.
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Proof.
. — 1 . _ —_
Necessity. Let u € Z and g. = (Ju|? + £?)2. Since ¢g??u € = we have

- [ (Ve Vw2 = [ o Vi, V(g2 )
0 0
and since
n(gr?w) = (p— 2)g2 " Ze((Onhu, u)) U+ g0
we have also

O (g2 *u) =
(p — 2)|ulP~* Ze((Ohu, u)) U + |u[P~20,u = O (|ulP~%u) if v € Fy
20,1 ifreQ\F

We find, keeping in mind (5.8, that

lim [ (o7 Vu, V(" u))dr = /(g{ Vu, V(|ulP~u))dz .
Q 0

e—0

On the other hand, using Lemma 3.3 in [14], we see that

lim [ (V' (e V). ug? 2 = / (V' (o V), ) |ufP~2da.
e=lJa Q
Then
—/(Vt(qu),u>|u|p_2dx = /(qu,V(|u|p_2u)>d:B (5.13)

Q QO

for any v € Z. Hence
—/(Au,u)|u|p_2d:v:
Q
[ (s T 9l 20) ~ Va0~ auf)da.
Q0

Therefore (&) holds. We can conclude now that the form & is LP-
dissipative, because of Lemma

27



Sufficiency. Given u € Z(A), we can find a sequence {u,} C = such that
u, — uin W2?(Q). Keeping in mind (&I3), we have

_ / (Au, w)[uP~2dz = — lim / (At ) |unP~2dz =
Q n—oo Jo

lim [ (o Vu,, V(|un|p_2un)> — (bVu,, |un|p_2un> — a |u,|P)dzx.

n—oo QO

Since ¢ is LP-dissipative, (B) holds for any u € Z and (B3)) is true for
any u € Z(A). O

Definition 3 We say that the operator A is LP-quasi-dissipative if there
exists w > 0 such that A — wI is LP-dissipative, i.e.

9?6/ (Au, u)|ulP?de < w ||ull?
Q

for any u € Z(A).

Lemma 4 The operator (B1l) is LP-quasi-dissipative if and only if there ex-
ists w = 0 such that

%/ﬂ (7 V0, 90) — (1= 2/p) (s — )V (). |o] "0V0) -
(1—2/p)2(ﬁV(\v|),V(\v|)>]dx—|—/Q(fmb, ImEVe)) det  (5.14)
/Slﬁe(vt(b/p)—a)|v|2da:> —w/Q|v|2d:E

for any v € HY(Q).

Proof. The result follows from Lemma m

The next result permits to determine the best interval of p’s for which
the operator
Au = V(o Vu) (5.15)

is LP-dissipative. We set

N (Ze of (2)E,€)
€a)eM [(Im of (2)€,E)]

where M is the set of (£, z) with £ € R™, x € Q such that (¥ m o7 (2)&,£) # 0.
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Corollary 6 Let A be the operator (BIHl). Let us suppose that the matrix
Im of is symmetric and that

(e of (2)€,§) 20 (5.16)

forany x € Q, £ € R". If Im o/ (x) =0 for any x € Q, A is LP-dissipative
foranyp > 1. If #m of does not vanish identically on 2, A is LP-dissipative
if and only if

24 20N = VA1) <p<2+20A+VAZ+1). (5.17)

Proof.

When Im o7 (x) = 0 for any = € €, the statement follows from Theorem
M Let us assume that .#m ¢/ does not vanish identically; note that this
implies M # ().

Necessity. If the operator (EIH) is LP-dissipative, Theorem [l shows that

p = 2| [{(Im o (2)E, &) < 2v/p — L {Ze o (2)S,€) (5.18)

for any z € 2, £ € R™. In particular we have

p—2 _ (e (@)
2vp—1 = [(Im o (2)¢,6)|

for any (¢, x) € M and then

lp — 2|

<A
24/p—1

This inequality is equivalent to (E11).

Sufficiency. If (EID) holds, we have (p — 2)* < 4(p — 1)A\%. Note that
p > 1, because 2 + 2A(A — VA2 +1) > 1.

Since A > 0 in view of (BI6), we find [p—2| < 24/p — TA and (BIX) is true
for any (£, z) € M. On the other hand, if z € Q and £ € R™ with (¢, z) ¢ M,
(EI8) is trivially satisfied and then it holds for any = € €2, ¢ € R". Theorem
[M gives the result. O

The next Corollary provides a characterization of operators which are
LP-dissipative only for p = 2.
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Corollary 7 Let A be as in Corollary [@d. The operator A is LP-dissipative
only for p =2 if and only if Sm of does not vanish identically and \ = 0.

Proof. Inequalities (BI7) are satisfied only for p = 2 if and only if
AN — VA2 —1) = A(A 4+ VA2 + 1) and this happens if and only if A = 0.

Thus the result is a consequence of Corollary [l 0

From now on we suppose that the operator is strongly elliptic in €2 in the

sense that
(Fe of (x)€,€) >0
for any z € Q, £ € R*\ {0}.

We have proved that, if .#m g7 is symmetric, the algebraic condition (B2)
is necessary and sufficient for the LP-dissipativity of the operator (IH). We
have shown that this is not true for the more general operator (&1l). The
next result shows that condition (B.2) is necessary and sufficient for the LP-
quasi-dissipativity of (BIl). We emphasize that here we do not require the
symmetry of Zm of .

Theorem 4 The strongly elliptic operator (B1l) is LP-quasi-dissipative if and
only if

lp—2|(Im o (7)€, )| < 2¢/p — L(Fe o/ (2)E,€) (5.19)
for any x € Q, £ € R™.

Proof.
Necessity. By using the functions X, Y introduced in Corollary [, we
write condition (B4 in the form

/{%(%eﬂX,X>+(%e,Q/Y,Y)+
0
2(p~t I mog 9 Im g X,Y) + (Imb,Y)|v|+

Ze [V'(b/p) — a+ w] |v\2}d:1: >0.
As in the proof of Corollary [, this inequality implies

4
— /(%eﬂ’V@, Vg>dx+u2/(,%’e,;z%Vg,Vg)dx+
PP Ja Q
2u/<(p‘1 Imof +p'"" Ime*)Vo, Vo)d+
)
,u/ o{Imb, Vg>d:v+/%’e [V (b/p) —a+w] g*dz >0
Q Q
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for any o € C}(Q2), u € R. Since
(Imet*Vo, Vo) = —(Ima'Vo,Vo) = —(Ima/ Vo, Vo)

we have

4
— [ (Ze o/ Vo,Vo)dr + s / (Fe of Vo,Vo)dr—
ppr Ja Q
2(1 - 2/p)u/<fde9, Vo)dz+
0
,u/ o{Imb,Vo)dr + / Ze [V (b/p) — a+w] o*dz = 0
0 0
for any o € C}(Q), p € R.

Taking o(x) = () cos(¢, x) and o(x) = 1(z)sin(¢, z) with ¢ € C3(Q)
and arguing as in the proof of Corollary [, we find

/Q (BVY, Vip)d + /Q (B, &)Y dr+
,u/ﬂ(fmb, Vi) da + /Q%e [Vi(b/p) —a+w]¥?de >0,
where p € R and
B = %%ed+u2%eﬂ—2(l —2/p)uIm o .
Because of the arbitrariness of £ we see that
JRESGIEET
for any ¢ € C3(€). Hence (B&, &) >0, ie.
pip,@eﬁg, €) + pH(Re ot §,€) —2(1 = 2/p)u{Im .o/ €,€) > 0

forany x € Q, £ € R", p € R. Inequality (BI9) follows from the arbitrariness
o Mké’uﬂiciency. Assume first that & m o is symmetric. By repeating the

first part of the proof of sufficiency of Theorem [, we find that (EI9) implies

p%@em,@ (et mn) — 21— pf2)Ima Em) 20 (520)
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for any x € , £,n € R™.
In order to prove (B.I4)), it is not restrictive to suppose

Ze(Vi(b/p) —a) = 0.

Since A is strongly elliptic, there exists a non singular real matrix ¢ €
C(Q) such that

(Ze o/ n,m) = (€1, n)
for any n € R". Setting

7 =1=2/p)(¢") " Im,
we have
60— S = (Reatn,n) =201 —p/2)(Imor &n) + .7 &%

This leads to the identity

A Ge o €.6) + (Fe ot ) — 21— p/2(Ima €)=
pp 4 (5.21)
(60— .7+ 1)—}),($e%&5> — 7€)

for any £, € R™. In view of (E20), putting n = ¢~ .& £ in (E2]), we obtain
4
p—p,<z@€%§,§>—|5ﬂf|2>0 (5.22)

for any ¢ € R™.
On the other hand, we may write

(ImbY)=((¢"") Imb,gY) =
(™M) Imb,gY — ZX)+ (") Imb, 7 X) .

By the Cauchy inequality
/<(%ﬂ_l)t Imb,¢Y — .7 X)|v|dx >
Q

—/\%Y—yXFdx—i/ (1) Fmbl2|v[2dz
Q Q
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and, integrating by parts,

/Q<(<g‘1)t Fmb, 5 X)|o| do = %/ng—l F) Fmb, V(ju]2) do =

1
—3 / Vi((¢™.#)" Imb) |v]*dx.
Q
This implies that there exists w > 0 such that

/(ﬂmb Y o] dz > /|<gY 7 X2z — w /wdx
Q
and then, in view of (21l),

/{pp (Re ot X, X) + (Read Y,V )+

21— p/2)(Im o7 X,Y) + (Fmb, Y)|v\}dx >

/(i,WeﬂX,X)—WXP) dx—w/|v\2dx.
Q \PP Q

Inequality (B2Z2) gives the result.
We have proved the sufficiency under the assumption Sm o/t = Fm o .
In the general case, the operator A can be written in the form

Au=V'((of +")Vu)/2+ cVu+ au

where
c=Vi (o —")/2+Db.

Since (o + &7") is symmetric, we know that A is LP-quasi-dissipative if
and only if

Ip— 2| {(Im(af + 7", )| < 2v/p — 1 {(Re(ot + a7')E, )

for any £ € R, which is exactly condition (E19). O

Corollary 8 Let A be the strongly elliptic operator (&l). If m of (x) =0
for any v € Q, A is LP-quasi-dissipative for any p > 1. If ¥ m of does not
vanish identically on ), A is LP-quasi-dissipative if and only if (I0) holds.
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Proof. The proof is similar to that of Corollary @, the role of Theorem
[ being played by Theorem HEl O

We give a criterion for the LP-contractivity of the semigroup generated
by A.

Theorem 5 Let A be the strongly elliptic operator (BIH) with Im of =
Imot. The operator A generates a contraction semigroup on LP if and
only if

lp—2|(Im o (7)€, )| < 2¢/p — L {Ze o/ (2)E,€) (5.23)

for any x € Q, £ € R".

Proof.

Sufficiency. 1t is a classical result that the operator A defined on (B2)
and acting in LP(£2) is a densely defined closed operator (see [1], [T, Theorem
1, p.302)).

From Theorem [l we know that the form & is LP-dissipative and Theorem
shows that A is LP-dissipative. Finally the formal adjoint operator

A*u = V(o Vu)

with 2(A*) = WP (Q) N Wol’p/(Q), is the adjoint operator of A and since
Imo* = Im(a*)" and (B2ZJ) can be written as

P = 2| (I m o7 (2)S, &) < 2P — 1 (Ze " ()¢S, €), (5.24)

we have also the L¥'-dissipativity of A*.

The result is a consequence of the following well known result: if A is a
densely defined closed operator and if both A and A* are dissipative, then A
is the infinitesimal generator of a Cy contraction semigroup (see, e.g., [20),

p.15]).
Necessity. If A generates a contraction semigroup on LP, it is LP-dissipa-
tive. Therefore (B23)) holds because of Theorem [II 0

Let us assume that either A has lower order terms or they are absent and
I m g7 is not symmetric. The next Theorem gives a criterion for the LP-
quasi-contractivity of the semigroup generated by A (i.e. the LP-contractivity
of the semigroup generated by A — wI).
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Theorem 6 Let A be the strongly elliptic operator (B1l). The operator A
generates a quasi-contraction semigroup on LP if and only if (&23)) holds for
any x € 2, £ € R™.

Proof.

Sufficiency. Let us consider A as an operator defined on (B.2) and acting
in LP(2). As in the proof of Theorem [, one can see that A is a densely
defined closed operator and that the formal adjoint coincides with the adjoint
A*. Theorem B shows that A is LP-quasi-dissipative. On the other hand,
condition (5:24) holds and then A* is L”-quasi-dissipative. As in Theorem
[, this implies that A generates a quasi-contraction semigroup on LP.

Necessity. If A generates a quasi-contraction semigroup on LP, A is LP-
quasi-dissipative and (BZ3) holds. O
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