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Abstract. It is shown by a counterexample that isocapacitary and isoperimetric con-

stants of a multi-dimensional Euclidean domain starshaped with respect to a ball

are not equivalent. Sharp integral inequalities involving the harmonic capacity which

imply Faber-Krahn property of the fundamental Dirichlet-Laplace eigenvalue are ob-
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1 Introduction

Isocapacitary inequalities are intimately connected with various properties of Sobolev spaces,
especially with norms of embedding operators [8], [12]–[16], [18], [19], [21], [26]. For instance,
the best constants in some of these inequalities give two-sided estimates for eigenvalues
of boundary value problems [15], [16], [18], [19]. Recently, in [7] and [3], isocapacitary
inequalities were applied to the theory of quasi-linear second order elliptic equations.

The present paper deals with three topics related to isocapacitary inequalities. First
we show by a counterexample in Sect. 2 that the fundamental eigenvalue of the Dirichlet
Laplacian is not equivalent to an isoperimetric constant, called, as a rule, Cheeger’s constant
[6], in contrast with an isocapacitary constant introduced in [15] (see also [18]).1 This
equivalence, even uniform with respect to the dimension, holds for convex domains as proved
recently by B. Klartag and E. Milman (oral communication) but, as I show, it fails even in
the class of domains starshaped with respect to a ball.

Sect. 3 is devoted to certain integral capacitary inequalitites which are stronger than the
classical Faber-Krahn property of the fundamental Dirichlet-Laplace eigenvalue (see [28]).

∗The author was partially supported by the UK Engineering and Physical Sciences Research
Council grant EP/F005563/1.

1 By the equivalence of the set functions a and b, defined on subsets of R
n, I mean the existence

of positive constants c1 and c2 depending only on n and such that c1a ≤ b ≤ c2a.
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In Sect. 4 and 5 one can find necessary and sufficient conditions for the inequality

“

Z

Ω

Z

Ω

|u(x) − u(y)|qµ(dx, dy)
”1/q

≤ C ‖∇u‖Lp(Ω) (1)

formulated in terms of the isoperimetric (q ≥ p = 1) and isocapacitary (q > p > 1) inequali-
ties of a new type. Here Ω is a subdomain of a Riemannian manifold, µ is a given measure
of two subsets of Ω and u is an arbitrary smooth function.

No caracterization of (1) was known previously even for functions on the real line R (see
Problem 3 in [11]). A particular case of a result obtained at the end of Sect. 5 is the criterion
of the validity of (1) for all u ∈ C∞

0 (R):

µ
`

([α, β],R\(α− r, β + r)
´

≤ const. r−q(1−p)/p,

where r > 0, α < β, and the constant factor does not depend on α, β, and r.

The marginal value q = p > 1 in (1) has special features and a sufficient condition for
(1) is given in Sect. 6. The article is finished with a short discussion of the inequality

“

Z

Ω

|u|q ν(dx)
”1/q

≤
“

Z

Ω

Z

Ω

|u(x) − u(y)|pµ(dx, dy)
”1/p

with a nonnegative measure ν in Ω, µ as above, and q ≥ p ≥ 1.

It is worth mentioning that a Riemannian structure of Ω is not very important for most
of the results presented in Sect. 3-5. It can be replaced by some natural requirements on
the p-energy integral on a metric space (see [24], [10]).

In this article, I use a number of assertions from the book [22] which are not formulated
in detail but supplied with references. It is therefore helpful to read the paper with [22] close
at hand.

2 The first Dirichlet-Laplace eigenvalue

and an isoperimetric constant

Let Ω be a subdomain of a n-dimensional Riemannian manifold Rn and let Λ(Ω) be the first
eigenvalue of the Dirichlet priblem for the Laplace operator −∆ in Ω or, more generally, the
upper lower bound of the spectrum of this operator:

Λ(Ω) = inf
u∈C∞

0 (Ω)

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

. (2)

By [15] (see also [18] and Corollary 2.3.3 [22]), Λ(Ω) admits the two-sided estimate

1

4
Γ(Ω) ≤ Λ(Ω) ≤ Γ(Ω) (3)

with

Γ(Ω) := inf
{F}

cap(F ; Ω)

mn(F )
.

By mn the n-dimensional Lebesgue measure on Rn is meant, the infimum is taken over all
compact subsets of Ω and cap(F ; Ω) stands for the relative harmonic capacity of F with
respect to Ω:

cap(F ; Ω) = inf
n

Z

Ω

|∇u|2dx : u ∈ C∞
0 (Ω), u ≥ 1 on F

o

.

We write cap(F ) instead of cap(F ;Rn).

By Theorem 2.2.1 [22], the set function

γ(Ω) = inf
u∈C∞

0 (Ω)

‖∇u‖L1(Ω)

‖u‖L1(Ω)

(4)
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admits the geometric representation

γ(Ω) = inf
{g}

Hn−1(∂g)

mn(g)
, (5)

where g is an arbitrary open subset of Rn with compact closure g in Ω and smooth boundary
∂g, and Hn−1 is the (n− 1)-dimensional Hausdorff measure. Obviously, for all u ∈ C∞

0 (Ω),

γ(Ω) ≤

Z

Ω

|∇(u2)|dx
Z

Ω

u2dx

≤ 2
‖∇u‖L2(Ω)

‖u‖L2(Ω)

.

Hence
γ(Ω)2 ≤ 4Λ(Ω), (6)

which shows, together with (3) and (4), that

γ(Ω)2 ≤ 4 Γ(Ω) (7)

(the square of the isoperimetric constant is dominated by the isocapacitary one).

One can ask whether an upper bound for Γ(Ω) formulated in terms of γ(Ω) exists. The
negative answer is obtained easily if the class of sets Ω is not restricted. In fact, let F be a
compact subset of the open n-dimensional unit cube Q in the Euclidean space R

n, such that

Hn−1(F ) = 0 and cap(F ) > 0.

By Ω we shall mean the complement of the union of all integral shifts of F . Now, by Theorem
11.2 [22], γ(Ω) = 0 and Γ(Ω) ≥ Λ(Ω) > 0, which gives the negative answer to the question
formulated above.

Let us put the same question for domains in R
n starshaped with respect to balls. We

show that the answer stays negative in a certain sense.

Example. Let Ω be a subdomain of the n-dimensional unit ball B, starshaped with
respect to a concentric ball B(0; ρ) = {x : |x| < ρ}. Here we show that the inequality
opposite to (7):

γ(Ω)2 ≥ C Γ(Ω) (8)

is imposssible with C independent of ρ. Moreover, we shall construct a sequence of domains
{ΩN}n≥1 situated in B and such that

(i) ΩN is starshaped with respect to a ball B(0, ρN), where ρN → 0,

(ii) Γ(ΩN ) → ∞,

(iii) γ(ΩN ) ≤ c, where c depends only on n.

Let N stand for a sufficiently large integer number. By {ωj}
Nn−1

j=1 we denote a collection
of points on the unit sphere Sn−1 placed uniformly in the sense that the distance from every
point ωj to the set of other points of the collection lies between c1N

−1 and c2N
−1, where

c1 and c2 are positive constants, depending only on n. Consider a closed rotational cone Cj
with the axis Oωj and the vertex at the distance c0N

−1 from O, where c0 is an absolute
constant large enough. The opening of Cj will be independent of j and denoted by εN .

Let εN = o(N
1−n
n−2 ). Clearly, the complement of Cj is visible from a sufficiently small ball

B(0; ρN). Therefore, the domain
ΩN := B\∪jCj

is starshaped with respect to B(0, ρN ).

We shall find the limit of γ(ΩN ) as N → ∞ as well as a lower estimate for Γ(ΩN ).
Clearly, γ(ΩN ) ≥ γ(B) = n. Furthermore, by (5),

γ(ΩN ) ≤
Hn−1(∂ΩN )

mn(ΩN )
=
Hn−1(∂B) +Hn−1

`

∪j(B ∩ ∂Cj)
´

mn(B) −mn

`

∪j(B ∩ Cj)
´

≤
|Sn−1| + c1 ε

n−1
N Nn−1

|Sn−1|/n− c2 ε
n−2
N Nn−1

3



and therefore,
lim
N→∞

γ(ΩN ) = n.

In order to estimate Γ(ΩN ) from below, we construct a covering of B by the balls Bk :=
B(xk, 4c0N

−1), whose multiplicity does not exceed a constant depending only on n. Let
|xk| ≥ c0N

−1. Theorem 10.1.2 [22] implies

cNncap(Bk\ΩN )

Z

Bk

u2 dx ≤

Z

Bk

|∇u|2dx (9)

for all u ∈ C∞
0 (ΩN ), and the result will stem from a proper lower bound for cap(Bk\ΩN ).

First, let us consider n = 3. Clearly, Bk\ΩN contains a right rotational cylinder Tk with
height c0N

−1 and diameter of the base εN N
−1. Now, by Proposition 9.1.3/1 [22],

cap(Tk) ≥ cN−1| log εN |−1.

This estimate in combination with (9) gives

cN2| log εN |−1

Z

Bk

u2 dx ≤

Z

Bk

|∇u|2dx. (10)

Choosing εN = exp(−N) and summing (10) over all balls Bk, we obtain λ(ΩN ) ≥ cN . Hence
λ(ΩN ) → ∞ where as γ(ΩN ) ≤ c. Thus, in particular, there is no inequality

“

inf
{g}

s(∂g)

m3(g)

”2

≥ C inf
{F}

cap(F ; Ω)

m3(F )

and, equivalently,
“

inf
{g}

s(∂g)

m3(g)

”2

≥ CΛ(Ω)

with constant factors C independent of the radius ρ.

For dimensions greater than 3, the very end of the argument remains intact but the
estimation of cap(Bk\ΩN ) becomes a bit more complicated and the choice of εN will be
different.

Let αBk stand for the ball concentric with Bk and dilated with coefficient α. We introduce
the set sk = {j : Cj ∩

1
2
Bk 6= ∅}. With every j in sk we associate a right rotational cylinder

Tj coaxial with the cone Cj and situated in Cj ∩
1
2
Bk. The height of Tj will be equal to

c0N
−1 and the diameter of the base equal to εN |xk|. We define a cut-off function ηj , equal

to 1 on the εN |xk|-neighbourhood of Tj , zero outside the 2εN |xk|-neighbourhood of Tj and
satisfying the estimate

|∇ηj(x)| ≤ c δ(x)−1,

where δ(x) is the distance from x to the intersection of Tj with the axis of Cj .

By Pk we denote the equilibrium potential of Bk\ΩN . We have

X

j∈sk

cap(Cj ∩ Bk) ≤
X

j∈sk

Z

Rn

|∇(Pkηj)|
2dx

≤ c
“

Z

Rn

|∇Pk|
2dx+

Z

Rn

P2
kδ

−2dx
”

.

Changing the constant c, one can majorize the last integral by the previous one due to
Hardy’s inequality. Hence,

cap(Bk\ΩN ) ≥ c
X

j∈sk

cap(Tj). (11)

By Proposition 9.1.3/1 [22],

cap(Tj) ≥ c
`

εN |xk|
´n−3

N−1.
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Furthermore, it is visible that the number of integers in sk is between two multiples of
|xk|

1−n. Now, by (11)

cap(Bk\ΩN ) ≥ c |xk|
1−n `εN |xk|

´n−3
N−1

and by (9)

cNn−1|xk|
−2εn−3

N

Z

Bk

u2dx ≤

Z

Bk

|∇u|2dx. (12)

Since |xk| ≤ 1, it follows by summation of (12) over k that

λ(ΩN ) ≥ c εn−3
N Nn−1.

Putting, for instance,
εN = N (1−n)/(n−5/2),

we see that Γ(ΩN ) → ∞, and the desired counterexample is constructed for n > 3.

3 Capacitary improvement of the Faber-Krahn in-
equality

We state and prove the main result of this section. Here Ω is an open subset of an arbitrary
n-dimensional Riemannian manifold.

Theorem 1. Let R > 0, u ∈ C∞
0 (Ω), and Nt = {x ∈ Ω : |u(x)| ≥ t}. If n > 2, then

“ j(n−2)/2

R

”2

mn(BR)

Z ∞

0

“ cap(Nt; Ω)

cap(BR) + cap(Nt; Ω)

”

n
n−2

d(t2)

≤ ‖∇u‖2
L2(Ω), (13)

where jν is the first positive root of the Bessel function Jν. If n = 2, then

πj20

Z ∞

0

exp
“ −4π

cap(Nt; Ω)

”

d(t2) ≤ ‖∇u‖2
L2(Ω). (14)

Proof. Let w be an arbitrary absolutely continuous function on (0,R], such that w(R) =
0. The inequality

“ j(n−2)/2

R

”2
Z R

0

w(ρ)2ρn−1dρ ≤

Z R

0

w′(ρ)2ρn−1dρ, (15)

where n > 2, is equivalent to the fact that the first eigenvalue of the Dirichlet-Laplace
operator in the unit ball B equals j2(n−2)/2. Similarly, with n = 2 the inequality

“ j0
R

”2
Z R

0

w(ρ)2ρ dρ ≤

Z R

0

w′(ρ)2ρ dρ (16)

is associated.

In the case n > 2, we introduce the new variables

ψ =
ρ2−n −R2−n

(n− 2)|Sn−1|
, t(ψ) = w(ρ(ψ)),

and write (15) in the form

`

|Sn−1|j(n−2)/2R
−1´2

Z ∞

0

t(ψ)2dψ
`

(n− 2)|Sn−1|ψ + R2−n
´2(n−1)/(n−2)

≤

Z ∞

0

t′(ψ)2dψ. (17)

5



Similarly, for n = 2, putting

ψ = (2π)−1 log
R

ρ
, t(ψ) = w(ρ(ψ)),

we write (16) as

(2πj0)
2

Z ∞

0

t(ψ)2exp(−4πψ) dψ ≤

Z ∞

0

t′(ψ)2dψ. (18)

Note that the function t in (17) and (18) is subject to the boundary condition t(0) = 0. We
write (17) and (18) as

n−1|Sn−1|
“ j(n−2)/2

R

”2
Z ∞

0

dt(ψ)2
`

(n− 2)|Sn−1|ψ + R2−n
´n/(n−2)

≤

Z ∞

0

t′(ψ)2dψ (19)

and

πj20

Z ∞

0

exp(−4πψ) dt(ψ)2 ≤

Z ∞

0

t′(ψ)2dψ. (20)

Now, as in Sect. 2.2.1 [22], we introduce the function

ψ(t) =

Z t

0

dτ
Z

|u|=τ

|∇u| dHn−1

, (21)

as well as its inverse ψ → t(ψ), and replace the integral in the right-hand side of (19) and
(20) by ‖∇u‖2

L2(Ω). It remains to note that

ψ ≤
`

cap(Nt(ψ); Ω)
´−1

(22)

by Lemma 2.2.2/1 [22].

Let us use the area minimizing function of Ω:

λ(v) = infHn−1(∂g), (23)

where the infimum is extended over all sets g with smooth boudaries and compact closures
g ⊂ Ω, subject to the inequality mn(g) ≥ v. This and related geometrical characterizations
of Ω proved to be useful in the theory of Sobolev spaces and elliptic equations, see [12], [14],
[5], [20]. The function λ appears in the lower estimate of the capacity

cap(F ; Ω) ≥
“

Z mn(Ω)

mn(F )

dv

λ(v)2

”−1

(see Corollary 2.2.3/2 [22]). Therefore, (13), (14), and the identity

cap(BR) = (n− 2)|Sn−1|Rn−2

lead to the following Lorentz-type estimates.

Corollary 1. If n > 2 and R > 0, then, for all u ∈ C∞
0 (Ω),

“ j(n−2)/2

R

”2

mn(BR)

Z ∞

0

“

cap(BR)

Z mn(Ω)

mn(Nt)

dv

λ(v)2
+ 1
”

n
2−n

d(t2)

≤ ‖∇u‖2
L2(Ω). (24)

If n = 2, then, for all u ∈ C∞
0 (Ω),

πj20

Z ∞

0

exp
“

−4π

Z mn(Ω)

mn(Nt)

dv

λ(v)2

”

d(t2) ≤ ‖∇u‖2
L2(Ω). (25)
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Remark 1. Since
λ(v) ≥ n

n−1
n |Sn−1|

1
n v

n−1
n (26)

by the classical isoperimetric inequality for R
n, the estimates (24) and (25) imply the Faber-

Krahn property

Λ(Ω) ≥
“j(n−2)/2

R

”2

for any n-dimensional Euclidean domain Ω with mn(Ω) = n−1|Sn−1|Rn. �

Theorem 1 is a very special case of the following general assertion.

Theorem 2. Let M be a decreasing nonnegative function on [0,∞) and let q > 0 and
p ≥ 1. Suppose that for all absolutely continuous functions ψ → t(ψ) on [0,∞), the inequality

“

−

Z ∞

0

|t(ψ)|qdM(ψ)
”1/q

≤
“

Z ∞

0

|t′(ψ)|pdψ
”1/p

(27)

holds. Then, for all u ∈ C∞
0 (Ω),

“

Z ∞

0

M
“

`

capp(Nt; Ω)
´1/(1−p)

”

d(tq)
”1/q

≤ ‖∇u‖Lp(Ω), (28)

where capp is the p-capacity defined by

capp(F ; Ω) = inf
n

Z

Ω

|∇u|pdx : u ∈ C∞
0 (Ω), u ≥ 1 on F

o

. (29)

Proof. The role of the function ψ given by (21) is played in the present proof by

ψ(t) =

Z t

0

dτ
“

Z

|u|=τ

|∇u|p−1 dHn−1

”1/(p−1)
. (30)

We write the left-hand side of (27) in the form

“

Z ∞

0

M(ψ) d(t(ψ))q
”1/q

and use the monotonicity of M and the inequality

ψ ≤
`

capp(Nt(ψ); Ω)
´1/(1−p)

(31)

proved in Lemma 2.2.2/1 [22]. It remains to apply (27) and the identity

Z ∞

0

|f ′(ψ)|pdψ =

Z

Ω

|∇u|pdx (32)

found in Lemma 2.3.1 [22]. �

Using the area minimizing function λ defined by (23) and the estimate

capp(F ; Ω) ≥
“

Z mn(Ω)

mn(F )

dv

λ(v)p/(p−1)

”1−p

(33)

(see Corollary 2.2.3/2 [22]), we obtain from Theorem 2

Corollary 2. Let µ, p, and q be the same as in Theorem 2 and let (27) hold. Then

“

Z ∞

0

M
“

Z mn(Ω)

mn(Nt)

dv

λ(v)p/(p−1)

”

d(tq)
”1/q

≤ ‖∇u‖Lp(Ω) (34)

for all u ∈ C∞
0 (Ω).

7



Clearly, (34) is a generalization of the estimates (24) and (25) which were obtained for
p = 2 with a particular choice of µ. Another obvious remark is that (27), where M is defined
on the interval 0 < t < mn(Ω) by

M
“

Z mn(Ω)

t

dv

λ(v)p/(p−1)

”

= Λp,qt

with a constant Λp,q depending on mn(Ω), implies the inequality

Λ1/q
p,q ‖u‖Lq(Ω) ≤ ‖∇u‖Lp(Ω) (35)

for all u ∈ C∞
0 (Ω).

4 Criterion for an upper estimate of a difference
seminorm (the case p = 1)

Let us consider the seminorm

〈u〉q,µ =
“

Z

Ω

Z

Ω

|u(x) − u(y)|qµ(dx, dy)
”1/q

, (36)

where Ω is an open subset of a Riemannian manifold and µ is a non-negative measure on
Ω × Ω, locally finite outside the diagonal {(x, y) : x = y}. By definition, the product 0 · ∞
equals zero.

In this section, first, we characterize both µ and Ω subject to the inequality

〈u〉q,µ ≤ C ‖∇u‖L1(Ω), (37)

where q ≥ 1 and u is an arbitrary function in C∞(Ω). We show that (37) is equivalent to a
somewhat unusual relative isoperimetric inequality.

Theorem 3. Inequality (37) holds for all u ∈ C∞(Ω) with q ≥ 1 if and only if for any
open subset g of Ω, such that Ω ∩ ∂g is smooth, the inequality

`

µ(g,Ω\g) + µ(Ω\g, g)
´1/q

≤ CHn−1(Ω ∩ ∂g) (38)

holds with the same value of C as in (37). In particular, a constant C in (37) exists if and
only if

sup
{g}

µ(g,Ω\g)1/q

Hn−1(Ω ∩ ∂g)
<∞. (39)

Proof. Sufficiency. Denote by u+ and u− the positive and negative parts of u, so that
u = u+ − u−. We notice that

〈u〉q,µ ≤ 〈u+〉q,µ + 〈u−〉q,µ (40)

and
Z

Ω

|∇u|dx =

Z

Ω

|∇u+|dx+

Z

Ω

|∇u−|dx. (41)

First, we obtain (37) separately for for u = u+ and u = u−. Let a > b and let χt(a, b) = 1
if a > t > b and χt(a, b) = 0 otherwise.

Clearly,

〈u〉q,µ =

 

Z

Ω

Z

Ω

˛

˛

˛

˛

˛

Z u(y)

u(x)

dt

˛

˛

˛

˛

˛

q

µ(dx, dy)

!1/q

=

„

Z

Ω

Z

Ω

˛

˛

˛

˛

Z ∞

0

`

χt(u(x), u(y)) + χt(u(y), u(x))
´

dt

˛

˛

˛

˛

q

µ(dx, dy)

«1/q

.

8



By Minkowski’s inequalitiy,

〈u〉q,µ ≤

Z ∞

0

„

Z

Ω

Z

Ω

`

χt(u(x), u(y)) + χt(u(y), u(x))
´q
µ(dx, dy)

«1/q

dt

=

Z ∞

0

„

Z

Ω

Z

Ω

`

χt(u(x), u(y)) + χt(u(y), u(x))
´

µ(dx, dy)

«1/q

dt

=

Z ∞

0

`

µ(Mt,Ω\Nt) + µ(Ω\Nt,Mt)
´1/q

dt,

where Mt = {x ∈ Ω : u(x) > t} and Nt = {x ∈ Ω : u(x) ≥ t}.

By (38) and the co-area formula, the last integral does not exceed

C

Z ∞

0

Hn−1

`

{x ∈ Ω : u(x) > t}
´

dt = C

Z

Ω

|∇u(x)|dx.

Therefore,

〈u±〉q,µ ≤ C

Z

Ω

|∇u±(x)|dx

and the reference to (40) and (41) completes the proof of sufficiency.

Necessity. Let {wm} be the sequence of locally Lipschitz functions in Ω constructed in
Lemma 3.2.2 [22] with the following properties:

1. wm(x) = 0 in Ω\g,

2. wm(x) ∈ [0, 1] in Ω,

3. for any compactum K ⊂ g there exists an integer N(e) such that wm(x) = 1 for x ∈ K
and m ≥ N(e),

4. the limit relation holds

lim sup
m→∞

Z

Ω

|∇wm(x)|dx = Hn−1(Ω ∩ ∂g).

By Theorem 1.1.5/1 [22], the inequality (37) holds for all locally Lipschitz functions. There-
fore,

〈wm〉q,µ ≤ C ‖∇wm‖L1(Ω) (42)

and due to property 4,
lim sup
m→∞

〈wm〉q,µ ≤ CHn−1(Ω ∩ ∂g). (43)

On the other hand,

〈wm〉qq,µ =

Z

x∈g

Z

y∈Ω\g

wm(x)qµ(dx, dy)

+

Z

x∈Ω\g

Z

y∈g

wm(y)qµ(dx, dy) +

Z

g

Z

g

|wm(x) − wm(y)|qµ(dx, dy)

which implies

〈wm〉qq,µ ≥

Z

g

wm(x)qµ(dx,Ω\g) +

Z

g

wm(y)qµ(Ω\g, dy).

This, along with property 3, leads to

lim inf
m→∞

〈wm〉qq,µ ≥ µ(g,Ω\g) + µ(Ω\g, g).

Combining this relation with (42) and (43), we arrive at (38). �

Corollary 3 (One-dimensional case). Let

Ω = (α, β), where −∞ ≤ α < β ≤ ∞.

9



The inequality
“

Z

Ω

Z

Ω

|u(x) − u(y)|qµ(dx, dy)
”1/q

≤ C

Z

Ω

|u′(x)|dx (44)

with q ≥ 1 holds for all u ∈ C∞(Ω) if and only if

`

µ(I,Ω\I) + µ(Ω\I, I)
´1/q

≤ 2C (45)

for all open intervals I such that I ⊂ Ω, and

`

µ(I,Ω\I) + µ(Ω\I, I)
´1/q

≤ C (46)

for all intervals I ⊂ Ω, such that I contains one of the end points of Ω.

In particular, a constant in (44) exists if and only if

sup
{I}

µ(I,Ω\I) <∞.

Proof. Necessity follows directly from (38) by setting g = I . Let us check the sufficiency
of (45). Represent an arbitrary open set g of Ω as the union of non-overlapping open intervals
Ik. Then by (45) and (46)

`

µ(g,Ω\g) + µ(Ω\g, g)
´1/q

=

 

X

k

`

µ(Ik,Ω\g) + µ(Ω\g, Ik)
´

!1/q

≤
X

k

`

µ(Ik,Ω\g) + µ(Ω\g, Ik)
´1/q

≤ C
X

k

H0(Ω ∩ ∂Ik)

which is the same as (38). The result follows from Theorem 3.�

Remark 2. Suppose that the class of admissible functions in Theorem 3 is diminished
by the requirement u = 0 in a neighbourhood of a closed subset F of Ω. Then the same proof
leads to the same criterion (38) with the only difference that the admissible sets g should be
at a positive distance from F . For the example F = ∂Ω, i.e. for the inequality (37) with any
u ∈ C∞

0 (Ω), the necessary and sufficient condition (38) becomes the isoperimetric inequality

`

µ(g,Ω\g) + µ(Ω\g, g)
´1/q

≤ CHn−1(∂g) (47)

for all open sets g with smooth boundary and compact closure g ⊂ Ω. If, in particular, in
Corollary 3, the criterion of the validity of (44) for all u ∈ C∞

0 (Ω) is the inequality (45) for
every interval I , I ⊂ Ω. In the case u = 0 near one of the end points Ω = (α, β), one should
require both (45) and (46) but the intervals I should be at a positive distance from that end
point.

Needless to say, the condition (38) is simplified as follows for a symmetric measure µ, i.e.
under the assumption µ(E ,F) = µ(F , E):

µ(g,Ω\g)1/q ≤ 2−1/qCHn−1(Ω ∩ ∂g)

for the same open sets g as in Theorem 3.

Remark 3. The integration domain Ω × Ω in (36) excludes inequalities for integrals
taken over ∂Ω. This can be easily avoided assuming additionally that µ is defined on compact
subsets of Ω × Ω and that u ∈ C(Ω) ∩ C∞(Ω). Then, with the same proof, one obtains the
corresponding criterion, similar to (38):

`

µ(g, Ω\g) + µ(Ω\g, g)
´1/q

≤ C Hn−1(Ω ∩ ∂g).

As an application, consider the inequality
Z

∂Ω

Z

∂Ω

|u(x) − u(y)|Hn−1(dx)Hn−1(dy) ≤ C

Z

Ω

|∇u| dx (48)

10



which holds if and only if

Hn−1(∂Ω ∩ ∂g)Hn−1(∂Ω\∂g) ≤ 2−1C Hn−1(Ω ∩ ∂g) (49)

for the same sets g as in Theorem 3.

By Corollary 6.4.4/3 [22], which appeared first in [5],

(i) If Ω is the unit ball in R
3, then

4πH2(Ω ∩ ∂g) ≥ H2(∂Ω ∩ ∂g)H2(∂Ω\∂g)

and

(ii) If Ω is the unit disk on the plane, then

H1(Ω ∩ ∂g) ≥ 2 sin
`1

2
H1(∂Ω ∩ ∂g)

´

.

Moreover, the last two inequalities are sharp. Hence, the inequality (48) holds with the best
constant C = 8π if Ω = B. In the case (ii),

H1(Ω ∩ ∂g) ≥ 2−1 min
0≤ϕ≤π

sinϕ

ϕ(π − ϕ)
H1(∂Ω ∩ ∂g)H1(∂Ω\∂g).

Since the last minimum equals π−1, it follows that the best value of C in the inequality (48)
for the unit disk is 4π. �

We can simplify the criterion (38) for Ω = R
n, replacing arbitrary sets g by arbitrary

balls B(x, ρ) similarly to Theorem 1.4.2/2 [22], where the norm

‖u‖Lq (µ) =
“

Z

Rn

|u|qdµ
”1/q

is treated in place of 〈u〉q,µ. Unfortunately, the best constant in the sufficiency part will be
lost.

Corollary 4. (i) If q ≥ 1 and

sup
x∈Rn,ρ>0

ρ(1−n)q`µ(B(x, ρ),Rn\B(x, ρ)) + µ(Rn\B(x, ρ),B(x, ρ))
´

<∞, (50)

then the inequality

“

Z

Rn

Z

Rn

|u(x) − u(y)|qµ(dx, dy)
”1/q

≤ C ‖∇u‖L1(Rn) (51)

holds for all u ∈ C∞(Rn) and

Cq ≤ cq sup
x∈Rn,ρ>0

ρ(1−n)q
`

µ(B(x, ρ),Rn\B(x, ρ)) + µ(Rn\B(x, ρ), B(x, ρ))
´

, (52)

where c depends only on n.

(ii) If (51) holds for all u ∈ C∞(Rn), then

Cq ≥ |Sn−1|−q sup
x∈Rn,ρ>0

ρ(1−n)q
`

µ(B(x, ρ),Rn\B(x, ρ)) + µ(Rn\B(x, ρ), B(x, ρ))
´

.

Proof. Let g be an arbitrary open set in R
n with smooth boundary and let {B(xj , ρj)}

be the Gustin covering of g subject to

X

j

ρn−1
j ≤ cHn−1(∂g), (53)

11



where c depends only on n (see Theorem 1.2.2/2 [22]). Then

µ(g,Rn\g) ≤
X

j

µ(B(xj , ρj),R
n\g)

≤
“

X

j

µ(B(xj , ρj),R
n\g)1/q

”q

≤
“

X

j

µ(B(xj , ρj),R
n\B(xj , ρj))

1/q
”q

≤ (cB)q
`

X

j

ρn−1
j

´q
,

where B is the value of the supremum in (50). This and (53) imply

µ(g,B(xj , ρj) ≤ (cB Hn−1(∂g))
q.

Similarly,
µ(Rn\g, g) ≤ (cBHn−1(∂g))

q

and the result follows from Theorem 3.

The assertion (ii) stems from (38) by setting g = B(x, ρ). �

5 Criterion for an upper estimate of a difference

norm (the case p > 1)

Now we deal with the inequality

〈u〉q,µ ≤ C ‖∇u‖Lp(Ω), (54)

where q > p > 1, and show that it is equivalent to a certain isocapacitary inequality.

The capacity to appear in the present context is defined as follows. Let F1 and F2 be
non-overlapping subsets of Ω, closed in Ω. The p-capacity of the pair (F1, F2) with respect
to Ω is given by

capp(F1, F2; Ω) = inf
{u}

Z

Ω

|∇u(x)|pdx,

where {u} is the set of all u ∈ C∞(Ω), such that u ≥ 1 on F1 and u ≤ 0 on F2.

Obviously, this capacity does not change if F1 and F2 change places. Furthermore, if F is
a closed set in R

n and F ⊂ G, where G is an open set, such that G ⊂ Ω, then capp(F,Ω\G; Ω)
coincides with the p-capacity capp(F ;G) defined in (29).

Theorem 4. Inequality (54) with p ∈ (1, q) holds for all u ∈ C∞(Ω) if and only if for
any pair (F1, F2) of non-overlapping sets, closed in Ω,

µ(F1, F2)
p/q ≤ B capp(F1, F2; Ω), (55)

where B depends only on p and q. In the sufficiency part we may assume that F1 and F2

are sets with smooth Ω ∩ ∂Fi.

In the proof of this theorem, we use the inequality

“

Z

R+

|f(ψ)|qψ−1−q/p′dψ
”1/q

≤ c ‖f ′‖Lp(R+) (56)

due to Bliss [4] and the inequality

“

Z

R+

Z

R+

|f(ψ) − f(φ)|q

|ψ − φ|2+q/p′
dφdψ

”1/q

≤ c ‖f ′‖Lp(R+), (57)

where q > p > 1, p′ = p/(p− 1) and f is an arbitrary absolutely continuous function on R+.
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A short argument leading to (57) is as follows. Clearly, (57) results from the same
inequality with R in place of R+, which follows, in its turn, from the estimate

‖f‖
B

1−(q−p)/pq
q (R)

≤ c ‖f‖W1
p (R) (58)

by dilation with a coefficient λ and the limit passage as λ → 0+. (The standard notations
B and W for Besov and Sobolev spaces with non-homogeneous norms is used in (57).) In
order to obtain (58), we recall the well-known Sobolev type inequality

‖h‖Lp′ (R+) ≤ c ‖h‖
B

(q−p)/pq

q′
(R)

(see Theorem 4′, Sect. 5.1 [29]) and put h = (−∆ + 1)−1/2f , which shows that

‖f‖
W−1

p′
(R)

≤ c ‖f‖
B

−1+(q−p)/pq

q′
(R)
. (59)

By duality, (59) is equivalent to (58).

With (57) at hand, we return to Theorem 4.

Proof. Sufficiency. Arguing as at the beginning of the the proof of Theorem 2, we see
that it sufficies to prove (54) for a non-negative u. By the definition of the Lebesque integral

Z

Ω

udν =

Z

R+

ν(Nτ )dτ =

Z

R+

ν(Mτ )dτ,

where ν is a measure, and therefore
Z

Ω

P (u)dν =

Z

R+

ν(Nτ )dP (τ ), (60)

where P is a non-decreasing function on R+. Putting here u = 1/v and Q(τ ) = P (τ−1), we
deduce

Z

Ω

Q(u)dν = −

Z

R+

ν(Ω\Mτ )dQ(τ ), (61)

where Q is non-increasing. We obtain
Z

Ω

Z

Ω

|u(x) − u(y)|qµ(dx, dy) =

Z

Ω

Z

Ω

(u(x) − u(y))q+µ(dx, dy)

+

Z

Ω

Z

Ω

(u(y) − u(x))q+µ(dx, dy)

=

Z

Ω

Z

Ω

(u(x) − u(y))q+(µ(dx, dy) + µ(dy, dx)).

By (60) and (61), the last double integral is equal to

q

Z

R+

Z

Ω

(t− u(y))q−1
+ (µ(Nτ , dy) + µ(dy,Nτ ))dτ

= q(q − 1)

Z

R+

Z

R+

(τ − σ)q−2
+

`

µ(Nτ ,Ω\Mσ) + µ(Ω\Mσ , Nτ )
´

dτdσ.

Now, (55) implies

〈u〉qq,µ ≤ 2q(q − 1)B

Z

R+

Z

R+

(τ − σ)q−2
+ capp(Nτ ,Ω\Mσ ; Ω)dτdσ

and using the function ψ → t(ψ), inverse of (30), we arrive at the inequality

〈u〉qq,µ ≤ 2q(q − 1)Bq/p

×

Z

R+

Z ψ

0

(t(ψ) − t(φ))q−2
`

cap(Nt(ψ),Ω\Mt(φ); Ω)q/pt′(φ)t′(ψ)dφdψ.
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By Lemma 2.2.2/1 [22], for ψ > φ

cap(Nt(ψ),Ω\Mt(φ); Ω) ≤ (ψ − φ)1−p

and therefore,

〈u〉qq,µ ≤ 2q(q − 1)Bq/p
Z

R+

Z ψ

0

(ψ − φ)−q/p
′

(t(ψ) − t(φ))q−2t′(φ)t′(ψ)dφdψ. (62)

Integrating by parts twice on the right-hand side of (62), we obtain

〈u〉qq,µ ≤ 2Bq/p
q

p′

““ q

p′
+ 1
”

Z

R+

Z ψ

0

(t(ψ) − t(φ))q

(ψ − φ)2+q/p′
dφdψ+

Z

R+

ψ−q/p′t(ψ)q−1t′(ψ)dψ
”

= Bq/p
q

p′

““ q

p′
+ 1
”

Z

R+

Z

R+

|t(ψ) − t(φ)|q

|ψ − φ|2+q/p′
dφdψ +

1

p′

Z

R+

t(ψ)qψ−1−q/p′dψ
”

.

Hence, we deduce from (56) and (57) that

〈u〉q,µ ≤ cB1/p‖t′‖Lp(R+), (63)

where c depends only on p and q. It remains to refer to (32).

Necessity. Let F1 and F2 be subsets of Ω, closed in Ω. We take an arbitrary function
u ∈ C∞(Ω), such that u ≥ 1 on F1 and u ≤ 0 on F2, and put it into (54)

µ(F1, F2; Ω)p/q ≤

„

Z

F1

Z

F2

|u(x) − u(y)|qµ(dx, dy)

«1/q

≤ C

Z

Ω

|∇u|pdx.

It remains to minimize the right-hand side, in order to obtain

µ(F1, F2; Ω)p/q ≤ C capp(F1, F2; Ω).

The result follows.�

A direct consequence of Theorem 4 and the isocapacitary inequality for capp(F ;G) (see
(5) and (6) in Sect. 2.2.3 [22]) is the following sufficient condition for (54) formulated in
terms of the n-dimensional Lebesgue measure:

µ(F,Ω\G) ≤ c
“

log
mn(G)

mn(F )

”q(1−n)/n

, if p = n (64)

and

µ(F,Ω\G) ≤ c
˛

˛mn(G)(p−n)/n(p−1) −mn(F )(p−n)/n(p−1)
˛

˛

1−p
, if p 6= n. (65)

Choosing two concentric balls situated in Ω as the sets F1 and Ω\F2 in (55) and using
the explicit fofmulae for the p-capacity of spherical condensers (see (1) and (2) in Sect. 2.2.4
[22]) we see that the inequalities (64) and (65), with concentric balls F and G placed in Ω,
is a necessary condition for (54).

In the one-dimensional case Theorem 4 can be written in a much simpler form.

Corollary 5. Let
Ω = (α, β), −∞ ≤ α < β ≤ ∞.

The inequality

“

Z

Ω

Z

Ω

|u(x) − u(y)|qµ(dx, dy)
”1/q

≤ C
“

Z

Ω

|u′(x)|pdx
”1/p

(66)

holds for every u ∈ C∞(Ω) if and only if, for all pair of intervals I and J of the three types:

I = [x− d, x+ d] and J = (x− d− r, x+ d+ r),
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I = (α, x] and J = (α, x+ r), (67)

I = [x, β) and J = (x− r, β), (68)

where d and r are positive and J ⊂ Ω, we have

r(p−1)/p
`

µ(I,Ω\J)
´1/q

≤ B, (69)

where B does not depend on I and J.

Proof. The necessity of (69) follows directly from that in Theorem 4 and the inequality

capp(I,Ω\J ; Ω) ≤ 2 r1−p

(see Lemma 2.2.2/2 [22]).

Let us prove the sufficiency. By G1 we mean an open subset of Ω such that F1 ⊂ G1

and G1 ⊂ Ω\F2. Connected components of Ω\F2 will be denoted by Jk. Let Jk contain the
closed convex hull J̃k of those connected components of G1 which are situated in Jk.

Then

µ(F1, F2)
p/q ≤ µ(G1, F2)

p/q ≤
“

X

k

µ
`

J̃k,Ω\Jk
´

”p/q

≤
X

k

µ
`

J̃k,Ω\Jk
´p/q

and since by (69)

µ
“

J̃k,Ω\Jk
”p/q

≤ Bp
`

dist{Ik,R\Jk}
´1−p

we obtain
µ(F1, F2)

p/q ≤ Bp
X

k

`

dist{Ik,R\Jk}
´1−p

. (70)

Consider an arbitrary function u ∈ C∞(Ω), such that u = 1 on G1 and u = 0 on F2.
Clearly, u = 0 on ∂Jk. We have

Z

Ω

|u′|pdx ≥
X

k

Z

Jk

|u′|pdx ≥
X

k

Z

Jk

|ũ′
k|
pdx, (71)

where ũ = u on Jk\Ĩk, ũk = 1 on Ĩk, and ũk = 0 on ∂Jk. Hence

Z

Ω

|u′|pdx ≥
X

k

`

dist{Ĩk,R\Jk}
´1−p

.

Comparing this estimate with (70), we arrive at

Z

Ω

|u′|pdx ≥ µ(F1, F2)
p/q

and minimizing the integral in the left-hand side over all functions u, we obtain (69).�

Remark 4. It is straightforward but somewhat cumbersome to obtain a more general
criterion by replacing the seminorm on the right-hand side of (66) with

“

Z

Ω

|u′(x)|pσ(dx)
”1/p

, (72)

where σ is a measure in Ω. In fact, one can replace σ by its absolutely continuous part
(dσ∗/dx)dx and further, roughly speaking, the criterion will follow from Corollary 5 by the
change of variable x→ ξ, where

dξ = (dσ∗/dx)1/(1−p)dx.

Restricting myself to this hint, I leave details to the interested reader.
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6 Capacitary sufficient condition in the case q = p

In the marginal case q = p the condition (55) in Theorem 4, being necessary, is not generally
sufficient. In fact, let n = 1,Ω = R, and

µ(dx, dy) =
dxdy

|x− y|p+1
.

Then as shown in the proof of Corollary 4, (55) is equivalent to (69), and (69) holds, since

µ(I,R\J) =

Z

|t−x|<d

dt

Z

|τ−x|>d+r

dτ

|t− τ |p+1

=

Z

|t|<d

dt

Z

|τ |>d+r

dτ

|t− τ |p+1
≤ c r1−p

and the same estimate holds for I and J defined by (67) and (68).

On the other hand, (47) fails, because

Z

R

Z

R

|u(x) − u(y)|p

|x− y|p+1
dxdy = ∞

for every non-constant function u.

In the next theorem we give a sufficient condition for (54) with q = p > 1 formulated in
terms of an isocapacitary inequality.

Theorem 5. Given p ∈ (1,∞) and a positive, vanishing at infinity, non-increasing
absolutely continuous function ν on R+, such that

S := sup
τ>0

“

Z τ

0

|ν′(σ)|1/(1−p)
dσ

σ

”p−1
Z ∞

τ

|ν′(σ)|
dσ

σ
<∞.

Suppose that
µ(F1, F2) ≤ ν

`

(capp(F1, F2; Ω))1−p
´

(73)

for all non-overlapping sets F1 and F2 closed in Ω. Assume also that

K :=

Z ∞

0

|ν′(σ)|σp−1dσ <∞. (74)

Then

‖u‖p,µ ≤ 21/pp
“ S

(p− 1)p−1

”1/pp′

K1/p‖∇u‖Lp(Ω) (75)

for all u ∈ C∞(Ω).

Proof. We assume that ∇u ∈ Lp(Ω) and the integral in (75) involving derivatives of ν is
convergent. Arguing as in the proof of Theorem 4 and using (73) instead of (55), we obtain

〈u〉pp,µ ≤ 2p(p− 1)

Z ∞

0

Z ∞

φ

ν(ψ − φ)
`

t(ψ) − t(φ)
´p−2

t′(ψ)dψ t′(φ)dφ. (76)

Owing to (74), we can integrate by parts in the inner integral in (76) and obtain

〈u〉pp,µ ≤ 2p

Z ∞

0

Z ∞

φ

|ν′(ψ − φ)|
`

t(ψ) − t(φ)
´p−1

dψ t′(φ)dφ

= 2p

Z ∞

0

Z ψ

0

|ν′(ψ − φ)|
`

t(ψ) − t(φ)
´p−1

t′(φ)dφdψ.

By Hölder’s inequality

〈u〉pp,µ ≤ 2p

Z ∞

0

A(φ)1/p
′

B(φ)1/pdφ, (77)
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where

A =

Z ψ

0

|ν′(ψ − φ)|

ψ − φ

`

t(ψ) − t(φ)
´p
dφ

and

B =

Z ψ

0

|ν′(ψ − φ)| (ψ − φ)p−1 |t′(ψ)|pdφ.

Using Theorem 1.3.1/1 [22] concerning a two-weight Hardy inequality, we obtain

A ≤
pp

(p− 1)p−1
S B

which together with (77) gives

〈u〉pp,µ ≤ 2pp(p− 1)(1−p)/p
′

S1/p′
Z ∞

0

Z ψ

0

|ν′(ψ − φ)| (ψ − φ)p−1 |t′(ψ)|pdφdψ.

Changing the order of integration, we arrive at

〈u〉p,µ ≤ 21/pp
`

(p− 1)1−pS
´1/pp′

K1/p‖ t′ ‖Lp(R+).

It remains to apply (32). �

Remark 5. If the requirement

u = 0 on a neighbourhood of a closed subset E of Ω

is added in the formulation of Theorems 4 and 5, the same proofs give conditions for the
validity of (54), similar to (55) and (69). The only new feature is the a restriction

Ω ∩ ∂(Ω\F2) is at a positive distance from E.

In the important particular case E = ∂Ω, which corresponds to zero Dirichlet data on ∂Ω,
the conditions (55) and (73) become

µ(F,Ω\G)p/q ≤ B capp(F ;G) (78)

and
µ(F,Ω\G) ≤ ν

`

(capp(F ;G))1−p
´

, (79)

respectively, where F is closed and G is open, G ⊃ F , and the closure of G is compact and
situated in Ω. The capacity capp(F ;G) is defined by (29) with Ω = G.

Using lower estimates for the p-capacity in terms of area minimizing functions, one ob-
tains sufficient conditions from (55), (69) (78) and (79) formulated in geometrical terms in
the spirit of Corollary 2. For example, by (78) and (79), inequalities (55) and (73) hold for
all u ∈ C∞

0 (Ω) if, respectively

µ(F,Ω\G)p/q ≤ B
“

Z mn(Ω\G)

mn(F )

dv

λ(v)p/(p−1)

”

and

µ(F,Ω\G) ≤ ν
“

Z mn(Ω\G)

mn(F )

dv

λ(v)p/(p−1)

”

,

where F and G are the same as in (78) and (79). �

By obvious modifications of the proof of sufficiency in Corollary 4 one deduces the fol-
lowing assertion from Theorem 5.

Corollary 6. (One-dimensional case) With the notation used in Corollary 5, suppose
that

µ(I,Ω\J) ≤ ν(r).
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Then there exists a positive constant c depending only on p and such that

〈u〉p,µ ≤ c S1/pp′K1/p ‖u′‖Lp(Ω)

for all u ∈ C∞(Ω).

Remark 6. Let us show that the condition K < ∞, which appeared in Theorem 5, is
sharp. Suppose that there exists a positive constant C independent of u and such that

Z

R

Z

R

|u(t) − u(τ )|p ν′′(t− τ )dt dτ ≤ C

Z

R

|u′(t)|pdt, (80)

where ν is a convex function in C2(R). We take an arbitrary N > 0 and put u(t) =
min{|t|, N} into (80). Then

Z N/2

0

Z N

τ

(t− τ )p ν′′(t− τ )dt dτ ≤ 2CN

and setting here t = τ + s, we obtain

1

2
pN

Z N/2

0

sp−1 |ν′(s)|ds ≤ p

Z N/2

0

Z N−τ

0

sp−1|ν′(s)|ds dτ ≤ 2CN.

Hence K ≤ 4p−1C.

Remark 7. It seems appropriate, in conclusion, to say a few words about the lower
estimate for the difference seminorm 〈u〉p,µ, similar to the classical Sobolev inequality:

“

Z

Ω

|u|q ν(dx)
”1/q

≤ C 〈u〉p,µ, (81)

where Ω is a subdomain of a Riemannian manifold, µ and ν are measures in Ω × Ω and Ω,
respectively, and u is an arbitrary function in C∞

0 (Ω). Suppose that q ≥ p ≥ 1. Then a
condition, necessary and sufficient for (81), is the isocapacitary inequality

sup
{F}

ν(F )p/q

capp,µ(F ; Ω)
<∞, (82)

where F is an arbitrary compact set in Ω and the capacity is defined by

capp,µ(F ; Ω) = inf
˘

〈u〉pp,µ : u ∈ C∞
0 (Ω), u ≥ 1 on F

¯

.

The necessity of (82) is obvious and the sufficiency results directly from the inequality

Z ∞

0

capp,µ(Nt; Ω) d(tp) ≤ c(p) 〈u〉pp,µ (83)

(see [24] for the proof and history of (83)).

Although providing a universal characterization of (81), the condition (82) does not seem
satisfactory when dealing with concrete measures and domains. This is related even to one-
dimensional case (cfr. Problem 2 [11] ). As an example of a more visible criterion, consider
the measure µ on R

n × R
n given by

µ(dx, dy) = |x− y|−n−pαdx dy (84)

with 0 < α < 1 and αp < n. This measure generates a seminorm in the homogeneous Besov
space bαp (Rn). With this particular choice of µ, we have by Theorem 8.7.1 and Remark 8.6/3
[22] that (81) holds with q > p > 1 and q ≥ p = 1 if and only if

sup
x∈Rn, ρ>0

ν(B(x, ρ))p/q

ρn−pα
<∞. (85)

18



The inequality (85) is the same as (82) with F = B(x, ρ). It is unknown whether the
replacement of arbitrary sets by balls in (82) is possible for the general µ and Ω = R

n in
(82). If not, what are sharp requirements allowing this replacement?

Let q = p > 1, Ω = R
n and let µ be given by (84). Then (81) holds simultaneously with

the inequality
Z

Rn

|u|p ν(dx) ≤ c ‖(−∆)α/2u‖pLp(Rn) (86)

because both (81) and (86) are equivalent to isocapacitary inequalities of the type (82) with
equivalent capacities in the right-hand side (see [2], Sect.4.4).

Note that (86) is the so called trace inequality for the Riesz potential operator Iα :=
(−∆)−α/2. This inequality has been studied intensively (see [30] for a survey of this area).
First of all, the simplest estimate

ν(B) ≤ cmn(B)1−pα/n for all balls B,

being necessary for (86), is not sufficient for it (see [1] and [2]). However, there exist other
conditions involving no capacity, which are necessary and sufficient for (86). They are as
follows:

(i) For every ball B,
Z

B

(IανB)pdx ≤ c ν(B),

where νB be the restriction of ν on B, see [9].

(ii) Almost everywhere in R
n,

Iα(Iαν)
p′ ≤ c Iαν,

see [27].

(iii) For every dyadic cube P of side length ℓ(P ),

X

Q⊂P

`

ν(Q) ℓ(Q)α−n/p
´p′

≤ c ν(P ),

where the sum is taken over all dyadic cubes Q contained in P , see [30], Sect. 3.

In accordance with the equivalence of (81) and (86) mentioned previously, the criteria
(i)-(iii) characterize not only (86) but also (81) with q = p > 1 and µ defined by (84). It is
unclear how these criteria could be modified to characterize (81) with an arbitrary µ.
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