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Abstract. It is shown that solutions of the Neumann problem for the Poisson equation
in an arbitrary convex n-dimensional domain are uniformly Lipschitz. Applications
of this result to some aspects of regularity of solutions to the Neumann problem on
convex polyhedra are given.
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Résumé. On démontre que les solutions du probléme de Neumann pour ’équation de Poisson
dans un domaine convexe arbitraire de dimension n sont uniformément Lipschitz. Les appli-
cations de ce résultat a quelques aspects de régularité de solutions du probléeme de Neumann
sur les polyedres convexes sont données.
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1 Introduction

Let © be a bounded convex domain in R™ and let W"?(Q) stand for the Sobolev space of
functions in LP(2) with distributional derivatives of order [ in LP(£2). By L% (€2) and W}?(Q)
we denote the subspaces of functions v in LP(Q) and W"?(Q) subject to Jo vdz = 0.

Let f € L3 (Q) and let u be the unique function in W'2(Q), also orthogonal to 1 in
L?(Q), and satisfying the Neumann problem

—Au = f in Q (1)
du
W = 0 on 01, (2)

where v is the unit outward normal vector to 9Q and the problem (), (@) is understood in
the variational sense. It is well known that the inverse mapping

L1(Q) 3 f—ueWl?*(Q) (3)
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is continuous. (Since any attempt at reviewing the rich history of this fact and other ones,
closely related to it, within frames of a short article is hopeless, I restrict myself to a number
of relevant references [3], [4], [I1], [I3], [I6]-[18], [20], [23], [28], [29].) As shown in [2] (see
also [12] for a different proof, and [I], [8]-[10] for the Dirichlet problem), the operator

L7(Q)5 f —ue WH(Q) (4)

is also continuous if 1 < p < 2. One cannot guarantee the continuity of () for any p € (2, 00)
without additional information about the domain. The situation is the same as in the case
of the Dirichlet problem (see [4], [8]-]I0]), which, moreover, possesses the following useful
property: if 2 is convex, the gradient of the solution is uniformly bounded provided the
right-hand side of the equation is good enough. This property can be easily checked by
using a simple barrier. Other approaches to similar results were exploited in [2I] and [14]
for different equations and systems but only for the Dirichlet boundary conditions.

In this respect, other boundary value problems are in a nonsatisfactory state. For in-
stance, it was unknown up to now whether solutions of the problem (), () with a smooth
f are uniformly Lipschitz under the only condition of convexity of 2.

The main result of the present paper is the boundedness of |Vu| for the solution u of the
Neumann problem (), [@) in any convex domain Q C R"™, n > 2.

A direct consequence of this fact is the sharp lower estimate A > n—1 for the first nonzero
eigenvalue A of the Neumann problem for the Beltrami operator on a convex subdomain of
a unit hemisphere. It was obtained by a different argument for manifolds of positive Ricci
curvature by J. F. Escobar in [6], where the case of equality was settled as well. This
estimate answered a question raised by M. Dauge [5], and it leads, in combination with
known techniques of the theory of elliptic boundary value problems in domains with piecewise
smooth boundaries (see [5], [25]-]27]), to estimates for solutions of the problem (), () in
various function spaces. Two examples are given at the end of this article.

2 Main result

In what follows, we need a constant Cg in the relative isoperimetric inequality
1-1/n
s(2Ndg) = Calgl ; (5)

where g is an arbitrary open set in {2 such that |g| < |©2|/2 and Q N dg is a smooth (not
necessarily compact) submanifold of Q. By s we denote the (n — 1)-dimensional area and by
|g| the n-dimensional Lebesgue measure. The Poincaré-Gagliardo-Nirenberg inequality

%Ielﬂgnv = tllpnsn-1) () < const. | Vvl|L1 (g, Yo e Wh(Q), (6)

where const. < Cg' is a consequence of () (see Theorem 3.2.3 [24]).

Theorem. Let f € L% (Q) with a certain ¢ > n. Then the solution u € W|*(Q) of the
problem (), (D) satisfies the estimate

IVull oo () < e(n, q) Cot QA9 fllLae), (7)

where ¢ is a constant depending only on n and q.

Proof. It suffices to prove (@) assuming that f € C§°(2). Let us approximate Q by a
sequence {Qy, }m>1 of convex domains with smooth boundaries, ., D Q. This can be done,
for instance, by approximating €2 by a family of equidistant surfaces and by smoothing them
with small perturbation of normal vectors. Then (6] implies

) -1
igﬂg”w—t”Lﬁ(Qm) <(1+¢e)Cq IVwllziq,., (8)

for all w € W(Q,), where ¢ is an arbitrary positive number and m = m(e).



By um we denote a solution of the problem (), @) in Q. with f extended by zero
outside Q. One can easily see that Vu., — Vu in L*(Q). Hence, it is enough to obtain (7))
assuming that 9€) is smooth.

Let ¢t > 7 > 0 and let ¥ be a piecewise linear continuous function on R specified by
P(€)=0for £ < 7and ¥(§) =1 for £ > t. Note that

(Au)2 - |V2u|2 = (ux]‘ Au)xj - (ux]‘ Uz, ; )ﬂciv (9)
where L
Waul = (> Wla,)
1<i,j<n
Hence
[ v vun? = 1Vauyde = [ (U (0 e, A = v, ) s
[ VAT (Tul)e ]+ (T, s, 0, ), (10)
where (v1,...,vn) are components of the outward unit normal. By the Bernshtein-type

identity (see, for instance, [11] or [17]), the first integral on the right-hand side of (0] equals

-2 Q(Vt(mu7 Vt(mu) dS,c7
1519]

where @ is the second fundamental quadratic form on 92 and V., is the tangential gradient.
The form @ is nonpositive by convexity of €2, which leads, together with ([I0), to the inequality

[ W AT (Tl 6+ (V) s, nie, e < [ WV Pz (1)
Q Q

By the co-area formula [7], the left-hand side of (1)) is identical to

_ t ds
1 x
- [ /‘Wza(awnzjum<|Vu|>zi e 2, ) T4

which is equal to

because V|Vu| = —v|V|Vu|| on the level surface |Vu| = o, where v is the unit normal,
outward with respect to the set {z : |[Vu| > o}. The expression ([IZ) can be written as

t
_ o
(r—1) 1/ /‘V i (8_Zf_|vu||V|Vu| |)dszd0.

Passing here to the limit as 7 1 ¢ and using (1), we arrive at the estimate

[ (wulvival |- fge)ds. < [ fan,
|Vu|=t ov |Vu|>t
which implies
t/ |V|Vul |ds, < t/ |f| ds. +/ fidz. (13)
| Vu|=t [Vu|=t [Vu|>t
We define the median of |Vu| as
med |Vu| = sup{t € R: [{|Vu| > t}| > |Q|/2},

and we note that
{Vul > med [Vul}| < 21/2



and
H{IVu| > med [Vul}| > [©]/2.

Clearly,
2 \1/2
med |Vu| < (|Q|) IVall 20 (14)
and, by Holder’s inequality and (8],
1/2 1/2
IVullpz@ < inf flu—]". l(mnfu;nm)

IA

—1/2 1/2 1/2
(1+2)C, / IVull ) 11 gy

Hence,
IVullL2 @) < (1+€)°CaM 12V [If ]l Ln o),

which, in combination with (I4)) and Holder’s inequality, implies
med |Vu| < 2214 )°Co 104" || || Lacoy- (15)
We introduce the function
¥ : [med |Vul, max [Vu| ] — [0, c0)

by the equality

Let By = {x : |Vu(z)| = t(¥)} and My = {z : [Vu(z)| > t(y)}. Putting ¢t = t(s) in ([D3)
and integrating in i over R4, we arrive at

max |Vu|® < (med |Vul)? —|—2max|Vu|/ / |f| dsa d1/;+2/ / f? dadip.
o JE, o Jmy
Recalling ([IH]), we see that in order to obtain (@), it suffices to prove the inequalities
[ [ 1ldseau < ecat g o) a7
o JB,
and

o 1/2 — —n)/qn
([ ravaw)” <cca o i), (18)
o Jnmy

where ¢ = ¢(n, q).

The following argument leading to (I7) is an obvious modification of the proof of Lemma
4 [22]. We start with the estimate for the area of the set Ey

s(By)* < ——lel (19)

obtained in Lemma 2 [22]. By the triple Holder inequality and ([I9)

ds. \1/a 1/q ey
flds: < / ik / VIVul||dss s(E q
/E¢|| ([ 1) (f mivulias) sz

(B0 (~ g Mul ) IR ) [ 9 jas..
P

This, in combination with the inequality

s(Ey) > (1+&) " Co [My|~1/"



(see (@), implies the estimate for the integral on the left-hand side of (7))

/Ooo /Ew |f| dsz dip < (1+s)051(/O‘QWu?@fi?du)kl/q(/ooo/E £ M@” TR )d¢)1/q

<(+oCs ( ;q_—nl)(ligl)nm 1))171/q||f|\m(9>

and the proof of (7)) is complete.
We turn to inequality (I8]). By (@9), its left-hand side does not exceed

([ [, vrasgs)”

which is dominated by

_ o d|M, 1/2
a+oca'(- [ [ It %)
0 My, w

12/2 o d 1/2
§(1+s)051(/0 /(;f*(T)2dT 2;) 7
o°n

where f, is the nonincreasing rearrangement of | f|. Now, ([I8) follows by integration by parts
and Holder’s inequality. The proof of Theorem is complete.
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3 Regularity of solutions to the Neumann problem
in a convex polyhedron

The following assertion essentially stemming from the above theorem is a particular case of
Escobar’s result in [6] mentioned in Introduction.

Corollary. Let w be a conver subdomain of the upper unit hemisphere Sffl. The first
positive eigenvalue A of the Beltrami operator on w with zero Neumann data on 0w is not
less than n — 1.

Proof. Let A(A+n —2) = A and XA > 0. In the convex domain
Q={zeR":0< |z] <1, %ew}

we define the function
u(z) = o (1)), (20)
where @ is an eigenfunction corresponding to A and 7 is a smooth cut-off function on [0, c0),
equal to one on [0,1/2] and vanishing outside [0, 1].
Let N be an integer satisfying 4N >n —1>4(N —1) and let j =0,1,..., N,
2(n—1)

G=4n-—1-4j
arbitrary if j=(mn—-1)/4,

if0<j<(n—1)/4,

and gy = oo. Iterating the estimate
[0l 01,, < A @] 101 )

obtained in Theorems 5 and 6 [22], we see that ® € L*(w).
The function u, defined by (20), satisfies the Neumann problem (), @) with

f(e) = =( ) [An(eD] o



Since ® € L*°(w), it follows that f € L°°(Q) and by Theorem, |Vu| € L% (), which is
possible only if A > 1, i.e. A > n — 1. The proof is complete.

Two applications of the above estimate for A will be formulated.

Let © be a convex bounded 3-dimensional polyhedron. By the techniques, well-known
nowadays (see [5], [25]-|27]), one can show the unique solvability of the variational Neumann
problem in W}_’p(Q) for every p € (1,00). By definition of this problem, its solution is subject
to the integral identity

[ vu-Indo = s,
Q

where f is a given distribution in the space (Wl”’/(Q))*7 f(1) = 0 and 7 is an arbitrary
function in Wl’p,(Q)7 p+p =pp.

Let us turn to the second application of Corollary. We continue to deal with the poly-
hedron Q in R®. Let {O} be the collection of all vertices and let {Uo} be an open finite
covering of Q such that O is the only vertex in Uo. Let also {E} be the collection of all
edges and let ag denote the opening of the dihedral angle with edge F, 0 < ag < w. The
notation 7 (z) stands for the distance between = € Uo and the edge F such that O € E.

With every vertex O and edge E we associate real numbers So and ég, and we introduce
the weighted LP-norm

lvllLr@iisoy. 165 p) = (Z/

(037U

e-ore T () ).

{E:0cE}
where 1 < p < co. Under the conditions

3/ > Bo>-2+3/p,

2/p" > &g >—min{2, n/ar} +2/p,
the inclusion of the function f in L?(Q;{Bo},{dr}) implies the unique solvability of the
problem (), @) in the class of functions with all derivatives of the second order belonging

to LP(Q; {Bo}, {0r}). This fact follows from Corollary and a result essentially established
in Sect. 7.5 |27].

An important particular case when all S0 and dr vanish, i.e. when we deal with a
standard Sobolev space WP (1), is also included here. To be more precise, if

. 2ap
1< p < Hlln{?), m} (21)

for all edges E, then the inverse operator of the problem (), (@):
I2(Q) 5 [ —ue WH(Q)

is continuous whatever the convex polyhedron Q C R* may be. The bounds for p in 1) are
sharp for the class of all convex polyhedra.
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