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Abstract. It is shown that solutions of the Neumann problem for the Poisson equation

in an arbitrary convex n-dimensional domain are uniformly Lipschitz. Applications

of this result to some aspects of regularity of solutions to the Neumann problem on

convex polyhedra are given.
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Résumé. On démontre que les solutions du problème de Neumann pour l’équation de Poisson
dans un domaine convexe arbitraire de dimension n sont uniformément Lipschitz. Les appli-
cations de ce résultat à quelques aspects de régularité de solutions du problème de Neumann
sur les polyèdres convexes sont données.
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1 Introduction

Let Ω be a bounded convex domain in R
n and let W l,p(Ω) stand for the Sobolev space of

functions in Lp(Ω) with distributional derivatives of order l in Lp(Ω). By Lp⊥(Ω) andW l,p
⊥ (Ω)

we denote the subspaces of functions v in Lp(Ω) and W l,p(Ω) subject to
R

Ω
vdx = 0.

Let f ∈ L2
⊥(Ω) and let u be the unique function in W 1,2(Ω), also orthogonal to 1 in

L2(Ω), and satisfying the Neumann problem

− ∆u = f in Ω, (1)

∂u

∂ν
= 0 on ∂Ω, (2)

where ν is the unit outward normal vector to ∂Ω and the problem (1), (2) is understood in
the variational sense. It is well known that the inverse mapping

L2
⊥(Ω) ∋ f → u ∈W 2,2

⊥ (Ω) (3)
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is continuous. (Since any attempt at reviewing the rich history of this fact and other ones,
closely related to it, within frames of a short article is hopeless, I restrict myself to a number
of relevant references [3], [4], [11], [13], [16]–[18], [20], [23], [28], [29].) As shown in [2] (see
also [12] for a different proof, and [1], [8]–[10] for the Dirichlet problem), the operator

Lp⊥(Ω) ∋ f → u ∈ W 2,p
⊥ (Ω) (4)

is also continuous if 1 < p < 2. One cannot guarantee the continuity of (4) for any p ∈ (2,∞)
without additional information about the domain. The situation is the same as in the case
of the Dirichlet problem (see [4], [8]-[10]), which, moreover, possesses the following useful
property: if Ω is convex, the gradient of the solution is uniformly bounded provided the
right-hand side of the equation is good enough. This property can be easily checked by
using a simple barrier. Other approaches to similar results were exploited in [21] and [14]
for different equations and systems but only for the Dirichlet boundary conditions.

In this respect, other boundary value problems are in a nonsatisfactory state. For in-
stance, it was unknown up to now whether solutions of the problem (1), (2) with a smooth
f are uniformly Lipschitz under the only condition of convexity of Ω.

The main result of the present paper is the boundedness of |∇u| for the solution u of the
Neumann problem (1), (2) in any convex domain Ω ⊂ R

n, n ≥ 2.

A direct consequence of this fact is the sharp lower estimate Λ ≥ n−1 for the first nonzero
eigenvalue Λ of the Neumann problem for the Beltrami operator on a convex subdomain of
a unit hemisphere. It was obtained by a different argument for manifolds of positive Ricci
curvature by J. F. Escobar in [6], where the case of equality was settled as well. This
estimate answered a question raised by M. Dauge [5], and it leads, in combination with
known techniques of the theory of elliptic boundary value problems in domains with piecewise
smooth boundaries (see [5], [25]–[27]), to estimates for solutions of the problem (1), (2) in
various function spaces. Two examples are given at the end of this article.

2 Main result

In what follows, we need a constant CΩ in the relative isoperimetric inequality

s(Ω ∩ ∂g) ≥ CΩ |g|1−1/n, (5)

where g is an arbitrary open set in Ω such that |g| ≤ |Ω|/2 and Ω ∩ ∂g is a smooth (not
necessarily compact) submanifold of Ω. By s we denote the (n− 1)-dimensional area and by
|g| the n-dimensional Lebesgue measure. The Poincaré-Gagliardo-Nirenberg inequality

inf
t∈R

‖v − t‖Ln/(n−1)(Ω) ≤ const. ‖∇v‖L1(Ω), ∀v ∈ W 1,1(Ω), (6)

where const. ≤ C−1
Ω is a consequence of (5) (see Theorem 3.2.3 [24]).

Theorem. Let f ∈ Lq⊥(Ω) with a certain q > n. Then the solution u ∈ W 1,2
⊥ (Ω) of the

problem (1), (2) satisfies the estimate

‖∇u‖L∞(Ω) ≤ c(n, q)C−1
Ω |Ω|(q−n)/qn‖f‖Lq(Ω), (7)

where c is a constant depending only on n and q.

Proof. It suffices to prove (7) assuming that f ∈ C∞
0 (Ω). Let us approximate Ω by a

sequence {Ωm}m≥1 of convex domains with smooth boundaries, Ωm ⊃ Ω. This can be done,
for instance, by approximating Ω by a family of equidistant surfaces and by smoothing them
with small perturbation of normal vectors. Then (6) implies

inf
t∈R

‖w − t‖
L

n
n−1 (Ωm)

≤ (1 + ε)C−1
Ω ‖∇w‖L1(Ωm), (8)

for all w ∈W 1,1(Ωm), where ε is an arbitrary positive number and m = m(ε).
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By um we denote a solution of the problem (1), (2) in Ωm with f extended by zero
outside Ω. One can easily see that ∇um → ∇u in L2(Ω). Hence, it is enough to obtain (7)
assuming that ∂Ω is smooth.

Let t > τ > 0 and let Ψ be a piecewise linear continuous function on R specified by
Ψ(ξ) = 0 for ξ < τ and Ψ(ξ) = 1 for ξ > t. Note that

(∆u)2 − |∇2u|
2 = (uxj ∆u)xj − (uxjuxixj )xi , (9)

where

|∇2u| =
“

X

1≤i,j≤n

u2
xixj

”1/2

.

Hence
Z

Ω

Ψ(|∇u|)(f2 − |∇2u|
2) dx =

Z

∂Ω

Ψ(|∇u|)
`

νj uxj∆u− νi uxj uxixj
´

dsx

+

Z

Ω

Ψ′(|∇u|)
`

(|∇u|)xjuxjf + (|∇u|)xi uxj uxixj
´

dx, (10)

where (ν1, . . . , νn) are components of the outward unit normal. By the Bernshtein-type
identity (see, for instance, [11] or [17]), the first integral on the right-hand side of (10) equals

−2

Z

∂Ω

Q(∇tanu, ∇tanu) dsx,

where Q is the second fundamental quadratic form on ∂Ω and ∇tan is the tangential gradient.
The form Q is nonpositive by convexity of Ω, which leads, together with (10), to the inequality

Z

Ω

Ψ′(|∇u|)
`

(|∇u|)xjuxjf + (|∇u|)xi uxj uxixj
´

dx ≤

Z

Ω

Ψ(|∇u|) f2 dx. (11)

By the co-area formula [7], the left-hand side of (11) is identical to

(t− τ )−1

Z t

τ

Z

|∇u|=σ

`

(|∇u|)xjuxjf + (|∇u|)xi uxj uxixj
´ dsx
|∇|∇u| |

dσ,

which is equal to

(t− τ )−1

Z t

τ

Z

|∇u|=σ

“∂u

∂ν
f − |∇u|

∂

∂ν
|∇u|

”

dsx dσ (12)

because ∇|∇u| = −ν |∇|∇u| | on the level surface |∇u| = σ, where ν is the unit normal,
outward with respect to the set {x : |∇u| > σ}. The expression (12) can be written as

(τ − t)−1

Z t

τ

Z

|∇u|=σ

“∂u

∂ν
f − |∇u| |∇|∇u| |

”

dsx dσ.

Passing here to the limit as τ ↑ t and using (11), we arrive at the estimate

Z

|∇u|=t

“

|∇u| |∇|∇u| | − f
∂u

∂ν

”

dsx ≤

Z

|∇u|>t

f2dx,

which implies

t

Z

| ∇u|=t

|∇|∇u| |dsx ≤ t

Z

|∇u|=t

|f | dsx +

Z

|∇u|>t

f2dx. (13)

We define the median of |∇u| as

med |∇u| = sup{t ∈ R : |{|∇u| > t}| ≥ |Ω|/2},

and we note that
˛

˛{|∇u| > med |∇u|}
˛

˛ ≤ |Ω|/2
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and
˛

˛{|∇u| ≥ med |∇u|}
˛

˛ ≥ |Ω|/2.

Clearly,

med |∇u| ≤
“ 2

|Ω|

”1/2

‖∇u‖L2(Ω) (14)

and, by Hölder’s inequality and (8),

‖∇u‖L2(Ω) ≤ inf
γ∈R

‖u− γ‖
1/2

L
n
n−1 (Ω)

‖f‖
1/2
Ln(Ω)

≤ (1 + ε)C
−1/2
Ω ‖∇u‖

1/2

L1(Ω)
‖f‖

1/2

Ln(Ω).

Hence,
‖∇u‖L2(Ω) ≤ (1 + ε)2C−1

Ω |Ω|1/2 ‖f‖Ln(Ω),

which, in combination with (14) and Hölder’s inequality, implies

med |∇u| ≤ 21/2(1 + ε)2C−1
Ω |Ω|(q−n)/qn ‖f‖Lq(Ω). (15)

We introduce the function

ψ :
ˆ

med |∇u|, max |∇u|
˜

→ [0,∞)

by the equality

ψ(t) =

Z t

med |∇u|

“

Z

|∇u|=σ

|∇|∇u| |dsx
”−1

dσ. (16)

Let Eψ =
˘

x : |∇u(x)| = t(ψ)
¯

and Mψ =
˘

x : |∇u(x)| > t(ψ)
¯

. Putting t = t(ψ) in (13)
and integrating in ψ over R+, we arrive at

max |∇u|2 ≤ (med |∇u|)2 + 2max |∇u|

Z ∞

0

Z

Eψ

|f | dsx dψ + 2

Z ∞

0

Z

Mψ

f2 dx dψ.

Recalling (15), we see that in order to obtain (7), it suffices to prove the inequalities

Z ∞

0

Z

Eψ

|f | dsx dψ ≤ cC−1
Ω |Ω|(q−n)/qn‖f‖Lq(Ω) (17)

and

“

Z ∞

0

Z

Mψ

f2 dx dψ
”1/2

≤ cC−1
Ω |Ω|(q−n)/qn‖f‖Lq(Ω), (18)

where c = c(n, q).

The following argument leading to (17) is an obvious modification of the proof of Lemma
4 [22]. We start with the estimate for the area of the set Eψ

s(Eψ)2 ≤ −
d

dψ
|Mψ| (19)

obtained in Lemma 2 [22]. By the triple Hölder inequality and (19)

Z

Eψ

|f | dsx ≤
“

Z

Eψ

|f |q
dsx

|∇|∇u| |

”1/q“

Z

Eψ

|∇|∇u| | dsx
”1/q

s(Eψ)1−2/q

≤ s(Eψ)−1
“

−
d

dψ
|Mψ|/t

′(ψ)
”1−1/q“

Z

Eψ

|f |q
dsx

|∇|∇u| |

”1/q
Z

Eψ

|∇|∇u| | dsx.

This, in combination with the inequality

s(Eψ) ≥ (1 + ε)−1CΩ |Mψ |
1−1/n
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(see (5)), implies the estimate for the integral on the left-hand side of (17)

Z ∞

0

Z

Eψ

|f | dsx dψ ≤ (1+ε)C−1
Ω

“

Z |Ω|/2

0

µ
(1−n)q
n(q−1) dµ

”1−1/q“

Z ∞

0

Z

Eψ

|f |q
dsx

|∇|∇u| |
t′(ψ) dψ

”1/q

≤ (1 + ε)C−1
Ω

“n(q − 1)

q − n

“ |Ω|

2

”

q−n
n(q−1)

”1−1/q

‖f‖Lq (Ω)

and the proof of (17) is complete.

We turn to inequality (18). By (19), its left-hand side does not exceed

“

−

Z ∞

0

Z

Mψ

|f |2dx
d |Mψ|

s(Eψ)2

”1/2

which is dominated by

(1 + ε)C−1
Ω

“

−

Z ∞

0

Z

Mψ

|f |2dx
d |Mψ|

|Mψ|
2n−1

n

”1/2

≤ (1 + ε)C−1
Ω

“

Z |Ω|/2

0

Z σ

0

f∗(τ )
2dτ

dσ

σ2n−1
n

”1/2

,

where f∗ is the nonincreasing rearrangement of |f |. Now, (18) follows by integration by parts
and Hölder’s inequality. The proof of Theorem is complete.

3 Regularity of solutions to the Neumann problem

in a convex polyhedron

The following assertion essentially stemming from the above theorem is a particular case of
Escobar’s result in [6] mentioned in Introduction.

Corollary. Let ω be a convex subdomain of the upper unit hemisphere Sn−1
+ . The first

positive eigenvalue Λ of the Beltrami operator on ω with zero Neumann data on ∂ω is not
less than n− 1.

Proof. Let λ(λ+ n− 2) = Λ and λ > 0. In the convex domain

Ω =
˘

x ∈ R
n : 0 < |x| < 1,

x

|x]
∈ ω

¯

,

we define the function
u(x) = |x|λΦ

“ x

|x|

”

η(|x|), (20)

where Φ is an eigenfunction corresponding to Λ and η is a smooth cut-off function on [0,∞),
equal to one on [0, 1/2] and vanishing outside [0, 1].

Let N be an integer satisfying 4N > n− 1 ≥ 4(N − 1) and let j = 0, 1, . . . , N ,

qj =

8

<

:

2(n− 1)

n− 1 − 4j
, if 0 ≤ j < (n− 1)/4,

arbitrary if j = (n− 1)/4,

and qN = ∞. Iterating the estimate

‖Φ‖
L
qj+1

(ω)
≤ cΛ ‖Φ‖Lqj (ω)

obtained in Theorems 5 and 6 [22], we see that Φ ∈ L∞(ω).

The function u, defined by (20), satisfies the Neumann problem (1), (2) with

f(x) = −Φ
“ x

|x|

”

ˆ

∆, η(|x|)
˜

|x|λ.
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Since Φ ∈ L∞(ω), it follows that f ∈ L∞(Ω) and by Theorem, |∇u| ∈ L∞(Ω), which is
possible only if λ ≥ 1, i.e. Λ ≥ n− 1. The proof is complete.

Two applications of the above estimate for Λ will be formulated.

Let Ω be a convex bounded 3-dimensional polyhedron. By the techniques, well-known
nowadays (see [5], [25]–[27]), one can show the unique solvability of the variational Neumann
problem in W 1,p

⊥ (Ω) for every p ∈ (1,∞). By definition of this problem, its solution is subject
to the integral identity

Z

Ω

∇u · ∇η dx = f(η),

where f is a given distribution in the space (W 1,p′(Ω))∗, f(1) = 0 and η is an arbitrary

function in W 1,p′(Ω), p+ p′ = pp′.

Let us turn to the second application of Corollary. We continue to deal with the poly-
hedron Ω in R

3. Let {O} be the collection of all vertices and let {UO} be an open finite
covering of Ω such that O is the only vertex in UO . Let also {E} be the collection of all
edges and let αE denote the opening of the dihedral angle with edge E, 0 < αE < π. The
notation rE(x) stands for the distance between x ∈ UO and the edge E such that O ∈ E.

With every vertex O and edge E we associate real numbers βO and δE , and we introduce
the weighted Lp-norm

‖v‖Lp(Ω;{βO},{δE}) :=
“

X

{O}

Z

UO

|x−O|pβO
Y

{E:O∈E}

“ rE(x)

|x−O|

”pδE
|v(x)|pdx

”1/p

,

where 1 < p <∞. Under the conditions

3/p′ > βO > −2 + 3/p′,

2/p′ > δE > −min{2, π/αE} + 2/p′,

the inclusion of the function f in Lp(Ω; {βO}, {δE}) implies the unique solvability of the
problem (1), (2) in the class of functions with all derivatives of the second order belonging
to Lp(Ω; {βO}, {δE}). This fact follows from Corollary and a result essentially established
in Sect. 7.5 [27].

An important particular case when all βO and δE vanish, i.e. when we deal with a
standard Sobolev space W 2,p(Ω), is also included here. To be more precise, if

1 < p < min
n

3,
2αE

(2αE − π)+

o

(21)

for all edges E, then the inverse operator of the problem (1), (2):

Lp⊥(Ω) ∋ f → u ∈ W 2,p
⊥ (Ω)

is continuous whatever the convex polyhedron Ω ⊂ R
3 may be. The bounds for p in (21) are

sharp for the class of all convex polyhedra.
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