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THE WIENER TEST FOR HIGHER ORDER
ELLIPTIC EQUATIONS

VLADIMIR MAZ’YA

Abstract
We deal with strongly elliptic differential operators of an arbitrary even order2m with
constant real coefficients and introduce a notion of the regularity of a boundary point
with respect to the Dirichlet problem which is equivalent to that given by N. Wiener in
the case of m= 1. It is shown that a capacitary Wiener’s type criterion is necessary
and sufficient for the regularity if n= 2m. In the case of n> 2m, the same result is
obtained for a subclass of strongly elliptic operators.

1. Introduction
Wiener’s criterion for the regularity of a boundary point with respect to the Dirichlet
problem for the Laplace equation [W] has been extended to various classes of ellip-
tic and parabolic partial differential equations. These include linear divergence and
nondivergence equations with discontinuous coefficients, equations with degenerate
quadratic form, quasilinear and fully nonlinear equations, as well as equations on Rie-
mannian manifolds, graphs, groups, and metric spaces (see [LSW], [FJK], [DMM],
[LM], [KM], [MZ], [AH], [AHe], [La], [TW], to mention only a few). A common
feature of these equations is that all of them are of second order, and Wiener-type
characterizations for higher order equations have been unknown so far. Indeed, the in-
crease of the order results in the loss of the maximum principle, Harnack’s inequality,
barrier techniques, and level truncation arguments, which are ingredients in different
proofs related to the Wiener test for the second-order equations.

In the present paper we extend Wiener’s result to elliptic differential operators
L(∂) of order 2m in the Euclidean spaceRn with constant real coefficients

L(∂) = (−1)m
∑

|α|=|β|=m

aαβ∂
α+β .

We assume without loss of generality thataαβ = aβα and (−1)mL(ξ) > 0 for all
nonzeroξ ∈ Rn. In fact, the results of this paper can be extended to equations with
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variable (e.g., Ḧolder continuous) coefficients in divergence form, but we leave aside
this generalization to make our exposition more lucid.

We use the notation∂ for the gradient(∂x1, . . . , ∂xn), where∂xk is the partial
derivative with respect toxk. By � we denote an open set inRn, and byBρ(y) we
denote the ball{x ∈ Rn

: |x−y| < ρ}, wherey ∈ Rn. We writeBρ instead ofBρ(O).
Consider the Dirichlet problem

L(∂)u = f, f ∈ C∞

0 (�), u ∈ H̊m(�), (1)

where we use the standard notationC∞

0 (�) for the space of infinitely differentiable
functions inRn with compact support in� as well asH̊m(�) for the completion of
C∞

0 (�) in the energy norm.
We call the pointO ∈ ∂� regular with respect toL(∂) if for any f ∈ C∞

0 (�) the
solution of (1) satisfies

lim
�3x→O

u(x) = 0. (2)

Forn = 2,3, . . . ,2m− 1, the regularity is a consequence of the Sobolev imbed-
ding theorem. Therefore, we suppose thatn ≥ 2m. In the case ofm = 1, the above
definition of regularity is equivalent to that given by Wiener (see [M4]).

The following result, which coincides with Wiener’s criterion in the case ofn = 2
andm = 1, is obtained in Sections 8 and 9.

THEOREM 1
Let2m = n. Then O is regular with respect to L(∂) if and only if∫ 1

0
C2m(Bρ\�)ρ

−1 dρ = ∞. (3)

Here and elsewhereC2m is the potential-theoretic Bessel capacity of order 2m (see
[AH], [AHe]). The case ofn > 2m is more delicate because no result of Wiener’s
type is valid for all operatorsL(∂) (see [MNP, Chap. 10]). To be more precise, even
the vertex of a cone can be irregular with respect toL(∂) if the fundamental solution
of L(∂),

F(x) = F
( x

|x|

)
|x|

2m−n, x ∈ Rn
\O, (4)

changes sign. Examples of operatorsL(∂) with this property were given in [MN] and
[D]. In the sequel Wiener’s type characterization of regularity forn > 2m is given for
a subclass of the operatorsL(∂) calledpositive with the weight F. This means that
for all real-valuedu ∈ C∞

0 (R
n
\O),∫

Rn
L(∂)u(x) · u(x)F(x)dx ≥ c

m∑
k=1

∫
Rn

|∇ku(x)|2|x|
2k−n dx, (5)
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where∇k is the gradient of orderk, that is, where∇k = {∂α} with |α| = k.
In Sections 5 and 7, we prove the following result.

THEOREM 2
Let n> 2m, and let L(∂) be positive with weight F. Then O is regular with respect
to L(∂) if and only if ∫ 1

0
C2m(Bρ\�)ρ

2m−n−1 dρ = ∞. (6)

Note that in direct analogy with the case of the Laplacian we could say, in Theorems1
and2, thatO is irregular with respect toL(∂) if and only if the setRn

\� is 2m-thin
in the sense of linear potential theory (see [L], [AH], [AHe]).

Since, obviously, the second-order operatorL(∂) is positive with the weightF ,
Wiener’s result forn > 2 is contained in Theorem2. Moreover, one can notice that the
same proof, withF(x) being replaced by Green’s function of the uniformly elliptic
operatoru → −∂xi (ai j (x)∂x j u) with bounded measurable coefficients, leads to the
main result in [LSW]. We also note that the pointwise positivity ofF follows from
(5), but the converse is not true. In particular, them-harmonic operator with 2m < n
satisfies (5) if and only if n = 5,6,7 for m = 2 andn = 2m + 1, 2m + 2 for m > 2
(see [M3], where the proof of the sufficiency of (6) is given for(−1)m with m and
n as above, and also [E] dealing with the sufficiency for noninteger powers of the
Laplacian in the intervals(0,1) and[n/2 − 1,n/2)).

It is shown in [MP2] that the vertices ofn-dimensional cones are regular with
respect to12 for all dimensions. In Theorem3 we consider the Dirichlet problem (1)
for n ≥ 8 and for then-dimensional biharmonic operator withO being the vertex of
an inner cusp. We show that condition (6), wherem = 2, guarantees thatu(x) → 0 as
x approachesO along any nontangential direction. This does not mean, of course, that
Theorem2 for the biharmonic operator can be extended to higher dimensions, but the
domain� providing the corresponding counterexample should be more complicated
than a cusp.

There are some auxiliary assertions of independent interest proved in this paper
which concern the so-calledL-capacitary potentialUK of the compact setK ⊂ Rn,
n > 2m, that is, the solution of the variational problem

inf
{∫

Rn
L(∂)u · u dx : u ∈ C∞

0 (R
n) : u = 1 in vicinity of K

}
.

We show, in particular, that for an arbitrary operatorL(∂), the potentialUK is subject
to the estimate

|UK (y)| ≤ c dist(y, K )2m−nC2m(K ) for all y ∈ Rn
\K ,
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where the constantc does not depend onK (see Prop.1). The natural analogue of this
estimate in the theory of Riesz potentials is quite obvious, and, as a matter of fact,
our L-capacitary potential is representable as the Riesz potentialF ∗T . However, one
cannot rely upon methods of classical potential theory when studyingUK because, in
general,T is only a distribution and not a positive measure. Among the properties of
UK resulting from the assumption of weighted positivity ofL(∂) are the inequalities
0 < UK < 2 on Rn

\K , which holds for an arbitrary compact setK of positive
capacityC2m. Generally, the upper bound 2 cannot be replaced by 1 ifm> 1.

In conclusion, it is perhaps worth mentioning that the present paper gives answers
to some questions posed in [M3].

2. Capacities and theL-capacitary potential
Let � be arbitrary ifn > 2m and bounded ifn = 2m. By Green’sm-harmonic
capacity capm(K , �) of a compact setK ⊂ � we mean

inf
{ ∑

|α|=m

m!

α!
||∂αu||

2
L2(Rn) : u ∈ C∞

0 (�), u = 1 in vicinity of K
}
. (7)

We omit the reference to Green and write capm(K ) if � = Rn. It is well known that
capm(K ) = 0 for all K if n = 2m.

Let n > 2m. One of equivalent definitions of the potential-theoretic Riesz capac-
ity of order 2m is as follows:

c2m(K ) = inf
{ ∑

|α|=m

m!

α!
||∂αu||

2
L2(Rn) : u ∈ C∞

0 (R
n), u ≥ 1 on K

}
.

The capacities capm(K ) andc2m(K ) are equivalent; that is, their ratio is bounded and
separated from zero by constants depending only onn andm (see [M2, Sec. 9.3.2]).

We use the notationC2m(K ) for the potential-theoretic Bessel capacity of order
2m ≤ n which can be defined by

inf
{ ∑

0≤|α|≤m

m!

α!
||∂αu||

2
L2(Rn) : u ∈ C∞

0 (R
n), u ≥ 1 on K

}
.

Here also the replacement of the conditionu ≥ 1 on K by u = 1 in a neighbourhood
of K leads to an equivalent capacity. Furthermore, ifn > 2m andK ⊂ B1, the Riesz
and Bessel capacities ofK are equivalent.

We use the bilinear form

B(u, v) =

∫
�

∑
|α|=|β|=m

aαβ∂
αu · ∂βv dx. (8)
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The solutionUK ∈ H̊m(�) of the variational problem

inf
{
B(u,u) : u ∈ C∞

0 (�), u = 1 on a neighbourhood ofK
}

(9)

is called Green’sL-capacitary potential of the setK with respect to�, and theL-
capacitary potential ofK in the case of� = Rn.

We check that them-capacitary potential of the unit ballB1 in Rn, wheren > 2m,
is given for|x| > 1 by

UB1(x) =
0(n/2)

0(m)0(−m + n/2)

∫
|x|

−2

0
(1 − τ)m−1τ−m−1+n/2 dτ. (10)

This function solves them-harmonic equation inRn
\B1 because the last integral is

equal to

2
m∑

j =1

(−1)m− j0(m)

0( j )0(m − j + 1)(n − 2 j )
|x|

2 j −n.

Differentiating the integral in (10), we obtain

∂k
|x|

UB1(x)
∣∣
∂B1

= 0 for k = 1, . . . ,m − 1.

The coefficient at the integral in (10) is chosen to satisfy the boundary condition

UB1(x) = 1 on∂B1.

Owing to (10), we see that

0< UB1(x) < 1 onRn
\B1

and thatUB1 is a decreasing function of|x|.
By Green’s formula∑

|α|=m

||∂αUB1||
2
L2(Rn\B1)

= −

∫
∂B1

UB1(x)
∂

∂|x|
(−1)m−1UB1(x)dsx

=
−20(n/2)

(n − 2m)0(m)0(−m + n/2)

∫
∂B1

∂

∂|x|
(−1)m−1

|x|
2m−n dsx

and by

(−1)m−1
|x|

2m−n
=

4m−10(m)0(−1 + n/2)

0(−m + n/2)
|x|

2−n,

we obtain the value of them-harmonic capacity of the unit ball:

capm B1 =
4m

n − 2m

( 0(n/2)

0(−m + n/2)

)2
ωn−1 (11)
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with ωn−1 denoting the area of∂B1.
We recall that the Riesz capacitary measure of order 2m, 2m < n, is the normal-

ized area on∂B1 (see [L, Chap. 2], Sec. 3). Hence, one can verify by direct computa-
tion that

c2m(B1) =
2
√
π0(m)0(m − 1 + n/2)

0(m − 1/2)0(−m + n/2)
ωn−1. (12)

LEMMA 1
For any u∈ C∞

0 (�) and any distribution8 ∈ [C∞

0 (�)]
∗,

B(u,u8) = 2−1
∫
�

u2L(∂)8dx +

∫
�

m∑
j =1

∑
|µ|=|ν|= j

∂µu·∂νu·Pµν(∂)8dx, (13)

wherePµν(ζ ) are homogeneous polynomials of degree2(m− j ), Pµν = Pνµ, and
Pαβ(ζ ) = aαβ for |α| = |β| = m.

Proof
The left-hand side in (13) is equal to∑
|α|=|β|=m

aαβ

∫
�

u∂αu · ∂β8dx

+

∑
|α|=|β|=m

aαβ
(∫

�

∂αu · ∂βu ·8dx +

∑
β>γ>0

β!

γ !(β − γ )!

∫
�

∂αu · ∂γ u · ∂β−γ8dx
)
.

We have∫
Rn

u∂αu · ∂β8dx

= 2−1
∫
�

∂α(u2)∂β8dx − 2−1
∑

α>γ>0

α!

γ !(α − γ )!

∫
�

∂γ u · ∂α−γ u · ∂β8dx.

Hence and byaαβ = aβα, we obtain the identity

B(u,u8) = 2−1
∫
�

u2L(∂)8dx

+

∑
|α|=|β|=m

aαβ
∑

β>γ>0

β!

γ !(β − γ )!

∫
�

∂γ u(∂αu · ∂β−γ8− 2−1∂β−γ u · ∂α8)dx

+

∫
�

∑
|α|=|β|=m

aαβ∂
αu · ∂βu ·8dx.
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We need to prove that the second term can be written as∫
�

m−1∑
j =1

∑
|µ|=|ν|= j

∂µu · ∂νu · Pµν(∂)8dx.

It suffices to establish such a representation for the integral

iαβγ :=

∫
�

∂αu · ∂γ u · ∂β−γ8dx

with |α| > |γ |. Let |α|+|γ | be even. We writeα = σ +τ , where|σ | = (|α|+|γ |)/2.
After integrating by parts, we have

iαβγ = (−1)|τ |
∫
�

∂σu · ∂γ+τu · ∂β−γ8dx

+ (−1)|τ |
∑

0≤δ<τ

τ !

δ!(τ − δ)!

∫
�

∂σu · ∂γ+δu · ∂β−γ+τ−δ8dx.

The first integral on the right is in the required form because|σ | = |γ | + |τ | =

(|α| + |γ |)/2. We have|γ | + |δ| < |α| in the remaining terms. Therefore, these terms
are subject to the induction hypothesis.

Now we let|α| + |γ | be odd. Then

iαβγ = (−1)|α|

∫
Rn

u∂α(∂γ u · ∂β−γ8)dx

= (−1)|α|

∫
Rn

u
∑

0≤δ≤α

α!

δ!(α − δ)!
∂γ+δu · ∂β−γ+α−δ8dx.

Integrating by parts, we obtain

iαβγ = (−1)|α|+|γ |

∫
Rn

u
∑

0≤δ≤α

α!

δ!(α − δ)!
∂δu · ∂γ (u∂β−γ+α−δ8)dx

= −

∫
Rn

u
∑

0≤δ≤α

α!

δ!(α − δ)!

∑
0≤κ≤γ

γ !

κ!(γ − κ)!
∂δu · ∂κu · ∂α+β−δ−κ8dx.

Hence,

iαβγ = −2−1
∑

0≤δ≤α, 0≤κ≤γ
|δ|+|κ|<|α|+|γ |

α!γ !

δ!(α − δ)!κ!(γ − κ)!

∫
Rn
∂δu · ∂κu · ∂α+β−δ−κ8dx.

Every integral on the right is subject to the induction hypothesis. The result follows.
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As in the introduction, byF(x) we denote the fundamental solution ofL(∂) in Rn

subject to (4). Setting8(x) = F(x−y) in (13), we conclude that for allu ∈ C∞

0 (R
n),∫

Rn
L(∂)u(x) · u(x)F(x − y)dx

= 2−1u(y)2 +

∫
Rn

m∑
j =1

∑
|µ|=|ν|= j

∂µu(x) · ∂νu(x) · Pµν(∂)F(x − y)dx. (14)

LEMMA 2
Let� = Rn, 2m< n. For all y ∈ Rn

\K,

UK (y) = 2−1UK (y)
2

+

∫
Rn

∑
m≥ j ≥1

∑
|µ|=|ν|= j

∂µUK (x)·∂
νUK (x)·Pµν(∂)F(x − y)dx, (15)

where the same notation as in Lemma1 is used.

Proof
We fix an arbitrary pointy in Rn

\K . Let {us}s≥1 be a sequence of functions in
C∞

0 (R
n) such thatus = UK on a neighbourhood ofy independent ofs andus → UK

in H̊m(Rn). SinceUK is smooth onRn
\K and since the functionF is smooth on

Rn
\O and vanishes at infinity, we can pass to the limit in (14), whereu = us. This

implies

lim
s→∞

∫
Rn

L(∂)UK (x) · us(x)F(x − y)dx = 2−1UK (y)
2

+

∫
Rn

m∑
j =1

∑
|µ|=|ν|= j

∂µUK (x) · ∂νUK (x) · Pµν(∂)F(x − y)dx, (16)

whereL(∂)UK is an element of the spaceH−m(Rn) dual to H̊m(Rn), and the inte-
gral on the left is understood in the sense of distributions. Taking into account that
L(∂)UK = 0 onRn

\K and thatus can be chosen to satisfyus = 1 on a neighbour-
hood ofK , we write the left-hand side in (16) as∫

Rn
L(∂)UK (x) · F(x − y)dx = UK (y). (17)

The result follows.



WIENER TEST FOR HIGHER ORDER ELLIPTIC EQUATIONS 487

COROLLARY 1
Let2m< n. For for almost all y∈ Rn,

|∇l UK (y)| ≤ c
(
|∇l UK (y)

2
| +

∫
Rn

∑
1≤r,s≤m
r +s>l

|∇r UK (x)||∇sUK (x)|

|x − y|n−r −s+l
dx

)
, (18)

where l= 0, . . . ,m.

Proof
Since∇l UK vanishes almost everywhere onK , it is enough to check (18) for y ∈

Rn
\K . By (15), it suffices to estimate∣∣∣∇l

∫
Rn

∂µUK (x) · ∂νUK (x) · Pµν(∂)F(x − y)dx
∣∣∣, (19)

where|µ| = |ν| = j and j = 1, . . . ,m. Let 2j ≤ l . Since ordPµν(∂) = 2(m − j ),
we have|∇l Pµν(∂)F(x − y)| ≤ c |x − y|

−n+2 j −l , and we may take

c
∫

Rn

|∇ j UK (x)|2

|x − y|n−2 j +l
dx (20)

as a majorant for (19). In the case of 2j > l , integrating by parts we estimate (19) by

c
∫

Rn

∣∣∇m− j
(
∂µUK (x) · ∂νUK (x)

)∣∣ ∣∣∇m− j +l F(x − y)
∣∣ dx

≤ c1

∫
Rn

m− j∑
i =0

|∇i + j UK (x)| |∇m−i UK (x)|

|x − y|n−m− j +l
dx.

Sincem + j ≥ 2 j > l , the sum of the last majorant and (20) is dominated by the
right-hand side in (18). The proof is complete.

PROPOSITION1
Let� = Rn and2m< n. For all y ∈ Rn

\K, the following estimate holds:

|∇ j UK (y)| ≤ c j dist(y, K )2m−n− j capm K , (21)

where j= 0,1,2, . . . and cj does not depend on K and y.
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Proof
In order to simplify the notation, we sety = 0 andδ = dist(y, K ). By the well-known
local estimate for variational solutions ofL(∂)u = 0 (see [ADN, Chap. 3]),

|∇ j u(0)|
2

≤ c j δ
−n−2 j

∫
Bδ/2

u(x)2 dx, (22)

it suffices to prove (21) for j = 0. By (22) and by Hardy’s inequality,

UK (0)
2

≤ cδ2m−n
∫

Rn
UK (x)

2 dx

|x|2m

≤ cδ2m−n
∫

Rn
|∇mUK (x)|

2 dx ≤ c0δ
2m−n capm K . (23)

If capm K ≥ c−1
0 δn−2m, then estimate (21) follows from (23).

Now let capm K < c−1
0 δn−2m. We haveUK (0)2 ≤ |UK (0)| because of (23).

Hence and by (15),

|UK (0)| ≤ c
m∑

j =1

∫
Rn

|∇ j U (x)|
2 dx

|x|n−2(m− j )
.

Since by Hardy’s inequality all integrals on the right are estimated by themth integral,
we obtain

|UK (0)| ≤ c
(
δ2m sup

x∈Bδ/2
|∇mUK (x)|

2
+

∫
Rn\Bδ/2

|∇mUK (x)|
2 dx

|x|n−2m

)
.

We estimate the above supremum using (22) with j = 0 and withu replaced by
∇mUK . Then

|UK (0)| ≤ cδ2m−n
(∫

Bδ
|∇mUK (x)|

2 dx +

∫
Rn\Bδ/2

|∇mUK (x)|
2 dx

)
.

The result follows from the definition ofUK .

By M we denote the Hardy-Littlewood maximal operator, that is,

M f (x) = sup
ρ>0

n

ωn−1ρn

∫
|y−x|<ρ

| f (y)| dy.

PROPOSITION2
Let2m< n, and let0< θ < 1. Also, let K be a compact subset ofBρ\Bθρ . Then the
L-capacitary potential UK satisfies

M∇l UK (0) ≤ cθρ
2m−l−n capm K , (24)

where l= 0,1, . . . ,m and cθ does not depend on K andρ.
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Proof
Let r > 0. We have∫

Br

|∇l UK (y)| dx ≤ c
( ∫

Br ∩Bθρ/2
|∇l UK (y)| dx

+

∫
Br \B2ρ

|∇l UK (y)| dx +

∫
Br ∩(B2ρ\Bθρ/2)

|∇l UK (y)| dx
)
.

Since dist(y; K ) ≥ cρ for y ∈ Bθρ/2 ∩ (Br \B2ρ), the first and second integrals
on the right do not exceedcrnρ2m−l−n capm K in view of (21). Hence, forr ≤ θρ/2,
the mean value of|∇l UK | on Br is dominated bycρ2m−l−n capm K . Let r > θρ/2. It
follows from Corollary 1 that the integral

Il (ρ) :=

∫
B2ρ\Bθρ/2

|∇l UK (y)| dx

is majorized by

c
(∫

B2ρ\Bθρ/2
|∇l UK (y)

2
| dy +

∫
B2ρ\Bθρ/2

dy
∫

Rn

∑
1≤r,s≤m
r +s>l

|∇r UK (x)||∇sUK (x)|

|x − y|n−r −s+l
dx

)

≤ c1ρ
n

∑
1≤r,s≤m

∫
Rn

|∇r UK | |∇sUK |

(ρ + |x|)n−r −s+l
dx

≤ c2ρ
2m−l

∑
1≤r,s≤m

∫
Rn

|∇r UK | |∇sUK |

|x|2m−r −s
dx.

Hence and by Hardy’s inequality, we obtain

Il (ρ) ≤ c ρ2m−l
∫

Rn
|∇mUK (x)|

2 dx ≤ c ρ2m−l capm K .

The proof is complete.

3. Weighted positivity of L(∂)
Let 2m < n. It follows from (14) that the condition of weighted positivity (5) is
equivalent to the inequality∫

Rn

m∑
j =1

∑
|µ|=|ν|= j

∂µu(x)·∂νu(x)·Pµν(∂)F(x)dx ≥ c
m∑

k=1

∫
Rn

|∇ku(x)|2

|x|n−2k
dx (25)

for all u ∈ C∞

0 (R
n
\O). Since the restriction ofF to ∂B1 is a smooth function of

the coefficients ofL(∂), the last inequality implies that the set of the operatorsL(∂)
which are positive with the weightF is open.
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PROPOSITION3
Inequality (5), valid for all u ∈ C∞

0 (R
n
\O), implies

B(u,uF) ≥ 2−1u(0)2 + c
m∑

j =1

∫
Rn

|∇ j u(x)|2

|x|n−2 j
dx (26)

for all u ∈ C∞

0 (R
n).

Proof
Let u ∈ C∞

0 (R
n), 0 < ε < 1/2, and letηε(x) = η

(
(logε)−1 log |x|

)
, where

η ∈ C∞(R1), η(t) = 0 for t ≥ 2, andη(t) = 1 for t ≤ 1. Clearly,ηε(x) =

0 for x ∈ Rn
\Bε, all derivatives ofηε vanish outsideBε\Bε2, and |∇ j ηε(x)| ≤

c j | logε|−1
|x|

− j .

By (5), the bilinear formB defined by (8) satisfies

B
(
(1 − ηε)u, (1 − ηε)uF

)
≥ c

m∑
j =1

∫
Rn

∣∣∇ j
(
(1 − ηε)u

)∣∣2 dx

|x|n−2 j
. (27)

Using the just mentioned properties ofηε, we see that∣∣∣∣(∫
Rn

∣∣∇ j
(
(1 − ηε)u

)∣∣2 dx

|x|n−2 j

)1/2
−

(∫
Rn
(1 − ηε)

2
|∇ j u|

2 dx

|x|n−2 j

)1/2
∣∣∣∣

≤

(∫
Rn

|[∇ j ,1 − ηε]u|
2 dx

|x|n−2 j

)1/2
≤ c(u)

j∑
k=1

∫
Rn

|∇kηε|
2 dx

|x|n−2 j

= O(| logε|−1),

where[S, T] stands for the commutatorST− T S. Hence and by (27),

lim inf
ε→0

B
(
(1 − ηε)u, (1 − ηε)uF

)
≥ c

m∑
j =1

∫
�

|∇ j u|
2 dx

|x|n−2 j
. (28)

Since, clearly,

∣∣B(
ηε(u − u(0)), ηε(u − u(0))F

)∣∣ ≤ c
m∑

j =1

∫
Bε

|∇ j (ηε(u − u(0)))|2

|x|n−2 j
dx = O(ε),

one can replace(1 − ηε)u in the left-hand side of (28) by u − u(0)ηε. We use the
identity

B
(
(u − u(0)ηε), (u − u(0)ηε)F

)
= B(u,uF)+ u(0)2

(
B(ηε, ηεF)− B(ηε, F)

)
− u(0)

(
B

(
ηε, (u − u(0))F

)
+ B(u, ηεF)

)
.
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It is straightforward that|B(ηε, (u − u(0))F)| + |B(u, ηεF)| ≤ cε. Therefore,

lim inf
ε→0

B
(
ηε(u − u(0)), ηε(u − u(0))F

)
= B(u,uF)+ u(0)2

(
B(ηε, ηεF)− B(ηε, F)

)
.

SinceB(ηε, F) = 1 and since it follows from (14) that

∣∣2B(ηε, ηεF)− 1
∣∣ ≤ c

m∑
j =1

∫
Bε\B

ε2

|∇ j ηε|
2 dx

|x|n−2 j
= O(| logε|−1),

we arrive at (26).

PROPOSITION4
The positivity of L(∂) with the weight F implies F(x) > 0.

Proof
Let uε(x) = ε−n/2η(ε−1(x −ω))|ξ |−m exp(i (x, ξ)), whereη is a nonzero function in
C∞

0 (R
n), ε is a positive number,ω ∈ ∂B1, andξ ∈ Rn. We putuε into the inequality

Re
∫

Rn

m∑
j =1

∑
|µ|=|ν|= j

∂µu(x) · ∂νu(x)Pµν(∂)F(x)dx ≥ c
m∑

j =1

∫
Rn

|∇ j u(x)|
2 dx

|x|n−2 j
,

which is equivalent to (25). Taking the limits as|ξ | → ∞, we obtain∑
|α|=|β|=m

aαβ
( ξ
|ξ |

)α+β

ε−n
∫

Rn

∣∣η(ε−1(x − ω)
)∣∣2F(x)dx

≤ c ε−n
∫

Rn

∣∣η(ε−1(x − ω)
)∣∣2 dx.

Now the positivity ofF follows by the limit passage asε → 0.

4. More properties of the L-capacitary potential
Let L(∂) be positive with the weightF . Then identity (15) implies that theL-
capacitary potential of a compact setK with positivem-harmonic capacity satisfies

0< UK (x) < 2 onRn
\K . (29)

We show that, in general, the bound 2 in (29) cannot be replaced by 1.

PROPOSITION5
If L = 12m, then there exists a compact set K such that(UK − 1)

∣∣
Rn\K changes sign

in any neighbourhood of a point of K .
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Proof
Let C be an open cone inRn

+ = {x = (x′, xn) : xn > 0}, and letCε = {x :

(ε−1x′, xn) ∈ C} with sufficiently smallε > 0. We define the compact setK as
B1\Cε. Suppose thatUK (x) − 1 does not change sign on aδ-neighbourhood of the
origin. Then eitherUK −1 or 1−UK is a nontrivial nonnegative 2m-harmonic function
on Bδ∩Cε subject to zero Dirichlet conditions onBδ∩∂Cε, which contradicts [KKM ,
Lem. 1]. The result follows.

We give a lower pointwise estimate forUK stated in terms of capacity (cf. the upper
estimate (21)).

PROPOSITION6
Let n> 2m, and let L(∂) be positive with the weight F. If K is a compact subset of
Bd and y∈ Rn

\K, then UK (y) ≥ c(|y| + d)2m−n capm K .

Proof
Let a be a point in the semiaxis(2,∞) which is specified later. By (26),

UK (y) ≥ c(|y| + ad)2m−n
∫

Bad

|∇mu|
2 dx

≥ c(|y| + ad)2m−n
(
capm K −

∫
Rn\Bad

|∇mu|
2 dx

)
. (30)

It follows from Proposition1 that forx ∈ Rn
\Bad,

|∇mUK (x)| ≤ c0
capm K

(|x| − d)n−2m
≤ 2n−2mc0

capm K

|x|n−m
.

Hence,∫
Rn\Bad

|∇mu|
2 dx ≤ c(capm K )2

∫
Rn\Bad

dx

|x|2n−2m
= c1

(capm K )2

(ad)n−2m
,

and by (30),

UK (y) ≥
capm K

(|y| + d)n−2m

(
1 − c

capm K

(ad)n−2m

)
.

Choosinga to make the difference in braces positive, we complete the proof.

5. Proof of sufficiency in Theorem 2
In the next lemma and henceforth, we use the notation

Mρ(u) = ρ−n
∫
�∩Sρ

u(x)2 dx, Sρ = {x : ρ < |x| < 2ρ}.
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LEMMA 3
Let2m< n, and let L(∂) be positive with the weight F. Further, let u∈ H̊m(�) be a
solution of

L(∂)u = 0 on� ∩ B2ρ . (31)

ThenB(uηρ,uηρFy) ≤ cMρ(u) for an arbitrary point y ∈ Bρ , whereηρ(x) =

η(x/ρ), η ∈ C∞

0 (B2), η = 1 on B3/2, Fy(x) = F(x − y).

Proof
By definition ofB,

B(uηρ,uηρFy)− B(u,uη2
ρFy)

=

∑
|α|=|β|=m

aαβ

∫
�

(
[∂α, ηρ]u·∂β(uηρFy)− ∂αu·[∂β , ηρ](uηρFy)

)
dx. (32)

It follows from (31) thatB(u,uη2
ρFy) = 0. The absolute value of the right-hand side

in (32) is majorized by

c
m∑

j =0

ρ2 j −n
∫
�

ζρ |∇ j u|
2 dx, (33)

whereζρ(x) = ζ(x/ρ), ζ ∈ C∞

0 (S1), andζ = 1 on supp|∇η|. The result follows by
the well-known local energy estimate (see [ADN, Chap. 3])∫

�

ζρ |∇ j u|
2 dx ≤ cρ−2 j

∫
�∩Sρ

u2 dx. (34)

Combining Proposition3 and Lemma3, we arrive at the following local estimate.

COROLLARY 2
Let the conditions of Lemma3 be satisfied. Then

u(y)2 +

∫
�∩Bρ

m∑
k=1

|∇ku(x)|2

|x − y|n−2k
≤ cMρ(u), y ∈ � ∩ Bρ . (35)

We need the following Poincaré-type inequality proved in [M1] (see also [M2,
Sec. 10.1.2]).

LEMMA 4
Let u ∈ H̊m(�). Then for allρ > 0,

Mρ(u) ≤
c ρn−2m

capm(S̄ρ\�)

∫
�∩Sρ

m∑
k=1

|∇ku(x)|2

ρn−2k
dx. (36)
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COROLLARY 3
Let the conditions of Lemma3 be satisfied. Then, for all points y∈ � ∩ Bρ , the
following estimate holds:

u(y)2 +

∫
�∩Bρ

m∑
k=1

|∇ku(x)|2

|x − y|n−2k
dx ≤

cρn−2m

capm(S̄ρ, �)

∫
�∩Sρ

m∑
k=1

|∇ku(x)|2

ρn−2k
dx.

Proof
We combine Corollary2 with inequality (36).

LEMMA 5
Let 2m < n, and let L(∂) be positive with the weight F. Also, let u∈ H̊m(�) satisfy
L(∂)u = 0 on� ∩ B2R. Then, for allρ ∈ (0, R),

sup
{
|u(p)|2 : p ∈ � ∩ Bρ

}
+

∫
�∩Bρ

m∑
k=1

|∇ku(x)|2

|x|n−2k
dx

≤ cMR(u)exp
(
−c

∫ R

ρ

capm(B̄τ \�)
dτ

τn−2m+1

)
. (37)

Proof
Let us use the notation

γm(r ) = r 2m−n capm(S̄r \�). (38)

It is sufficient to prove (37) only for ρ ≤ R/2 because in the opposite case the result
follows from Corollary2. Denote the first and second terms on the left in (37) by ϕρ
andψρ , respectively. From Corollary3, it follows that forr ≤ R,

ϕr + ψr ≤
c

γm(r )
(ψ2r − ψr ) ≤

c

γm(r )
(ψ2r − ψr + ϕ2r − ϕr ).

This along with the obvious inequalityγm(r ) ≤ c implies

ϕr + ψr ≤ c exp
(
−c0γm(r )

)
(ϕ2r + ψ2r ).

By settingr = 2− j R, j = 1, . . . , we arrive at the estimate

ϕ2−l R + ψ2−l R ≤ cexp
(
−c

l∑
j =1

γm(2
− j R)

)
(ϕR + ψR).

We choosel so thatl < log2(R/ρ) ≤ l + 1 in order to obtain

ϕρ + ψρ ≤ cexp
(
−c0

l∑
j =1

γm(2
− j R)

)
(ϕR + ψR).
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Now we notice that by Corollary2, ϕR + ψR ≤ cMR(u). Assuming that capm is
replaced in definition (38) by the equivalent Riesz capacityc2m and using the subad-
ditivity of this capacity, we see that

ϕρ + ψρ ≤ cMR(u)exp
(
−c0

l∑
j =1

c2m(B̄21− j R \�)− c2m(B̄2− j R \�)

(21− j R)n−2m

)
. (39)

Noting that the last sum is equal to

−
c2m(B̄2−l R \�)n−2m

(2−l R)n−2m
+ (1 − 2−n+2m)

l−1∑
j =0

c2m(B̄2− j R\�)

(2− j R)n−2m

≥ c1

∫ R

ρ

capm(B̄τ \�)
dτ

τn−2m+1
− c2,

we obtain the result from (39).

By (37), we conclude that (6) is sufficient for the regularity ofO.

6. Regularity as a local property
We show that the regularity of a pointO does not depend on the geometry of� at any
positive distance fromO.

LEMMA 6
Let n > 2m, and let L(∂) be positive with the weight F. If O is regular for the
operator L on�, then the solution u∈ H̊m(�) of

L(∂)u =

∑
{α: |α|≤m}

∂α fα on�,

with fα ∈ L2(�) ∩ C∞(�) and fα = 0 in a neighbourhood of O, satisfies (2).

Proof
Let ζ ∈ C∞

0 (�). We representu as the sumv + w, wherew ∈ H̊m(�) and

L(∂)v =

∑
{α: |α|≤m}

∂α(ζ fα).

By the regularity ofO, we havev(x) = o(1) asx → O. We verify thatw can be made
arbitrarily small by making the Lebesgue measure of the support of 1− ζ sufficiently
small. Let fα = 0 on Bδ, and lety ∈ �, |y| < δ/2. By definition ofw and by (26),∑

{α: |α|≤m}

∫
�

(1 − ζ ) fα(−∂)
α(wFy)dx ≥ 2−1w2(p)+ c

m∑
k=1

∫
�

|∇kw(x)|2

|x − y|n−2k
dx,
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whereFy(x) = Fy(x − y) andc does not depend on�. The proof is complete.

LEMMA 7
Let O be a regular point for the operator L(∂) on�, and let�′ be a domain such
that�′

∩ B2ρ = � ∩ B2ρ for someρ > 0. Then O is regular for the operator L(∂)
on�′.

Proof
Let u ∈ H̊m(�′) satisfyL(∂)u = f on�′ with f ∈ C∞

0 (�
′). We introduceηρ(x) =

η(x/ρ), η ∈ C∞

0 (B2), η = 1 on B3/2. Thenηρu ∈ H̊m(�) andL(∂)(ηρu) = ηρ f +

[L(∂), ηρ]u on�. Since the commutator[L(∂), ηρ] is a differential operator of order
2m − 1 with smooth coefficients supported byB2ρ \ B3ρ/2, it follows that

L(∂)(ηρu) =

∑
{α: |α|≤m}

∂α fα on�,

where fα ∈ L2(�) ∩ C∞(�) and fα = 0 in a neighbourhood ofO. Therefore,
(ηρu)(x) = o(1) asx tends toO by Lemma6 and by the regularity ofO with respect
to L(∂) on�.

7. Proof of necessity in Theorem 2
Let n > 2m, and let condition (6) be violated. We fix a sufficiently smallε > 0
depending on the operatorL(∂), and we choose a positive integerN in order to have

∞∑
j =N

2(n−2m) j capm(B2− j \�) < ε. (40)

By Lemma7, it suffices to show thatO is irregular with respect to the domain
Rn

\ K , whereK = B2−N \ �. Denote byUK the L-capacitary potential ofK . By
subtracting a cutoff functionη ∈ C∞

0 (R
n) used in the proof of Lemma7 fromUK and

noting thatη is equal to 1 in a neighbourhood ofK , we obtain a solution ofLu = f
on Rn

\ K with f ∈ C∞

0 (R
n) and zero Dirichlet data on∂(Rn

\ K ). Therefore, it is
sufficient to show thatUK (x) does not tend to 1 asx → O. This statement results
from (40) and the inequality

MUK (0) ≤ c
∑
j ≥N

2(n−2m) j capm(B2− j \�), (41)

which is obtained in what follows.
We introduce theL-capacitary potentialU ( j ) of the setK ( j )

= K ∩ (B21− j \

B2−1− j ), j = N, N + 1, . . . . We also need a partition of unity{η( j )
} j ≥N subordinate
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to the covering ofK by the setsB21− j \ B2−1− j . One can construct this partition of
unity so that|∇kη

( j )
| ≤ ck2k j , k = 1,2, . . . . We now define the function

V =

∑
j ≥N

η( j )U ( j ) (42)

satisfying the same Dirichlet conditions asUK . Let Qu(y) denote the quadratic form

m∑
k=1

∫
Rn

|∇ku(x)|2

|x − y|n−2k
dx,

and let Iλ f be the Riesz potential|x|
λ−n

∗ f , 0 < λ < n. It is standard that
M Iλ f (0) ≤ cIλ f (0) if f ≥ 0 (see the proof of [L, Th. 1.11]). Hence,

M Qu(0) ≤ c
m∑

k=1

∫
Rn

|∇ku(x)|2
dx

|x|n−2k
.

This inequality and definition (42) show that

M QV (O) ≤

∑
j ≥N

m∑
k=0

∫
B21− j \B2−1− j

|∇kU ( j )(x)|2
dx

|x|n−2k

≤ c
∑
j ≥N

2(n−2m) j
∫

Rn
|∇kU ( j )(x)|2

dx

|x|2(m−k)

≤ c
∑
j ≥N

2(n−2m) j
∫

Rn
|∇mU ( j )(x)|2 dx,

the last estimate being based on Hardy’s inequality. Therefore,

M QV (0) ≤ c
∑
j ≥N

2(n−2m) j capm K ( j ). (43)

Furthermore, by Proposition2,

M V(0) ≤ c
∑
j ≥N

2(n−2m) j capm K ( j ). (44)

We deduce similar inequalities forW = UK −V . Note thatW solves the Dirichlet
problem with zero boundary data for the equationL(∂)W = −L(∂)V on Rn

\ K .
Hence and by (26), we conclude that fory ∈ Rn

\ K ,

2−1W(y)2+cQW(y) ≤

∣∣∣∫
Rn

∑
|α|=|β|=m

aαβ∂
αV(x)·∂β

(
W(x)F(x − y)

)
dx

∣∣∣, (45)
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which implies

2−1M W2(0)+ cM QW(0) ≤ c
m∑

k=0

∫
Rn

|∇kW(x)||∇mV(x)|
dx

|x|n−m−k
. (46)

Since 0< U < 2 and 0< V < 2, we have|W| < 2, and so the term in (46)
corresponding tok = 0 does not exceed

2
∫

Rn
|∇mV(x)|

dx

|x|n−m
≤ c

∑
j ≥N

∫
Rn

∣∣∣∇mη
( j )(x)U ( j )(x)

∣∣∣ dx

|x|n−m
.

Applying Proposition2 to each potentialU ( j ), we obtain∫
Rn

|∇mV(x)|
dx

|x|n−m
≤ c

∑
j ≥N

2(n−2m) j capm K ( j ). (47)

The terms withk > 0 in the right-hand side of (46) do not exceed the value
cQW(0)1/2QV (0)1/2. This, along with (47) and (43), leads to the estimate

2−1M W2(0)+ cM QW(0) ≤ c
∑
j ≥N

2(n−2m) j capm K ( j ). (48)

We are ready to obtain (41). Owing to (15), MUK (0) ≤ 2−1MU2
K (0)+cM QUK (0),

and sinceUK = V + W, inequality (41) follows from (43), (44), and (48). The proof
is complete.

8. Proof of sufficiency in Theorem 1
In the case ofn = 2m, the operatorL(∂) is arbitrary. We introduce a sufficiently large
positive constantC subject to a condition specified later. We also need a fundamental
solution

F(x) = κ log |x|
−1

+9
( x

|x|

)
(49)

of L(∂) in Rn (see [J]). Hereκ = const, and we assume that the function9, which is
defined up to a constant term, is chosen so that

F(x) ≥ κ log(4|x|
−1)+ C on B2. (50)

PROPOSITION7
Let� be an open set inRn with diameter d�. Then for all u∈ C∞

0 (�) and y∈ �,∫
�

L(∂)u(x) · u(x)F
(x − y

d�

)
dx − 2−1u(y)2

≥ c
m∑

j =1

∫
�

|∇ j u(x)|2

|x − y|2(m− j )
log

4d�
|x − y|

dx. (51)

Everywhere in this section, by c we denote positive constants independent of�.



WIENER TEST FOR HIGHER ORDER ELLIPTIC EQUATIONS 499

Proof
It suffices to assumed� = 1. By Lemma1, the left-hand side in (51) is equal to the
quadratic form

Hu(y) =

∫
�

m∑
j =1

∑
|µ|=|ν|= j

∂µu · ∂νu · Pµν(∂)F(x − y)dx.

By Hardy’s inequality,∣∣∣Hu(y)−

∫
�

∑
|α|=|β|=m

aαβ∂
αu(x) · ∂βu(x) · F(x − y)dx

∣∣∣
≤ c

m−1∑
j =1

∫
�

|∇ j u(x)|2

|x − y|2(m− j )
dx ≤ c

∫
�

|∇mu(x)|2 dx.

Hence, there exist constantsc1 andc2 such that

c1Hu(y) ≤

∫
�

|∇mu(x)|2 log(4|x − y|
−1)dx ≤ c2Hu(y). (52)

(Here we used the fact that the constantC in (50) is sufficiently large in order to
obtain the right-hand inequality.) By the Hardy-type inequality∫

�

|∇ j u(x)|2

|x − y|2(m− j )
log(4|x − y|

−1)dx ≤ c
∫
�

|∇mu(x)|2 log(4|x − y|
−1)dx, (53)

we can also write∫
�

|∇ j u(x)|2

|x − y|2(m− j )
log(4|x − y|

−1)dx ≤ c Hu(y). (54)

The proof is complete.

LEMMA 8
Let n = 2m, and let u∈ H̊m(�) be subject to (31). Then for an arbitrary point
y ∈ Bρ , ρ ≤ 1,

u(y)2 + B(uηρ,uηρFy,ρ) ≤ c Mρ(u),

whereB, ηρ , and Mρ(u) are the same as in Lemma3, Fy,ρ(x) = F((x − y)/2ρ),
and F is given by (49).

Proof
We majorize the second term by repeating the proof of Lemma3. Then the first term
is estimated by (51), where the role of� is played by� ∩ B2ρ andu is replaced by
uηρ . The result follows.
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Combining Proposition7 with � ∩ B2ρ anduηρ instead of� andu, with Lemma8
we obtain the following local estimate similar to (35).

LEMMA 9
Let the conditions of Lemma8 be satisfied. Then, for all y∈ � ∩ Bρ , ρ ≤ 1, the
following estimate holds:

u(y)2 +

∫
�∩Bρ

m∑
k=1

|∇ku(y)|2

|x − y|n−2k
log(4ρ|x − y|

−1)dx ≤ c Mρ(u). (55)

Now we are in a position to finish the proof of sufficiency in Theorem 1.
Let n = 2m, and letu ∈ H̊m(�) andL(∂)u = 0 on� ∩ B2ρ . We diminish the

right-hand side in (55) replacingBρ by Bρ\Bε with an arbitrarily smallε > 0. The
integral obtained is continuous aty = 0. Hence,∫

�∩Bρ

m∑
k=1

|∇ku(x)|2

|x|n−2k
log(4ρ|x|

−1)dx ≤ c Mρ(u). (56)

Putting hereρ = 1 andγm(r ) = capm(Sr \�, B4r ), we estimate the left-hand side
from below by using the estimate

Mρ(u) ≤
c

γm(r )

∫
�∩Sr

m∑
k=1

|∇ku(x)|2

ρn−2k
dx

proved in [M1] (see also [M2, Sec. 10.1.2]). We have∑
j ≥1

j γm(2
− j )M2− j (u) ≤ c M1(u).

Hence and by (55),

∞∑
j =1

j γm(2
− j ) sup

�∩B2− j

u2
≤ c M1(u).

Suppose thatO is irregular. Assuming that limj →∞ sup�∩B2− j
u2 > 0, we have

∞∑
j =1

j γm(2
− j ) < ∞. (57)

Since capm(Sr \�, B4r ) ≥ capm(Sr \�) ≥ c C2m(Sr \�) for r ≤ 1 (see Sec. 2)
and since the Bessel capacity is subadditive, we obtain the estimateγm(2− j ) ≥
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c(C2m(B̄21− j \�) − C2m(B̄2− j \�)). Hence and by Abel’s summation, we conclude
that

∞∑
j =1

C2m(B̄2− j \�) < ∞;

that is, condition (57) is violated. The result follows.

9. Proof of necessity in Theorem 1
By G(x, y), we denote Green’s function of the Dirichlet problem forL(∂) on the ball
B1. Also, we use the fundamental solutionF given by (49). As is well known and
easily checked, for allx andy in B4/5,∣∣G(x, y)− F(x − y)

∣∣ ≤ c, (58)

wherec is a constant depending onL(∂). Hence, there exists a sufficiently smallκ
such that for ally in the ballB3/4 and for allx subject to|x − y| ≤ κ,

c1 log(2κ|x − y|
−1) ≤ G(x, y) ≤ c2 log(2κ|x − y|

−1), (59)

and for all multi-indicesα, β with |α| + |β| > 0,

|∂αx ∂
β
y G(x, y)| ≤ cα,β |x − y|

−|α|−|β|. (60)

Moreover,G(x, y) and its derivatives are uniformly bounded for allx and y in B1

with |x − y| > κ. By Lemma1, for all u ∈ C∞

0 (B1),∫
B1

L(∂)u · uGy dx = 2−1u(y)2 +

∫
B1

m∑
j =1

∑
|µ|=|ν|= j

∂µu · ∂νu · Pµν(∂)Gy dx,

wherey ∈ B1 andGy(x) = G(x, y). Hence, using the same argument as in Lemma2,
we see that for an arbitrary compact setK in B̄1 and for all y ∈ B1\K the L-
capacitary potential with respect toB1 satisfies

UK (y) =
1

2
UK (y)

2
+

∫
B1

m∑
j =1

∑
|µ|=|ν|= j

∂µUK · ∂νUK · Pµν(∂)Gy dx. (61)

(Note that the notationUK was used in the case ofn < 2m in a different sense.)

LEMMA 10
Let K be a compact subset ofB̄1/2. For all y ∈ B1\K, the following inequality holds:

|UK (y)− 1| ≤ 1 + c capm(K , B1), (62)

where (and in the sequel) by c we denote positive constants independent of K .
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Proof
SinceL(∂)UK = 0 on B1\B1/2 and sinceUK satisfies zero Dirichlet conditions on
∂B1, it is standard that supB1\B3/4

|UK | ≤ c supB3/4\B1/2
|UK | (see [ADN, Chap. 3]).

So we only need to check (62) for y ∈ B3/4\K . By (61) and (60),

(
UK (y)− 1

)2
≤ 1 −

∫
B1

aαβ∂
αUK · ∂βUK · Gy dx

+ c
m−1∑
j =1

∫
B1

|∇ j UK (x)|
2
|x − y|

2 j −n dx.

From (59) and Hardy’s inequality∫
B1

|∇ j UK (x)|
2
|x − y|

2 j −n dx ≤ c
∫

B1

|∇mUK (x)|
2 dx, 1 ≤ j ≤ m,

it follows that

(
UK (y)− 1

)2
≤ 1 − c1

∫
Bκ (y)

|∇mUK (x)|
2 log(4κ|x − y|

−1)dx

+ c
∫

B1

|∇mUK (x)|
2 dx ≤ 1 + c2 capm(K , B1),

which is equivalent to (62).

LEMMA 11
Let n = 2m, and let K be a compact subset ofB̄1\B1/2. Then the L-capacitary
potential UK with respect to B2 satisfies

M∇l UK (0) ≤ c capm(K , B2) for l = 0,1, . . . ,m.

Proof
It follows from (61) and (53) thatUK satisfies the inequalities

|UK (y)| ≤ c
(
UK (y)

2
+

∫
B2

|∇mUK (x)|
2 log(4|x − y|

−1)dx
)
,

|∇l UK (y)| ≤ c
(
|∇l UK (y)

2
| +

∫
B2

∑
1≤r,s≤m
r +s>l

|∇r UK (x)||∇sUK (x)|

|x − y|n−r −s+l
dx

)

(cf. the proof of Cor.1). It remains to repeat the proof of Proposition2 with the above
inequalities playing the role of (18).
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LEMMA 12
Let n = 2m, and let K be a compact subset ofB̄δ, δ < 1, subject to

C2m(K ) ≤
ε(m)

log(2/δ)
, (63)

whereε(m) is a sufficiently small constant independent of K andδ. Then there exists
a constant c(m) such thatcapm(K , B2δ) ≤ c(m) C2m(K ).

Proof
Let δ−1K denote the image ofK under theδ−1-dilation. Clearly, capm(K , B2δ) =

capm(δ
−1K , B2). By using a cutoff function, one shows that capm(δ

−1K , B2) does
not exceedc inf{

∑
0≤k≤m ||∇ku||

2
L2(Rn) : u ∈ C∞

0 (R
n), u = 1 in a neighbourhood

of δ−1K }. Now we recall that by allowing the admissible functions to satisfy the
inequality U ≥ 1 on K in the last infimum, one arrives at the capacity ofδ−1K
equivalent toC2m(δ

−1K ). Hence, it is enough to verify that

C2m(δ
−1K ) ≤ c C2m(K ). (64)

We denote byPµ the 2m-order Bessel potential of a measureµ and byG2m the
kernel of the integral operatorP. LetµK be the corresponding equilibrium measure
of K . SinceK ⊂ B̄δ andδ < 1, we obtain for ally ∈ K except for a subset ofK with
zero capacityC2m,∫

K
G2m

(
δ−1(x − y)

)
dµK (x) ≥ c

∫
K

log(δ|x − y|
−1)dµK (x)

≥ c
(∫

K
log(2|x − y|

−1)dµK (x)− C2m(K ) log(2δ−1)
)

≥ c
(∫

K
G2m(x − y)dµK (x)− ε(m)

)
≥ c0

(
1 − ε(m)

)
.

Thus, for the measureµ(δ)(ξ) = c−1
0 (1 − ε(m))−1µK (δξ) which is supported by

δ−1K , we havePµ(δ) ≥ 1 onδ−1K outside a subset with zero capacityC2m. There-
fore,

C2m(δ
−1K ) ≤ 〈Pµ(δ), µ(δ)〉

= c−2
0

(
1 − ε(m)

)−2
∫

K

∫
K

G2m
(
δ−1(x − y)

)
dµK (x)dµK (y), (65)

where〈Pµ(δ), µ(δ)〉 denotes the energy ofµ(δ). Now we note that

G2m
(
δ−1(x − y)

)
≤ c log(4δ|x − y|

−1) < c log(4|x − y|
−1) ≤ c1G2m(x − y)

for x andy in K . This and (65), combined with the fact that the energy ofµK is equal
to C2m(K ), complete the proof of the lemma.
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Suppose thatO is regular with respect to the set�. Assuming that∫ 1

0
C2m(B̄r \�)

dr

r
< ∞, (66)

we arrive at a contradiction. We fix a sufficiently smallε > 0 and choose a positive
integerN so that

∞∑
j =N

C2m(B̄2− j \�) < ε. (67)

Let K = B̄2−N \�, and letUK denote theL-capacitary potential ofK with respect
to B1. We note that using (51) one can literally repeat the proof of locality of the
regularity property given in Lemma8. Therefore,O is regular with respect toB1\K ,
which impliesUK (x) → 1 asx → O, x ∈ B1\K . It suffices to show that this is not
the case. It is well known that (67) implies∑

j ≥N

jC2m(K
( j )) ≤ c ε,

whereK ( j )
= {x ∈ K : 2−1− j

≤ |x| ≤ 21− j
} andc depends only onn. A proof

can be found in [H, p. 240] form = 1, and no changes are necessary to apply the
argument form> 1. Hence and by Lemma12, we obtain∑

j ≥N

j capm(K
( j ), B22− j ) ≤ c ε. (68)

We use the partition of unity{η( j )
} j ≥N introduced at the beginning of Section 9, and

by U ( j ) we denote theL-capacitary potential ofK ( j ) with respect toB22− j . We also
need the functionV defined by (42) with the newU ( j ). Let

T ( j )(y) =

m∑
k=1

∫
B1

|∇kU ( j )(x)|2

|x − y|n−2k
log

24− j

|x − y|
dx.

By (53),

T ( j )(y) = c
∫

B1

|∇mU ( j )(x)|2 log
24− j

|x − y|
dx,

and therefore forr ≤ 1,

r −n
∫

Br

T ( j )(y)dy ≤ c
∫

B22− j

|∇mU ( j )(x)|2 log
24− j

r + |x|
dx

≤ c log
(24− j

r

)
cap(K ( j ), B22− j ).
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Hence and because suppη( j )
⊂ B21− j \B̄2−1− j , we have

M (η( j )T ( j ))(0) ≤ c capm(K
( j ), B22− j ). (69)

Furthermore, by (61) and Lemma10,

M (η( j )U ( j ))(0) ≤ 2−1(1 + c0 capm(K
( j ), B22− j )

)
M (η( j )U ( j ))(0)

+ c1M (η( j )T ( j ))(0).

Since we may have capm(K
( j ), B22− j ) ≤ (2c0)

−1 by choosing a sufficiently smallε,
we obtainM (η( j )U ( j ))(0) ≤ 4c1M (η( j )T ( j ))(0), and by (69),

M (η( j )U ( j ))(0) ≤ c capm(K
( j ), B22− j ), (70)

which implies
M V(0) ≤ c

∑
j ≥N

cap(K ( j ), B22− j ). (71)

We introduce the function

Tu(y) =

m∑
k=1

∫
B1

|∇ku(x)|2

|x − y|n−2k
log(4|x − y|

−1)dy.

By (53),

TV (y) ≤ c
∫

B1

(
∇mV(x)

)2 log(4|x − y|
−1)dy

≤ c
∑
j ≥N

∫
B1

|∇m(η
( j )U ( j ))(x)|2 log(4|x − y|

−1)dx.

Hence, forr ≤ 1,

r −n
∫

Br

TV (y)dy ≤ c
∑
j ≥N

∫
B21− j \B2−1− j

|∇m(η
( j )U ( j ))(x)|2 log

4

|x| + r
dx

≤ c
∑
j ≥N

j
∫

B1

|∇m(η
( j )U ( j ))(x)|2 dx. (72)

Clearly, ∫
B1

|∇m(η
( j )U ( j ))(x)|2 dx ≤ c

∫
B1

|∇mη
( j )(x)|2U ( j )(x)2 dx

+ c
m∑

k=1

∫
B1

|∇kU ( j )(x)|2

|x|2(m−k)
dx. (73)
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Owing to Hardy’s inequality, each term in the last sum is majorized by

c
∫

B1

|∇mU ( j )(x)|2 dx = c capm(K
( j ), B2− j ).

By Lemma9, the first integral in the right-hand side of (73) is dominated by

c 22mj
∫

suppη( j )
U ( j )(x)2 dx ≤ c M (ζ ( j )U ( j ))(0),

whereζ ( j ) is a function inC∞

0 (B21− j \B̄2−1− j ) equal to 1 on the support ofη( j ). Now
we note that (70) is also valid withη( j ) replaced byζ ( j ). Hence,∫

B1

|∇m(η
( j )U ( j ))(x)|2 dx ≤ c capm(K

( j ), B22− j ), (74)

which combined with (72) gives

M TV (0) ≤ c
∑
j ≥N

j cap(K ( j ), B22− j ). (75)

We turn to estimating the functionW = UK − V , which solves the Dirichlet
problem for the equation

L(∂)W = −L(∂)V on B1\K . (76)

It follows from (51) that for y ∈ B1\K ,

2−1W(y)2 + c
∫

B1

(
∇mW(x)

)2 log(4|x − y|
−1)dx

≤

∫
B1

∑
|α|=|β|=m

aαβ∂
αV(x) · ∂β

(
W(x)F(x − y)

)
dx. (77)

Hence and by (49),

W(y)2 +

∫
B1

(
∇mW(x)

)2 log(4|x − y|
−1)dx

≤ c
(∫

B1

|∇mV(x)||W(x)|
dx

|x − y|n−m

+

∫
B1

|∇mV(x)|
m−1∑
k=1

|∇kW(x)|
dx

|x − y|n−m−k

+

∫
B1

|∇mV(x)||∇mW(x)| log(4|x − y|
−1)dx

)
. (78)
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Since both|UK | and|V | are bounded by a constant depending onL, the same holds
for |W|. Thus, the integral on the right containing|W| is majorized by

c
∫

B1

|∇mV(x)|
dx

|x − y|n−m
.

Obviously, two other integrals in the right-hand side of (78) are not greater than

c TV (y)
1/2

(m−1∑
k=1

∫
B1

(∇kW(x))2

|x − y|n−2k
dx +

∫
B1

(
∇mW(x)

)2 log
4

|x − y|
dx

)1/2
.

By Hardy’s inequality, we can remove the sum ink enlarging the constantc. Hence
and by (78),

W(y)2 +

∫
B1

(
∇mW(x)

)2 log
4

|x − y|
dx ≤ c

(∫
B1

|∇mV(x)|
dx

|x − y|n−m
+ TV (y)

)
.

Hence and byUK = V + W, we arrive at

UK (y)
2
+ c

∫
B1

(
∇mUK (x)

)2 log
4

|x − y|
dx

≤ c
(

V(y)2 + TV (y)+

∫
B1

|∇mV(x)|
dx

|x − y|n−m

)
.

The left-hand side is not less thanc|UK (y)| by (61). Therefore,

MUK (0) ≤ c
(
M V2(0)+ M TV (0)+

∫
B1

|∇mV(x)|
dx

|x|n−m

)
.

By Lemma10, |V | ≤ c. This, along with (71) and (75), implies

M V2(0)+ M TV (0) ≤

∑
j ≥N

j cap(K ( j ), B22− j ).

It follows from the definition ofV and from Lemma11 that∫
B1

|∇mV(x)|

|x|n−m
dx ≤ c

∑
j ≥N

2(n−m) j
∫

B22− j

|∇m(η
( j )U ( j ))(x)| dx

≤ c
∑
j ≥N

capm(K
( j ), B22− j ).

Finally,
MUK (0) ≤ c

∑
j ≥N

j capm(K
( j ), B22− j ),

and the contradiction required is a consequence of (69). The necessity of (3) for the
regularity ofO follows.
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10. The biharmonic equation in a domain with inner cusp (n ≥ 8)
Let the bounded domain� be described by the inequalityxn < f (x′), x′

=

(x1, . . . , xn−1), on B1, where f is a continuous function on the ball{x′
: |x′

| < 1},
subject to the conditions:f (0) = 0, f is smooth forx′

6= 0, and∂ f/∂|x′
| is a de-

creasing function of|x′
| which tends to+∞ as|x′

| → 0.
These conditions show that at the pointO the surface∂� has a cusp that is

directed inside�.

THEOREM 3
Let n ≥ 8, and let u solve the Dirichlet problem

12u = f, u ∈ H̊2(�),

where f ∈ C∞

0 (�). If ∫ 1

0
C4(Bρ\�)

dρ

ρn−3
= ∞, (79)

then u(x) → 0 as x tends to O along any nontangential direction.

Proof
By νx we denote the exterior normal to∂� at the pointx ∈ (B1 ∩ ∂�)\O. We
introduce the function family{ fε} by fε(x′) = ( f (x′) − ε)+ + ε. Replacingxn <

f (x′) in the definition of� by xn < fε(x′), we obtain the family of domains�ε such
that O ∈ �ε and�ε ↓ � asε ↓ 0.

By the implicit function theorem, the setEε = {x : xn = f (x′) = ε} is a smooth
(n − 2)-dimensional surface for sufficiently smallε. In a neighbourhood of any point
of Eε, the boundary of�ε is diffeomorphic to a dihedral angle. It follows from our
conditions onf that the two hyperplanes, which are tangent to∂� at any point of the
edgeEε, form a dihedral angle with opening> 3π/2 (from the side of�). Then, as
is well known, the solution of the Dirichlet problem

12uε = f, uε ∈ H̊m(�ε),

satisfies the estimate

|∇ j uε(x)| = O
(
dist(x, Eε)

− j +λ), (80)

whereλ > 3/2 (see, e.g., [MP1, Th. 10.5] combined with [KMR, Sec. 7.1]). The
value ofλ can be made more precise, but this is irrelevant for us. In fact, we only
need (80) to justify the integration by parts in what follows.

By y, we denote a point on the semiaxisx′
= 0, xn ≤ 0, at a small distance from

O. Let (r, ω) be spherical coordinates centered aty, and letG denote the image of
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�ε under the mappingx → (t, ω), wheret = − logr . Foruε(x) written in the coor-
dinates(t, ω), we use the notationv(t, ω). Also, letδω denote the Laplace-Beltrami
operator on∂B1, and let∂t , ∂2

t , and so on, denote partial derivatives with respect tot .
Since1 = e2t (∂2

t − (n − 2)∂t + δω), we have12
= e4t3, where

3 =
(
(∂t + 2)2 − (n − 2)(∂t + 2)+ δω

)(
∂2

t − (n − 2)∂t + δω
)

= ∂4
t + 2∂2

t δω + δ2
ω − 2(n − 4)(∂3

t + ∂tδω)− 2(n − 4)δω

+ (n2
− 10n + 20)∂2

t + 2(n − 2)(n − 4)∂t .

Consider the integral

I1 =

∫
�ε

12uε ·
∂uε
∂r

dx

r n−5
=

∫
G
3v · ∂tv dt dω.

Integrating by parts in the right-hand side, we obtain

I1 = 2(n − 4)
∫

G

(
(∂2

t v)
2
+ (gradω ∂tv)

2
+ (n − 2)(∂tv)

2) dt dω

−
1

2

∫
∂G

(
(∂tv)

2
+ 2(gradω ∂tv)

2
+ (δωv)

2) cos(ν, t)ds.

Since the angle betweenν and the vectorx − y does not exceedπ/2, we have
cos(ν, t) ≤ 0 and therefore

2(n − 4)
∫

G

(
(∂tv)

2
+ (gradω ∂tv)

2
+ (n − 2)(∂tv)

2) dt dω ≤ I1. (81)

We make use of another integral

I2 =

∫
�ε

12uε · uε
dx

r n−4
=

∫
G
3v · v dt dω. (82)

We remark thaty ∈ �ε implies

2
∫

G
∂tv · v dt dω =

∫
∂B1

(
v(+∞, ω)

)2
dω = ωn−1

(
uε(y)

)2
.

After integrating by parts in (82), we obtain∫
G

(
(∂2

t v)
2
+ (δωv)

2
+ 2(gradω vt )

2
+ 2(n − 4)(gradω v)

2

− (n2
− 10n + 20)(∂tv)

2) dt dω + ωn−1(n − 2)(n − 4)
(
uε(y)

)2
≤ I2.

Combining this inequality with (81), we arrive at∫
G

(
2(n − 3)(∂2

t v)
2
+ 2(n − 2)(gradω ∂tv)

2
+ 2(δωv)

2
+ 4(n − 4)(gradω v)

2

+ 8(n − 3)(∂tv)
2) dt dω + 2ωn−1(n − 2)(n − 4)

(
uε(y)

)2
≤ I1 + 2I2.



510 VLADIMIR MAZ’YA

Coming back to the coordinatesx, we obtain

(uε(y))
2
+

∫
�ε

(
(∇2uε)

2
+
(∇uε)2

r 2

) dx

r n−4
≤ c

∫
�ε

f
(
r
∂uε
∂r

+ 2uε
) dx

r n−4
. (83)

Sinceuε → u in Hm(Rn), we can here replaceuε by u and�ε by�.
Now let ηρ andζρ be the cutoff functions used in the proof of Lemma3. Since

12(uηρ) = f ηρ + [12, ηρ]u and f = 0 nearO, we see that foryn ∈ (−ρ/2,0),

(
u(y)

)2
+

∫
�

((
∇2(uηρ)

)2
+
(∇(uηρ))2

r 2

) dx

r n−4

≤ c
∫
�ε

(
r
∂(uηρ)

∂r
+ 2uηρ

)
[12, ηρ]u

dx

r n−4
.

Integrating by parts in the right-hand side, we majorize it by (33), and therefore it
follows from (34) that

sup
−ρ/2<yn<0

|u(0, yn)|
2
+

∫
Bρ

(
(∇2u)2 +

(∇u)2

r 2

) dx

r n−4
< c Mρ(u). (84)

We fix a sufficiently smallθ and introduce the coneCθ = {x : xn > 0, |x′
| ≤ θxn}.

Clearly, for allr ∈ (0, ρ),

sup
(∂Br )\Cθ

|u|
2

≤ c
(
|u(0,−r )|2 + r 2 sup

(∂Br )\Cθ
|∇u|

2),
the functionu being extended by zero outside�. Hence and by the well-known local
estimate

r 2 sup
(∂Br )\Cθ

|∇u|
2

≤ c
∫
(B2r \Br/2)\Cθ/2

|∇u(x)|2
dx

|x|n−2
,

we obtain

sup
Bρ/2\Cθ

|u|
2

≤ c
(

sup
0>yn>−ρ/2

|u(0, yn)|
2
+

∫
Bρ

|∇u(x)|2
dx

|x|n−2

)
.

Making use of (84), we arrive at

sup
Bρ/2\Cθ

|u|
2
+

∫
Bρ

(
|∇2u|

2
+

|∇u|
2

|x|2

) dx

|x|n−4
≤ c Mρ(u).

Repeating the proof of Lemma5, we obtain that, forρ ∈ (0, R) and for smallR, the
following inequality holds:

sup
Bρ/2\Cθ

|u|
2
+

∫
Bρ

(
|∇2u|

2
+

|∇u|
2

|x|2

) dx

|x|n−4

≤ c MR(u) exp
(
−c

∫ R

ρ

cap2(B̄τ\�)
dτ

τn−3

)
.

The result follows.
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