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THE WIENER TEST FOR HIGHER ORDER
ELLIPTIC EQUATIONS

VLADIMIR MAZ'YA

Abstract

We deal with strongly elliptic differential operators of an arbitrary even or2fmrwith
constant real coefficients and introduce a notion of the regularity of a boundary poir
with respect to the Dirichlet problem which is equivalent to that given by N. Wiener i
the case of m= 1. It is shown that a capacitary Wiener's type criterion is necessary
and sufficient for the regularity if B== 2m. In the case of n- 2m, the same result is
obtained for a subclass of strongly elliptic operators.

1. Introduction
Wiener’s criterion for the regularity of a boundary point with respect to the Dirichle
problem for the Laplace equatioi] has been extended to various classes of ellip-
tic and parabolic partial differential equations. These include linear divergence al
nondivergence equations with discontinuous coefficients, equations with degener
guadratic form, quasilinear and fully nonlinear equations, as well as equations on R
mannian manifolds, graphs, groups, and metric spaces I(§2&][ [FIK], [DMM],
[LM], [KM], [MZ], [AH], [AHg], [La], [TW], to mention only a few). A common
feature of these equations is that all of them are of second order, and Wiener-ty
characterizations for higher order equations have been unknown so far. Indeed, the
crease of the order results in the loss of the maximum principle, Harnack’s inequali
barrier techniques, and level truncation arguments, which are ingredients in differe
proofs related to the Wiener test for the second-order equations.

In the present paper we extend Wiener’s result to elliptic differential operatol
L (9) of order 2n in the Euclidean spade" with constant real coefficients

L@ =DM D awpdth,

lo|=[B]=m

We assume without loss of generality tlegg = ag, and (—1)™L(§) > O for all
nonzeros € R". In fact, the results of this paper can be extended to equations wif
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variable (e.g., l8lder continuous) coefficients in divergence form, but we leave asid
this generalization to make our exposition more lucid.

We use the notatiod for the gradient(dy,, ..., dx,), wheredy, is the partial
derivative with respect tak. By ©2 we denote an open set Rf', and byB,(y) we
denote the ballx € R" : [x—y| < p}, wherey € R". We write B, instead ofB,,(O).

Consider the Dirichlet problem

L@u=f feCP®), ueH™), (1)

where we use the standard notatiogf (<2) for the space of infinitely differentiable
functions inR" with compact support i2 as well asH™(g) for the completion of
C5°(£2) in the energy norm.

We call the pointO € 9<2 regular with respect ta (0) if for any f € C3°(2) the
solution of (1) satisfies
lim o u(x) =0. 2)

QoX—

Forn=23,...,2m — 1, the regularity is a consequence of the Sobolev imbed
ding theorem. Therefore, we suppose that 2m. In the case ofm = 1, the above
definition of regularity is equivalent to that given by Wiener (Séd]).

The following result, which coincides with Wiener’s criterion in the case ef 2
andm = 1, is obtained in Sections 8 and 9.

THEOREM 1
Let2m = n. Then O is regular with respect to(&) if and only if

1
/O Cam(B,\R)p L dp = oo. ©)

Here and elsewher€,y, is the potential-theoretic Bessel capacity of order @ee
[AH], [AHEe]). The case oh > 2m is more delicate because no result of Wiener’s
type is valid for all operatorg (9) (see MNP, Chap. 10]). To be more precise, even
the vertex of a cone can be irregular with respedt ¢9) if the fundamental solution
of L(9),

X
IX]
changes sign. Examples of operath®) with this property were given in\IN] and
[D]. In the sequel Wiener’s type characterization of regularitynfer 2m is given for
a subclass of the operatotgd) calledpositive with the weight FThis means that
for all real-valueds € C3°(R™\ 0),

F(x) = F( )|x|2m*”, x € RM O, 4)

m
/ L@U) - upOF () dx > ¢ Z[ VU0 21X 1% dx, ()
Rn k:l Rn
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whereVy is the gradient of ordek, that is, wherévy = {3*} with |a| = k.
In Sections 5 and 7, we prove the following result.

THEOREM 2
Let n > 2m, and let () be positive with weight F. Then O is regular with respect
to L(9) if and only if

1
fo Com(B,\Q)p®™ "L dp = oo, (6)

Note that in direct analogy with the case of the Laplacian we could say, in Thearem:
and2, thatO is irregular with respect ta (3) if and only if the seR™\ Q is 2m-thin
in the sense of linear potential theory (seg [AH], [AHg]).

Since, obviously, the second-order operdi@d) is positive with the weighf,
Wiener's resultfon > 2 is contained in Theoreth Moreover, one can notice that the
same proof, withF (x) being replaced by Green’s function of the uniformly elliptic
operatoru — —ax; (ajj (X)dx; U) with bounded measurable coefficients, leads to the
main result in [SW]. We also note that the pointwise positivity &f follows from
(5), but the converse is not true. In particular, theharmonic operator withia < n
satisfiesf) ifand only ifn =5,6,7 form =2 andn =2m+1,2n+ 2 form > 2
(see M3], where the proof of the sufficiency of)is given for(—A)™ with m and
n as above, and alsc] dealing with the sufficiency for noninteger powers of the
Laplacian in the intervalé0, 1) and[n/2 — 1, n/2)).

It is shown in MPZ] that the vertices oh-dimensional cones are regular with
respect taA? for all dimensions. In Theoremwe consider the Dirichlet problem)
for n > 8 and for then-dimensional biharmonic operator with being the vertex of
an inner cusp. We show that conditids),(wherem = 2, guarantees thaix) — 0 as
X approache® along any nontangential direction. This does not mean, of course, th
Theoren? for the biharmonic operator can be extended to higher dimensions, but tl
domaing providing the corresponding counterexample should be more complicate
than a cusp.

There are some auxiliary assertions of independent interest proved in this paj
which concern the so-calldd-capacitary potentidlk of the compact seék c R",

n > 2m, that is, the solution of the variational problem

inf{/ L(@u-udx:ue CFR") :u=1in vicinity of K}.
Rn

We show, in particular, that for an arbitrary operatgp), the potentialk is subject
to the estimate

Uk (y)| < c dist(y, K)*™"Com(K) forally e RMK,
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where the constamtdoes not depend dr (see Propl). The natural analogue of this
estimate in the theory of Riesz potentials is quite obvious, and, as a matter of fa
our L-capacitary potential is representable as the Riesz poténtidl. However, one
cannot rely upon methods of classical potential theory when studiyiingecause, in
general,T is only a distribution and not a positive measure. Among the properties
Uk resulting from the assumption of weighted positivitylafd) are the inequalities
0 < Uk < 2 onR™MK, which holds for an arbitrary compact skt of positive
capacityCom. Generally, the upper bound 2 cannot be replaced byl 1.

In conclusion, itis perhaps worth mentioning that the present paper gives answi
to some questions posed ikl §].

2. Capacities and thelL -capacitary potential
Let Q be arbitrary ifn > 2m and bounded ih = 2m. By Green’sm-harmonic
capacity cap (K, €2) of a compact seK C 2 we mean

. m! L
mf{ Z aHaaU“%z(R”) :u € C3°(), u=1invicinity of K}. @)

le|=m

We omit the reference to Green and write géid) if 2 = R". It is well known that
cap,(K) =0forall K if n =2m.

Letn > 2m. One of equivalent definitions of the potential-theoretic Riesz capac
ity of order 2n is as follows:

. m!
Cam(K) =inf| > 10Ul ) s U € CFRY, U= 1 onk }.

la|=m

The capacities cgp(K) andcon(K) are equivalent; that is, their ratio is bounded and
separated from zero by constants depending only andm (see M2, Sec. 9.3.2]).

We use the notatio@om(K) for the potential-theoretic Bessel capacity of order
2m < n which can be defined by

: m!
'nf{ Z —‘IIBO‘UHEZ(RH) :ueC(RM, u>1 onK}.
al

O<la|=m
Here also the replacement of the conditior 1 onK by u = 1 in a neighbourhood
of K leads to an equivalent capacity. Furthermorea, if 2m andK c B, the Riesz

and Bessel capacities &f are equivalent.
We use the bilinear form

B(u, v):/ > agd*u-dfudx. (8)
Q

la|=|B|=m



WIENER TEST FOR HIGHER ORDER ELLIPTIC EQUATIONS 483

The solutionUx e H™(£) of the variational problem
inf{#(u, u) : ue C§(22), u=1on aneighbourhood d¢ } 9)

is called Green'd -capacitary potential of the s&t with respect to2, and thel -
capacitary potential ok in the case of2 = R".

We check that then-capacitary potential of the unit ba®h in R", wheren > 2m,
is given for|x| > 1 by

r(n/2) x|~
T(mr(—m+n/2) Jo

Ug, (X) = (1— g)M-1g—m=1+n/2 g4, (10)

This function solves then-harmonic equation ilR"\ B; because the last integral is

equal to
m

—1)M-i .
2y GO oin

o F(Hrm—j +H(n—2j)

Differentiating the integral in1(0), we obtain
8||§(‘U31(X)|881 =0 fork=1...,m—1
The coefficient at the integral ii.() is chosen to satisfy the boundary condition
Up,(x) =1 0naBy.
Owing to (10), we see that
0<Ug(x) <1 onR"\B;

and thatJg, is a decreasing function ¢x|.
By Green’s formula

d _
> 118%UgI1E,&m ) =—f U, () —(—A)™Ug, (x) ds,
o 3By x|

—2F(n/2) 0 m—1,,2m-n
= —(—A
(n=2mIrMTIT(-m+n/2) 3B, 8|X|( ) X dsc

and by
4A"-Ir(m)r(=1+n/2)
'(—m+n/2)
we obtain the value of the-harmonic capacity of the unit ball:
Al ( r'(n/2) )2
Wn
n—2m\I’'(—m+n/2)

(=)™ Hx 2N = X271,

cap, B1 = (12)
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with wn_1 denoting the area &fBs.
We recall that the Riesz capacitary measure of ordgr2n < n, is the normal-
ized area o B; (see [, Chap. 2], Sec. 3). Hence, one can verify by direct computa

tion that
2/aC(MI(M—-1+n/2)

T(m—1/2T(—m+n/2) "t (12)

Com(B1) =

LEMMA 1
For any ue C§°(€2) and any distributiond € [C5°($2)]*,

B, ud) =2~ /u L(8)<I>dx+/ Z > 9ku9"u- 2, ()0 dx, (13)

j=1|pul=lv|=]
whereZ,,, (¢) are homogeneous polynomials of degté® — j), &, = Z,,, and
Pup () = agp for a| = |B] =

Proof
The left-hand side in1(3) is equal to

> aaﬁ/ua“u-a%dx

le|=]B|=m
B! B—
+ Ay /8"‘ Pu. ddx + —/8“u-87’u-8 VCDdx).
lal% e ﬂ;(}y'w P!
y>
We have

/ ud®u - 9P @ dx
Rn

— L /8“(u yfodx—2t Y

a>y>0

o!
—/ a’u- 9% ’u- af o dx.
Ha —y)!

Hence and by.g = ag,, we obtain the identity
B(u, ud) =2—1/ u2L(3)d>dx
+ Z Aup Z '(ﬂ ),/ 37u@%u-9Pr® — 2719 u . 9%d) dx
14

la|=[B]=m /3>V>0
/ > agpd*u-9fu- @dx.
le|=[B]=m
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We need to prove that the second term can be written as

m-—1
/Z D 9Mu-9"u- 2,,0)Pdx.
Q

j=1 |ul=vl=]j

It suffices to establish such a representation for the integral
iapy = / d%u-3%u-3F 7 o dx
Q

with |a| > |y|. Let|a|+|y| be even. We writee = o + 7, where|o| = (Ja|+|y])/2.
After integrating by parts, we have

iy =(—1)"‘/ %u- v u- 9P v ddx
Q

|
_yll T—/ 37U - a7 +u . aB T T dx.
+ =1 Z Sl —8)! Jo

0<é<t
The first integral on the right is in the required form becalise= |y| + |t| =
(la|+ |y /2. We havegy| + |8] < |«| in the remaining terms. Therefore, these terms
are subject to the induction hypothesis.

Now we let|x| + |y| be odd. Then

iapy = (—1)'“'/ ud®(dvu - aP~v @) dx
Rﬂ

!
= (-1 "’"/ u ¥ vy pfrte—dgpdy,
A > 3l (a — )!

0<é<a
Integrating by parts, we obtain

|
(g |a|+\y|/ U % sy 9 waf TS ) dx
apy = (=1) o 2 8l(a — 8)! ( ’

0<é=<a
a! y! 5 5
=—/ udy ——— Y ———u-9u- " adx.
R o e Sl(a — 8)! 05rzy k!(y —k)!
Hence,
. aly!
gy = =271 3%u - 9u - 9 tP 0 @ dx.
By 2 Sla — &)y —«)! /R

81+l <lel+y

Every integral on the right is subject to the induction hypothesis. The result follow:
O
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As in the introduction, byF (x) we denote the fundamental solution lofd) in R"
subject to ¢). Setting®(x) = F(x—y) in (13), we conclude that for all € C5°(R"),

/ L(@)u(x) - uxX)F(x — y)dx
Rn

=2‘1u(y)2+/ Z Z " u(x) - 3"u(x) - Zw(@)F(x —y)dx. (14)
Rn

j=1pul=lvI=]

LEMMA 2
LetQ =R", 2m < n. Forally e R"\K,

Uk (y) = 271Uk ()
+/ DT 9MUK(0-3"Uk (%) P (0)F (x — y) dx,  (15)
Rn

m>j>1|ul=|v|=]

where the same notation as in Lemfini used.

Proof

We fix an arbitrary pointy in R"\K. Let {us}s>1 be a sequence of functions in
C8°°(R”) such thaus = Uk on a neighbourhood of independent o andus — Uk

in HM(R™. SinceUk is smooth onR™\ K and since the functiofr is smooth on
R™ O and vanishes at infinity, we can pass to the limitid)( whereu = us. This
implies

Jim / L(3)Uk (X) - us(X)F(x — y) dx = 22Uk (y)?
— OO Rn

m
H[ 3 X 90000k Zu@F -y dx (16)
Rn

=1 |ul=lvl=]

whereL (3)Uk is an element of the spa¢e¢—™(R") dual to I—°|m(R”), and the inte-
gral on the left is understood in the sense of distributions. Taking into account th
L(@)Uk = 0 onR™ K and thatus can be chosen to satisii, = 1 on a neighbour-
hood ofK, we write the left-hand side in.¢) as

/RnumuK(x)-F(x—y)dx=uK<y>. (17)

The result follows. O
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COROLLARY 1
Let2m < n. For for almost all ye R",

Vi Uk (O VsUk (X)|
MUk < (VK2 + /R Y T d). as)
e
wherel=0,..., m.
Proof

SinceV|Uk vanishes almost everywhere &0 it is enough to checkl@) for y €
RM\ K. By (15), it suffices to estimate

‘m[ AUk (X) - 3"Uk (X) - Py (3)F (X — y) dx|, (19)
Rn

whereju| = |v| = jandj =1,...,m. Let 2j <. Since ord%#?,,,(3) = 2(m — j),
we havelV| 2,,,()F (x — y)| < ¢|x — y|""+21~! "and we may take

. 2
C/ ViU 4 (20)
R

n |X _ y|n—2J+|

as a majorant forl(9). In the case of > |, integrating by parts we estimated by
c /Rn|vm,- (3"Uk (X) - 3"Uk ()| |[Vm—j+ F(x — y)| dx

m—j
IVitjUk (X)] [Vim—iUk (X)]
501/ > —— dx.
RN =5 Ix — y[n=m-

Sincem + j > 2j > |, the sum of the last majorant anddf is dominated by the
right-hand side in18). The proof is complete. O

PROPOSITIONL
LetQ = R"and2m < n. For all y € R"\ K, the following estimate holds:

IV;Uk ()| < ¢ dist(y, K)™"~I cap, K, (21)

where j=0,1,2,...and g does not depend on K and y.
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Proof
In order to simplify the notation, we sgt= 0 ands = dist(y, K). By the well-known
local estimate for variational solutions bf{d)u = 0 (see PDN, Chap. 3]),

IVju(0)|? < c,-afnfzi/ u(x)?dx, (22)
Bs/2
it suffices to prove{1) for j = 0. By (22) and by Hardy’s inequality,

dx

U 02<c32m—”f Uk (X)2——
k(0 = - K (X) M

< CSZ’“‘”/ |VimUk (]2 dx < cp8°™ " cap, K. (23)
Rn
If cap, K > cglan—zm, then estimateX(1) follows from (23).

Now let cap, K < c58"2M. We haveUk (0)> < |Uk (0)| because of{3).
Hence and by(5),

m
dx
_ 2
Uk (O)] < CX;/Rn ViUl IX[2mD)
J:

Since by Hardy's inequality all integrals on the right are estimated bgnthéntegral,
we obtain

Uk 0)] < (8™ sup |VmUK(X)|2+/R\B VUK ()2
M\ Bs,2

XEB@/Z |X|n72m)

We estimate the above supremum usig) (with j = 0 and withu replaced by

VmUk. Then

Uk 0)] scaZm—”(fB |vmu;<<x)|2dx+]R ViU 0012 dx).
S

M\ Bs/2

The result follows from the definition df g . O

By .# we denote the Hardy-Littlewood maximal operator, that is,

n
A (X) =sup n/ [f(y)ldy.
p>0@n=10" J|y—x|<p

PROPOSITION2
Let2m < n, and let0 < 6 < 1. Also, let K be a compact subset®f\ By,. Then the
L-capacitary potential | satisfies

MUk (0) < cgp®™ ' "cap, K, (24)

where =0, 1, ..., m and ¢ does not depend on K and
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Proof
Letr > 0. We have

[ mucoiaxse ([ mucoidx
By Brﬂng/z

+ [ muenax [ VUK ()] dx).
Br\B2, Br N(B2,\ Byp/2)

Since disty; K) > cp for y € Bg,/2 N (Br\Byy), the first and second integrals
on the right do not exceed"p?™!—" cap, K in view of (21). Hence, for < 6p/2,
the mean value gfv,Uk | on B; is dominated byc,ozm—'—” cap, K. Letr > 6p/2. It
follows from Corollary 1 that the integral

(o) :=/ VUK ()] dx
BZp\BHp/Z

is majorized by

n—r—s+l
BZp\BHp/Z BZp\Bep/Z RN |X - yI

1<r s<m
sl

|V Uk [ [VsUk |
<as” ) f o+ xpnr—sh I
1<r,s<m

|V Uk | [VsUk |
=™ ) /,,de'

1<r,s<m

Hence and by Hardy’s inequality, we obtain
li(p) < szm—'/ |VmUk (%2 dx < ¢ p?™ cap, K.
Rn
The proof is complete. O

3. Weighted positivity of L (9)
Let 2m < n. It follows from (14) that the condition of weighted positivityo) is
equivalent to the inequality

2
fz Z 3 U(x)-8"U(x)- P,w(a)F(x)dx>cZ lvle:](Xz)J dx (25)

j=1|ul=lv|=]

for all u € C3°(R"\0). Since the restriction oF to 9By is a smooth function of
the coefficients ot (d), the last inequality implies that the set of the operato(&)
which are positive with the weigt# is open.
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PROPOSITION3
Inequality §), valid for all u € Cg°(R™ O), implies

IVju(x)|?

x|n=2i e

m
AU, uF) > 27u0)* + ¢ ) /

: RN

j=1

forallu e Cg"(R”).

Proof
Letu € C(RM, 0 < & < 1/2, and letn,(x) = n((loge)~tlog|x|), where
n € C°RY, nt) = 0fort > 2, andn(t) = 1 fort < 1. Clearly,n.(x) =
0 for x € R™\ B, all derivatives ofy, vanish outsideB;\B,2, and |Vjn.(x)| <
cjlloge|~Lx| 1.

By (5), the bilinear form# defined by §) satisfies

m
2 dx
#((L =)y, (1= n)uF) = c_Z%/RnWJ- (@=nu)[ iy @D)
J:

Using the just mentioned propertiesipf, we see that

2 dx 1/2 dx \1/2
'(/RnWj((l—Us)U” =) / A=Vl =)

dx \1/2 dx
< Vi, 1— uz—.> <c(u / Viene |2 ————
(/Rnu 1=t ) < <>kZ1 [ Vet

= O(lloge| ™),

where[S, T] stands for the commutat&T — T S Hence and by47),

lim inf B((1—ne)u, (1 — ns)uF) > CZ/ IVjul? |x|” 21 (28)
Since, clearly,
LIV (e (u — u(0)[?
|2 (ns(u — u(0)), ne(u —u(0)F)| < CZ/B Vil |(xu|”—2L;( I 4y — O(e),
j=17B

one can replacél — n.)u in the left-hand side of48) by u — u(0)n.. We use the
identity
B((u—uOn,), (U—uO)n:)F) = B, uF) + u(0)?(B(e. n:F) — Bne. F))
—u(0)(2(ne. (U —u(Q)F) + A(u, n.F)).
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It is straightforward that%(n., (u — u(0))F)| + |%(u, n.F)| < ce. Therefore,
lim i(r)1f P (ns(u —u(0)), ns(u — u(0))F)
= 2(U, uF) + u(0)*(B(ne. n:F) — B(e. F)).

Since#(n., F) = 1 and since it follows from1(4) that
dx -1
|2 e, 16 F) — 1 <°Z Vel Hn—z,—O(|loge| ),

we arrive at £6). O

PROPOSITIONA
The positivity of 1(d) with the weight F implies Ex) > 0.

Proof
Letuy(x) = e "2p(e~1(x —w))|E|~Mexpli (x, £)), wherey is a nonzero function in
C3°(RM), ¢ is a positive numbety € 3By, andé € R". We putu, into the inequality

Re/ SN s -0 u(x)Pma)F(x)dPCZf IViucor® |x|” R

j=1|pl=lvl=]

which is equivalent to45). Taking the limits agé| — oo, we obtain

> an() e /\n (7 x = @) PR 00 dx
la|=|B|=m 1

<ceg™" /Rn|n(sl(x = w))|2dx.

Now the positivity ofF follows by the limit passage as— 0. O

4. More properties of the L-capacitary potential
Let L(3) be positive with the weight. Then identity (5) implies that theL-
capacitary potential of a compact d€twith positive m-harmonic capacity satisfies

0<Uk(x) <2 onR™K. (29)
We show that, in general, the bound 2 &) cannot be replaced by 1.
PROPOSITIONS

If L = A?™, then there exists a compact set K such (it — 1)|Rn\K changes sign
in any neighbourhood of a point of K.
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Proof

Let C be an open cone iR = {x = (X', Xn) : Xn > 0}, and letC, = {x :
(e7IX/, xn) € C} with sufficiently smalle > 0. We define the compact s#t as
B1\C,. Suppose thatlk (x) — 1 does not change sign onsaneighbourhood of the
origin. Then eithetJx —1 or 1-Uk is a nontrivial nonnegativer@-harmonic function
on BsNC, subject to zero Dirichlet conditions d; N9 C,, which contradicts{ KM,
Lem. 1]. The result follows. O

We give a lower pointwise estimate foik stated in terms of capacity (cf. the upper
estimate 21)).

PROPOSITIONG
Let n > 2m, and let L(d) be positive with the weight F. If K is a compact subset of
By and ye R"\K, then U« (y) > c(ly| + d)>™ " cap, K.

Proof
Leta be a point in the semiaxi®, co) which is specified later. By2(),

Uk () zc(|y|+ad)2m—”/ |Venu[2 d

Bad

> c(lyl + ad)zm‘”(capn K- / |Vmu|2dx). (30)
Rn\Bad
It follows from Propositionl that forx € R™\ Bag,

cap, K cap, K
|VmUk ()] < co it < on—2mg, %8n 2

(Ix] = dyn=2m = |x|n=m
Hence,
dx (cap, K)?
Vmu|2d K)? = ,
/R"\Bad e B = S 1) RM\Byg [X[2172M Yad)n-2m
and by G0),
cap, K cap, K
u 1- .
<02 ez (- Cagym)

Choosinga to make the difference in braces positive, we complete the proof. o

5. Proof of sufficiency in Theorem 2
In the next lemma and henceforth, we use the notation

M, (u) = p—“/ ux)?dx, S, ={x:p < Ix| <20}
Qns,
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LEMMA 3
Let2m < n, and let L(9) be positive with the weight F. Further, leta H m(Q) be a
solution of

L@u=0 onQnN By,. (31)
ThenZ%(un,, un,Fy) < cM,(u) for an arbitrary point y € B,, wheren,(x) =
n(x/p), n € CF(Bz), n =1on Bz, Fy(x) = F(X—Y).

Proof
By definition of 4,

B(Un,, un, Fy) — (U, unFy)
= Z aaﬂ/ (18%, nplu-8# (un,Fy) — 8%u-[87, n,1(un, Fy)) dx. (32)
lr|=|Bl=m

It follows from (31) that%(u, unf) Fy) = 0. The absolute value of the right-hand side
in (32) is majorized by

m
e " [ lvjuldx (33)
=0

whereg,(X) = ¢(X/p), ¢ € C3°(S1), and¢ = 1 on supgVn|. The result follows by
the well-known local energy estimate (sé€N, Chap. 3])

/ Z,|VjulPdx < C,o_zj/ u2dx. (34)
Q ans, o

Combining Propositio® and LemmeB, we arrive at the following local estimate.

COROLLARY 2
Let the conditions of Lemniabe satisfied. Then

Vku(x)|?
u(y) +/ ' VIO oMW, yeons,. (35)
QNB, | = 1 -l

We need the following Poincaitype inequality proved inM1] (see also 12,
Sec. 10.1.2)).

LEMMA 4
Letue H™(Q). Then for allp > 0,

|V|<U(X)|2

M -
o(U) < capn(S \Q) QﬁSpk : pn—2k

dx. (36)
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COROLLARY 3
Let the conditions of Lemmabe satisfied. Then, for all points § 2 N B,, the
following estimate holds:

|VkU(X)|2 p" oM |VkU(X)|2
u(y)? +/ — o ——— dx.
QnB, = IX — Y Capn(sp, Q) Jans, k 1P
Proof
We combine Corollary with inequality 36). O
LEMMA 5

Let2m < n, and let L(9) be positive with the weight F. Also, letai I—°|m(S2) satisfy
L(@)u=00n N Byg. Then, for allp € (0, R),

|VkU(X)|2
sup{lu(p)>: pe 2N By} / dx
A QnB, k=5 Cxpn-

R
< cMgr(u) exp(—c/

] d
cap, (Br \ sz)TannH) 37)
P

Proof
Let us use the notation

ym(r) =™ "cap (S \ Q). (38)

It is sufficient to prove §7) only for p < R/2 because in the opposite case the result
follows from Corollary2. Denote the first and second terms on the lefSif) Py ¢,
andv,, respectively. From Corollary, it follows that forr < R,

or +Yr <

(@ )(Wzr vr) < m( )

This along with the obvious inequality,(r) < cimplies

(Yor — Y +@2r — ).

¢r+yYr<C eXp(—Con(f))(<p2r + vor).

By settingr =2-/R, j =1, ..., we arrive at the estimate
I .
02ir+ Vzir = cexp(—¢ Y YR ) (0r + VR).
j=1
We choosé so thall < log,(R/p) <1 + 1in order to obtain

I
0o+ Vo = coxp(—C0 Y i@ R) ) (gr + Y.

j=1
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Now we notice that by Corollarg, ¢r + ¥vr < cMgr(u). Assuming that cap is
replaced in definition38) by the equivalent Riesz capacityn and using the subad-
ditivity of this capacity, we see that

CZm(le iR\ ) — CZm(Bz ir\ Q))‘ (39)

0p+ ¥y < CMR(W) exp( COZ @=TR—2

Noting that the last sum is equal to

Com(Bpo1g \ )" 2M niome = Com(Bp-i g\Q)
- (2-TR)n-2m +(@—27" Z W

R - dr
E ] capy(Br \ Q)m — G2,
o

we obtain the result fron3Q). O
By (37), we conclude thatd] is sufficient for the regularity 0O.

6. Regularity as a local property
We show that the regularity of a poifit does not depend on the geometngoéat any
positive distance fron®.

LEMMA 6
Let n > 2m, and let L(3) be positive with the weight F. If O is regular for the
operator L ong, then the solution & HM(2) of

L@)u = Z 3% f, ong,
{a: || <m}

with f, € Lo(2) N C*®(R2) and f, = 0in a neighbourhood of O, satisfie®)(

Proof
Let¢ € C3°(£2). We representi as the sum + w, wherew ¢ H m(Q) and

L@w= Y 8¢fa).
{a: || <my}
By the regularity ofO, we havev(x) = o(1) asx — O. We verify thatw can be made
arbitrarily small by making the Lebesgue measure of the support-af sufficiently
small. Letf, = 0 onBs, and lety € Q, |y| < §/2. By definition ofw and by ¢6),
1,2 |View ()2
/ (1= fu(=0)*(wFy) dx > 27w (p) + CZ/ X —y— Y% dx,

{a: |a|<m}
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whereFy(x) = Fy(x — y) andc does not depend of. The proof is complete. O

LEMMA 7

Let O be a regular point for the operator(k) on 2, and letQ’ be a domain such
that @' N By, = 2N By, for somep > 0. Then O is regular for the operator ()
on '

Proof

Letu e |_°|m(9/) satisfyL(d)u = f onQ’ with f EOCSO(Q/). We introduce;, (x) =
n(x/p), n € C§(B2), n =1 onBg2. Thenyn,u € HM(Q) andL(3)(n,u) =1, f +
[L(3), n,]uon . Since the commutatdt (9), n,] is a differential operator of order
2m — 1 with smooth coefficients supported By, \ Bs, 2, it follows that

L(9)(npu) = Z 9%f, ong,

{a: Jo|<m}

where f, € L2(2) N C*®(R) and f, = 0 in a neighbourhood o©. Therefore,
(npu)(X) = 0(1) asx tends toO by Lemmat and by the regularity o© with respect
to L(9) on . O

7. Proof of necessity in Theorem 2
Letn > 2m, and let condition §) be violated. We fix a sufficiently smadl > 0
depending on the operatbrd), and we choose a positive integerin order to have

> 22l cap, (B i \ Q) < e (40)
j=N

By Lemma, it suffices to show thaO is irregular with respect to the domain
R"\ K, whereK = B, n \ Q. Denote byUk the L-capacitary potential oK. By
subtracting a cutoff function € C3°(R") used in the proof of Lemmafrom Uk and
noting thaty is equal to 1 in a neighbourhood &f, we obtain a solution ofu = f
onR"\ K with f € C§°(R") and zero Dirichlet data o&(R" \ K). Therefore, it is
sufficient to show thatlk (x) does not tend to 1 as — O. This statement results
from (40) and the inequality

MUk (0) <c Y 22 cap, (B, \ Q). (41)
j=N

which is obtained in what follows.
We introduce thel-capacitary potential ) of the setk ) = K N (Byj \
By,-1j), j = N, N +1,.... We also need a partition of unity)’}j~n subordinate
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to the covering oK by the setsB,1-; \ B,-1-j. One can construct this partition of
unity so that Vin)| < c2, k = 1, 2, .. .. We now define the function

V=Y iy

(42)
i=N

satisfying the same Dirichlet conditionsldg . Let Qy(y) denote the quadratic form

Zf |Vku(x>|2

IX — |n 2k

and letl, f be the Riesz potentigk|* " %« f, 0 < A < n. It is standard that
AN, £(0) <cl, f0)if f > 0 (see the proof ofl[, Th. 1.11]). Hence

m
dx
A Qu(0) = CZ/ |VkU(X)|2m~
— Jrn IX]

This inequality and definitior4Q) show that

i dx
AQu(0) < Y Zf IVkUD o2 ——
>N k=0 By1—j\By1-j IX]
i ; dx
(n—2m)j () 2
ey 2 [ uuie D
=N R

chzm—Zm”/ Vil D )2 dx,
RN

j=N
the last estimate being based on Hardy’s inequality. Therefore

M Qu(0) <c )y 2™ cag, KU, (43)
j=N

Furthermore, by Propositioh

AN () <c )y 202 cag KD, (44)
j=N

We deduce similar inequalities f9¥ = Uk —V. Note thatW solves the Dirichlet
problem with zero boundary data for the equatlo®)W = —L(9)V onR" \ K
Hence and byZ6), we conclude that foy € R" \ K,

27 'W(y)*+cQw(y) < / D awpd* V()9 (WOOF (x — y)) dX|,
la|=[B]=m

(45)
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which implies

m
2L WP(0) +c./Qu(0) <c )y /R VRWOOII ViV (0 (46)
k=0

|X|n—m—k'
Since0< U < 2and 0< V < 2, we havelW| < 2, and so the term in4@)
corresponding t& = 0 does not exceed

dx . .
2 ViV (X)|—— <c VonP 00U D (x
/Rn|m()||x|n_m_ g/m\mn U P 0]

dx
|n—m'

Applying Propositior? to each potentidl (), we obtain

dx o .
/Rn ViV 0917 o = > 2n=2micag KD, (47)
j=N

The terms withk > 0 in the right-hand side of4@) do not exceed the value
cQw(0)Y2Qy (0)¥/2. This, along with £7) and @3), leads to the estimate

2L aW?(0) + ./ Qu(0) <c )y 2™ cap, KD, (48)
j=N
We are ready to obtair(). Owing to (L5), .# Uk (0) < 2-L.#UZ (0)+c.# Qu, (0),
and sincdJx = V + W, inequality ¢1) follows from (43), (44), and ¢8). The proof
is complete.

8. Proof of sufficiency in Theorem 1

In the case oh = 2m, the operatot (9) is arbitrary. We introduce a sufficiently large
positive constant subject to a condition specified later. We also need a fundament
solution

F(x) = »log x|t + w(%) (49)

of L(9) in R" (see [l]). Here s« = const, and we assume that the functibywhich is
defined up to a constant term, is chosen so that

F(x) > »log@x|™) +C onB;. (50)

PROPOSITION7
Let$2 be an open set iR" with diameter g. Then for all ue C§°(2) and y € ,

X~y —1 2
L@ . F(——)dx—-2
/Q U0 - U (=5-=) dx = 27u(y)
- [ _IVjueoP? 4dg
— | dx. (51
chgfmx—wz(m-” Oy @ O

Everywhere in this section, by ¢ we denote positive constants independent of
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Proof
It suffices to assumd, = 1. By Lemmal, the left-hand side in51) is equal to the
guadratic form

H(y) = /Z > 9"u-9"u- Py @)F(x — y)dx.

j=1lul=lv|=]

By Hardy’s inequality,

= [ X apiueo- oo Fox—ydx
la=|B]=m

_IVjueo? ,
Zfsz x — y[2m=D dx=c /QWmU(X)I dx.

Hence, there exist constamsandc, such that
LY < / Vimu() 2 log@lx — y| =1 dx < co A (y). (52)
Q

(Here we used the fact that the consténtn (50) is sufficiently large in order to
obtain the right-hand inequality.) By the Hardy-type inequality

Viu(x)|?
/Q lx'jy% log(dix —y|™Hdx <c /Q |Vmu(x)|log(4jx — y| ™) dx. (53)
we can also write

IViu()? _
/Qp(_Jymlog@IX—yl Yydx < ¢ H(y). (54)

The proof is complete. O

LEMMA 8
Letn = 2m, and letue Iflm(Q) be subject to {1). Then for an arbitrary point
yeByp=1

u(y)® + Z(un,, un, Fy ) < ¢ M, (W),

where %, n,, and M, (u) are the same as in Lemnia Fy ,(X) = F((X —y)/2p),
and F is given by49).

Proof

We majorize the second term by repeating the proof of Lerinfden the first term
is estimated by1), where the role of2 is played by2 N By, andu is replaced by
un,. The result follows. O
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Combining Propositior” with 2 N By, andun,, instead of©2 andu, with Lemmas
we obtain the following local estimate similar t85).

LEMMA 9
Let the conditions of Lemm&abe satisfied. Then, for all ¥ @ N By, p < 1, the
following estimate holds:

2
u(y)? +/mB Z | ku(%)'Zk log(4p|x —yI™Hdx < ¢ M,(u).  (55)
P k= 1

Now we are in a position to finish the proof of sufficiency in Theorem 1.

Letn = 2m, and letu € lf|m(52) andL(d)u = 0 on2 N Bp,. We diminish the
right-hand side in¥5) replacingB, by B,\ B, with an arbitrarily smalk > 0. The
integral obtained is continuous yt= 0. Hence,

2
/ 5o kl;:(_xz)kl log(4p|x|~H) dx < ¢ M, (u). (56)
QNB, | 1 [X]

Putting herep = 1 andym(r) = capn(§\sz, Bs ), we estimate the left-hand side
from below by using the estimate

IVkU(X)I2

M,(u) <
’ ym(r> szmsk <k

dx

proved in M1] (see alsol12, Sec. 10.1.2]). We have

> ivm@ HMy-j (u) < ¢ My(u).
j=1

Hence and byX5),
Z jym@) sup u? < ¢ My(u).
j=1 S E

Suppose tha® is irregular. Assuming that liq, SURanB, | u? > 0, we have

> iym@)) < oo, (57)
fiil

Since cap,(S\Q, Bx) > cap,(S\Q) > ¢ Com(S\Q) forr < 1 (see Sec. 2)

and since the Bessel capacity is subadditive, we obtain the estimade) >
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c(CZm(lef,- \Q) — C2m(I§27,- \)). Hence and by Abel's summation, we conclude
that

> —
Y Com(Bo-1\Q) < o0;
j=1

that is, condition§7) is violated. The result follows.
9. Proof of necessity in Theorem 1
By G(x, y), we denote Green'’s function of the Dirichlet problem Eqi) on the ball

B;. Also, we use the fundamental solutiéngiven by ¢@9). As is well known and
easily checked, for alt andy in By/s,

|Gx,y) — F(x—y)| <c, (58)

wherec is a constant depending dn(d). Hence, there exists a sufficiently small
such that for ally in the ballBz/4 and for allx subject to]x — y| < «,

clog2ex — y|™1) < G(x, y) < calog2c|x — y| ™), (59)
and for all multi-indicesy, 8 with |¢| + 8| > O,
|0 30 G (X, y)| < Coplx — y|~1I1AL. (60)

Moreover,G(x, y) and its derivatives are uniformly bounded for glandy in B;
with |[x —y| > «. By Lemmal, for allu € C;°(By),

m
/L(a)u~uGydx:2‘1u(y)2+/ Y > 9%u-9'u- Py (d)Gydx,
By B.

Li=1lul=lvI=]

wherey € By andGy(x) = G(X, y). Hence, using the same argument as in Lerdma
we see that for an arbitrary compact sétin B; and for ally € B;\K the L-
capacitary potential with respect By satisfies

l m
Uk (y) = SUk (y)? +/ > > 9*Uk - 9"Uk - Puw(@)Gydx.  (61)
Bt j=1|pl=pvI=]
(Note that the notatioblx was used in the case nf< 2m in a different sense.)
LEMMA 10
Let K be a compact subset Bf . For all y € By\K, the following inequality holds:
Uk (y) — 1] < 1+c cap,(K, By), (62)

where (and in the sequel) by c we denote positive constants independent of K.
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Proof

SinceL (d)Uk = 0 on B;\By/2 and sincdJk satisfies zero Dirichlet conditions on
0By, it is standard that SUD\ B34 lUk| <c SUPB, ,\ By /> Uk | (see RDN, Chap. 3)).
So we only need to check?) for y € Bz/4\K. By (61) and ¢0),

(Uk(y) —1)° <1— | 40Uk - 8PUx - Gydx
By
m-1 _
+cZ/ IVjUk )% — y2 =" dx.

=178

From (G9) and Hardy's inequality

/ IVjUk 0| — y|2~"dx < c/ IVmUk 012dx, 1<j<m,
By B1
it follows that

(Uk(y) — 1)2 =1- 01/B |VmUk ()% log(4«|x — y| =) dx
e (Y)

+c [ [VmUk (02 dx < 1+ cacap,(K, By,
B1

which is equivalent tod2). O

LEMMA 11
Let n = 2m, and let K be a compact subset Bf\Bi/2. Then the L-capacitary
potential Uk with respect to B satisfies

A VU (0) < c cap,(K,Bp) forl =0,1,...,m.

Proof
It follows from (61) and 63) thatUy satisfies the inequalities

Uk )l sc(uK(y>2+/B VUi 0012 log(dix — y1 ™) dx),
2

» IVrUK(X)IIVsUK(X)IdX>

IViUk (y)] sc(|v|uK(y>2|+/B Xy A

2 1<r,s<m
r+s>|

(cf. the proof of Corl). It remains to repeat the proof of Propositidwith the above
inequalities playing the role ofig). O
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LEMMA 12

Let n=2m, and let K be a compact subset®f § < 1, subject to
e(m)

log(2/8)’

wheree(m) is a sufficiently small constant independent of K andihen there exists

a constant ¢m) such thatcap,, (K, Bgs) < c(m) Com(K).

Com(K) = (63)

Proof

Let 5~1K denote the image dk under thes—-dilation. Clearly, cap,(K, Bps) =
cap, (871K, Bp). By using a cutoff function, one shows that ¢ap~—1K, Bp) does
not exceeat inf{ZOSkSm ||Vku||fz(Rn) : u e C3°(R", u=1inaneighbourhood
of 571K }. Now we recall that by allowing the admissible functions to satisfy the
inequalityU > 1 on K in the last infimum, one arrives at the capacitysof-K
equivalent taCom(8~1K). Hence, it is enough to verify that

Com(8 1K) < ¢ Com(K). (64)

We denote byPu the 2n-order Bessel potential of a measwrand byGony, the
kernel of the integral operatd?. Let uk be the corresponding equilibrium measure
of K. SinceK c By ands < 1, we obtain for ally € K except for a subset d€ with
zero capacitfConm,

/KGZm((S_l(X = Y)) duk (X) > C/K log(8|x — yl—l) dpuk (X)
= C</|; log(2|x — yl—l) duk (X) — Com(K) Iog(28_1))
= C(/K Gom(X —y)duk (x) — g(m)) > 00(1 _ S(m)),

Thus, for the measurg®(£) = c5 (1 — e(m))~uk (8&) which is supported by
871K, we havePu® > 1 ons~1K outside a subset with zero capadlyn. There-
fore,

Com(371K) < (Pu®, u®)

=321 - e(m))_Z/K /K Gom (871 (x — y)) duk (x) duk (), (65)

where(Pu®, 1®) denotes the energy of®. Now we note that
Gam(8 71 (x — y)) < clog(4s|x — y|™) < clog(4lx — y|™) < c1Gam(X — y)

for x andy in K. This and 65), combined with the fact that the energy,of is equal
to Com(K), complete the proof of the lemma. O
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Suppose thaD is regular with respect to the s@t Assuming that

1
/ Con(B\DT < oo, (66)
0

we arrive at a contradiction. We fix a sufficiently small> 0 and choose a positive
integerN so that

o0

> Com(By-i\Q) < . (67)

j=N
Let K = B,-n\, and letUx denote thel-capacitary potential oK with respect
to B;. We note that using5(l) one can literally repeat the proof of locality of the
regularity property given in Lemm@ Therefore O is regular with respect t8;\ K,
which impliesUk (x) — 1 asx — O, x € B;\K. It suffices to show that this is not
the case. It is well known tha6{) implies

Y iCam(KW) < ce,
j=N

whereK ) = {x € K : 2717] < |x| < 211} andc depends only om. A proof
can be found inlfl, p. 240] form = 1, and no changes are necessary to apply the
argument fom > 1. Hence and by Lemmb2, we obtain

> jcapgy (KD, Bej) <ce. (68)
j=N

We use the partition of unityn(j)}ij introduced at the beginning of Section 9, and
by U) we denote thé -capacitary potential oK (/) with respect toB,.-;. We also
need the functiolv defined by ¢2) with the new V), Let

: i () 2 4]
T(J)(y):Z/B ViU ()| log 2 dx.
k=1

. X —y|n= X — Y]
By (59),
. . 5 24-]
Ty =c [ [VmUD(x)[?l0g dx,
B |X - yl
and therefore for < 1,
. . 24-]
r—”/ TOy)dy < c/ VU 9 (x)]? log dx
Br Bzz,j r+ |X|

A—

24— ] .
< clog(r—) cap K, By j).



WIENER TEST FOR HIGHER ORDER ELLIPTIC EQUATIONS 505

Hence and because supp) c B, j\B,-1-j, we have
A PTD)©0) < ¢ cag, (KD, By j). (69)
Furthermore, byq1) and Lemmal0,

A PUD)(0) < 271+ cocap (KD, Bz ). (U I)(0)
+ Clﬂ(n(j)T(j))(O).

Since we may have capK D, By ) < (2_00)—1 by choosing a sufficiently smad|,
we obtain.z (n U 1)) (0) < 4cy.2 (nPT1)(0), and by ¢9),

A (PUDY0) < ¢ cap,(KD, By ), (70)
which implies _
AN (0) <c Y capKD, By)). (71)
j=N

We introduce the function
Tu(y) = Z / 'Vk”(r;)'ik log(4lx — y| 1) dy.
By (53),
Tv(y) <¢ / (VmV (0)?log(d1x — y| =Y dy

By

<c2f V(1 PU D) (x)[? log4lx — y| =1 dx.

i=N
Hence, for <1,
. ) 4
r—”/ Tv(y)dy ¢ / V(U D) (%) log dx
<cZJ/ IVn(n DU D)) |2 dx. (72)
j=N

Clearly,

/IVm(n(DU(”)(X)IZdXSC/ IV (x)12U0 D ()2 d x
By

By

ViU D)2
+cZ/ 9% (73)
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Owing to Hardy’s inequality, each term in the last sum is majorized by

ViU D (x)12dx = ¢ cag, (KW, Boj).
By

By Lemma9, the first integral in the right-hand side of3) is dominated by

c 22mjf U(j)(X)de < C.///(é'(j)U(j))(O),
supp;?(j)

where¢ () is a function inC° (B, \ B,-1-j) equal to 1 on the support gf ). Now
we note that70) is also valid withy‘)) replaced by (/). Hence,

. V(i PU D) (x)[2dx < ¢ cagy (KD, By-j), (74)
1

which combined with {2) gives

MTy(0) <c ) jeapgKD, Byj). (75)
j=N

We turn to estimating the functiow = Uk — V, which solves the Dirichlet
problem for the equation

L@)W =—-L(®)V onBj\K. (76)
It follows from (51) that fory € B1\K,
27 W(y)? + c/ (VmW(x))2 log(4|x — y|~1) dx

/B D> apd* V) - (WOF(x —y)dx. (77)

! al=|pl=m

Hence and by49),
W(y)% + /B (VmW(x))*log(4ix — y|~1) dx

SC/ [VmV ) [IW(X)|

| —y/nm

d
/ [VmV ()| Z IVkW(XNﬁ
- = X =yl

IV 0011 VmW 001 logdlx — yI ) dx). (78)
1
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Since bothUk | and|V| are bounded by a constant depending.githe same holds
for |W|. Thus, the integral on the right containit\yy| is majorized by

[VmV (X)]

B, Ix — y[n-m-

Obviously, two other integrals in the right-hand side ‘&f)(are not greater than

dx)l/z.

VW (x))? 4
e Tvy3( 2/1 |(Xk_ T:))dex+/81(vmw<x>)2|og|X_y|

By Hardy’s inequality, we can remove the sumkirnlarging the constarmt Hence
and by {9),

W(y)2+/ (VmW(x))ZIog dx<c ( [VmV (X)|
B

B1 |X - y| N

Hence and byx =V + W, we arrive at

ax
W + TV(Y))-

UK<y>2+cf (VmUk ())2l0g ——— dx
B1 |X_y|

2 dx
<c(VO? + vy + /Bl IV 00— )

The left-hand side is not less thafuk (y)| by (61). Therefore,

MUk (0) < c<///V2(0) +ATO + |
1

d
|X|n)im)'

By Lemmalo, |V| < c. This, along with {1) and (75), implies
MNZ0) + 4Ty () < > jeapKD, By ).
j=N
It follows from the definition ofV and from Lemmal 1 that

/ |VmV(X)|dX§CZZ(nm)j/ |Vm(77(j)U(j))(X)|dX
By

|x|n—m =N B, j
<c ) cag, (KD, Byy).
j=N
Finally, _
MUk (0 < ¢y jeagy (KD, Bpy),
i=N

and the contradiction required is a consequenc& @t (The necessity ofd) for the
regularity ofO follows.
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10. The biharmonic equation in a domain with inner cusp 6 > 8)
Let the bounded domaif®2 be described by the inequalityy, < (X)), X' =
(X1, ..., Xn—1), on By, where f is a continuous function on the bght’ : |x'| < 1},
subject to the conditionst (0) = 0, f is smooth forx’ £ 0, andaf/3|x’| is a de-
creasing function ofx’| which tends totoo as|x’| — 0.

These conditions show that at the pof@tthe surfaced2 has a cusp that is
directed inside.

THEOREM3
Let n> 8, and let u solve the Dirichlet problem

Au=f, ueHQ),
where fe C3°(Q). If

1 - d,O
[ e — o (79)

then Ux) — 0 as x tends to O along any nontangential direction.

Proof
By vx we denote the exterior normal @2 at the pointx € (B1 N aR)\0. We
introduce the function family f.} by f.(x") = (f(x’) — &)+ + ¢. Replacingx, <
f (x) in the definition of2 by x, < f.(x’), we obtain the family of domain®, such
thatO € Q. andQ2, | Q ase | O.

By the implicit function theorem, the s&, = {x : x, = f(X’) = ¢} is a smooth
(n — 2)-dimensional surface for sufficiently smallln a neighbourhood of any point
of E., the boundary of2, is diffeomorphic to a dihedral angle. It follows from our
conditions onf that the two hyperplanes, which are tangeri@at any point of the
edgeE,, form a dihedral angle with opening 37 /2 (from the side of2). Then, as
is well known, the solution of the Dirichlet problem

AU, = f, u, € HM(Q,),
satisfies the estimate
IVjue(x)| = O(dist(x, E;) ™ +%), (80)

whereir > 3/2 (see, e.g.,NIP1, Th. 10.5] combined withHMR, Sec. 7.1]). The
value of A can be made more precise, but this is irrelevant for us. In fact, we onl
need @0) to justify the integration by parts in what follows.

By y, we denote a point on the semiaxis= 0, x, < 0, at a small distance from
O. Let (r, ) be spherical coordinates centeredyatind letG denote the image of
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Q. under the mapping — (t, ), wheret = —logr. Foru.(x) written in the coor-
dinates(t, w), we use the notation(t, w). Also, leté,, denote the Laplace-Beltrami
operator ord By, and letd;, 32, and so on, denote partial derivatives with respett to
SinceA = (3% — (n — 2)3 + 8,,), we haveA? = e* A, where

A= (@B +22— (=20 +2 +8) (0 — (N — 2t +5s,)
= 9+ 2085, + 62 — 2(n — B (I + &8,) — 2N — B8,
+ (0% — 100 + 20082 + 2(n — 2)(n — Hd;.

Consider the integral

ou, dx
Iy = Azu-—”“—:/z\-a dt do.
! /8 Coar 15T g vrovttte

Integrating by parts in the right-hand side, we obtain
I} =2(n — 4)/ ((0%v)? + (grad, 3v)% + (n — 2)(3v)?) dt dw
G

- % / ((3v)? + 2(grad, 3 v)? + (8,v)?) cogv, t) ds.
G

Since the angle between and the vectoix — y does not exceee /2, we have
coqv, t) < 0 and therefore

2(n — 4 / ((3v)? + (grad, 8v)? + (n — 2)(3v)?) dt dow < I1. (81)

G

We make use of another integral
dx

|2=f A2u8~u8rn—_4=/GAv-vdtda). (82)

We remark thay € Q. implies
2/ ov-vdtdew = / (v(—i—oo, a)))zda) = a)n_l(ug(y))z.
G By
After integrating by parts ing2), we obtain
/ ((82v)2 + (8,v) + 2(grad, v)? + 2(n — 4)(grad, v)?
G

— (n? = 10 + 20)(3v)?) dt do + wn_1(n — 2)(N — 4) (U (Y))* < I2.

Combining this inequality withg1), we arrive at
/ (2(n — 3)(3%v)? + 2(n — 2)(grad, 3v)? + 2(8,v)* + 4(n — 4)(grad, v)?
G

+8(n — 3)(3v)?) dt dw + 20n_1(N — 2)(N — B (U:(y))* < 11+ 2l.
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Coming back to the coordinates we obtain

2 »  (Vug)?y dx AU, dx
e+ [ (o S ) s [ r( 5 ) e @9

r

Sinceu, — uin HM™(R"), we can here replaag by u andQ, by Q.
Now letn, and¢, be the cutoff functions used in the proof of LemmiaSince
Az(unp) = fn, + [AZ2, npluand f = 0 nearO, we see that foy, € (—p/2, 0),

(V(unp))?y dx
) + [ ((Vatunn)? + S35 ) 2

aun,) 2 dx
<c r 2u A u—-.
= /S;P< ar + 77/))[ ’ ’7,0] rn_4

Integrating by parts in the right-hand side, we majorize it 8g),(and therefore it
follows from (34) that

2
(VW) ) X _emw.  (©4)

sup 0yl + [ (Va0 +
—p/2<yn<0 " B, r2 rn—4

We fix a sufficiently smalb and introduce the con€ = {x : Xy > 0, |X'| < OXn}.
Clearly, for allr € (0, p),

sup [ul? <c(ju©, —n2+r? sup |Vup?),
(0B )\Co (@Br)\Cy

the functionu being extended by zero outsifle Hence and by the well-known local

estimate

2 sup |Vul®<c |Vu(x)|?

f J
(0Br)\Co (B2r \Br/2)\Cy2

|X|n—2’

we obtain

2 2 2 dX
sup [u?=c(  sup U@ ynlP+ [ IVueoP—25).
B,/2\Cs 0>Yn>—p/2 B, X

Making use of 84), we arrive at

Vul?\ dx
sup |u|2+/ (|V2u|2+ | g )W <c M,(u).
B,/2\Cy B, |X| |X|

Repeating the proof of Lemnia we obtain that, fop € (0, R) and for smallR, the
following inequality holds:

> , VUl dx
sup |ul©+ [Vaul|© + —
2 n—4

B,/2\Cy B, IX| IX]

R
< ¢ Mr(u) exp(—c/ CaQ(Bf\Q)%)-
P

The result follows. O
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