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ABSTRACT
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1. INTRODUCTION AND MAIN RESULTS

The main object of this paper is the magnetic Schrödinger operator in �n which
has the form

Ha�V =
n∑

j=1

P2
j + V� (1.1)

where

Pj =
1
i

�

�xj
+ aj�

and aj = aj�x�, V = V�x�, x = �x1� � � � � xn� ∈ �n. We assume that aj and V are
real-valued functions. Denote also

�au = �u+ iau =
(
�u

�x1
+ ia1u� � � � �

�u

�xn
+ ianu

)
�

We will assume a priori that V ∈ L1
loc��

n� and a ∈ L2
loc��

n� (which will be a
shorthand for saying that aj ∈ L2

loc��
n� for all j = 1� � � � � n). This allows to define

the quadratic form

ha�V �u� u� =
∫
�n
���au�2 + V �u�2�dx (1.2)

on functions u ∈ C�
c ��

n�. A stronger local requirement on a will be imposed for the
discreteness of spectrum results. (For example, it will be sufficient to require that
a ∈ L�

loc��
n�.) We will also assume that V ≥ 0 (the case when V is semi-bounded

below by another constant is easily reduced to the case when V ≥ 0 for the
discreteness of spectrum results). Then we can define Ha�V as the operator defined
by the closure of this quadratic form. This closure is well defined (Leinfelder and
Simader, 1981).

We will say that Ha�V has a discrete spectrum if its spectrum consists of isolated
eigenvalues of finite multiplicities. It follows that the only accumulation point of
these eigenvalues can be +�. Equivalently, we may say that Ha�V has a compact
resolvent.

Our first goal is to provide necessary and sufficient conditions for the
discreteness of the spectrum of Ha�V . We will write � = �d instead of the statement
that the spectrum of Ha�V is discrete.

Let us recall some facts concerning the Schrödinger operator H0�V = −�+ V
without magnetic field (i.e., the operator (1.1) with a = 0).

It is a classical result of Friedrichs (1934) (see also e.g., Reed and Simon, 1978,
Theorem XIII. 67, or Berezin and Shubin, 1991, Theorem 3.1) that the condition

V�x� → +� as x → �
implies � = �d (for H0�V ).
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Molchanov (1953) found a necessary and sufficient condition for the
discreteness of spectrum. It is formulated in terms of the Wiener capacity. The
capacity of a compact set F will be denoted cap�F� (see Sec. 2 for the definition
and Edmunds and Evans, 1987, Kondratiev and Shubin, 1999, Maz’ya, 1985 for
necessary properties of the capacity, expositions of Molchanov’s work and more
general results).

Let B�x� r� denote the open ball in �n with the radius r > 0 and the center at
x, �B�x� r� denote the corresponding closed ball.

In case n = 2 the capacity of a set F ⊂ �B�x� r� is always taken relative to a
ball B�x� 2r�. The value of r is usually clear from the context. In case n ≥ 3 such a
definition would be equivalent to the usual Wiener capacity (relative to �n).

In case n = 2 we can also use capacities of sets F ⊂ �B�x� r� with respect to
the ball B�x� R� where r ∈ �0� R/2� and R > 0 is fixed, but this complicates some
formulations.

Similarly we can use closed cubes (squares if n = 2) Qd, where d > 0 means the
length of the edge and the edges are assumed to be parallel to the coordinate axes.

The interior of Qd will be denoted
	
Qd. In this paper we prefer to use cubes instead of

balls, but balls are more convenient in case of manifolds. In case n = 2 the capacity

of a compact set F ⊂ Qd will be always defined relative to
	
Q2d, where Qd and Q2d

have the same center.
Let us define the Molchanov functional

Mc�Qd	 V� = inf
F

{∫
Qd\F

V�x�dx

∣∣∣∣ cap�F� ≤ c cap�Qd�

}
� (1.3)

Here we will always assume that 0 < c < 1. Due to the standard properties of the
capacity, the infimum in (1.3) will not change if we only restrict it to the sets F
which are closures of open subsets of Qd with a smooth boundary.

Molchanov proved that there exists c = cn > 0 such that H0�V has a discrete
spectrum if and only if for every d > 0

Mc�Qd	 V� → +� as Qd → �� (Mc)

where Qd → � means that the center of the cube Qd goes to infinity (with d fixed).
He actually established this result with a specific constant cn (see also Kondratiev
and Shubin, 1999), namely, cn = �4n�−4n�cap�Q1��

−1 for n ≥ 3, but it is by no means
precise and we will not be interested in the precise value of this constant (it seems
beyond the reach of the existing technique).

The case n = 2 was not discussed in Molchanov (1953), though it can be covered
by the same methods with minor modifications.

Note that �Mc� implies �Mc′� for every c′ < c. The arguments in Molchanov
(1953) actually show that it suffices to assume that �Mc� is satisfied for all
sufficiently small c > 0. Hence we can equivalently formulate a necessary and
sufficient condition of the discreteness of spectrum for H0�V by writing that �Mc� is
satisfied for all c ∈ �0� c0� with a positive c0.

Note also that cap��B�x� r�� can be explicitly calculated. It equals cnr
n−2 (with

a different cn > 0). The capacity of a cube Qd is cnd
n−2 (with yet another cn > 0).
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Hence in the formulation of the Molchanov condition �Mc� we can replace cap�Qd�
by dn−2.

A simple argument given in Avron et al. (1978) (see also Corollary 1.4 in
Kondratiev and Shubin, 2002) shows that if H0�V has a discrete spectrum, then the
same is true for Ha�V whatever the vector potential a. Therefore the condition (Mc)
together with V ≥ 0 is sufficient for the discreteness of spectrum of Ha�V . This means
that a magnetic field can only improve the situation from our point of view. Papers
by Avron et al. (1978), Colin de Verdière (1986), Dufresnoy (1983) and Iwatsuka
(1986) provide some quantitative results which show that even in case V = 0 the
magnetic field can make the spectrum discrete. (This situation is called magnetic
bottle.)

The results of Avron et al. (1978), Dufresnoy (1983) and Iwatsuka (1986), were
improved in Kondratiev and Shubin (2002). In particular, some sufficient conditions
for the spectrum of Ha�V to be discrete were given. The capacity was added into the
picture, so in most cases these conditions become necessary and sufficient in case
when there is no magnetic field, i.e., when a = 0. Also both electric and magnetic
fields were made to work together to achieve the discreteness of spectrum.

However no necessary and sufficient conditions of the discreteness of the
spectrum with both fields present were provided in Kondratiev and Shubin (2002).
Here we will give such conditions which actually separate the influence of the electric
and magnetic fields. If the magnetic field is absent then our conditions turn into the
Molchanov condition (Mc) or into some weaker conditions, improving Molchanov’s
sufficiency result.

We will need the bottoms 
�G	Ha�V � and ��G	Ha�V � of Dirichlet and Neumann
spectra for the operator Ha�V in an open set G ⊂ �n. They are defined in terms of its
quadratic form ha�V as follows (see e.g., Courant and Hilbert, 1953; Kato, 1966):


�G	Ha�V � = inf
u

{
ha�V �u� u�G
�u� u�G

� u ∈ C�
c �G�\�0


}
� (1.4)

��G	Ha�V � = inf
u

{
ha�V �u� u�G
�u� u�G

� u ∈ �C��G�\�0
� ∩ L2�G�

}
� (1.5)

where in both cases ha�V �u� u�G is given by the formula (1.2) with the integrals over
G (instead of �n) i.e.,

ha�V �u� u�G =
∫
G
���au�2 + V �u�2�dx�

and �u� u�G means square of the L2-norm of u in G. However in the future we will
often skip the subscript G since it will be clear from the context which G is used.

We will also use these notations for G = Qd in which case 
�Qd	Ha�V � is

understood as 
�
	
Qd	Ha�V �, whereas ��Qd	Ha�V � can be understood as ��

	
Qd	Ha�V �

as well as directly by the formula (1.5) (i.e., with the use of functions u which are
C� on the closed cube) which gives the same result.

In both (1.4) and (1.5) we can also use locally Lipschitz test functions instead
of C� functions u, which does not change the result. (Of course we should take
functions with compact support in G in case of 
�G	Ha�V �).
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We will also need the quantity

�0 = �0�Qd� = �0�Qd	 a� = ��Qd	Ha�0�� (1.6)

which we will call the local energy of the magnetic field (in Qd). Here the first three
terms are defined by the last one, but we will use the shorter notations when the
choice of Qd and a is clear from the context. Obviously �0 ≥ 0. Also, �0 is gauge
invariant, i.e.,

�0�Qd	 a� = �0�Qd	 a+ d���

as soon as a� a+ d� ∈ L�
loc�Qd�, � is a locally Lipschitz function, and a is identified

with the 1-form

a =
n∑

j=1

aj dx
j�

Therefore �0�Qd	 a� depends only on the magnetic field B = da which is understood
as a 2-form with distributional coefficients. It is easy to see that �0�Qd	 a� vanishes

if and only if B vanishes on
	
Qd. This justifies calling �0 local energy of the magnetic

field.
We will also use a normalized local energy of the magnetic field in Qd defined as

�̃0 = �̃0�Qd� = �̃0�Qd	 a� = �0d
2� (1.7)

Definition 1.1. A class � consists of functions f � �0�+�� → �0�+�� which are
continuous and decreasing on �0�+��.

A class � consists of functions g� �0� d0� → �0�+�� such that g��� → 0 as
� → 0 and �g�d��−1d2 ≤ 1 for all d ∈ �0� d0�.

The pair �f� g� ∈ � × � is called n-admissible if f satisfies the inequality
f�t� ≤ fn�t� for all t ≥ 0, where

fn�t� = �1+ t��2−n�/2 if n ≥ 3� f2�t� = �1+ log�1+ t��−1� (1.8)

Now we can formulate our main result about the discreteness of spectrum.

Theorem 1.2. Let us assume that a ∈ L�
loc��

n�. There exists cn > 0 such that for every
n-admissible pair �f� g� the following conditions on Ha�V are equivalent:

�a� The spectrum of Ha�V is discrete.
�bf�g� There exists d0 > 0 such that for every d ∈ �0� d0�

�0�Qd�+ d−nM��Qd	 V� → +� as Qd → �� (1.9)

where

� = ���0� d� = cnf��̃0�g�d�
−1d2� (1.10)
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�cf�g� There exists d0 > 0 such that for every d ∈ �0� d0�

lim inf
Qd→�

(
�0�Qd�+ d−nM��Qd	 V�

) ≥ g�d�−1� (1.11)

where � is as in (1.10).

Note that f��̃0� = f��0d
2� is decreasing in �0 and tends to 0 as �0 → �

(with d fixed). So the condition on V is weaker at the places where the local energy
of the magnetic field is larger.

Remark 1.3. Assuming that the magnetic field is absent (a = 0, Ha�V = H0�V =
−�+ V ) we obtain cnf��̃0� = cnf�0� = c > 0. Now taking g�d� = d2 we see that the
condition (1.9) becomes the Molchanov condition �Mc�. So Theorem 1.2 strengthens
Molchanov’s theorem (Molchanov, 1953) which claims the equivalence of �a� and
�bf�g� for this particular case.

Corollary 1.4. All conditions �bf�g�, �cf�g�, taken for different n-admissible pairs �f� g�
are equivalent.

In particular, this Corollary applied in case a = 0 (no magnetic field) gives an
equivalence of different conditions on the scalar potential V ≥ 0. This seems to be
a new purely function-theoretic property of capacity.

The following corollaries provide examples of more explicit necessary and
separately sufficient conditions which easily follow from Theorem 1.2.

Corollary 1.5. Let us assume that the spectrum of Ha�V is discrete. Then for every
fixed d > 0

�0�Qd�+
1
dn

∫
Qd

V�x�dx → +� as Qd → �� (1.12)

The condition (1.12) corresponds to the case � ≡ 0 in �bf�g� in Theorem 1.2. It is
known that it is not sufficient for the discreteness of the spectrum, even in the case
when there is no magnetic field (Molchanov, 1953).

Corollary 1.6. Let us assume that there exist c > 0� d1 > 0 such that for every fixed
d ∈ �0� d1�

�0�Qd�+ d−nMc�Qd	 V� → +� as Qd → �� (1.13)

Then the spectrum of Ha�V is discrete.

It follows from Theorem 1.7 below that the condition (1.13) is not necessary for
the discreteness of spectrum of Ha�V .

Sufficient conditions (for � = �d) which do not include capacity, can be
obtained if the capacity is replaced by the Lebesgue measure in the restriction on F
in the definition of Mc�Qd	 V� – see Sec. 6.1 in Kondratiev and Shubin (1999) for a
more detailed argument.
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Other, more effective sufficient conditions (which do not include �0) and related
results (in particular, asymptotics of eigenvalues under appropriate conditions) can
be found in Colin de Verdière (1986), Dufresnoy (1983), Fefferman (1983), Helffer
and Mohamed (1988), Helffer et al. (1989), Ivrii (1998), Iwatsuka (1986, 1990),
Kondratiev and Shubin (2002), Levendorskii (1997), Mohamed and Raikov (1994),
Shigekawa (1991) and Tamura (1987).

Some necessary and sufficient conditions of discreteness of spectrum for the
Schrödinger operators can be obtained by considering them as 1-dimensional
Schrödinger operators with operator coefficients (see e.g., Brüning, 1989; Maslov,
1968 and references in Brüning, 1989). An interesting feature of this approach is that
it allows to consider operators whose potentials are not necessarily semi-bounded
below.

The following theorem shows that the conditions on f in Theorem 1.2 are
almost precise.

Theorem 1.7. There exists an operator Ha�V with a discrete spectrum and with the
following property. Let f� �0�+�� → �0� 1� be a decreasing function, such that in
case n ≥ 3

f�t� = �1+ t��2−n�/2h�t�� (1.14)

and in case n = 2

f�t� = �1+ log�1+ t��−1h�t�� (1.15)

where in both cases h�t� → +� as t → +�. Then, for every fixed d > 0, the condition
(1.9) with � = f��0d

2� is not satisfied. So the condition (1.9) with the function f having
the form given above, is not necessary for the discreteness of spectrum, whatever g and
cn. In particular, the exponents in (1.8) are the best possible.

Now we will give a positivity criterion for the operators Ha�V . We will say that
such an operator is strictly positive if Ha�V ≥ �I for some � > 0, or, equivalently, that
its spectrum is in ����� for some � > 0. If V ≥ 0, then this is equivalent to saying
that 0 is not in the spectrum of Ha�V .

Theorem 1.8. Let us assume that V ≥ 0. There exist positive constants cn� c̃n such that
the following conditions on Ha�V are equivalent:

�a� Ha�V is strictly positive.
�b� There exist positive constants c� d1� d such that for every cube Qd ⊂ �n

�0�Qd�+ d−nMc�Qd	 V� ≥
1

d2
1

� (1.16)

�c� There exist positive constants d1� d such that for every cube Qd ⊂ �n

�0�Qd�+ d−nMcn
�Qd	 V� ≥

1

d2
1

� (1.17)
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�d� There exist positive constants c� c̃� d2 such that for every d > d2 and every
cube Qd ⊂ �n

�0�Qd�+ d−nMc�Qd	 V� ≥
c̃

d2
� (1.18)

�e� There exist d2 > 0 such that for every d > d2 and every cube Qd ⊂ �n

�0�Qd�+ d−nMcn
�Qd	 V� ≥

c̃n
d2

� (1.19)

In case when there is no magnetic field (i.e., a = 0, Ha�V = H0�V = −�+ V ) this
theorem is essentially contained in Maz’ya (1985, Sec. 12.5).

Remark 1.9. The discreteness of spectrum and strict positivity are gauge invariant.
More precisely, if we replace a ∈ L�

loc��
n� by another magnetic potential

a′ ∈ L�
loc��

n� which has the form a′ = a+ d�, then the spectrum does not change,
i.e., the spectra of Ha�V and Ha′�V coincide (see Leinfelder, 1983). (Here � is a locally
Lipschitz function.) So in fact the spectrum depends not on the magnetic potential
a itself but on the magnetic field B = da.

Remark 1.10. Theorem 1.2 holds on every manifold of bounded geometry, with
cubes replaced by balls in the formulation (see Kondratiev and Shubin, 1999 and
Sec. 6 in Kondratiev and Shubin, 2002 for necessary adjustments which should be
done to treat the more general case compared with the case of operators on �n).
However it is not at all clear how to extend Theorem 1.8 to this case.

Remark 1.11. In Sec. 7 we will formulate results which extend Theorems 1.2 and
1.8 and their Corollaries to the case when the operator Ha�V is considered in L2���
for an arbitrary open set � ⊂ �n with the Dirichlet boundary conditions on ��.
Note that the discreteness of spectrum and strict positivity in this case may be
influenced or even completely determined by the geometry of �. In particular, the
results are non-trivial even for the pure Laplacian H0�0 = −�.

2. PRELIMINARIES

In this section we will list some important technical tools which will be used
later. They were actually useful even in case of vanishing magnetic field (see Maz’ya,
1985), when they provide simpler proofs and stronger versions for the Molchanov
discreteness of spectrum criterion, as well as for the Maz’ya strict positivity criterion
for usual Schrödinger operators with non-negative scalar potentials.

For every subset � ⊂ �n denote by Lip��� the space of (complex-valued)
functions satisfying the uniform Lipschitz condition in �, and by Lipc��� the
subspace in Lip��� of all functions with compact support in � (this will be only
used when � is open). By Liploc��� we will denote the set of functions on (an open
set) � which are Lipschitz on any compact subset K ⊂ �.
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If F is a compact subset in an open set � ⊂ �n, then the Wiener capacity of F
relatively to � is defined as

cap��F� = inf
{∫

�n
��u�x��2 dx

∣∣∣ u ∈ Lipc���� u�F = 1
}
� (2.1)

We will also use the notation cap�F� for cap�n �F� if F ⊂ �n, n ≥ 3, and for
cap 	

Q2d
�F� if F ⊂ Qd ⊂ �2, where the squares Qd and Q2d have the same center and

the edges parallel to the coordinate axes in �2.
Note that if we allow only real-valued functions u in (2.1), then the infimum

will not change. To see this it suffices to note that �� �u�� ≤ ��u� a.e., (almost
everywhere) for every complex-valued Lipschitz function. Moreover, the infimum
does not change if we restrict ourselves to the Lipschitz functions u such that 0 ≤
u ≤ 1 everywhere (see e.g., Maz’ya, 1985, Sec. 2.2.1).

The following Lemmas are particular cases of much more general results
from Maz’ya (1985). We supply the simplified formulations for the convenience of
the readers.

Lemma 2.1 (Maz’ya, 1985, Theorem 10.1.2, part 1). There exists Cn > 0 such that
the following inequality holds for every complex-valued function u ∈ Lip�Qd� which
vanishes on a compact set F ⊂ Qd (but is not identically zero on Qd):

cap�F� ≤ Cn

∫
Qd

��u�x��2 dx
d−n

∫
Qd

�u�x��2 dx � (2.2)

Lemma 2.2 (Maz’ya, 1985, Lemma 12.1.1). Let V ∈ L1
loc��

n�, V ≥ 0. For every
u ∈ Lip�Qd� and � > 0∫

Qd

�u�2 dx ≤ Cnd
2

�

∫
Qd

��u�2 dx + 4dn

M��Qd	 V�

∫
Qd

V �u�2 dx� (2.3)

(The last term is declared to be +� if its denominator vanishes.)

Remark 2.3. Both Lemmas 2.1 and 2.2 hold also if we replace � by �a. Indeed, we
can first apply the inequalities (2.2) and (2.3) to �u� and then use the diamagnetic
inequality �� �u�� ≤ ��au� (see e.g., Kato, 1972; Lieb and Loss, 2001; Simon, 1976).

The following lemma is somewhat inverse to Lemma 2.1. It follows from part 2
of Theorem 10.1.2 in Maz’ya (1985).

Lemma 2.4. There exists positive cn� c
′
n� c

′′
n such that for every compact subset F ′ ⊂ Qd

satisfying

cap�F ′� ≤ cncap�Qd�� (2.4)

there exists � ∈ Lip�Qd� with the following properties: 0 ≤ � ≤ 1, � = 0 in a
neighborhood of F ′,

cap�F ′� ≥ c′n
∫
Qd

����2 dx (2.5)
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and

d−n
∫
Qd

�2 dx ≥ 1
4
� (2.6)

hence

cap�F ′� ≥ c′′n
∫
Qd

����2 dx
d−n

∫
Qd

�2 dx
� (2.7)

For the convenience of the reader we provide self-contained proofs of the
lemmas above in Appendix to this paper.

3. DISCRETENESS OF SPECTRUM: SUFFICIENCY

In this section we will consider operators Ha�V with V ∈ L1
loc�R

n�, V ≥ 0 and
a ∈ L�

loc��
n�.

We will start with the following proposition which gives a general (albeit
complicated) sufficient condition for the discreteness of spectrum.

Proposition 3.1. Given an operator Ha�V , let us assume that the following condition is
satisfied:

∃�0 > 0� ∀� ∈ �0� �0�� ∃d = d��� > 0� R = R��� > 0� ∀Qd with

Qd ∩ ��n\B�0� R�� �= ∅� ∃� = ���0� d� �� ≥ 0� such that

�0 +
�

Cnd
2
≥ �−1 and �0 + d−nM��Qd	 V� ≥ �−1� (3.1)

where �0 = �0�Qd�, Cn is the constant from (2.3). Then � = �d.

Proof. We can assume without loss of generality that V ≥ 1. Define

� =
{
u
∣∣∣u ∈ C�

c ��
n��

∫
�n
���au�2 + V �u�2�dx ≤ 1

}
� (3.2)

By the standard functional analysis argument (see e.g., Lemma 2.3 in Kondratiev
and Shubin, 1999) the spectrum of Ha�V is discrete if and only if � is precompact in
L2��n�, which in turn holds if and only if � has “small tails”, i.e., for every � > 0
there exists R > 0 such that∫

�n\B�0�R�
�u�2 dx ≤ � for all u ∈ �� (3.3)

This will hold if we establish that there exists d > 0 such that∫
Qd

�u�2 dx ≤ �
∫
Qd

���au�2 + V �u�2�dx� (3.4)

for all cubes Qd such that Qd ∩ ��n\B�0� R�� �= ∅.
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To prove (3.4) note first that if � = 0 then �0 ≥ �−1 due to the first inequality
in (3.1), hence (3.4) follows from the definition of �0 (even if we skip the term with
V in the right-hand side). So from now we will assume that � > 0.

Let us look at the inequality∫
Qd

�u�2 dx ≤ Cnd
2

�

∫
Qd

��au�2 dx +
4dn

M��Qd	 V�

∫
Qd

�u�2V dx (3.5)

(see Lemma 2.2 and Remark 2.3). For every fixed � > 0 we can divide all cubes Qd

into the following two types:

Type I: �0�Qd� > �2��−1;
Type II: �0�Qd� ≤ �2��−1.

For a Type I cube Qd the inequality (3.4) holds with 2� instead of �, as was
explained above.

For a Type II cube it follows from the conditions (3.1) that

Cnd
2

�
≤ 2��

4dn

M��Qd	 V�
≤ 8��

so the inequality (3.4) follows with 8� instead of �. �

Instead of requiring that the conditions of Proposition 3.1 satisfied for all
� ∈ �0� �0�, it suffices to require it for a sequence �k → +0. Keeping this in mind
we can replace the dependence d = d��� by the inverse dependence � = g�d�, so
that g�d� > 0 and g�d� → 0 as d → +0 (and here we can also restrict to a sequence
dk → +0). This leads to the following:

Proposition 3.2. Given an operator Ha�V with V ≥ 0, let us assume that the following
condition is satisfied:

∃d0 > 0� ∀d ∈ �0� d0�� ∃R = R�d� > 0� ∀Qd with

Qd ∩ ��n\B�0� R�� �= ∅� ∃� = ���0� d� ≥ 0� such that

�0 +
�

Cnd
2
≥ g�d�−1 and �0 + d−nM��Qd	 V� ≥ g�d�−1� (3.6)

where �0 = �0�Qd�, Cn is the constant from (2.3), g�d� > 0 and g�d� → 0 as d → +0.
Then � = �d.

Proposition 3.3. Let us assume that V ≥ 0, f ∈ � , g ∈ � (in the notations of
Definition 1.1) and one of the conditions �bf�g�, �cf�g� from Theorem 1.2 is satisfied.
Then the spectrum of Ha�V is discrete.

Proof. Clearly, �bf�g� implies �cf�g�. So it remains to prove that �cf�g� implies that
� = �d. To this end it is sufficient to prove that it implies that the conditions of
Proposition 3.2 are satisfied.
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Note that it suffices to establish that the inequalities (3.6) hold with an
additional positive constant factor, independent on d (but possibly dependent on
f� g), in the right hand sides.

Clearly, the second inequality in (3.6), with an additional factor 1/2 in the right
hand side, is satisfied for distant cubes Qd due to (1.11). So we need only to take
care for the first inequality in (3.6). It obviously holds if �0 ≥ g�d�−1.

On the other hand, if we assume that �0 ≤ g�d�−1, then

f��0d
2� ≥ f�g�d�−1d2��

hence
�

Cnd
2
= cn

Cn

f��0d
2�g�d�−1 ≥ cn

Cn

f�g�d�−1d2�g�d�−1 ≥ cn
Cn

f�1�g�d�−1�

because g�d�−1d2 ≤ 1 according to Definition 1.1. Therefore we can apply
Proposition 3.2. �

Remark 3.4. No domination requirement (like f ≤ fn in Definition 1.1) is imposed
on f in Proposition 3.3.

Remark 3.5. It is clear from the proof that to establish the discreteness of spectrum
of an operator Ha�V , it suffices to check the condition �bf�g� (or �cf�g�) from Theorem
1.2 for every d ∈ �0� d0� on the cubes Qd which form a tiling of �n (instead of all
cubes Qd).

Remark 3.6. Let us consider the case of vanishing magnetic field (a ≡ 0) and
take g�d� = ds with 0 < s < 2. Then the conditions �bf�g�, �cf�g� provide sufficient
conditions for the discreteness of spectrum of the Schrödinger operator H0�V =
−�+ V which are much better than the Molchanov condition �Mc� which
corresponds to the condition �bf�g� with g�d� = d2. The conditions �bf�ds � in this
case impose weaker requirements on the capacity of negligible sets for small d. With
the same requirements on the negligible sets the condition �cf�ds � goes even further:
it does not require the functional M��Qd	 V� to go to infinity for fixed d, it only
requires it to become large for distant cubes and small d.

4. DISCRETENESS OF SPECTRUM: NECESSITY

We will use the notations from Sec. 1. We impose here the same restrictions
on Ha�V as in Sec. 3, i.e., V ∈ L1

loc��
n�, V ≥ 0, a ∈ L�

loc��
n�. Let us fix an arbitrary

d0 > 0. We need to prove that the discreteness of spectrum for Ha�V implies the
condition �bf�g� in Theorem 1.2. This will follow from

Proposition 4.1. There exist c = cn > 0, C = Cn > 0 such that for every operator Ha�V

with V ≥ 0 and every cube Qd

��Qd	Ha�V � ≤ CE

(
1+ 1

fn��̃0�d
n−2

Mcfn��̃0�
�Qd	 V�

)
� (4.1)

where E = �0�Qd�+ d−2, �̃0 is defined by (1.7), and fn is defined by (1.8).
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Proof of Theorem 1.2. Clearly �bf�g� implies �cf�g�. The sufficiency of the condition
�cf�g� for the discreteness of spectrum was proved in Sec. 3. So we only need to
prove that � = �d implies �bf�g� for every n-admissible pair f� g (see Definition 1.1).
It is sufficient to consider the special case f = fn, g�d� = d2 because this case
corresponds to the maximal allowed value of ���0� d�, therefore to the strongest
possible condition �bf�g� among all possible n-admissible pairs �f� g�.

So let us assume that Ha�V has a discrete spectrum. We need to prove that the
condition �bf�g� holds for f = fn, g�d� = d2. For brevity sake denote this condition
by �N�.

According to the Localization Theorem 1.2 in Kondratiev and Shubin (2002) it
follows from the discreteness of spectrum that

��Qd	Ha�V � → +� as Qd → �� (4.2)

for every fixed d > 0. This implies that the right hand side of (4.1) tends to +�
as Qd → � with any fixed d > 0. This implies that the condition �N� is satisfied.
Indeed, if �N� does not hold for some d > 0, then there exists a sequence of cubes
Qd → � such that

E + d−nMcfn��̃0�
�Qd	 V� ≤ C

along this sequence. But then both terms in the left hand side are bounded, hence
the right hand side of (4.1) is bounded, which contradicts (4.2). �

Now we will start our proof of Proposition 4.1. Let us choose u ∈ Lip�Qd�
such that

ha�0�u� u� =
∫
Qd

��au�2 dx ≤ Edn� (4.3)

and

�u�2Qd
=

∫
Qd

�u�2 dx = dn� (4.4)

Note that due to the diamagnetic inequality we have∫
Qd

�� �u��2 dx ≤ Edn� (4.5)

For every k ≥ 0 define a set Ek ⊂ Qd by

Ek = �x� �u�x�� ≥ k
�

and estimate the capacity of Ek. This estimate is given in the following Lemma, and
it can be also obtained from Theorem 10.1.3 in Maz’ya (1985).

Lemma 4.2. For every k > 0

cap�Ek� ≤ CnEk
−2dn� (4.6)
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Proof. Let us take v�x� = max�k− �u�x��� 0�. Then v ∈ Lip�Qd�, 0 ≤ v ≤ k, and
v�Ek

= 0. Using Lemma 2.1, we get

cap�Ek� ≤
Cn

∫
Qd

��v�2 dx
d−n

∫
Qd

v2 dx
� (4.7)

Note that ��v� ≤ �� �u�� almost everywhere, so (4.5) implies that∫
Qd

��v�2 dx ≤ Edn� (4.8)

Let us estimate the denominator in (4.7) from below. We have

�k� ≤ �k− �u�� + �u� ≤ ��k− �u��+� + 2�u� = �v� + 2�u��

where � · � is the norm in L2�Qd�. Therefore

�v� ≥ �k� − 2�u� = �k− 2�dn/2�

and the desired inequality (4.6) follows from (4.7) and (4.8) provided k ≥ 3.
It also obviously holds for k < 3 because E ≥ d−2. �

To continue the proof of Proposition 4.1 note that the desired inequality (4.1)
holds if and only if the estimate

��Qd	Ha�V � ≤ CnE

(
1+ 1

fn��̃0�d
n−2

∫
Qd\F

V dx

)
(4.9)

holds for every compact F ⊂ Qd such that

cap�F� ≤ � cap�Qd�� (4.10)

where � = cfn��̃0�. Let us choose such a compact set F and denote F ′ = Ek ∪F .
Then

cap�F ′� ≤ � cap�Qd�+ CnEk
−2dn (4.11)

due to the subadditivity of capacity and Lemma 4.2.
We would like to apply Lemma 2.4 to the set F ′. Using (4.11), we see that it is

sufficient to assume that

� ≤ cn/2 and k 2 ≥ CnEd
n

� cap�Qd�
= C̃nEd

2

�
� (4.12)

where Cn� cn are the constants from (4.11) and (2.4). We will assume in the future
that the relations (4.12) are satisfied. Then

cap�F ′� ≤ 2� cap�Qd�� (4.13)
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Now we can choose a function � as in Lemma 2.4 and define

u′ = �u� (4.14)

where u ∈ Lip�Qd� satisfies (4.3) and (4.4). Clearly, u′�F ′ = 0 by the definition of �.
To see that we do not cut off too much, we need to estimate the capacity of

the set

R =
{
x� x ∈ Qd� ���x�� ≤

1
4

}
� (4.15)

Clearly R ⊃ F ′, so cap�R� ≥ cap�F ′�. The following Lemma establishes an opposite
estimate.

Lemma 4.3. There exists Cn > 0 such that

cap�R� ≤ Cn cap�F
′�� (4.16)

Proof. Take �̃ = max���� − 1/4� 0
, where � is constructed by Lemma 2.4. Then
�̃�R = 0, �̃ ≥ 0 and∫

Qd

���̃�2 dx ≤
∫
Qd

����2 dx ≤ Cn cap�F
′�� (4.17)

where we used (2.5). On the other hand, using (2.6) we obtain

dn

4
≤

∫
Qd

���2 dx ≤
∫
Qd

(
��̃� + 1

4

)2

dx ≤ 2
∫
Qd

��̃�2 dx + dn

8
�

hence

d−n
∫
Qd

��̃�2dx ≥ 1
16

Together with (4.17) and Lemma 2.1 this implies the desired inequality (4.16). �

Now let us recall the following inequalities which relate the capacity of a
compact set F ⊂ Qd with its Lebesgue measure mesF :

cap�F� ≥ cn�mesF��n−2�/n� n ≥ 3� (4.18)

with cn = �−2/n
n n�2−n�/n�n− 2�−1, �n is the �n− 1�-volume of the unit sphere in �n;

cap 	
Qd0

�F� ≥ c2

[
log

d2
0

mesF

]−1

� n = 2� d0 ≥ 2d� (4.19)

with c2 = �4��−1 (see e.g., Maz’ya, 1985, Sec. 2.2.3). They can be rewritten as
follows:

mesF ≤ Cn�cap�F��
n/�n−2�� n ≥ 3	 (4.20)
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mesF ≤ d2
0 exp

(
− 1

C2cap 	
Qd0

�F�

)
� n = 2� d0 ≥ 2d� (4.21)

If n = 2, then we only need d0 = 2d, which will be assumed below. Then
cap 	

Qd0

�F� = cap 	
Q2d
�F� = cap�F� according to our conventions.

Lemma 4.4. Let R be a compact subset in Qd. If n ≥ 3, then∫
R
�u�2 dx ≤ Cn�mesR�2/n

∫
�n

��u�2 dx� u ∈ Lipc��
n�� (4.22)

If n = 2, then∫
R
�u�2 dx ≤ C2 mesR log

(
4d2

mesR

) ∫
Q2d

��u�2 dx (4.23)

for any u ∈ Lip�Q2d� with u��Q2d
= 0. (Here Qd and Q2d are assumed to have the same

center.)

Proof. It is clear from the inequality �� �u�� ≤ ��u� that without loss of generality
we can assume that u ≥ 0. Denote for any t ≥ 0

Nt = �x� u�x� ≥ t
 ∩ R�

According to Theorem 2.3.1 from Maz’ya (1985), for any open � ⊃ Qd∫ �

0
cap��Nt�d�t

2� ≤ 4
∫
�
��u�2 dx� u ∈ C�

c ���� (4.24)

Using this for � = �n together with (4.18), we obtain for n ≥ 3:∫
R
u2 dx =

∫ �

0
mesNt d�t

2� ≤ �mesR�2/n
∫ �

0
�mesNt�

�n−2�/nd�t2�

≤ c−1
n �mesR�2/n

∫ �

0
cap�Nt�d�t

2� ≤ 4c−1
n �mesR�2/n

∫
�n

��u�2 dx�

where cn is the constant from (4.18). So (4.22) follows with Cn = 4c−1
n .

Let us consider the case n = 2. We can assume u = 0 on �2\Q2d. Using the
inequalities (4.19), (4.24) and the fact that the function � �→ � log�b/�� is increasing
on �0� b/e�, b > 0, we obtain∫

R
u2 dx =

∫ �

0
mesNt d�t

2�

≤ mesR log
(

4d2

mesR

) ∫ �

0

(
log

4d2

mesNt

)−1

d�t2�

≤ 4�mesR log
(

4d2

mesR

) ∫ �

0
cap�Nt� d�t

2�

≤ 16�mesR log
(

4d2

mesR

) ∫
Q2d

��u�2 dx�

so we get (4.23) with C2 = 16�. �
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Corollary 4.5. There exist positive constants Cn, n ≥ 2, such that if R is a compact
subset in Qd then for any u ∈ Lip�Qd�∫

R
�u�2 dx ≤ Cn�mesR�2/n

(∫
Qd

��u�2 dx + d−2
∫
Qd

�u�2 dx
)
� (4.25)

if n ≥ 3, and∫
R
�u�2 dx ≤ C2 mesR log

(
4d2

mesR

)(∫
Qd

��u�2 dx + d−2
∫
Qd

�u�2dx
)
� (4.26)

if n = 2.

Proof. The result will follow if we apply Lemma 4.4 to the function v = �U , where
U ∈ Lip�Q3d� is an extension of u by reflections, such that∫

Q3d

�U �2 dx ≤ 3n
∫
Qd

�u�2 dx�
∫
Q3d

��U �2 dx ≤ 3n
∫
Qd

��u�2 dx�

and � ∈ Lip�Q3d�, � = 1 on Qd, � = 0 on Q3d\Q2d, 0 ≤ � ≤ 1, ����x�� ≤ 2d−1

for all x. �

Remark 4.6. In case n ≥ 3 another proof of the estimate (4.22) can be obtained if
we use the Sobolev inequality(∫

�n
�u�2n/�n−2� dx

)�n−2�/n

≤ Cn

∫
�n

��u�2 dx� u ∈ Lipc��
n�� (4.27)

(See e.g., Lieb and Loss, 2001, Sec. 8.3.) By the Hölder inequality∫
R
�u�2 dx ≤ �mesR�2/n

(∫
R
�u�2n/�n−2� dx

)�n−2�/n

�

Combining this with (4.27), we obtain (4.22).

Proof of Proposition 4.1. Let us return to the function u satisfying (4.3) (hence
(4.5)) and (4.4). We would like to apply Corollary 4.5 to the set R defined by (4.15)
and to the function �u� in order to establish that∫

R
�u�2 dx ≤ 1

4

∫
Qd

�u�2 dx = 1
4
dn� (4.28)

The inequalities in Corollary 4.5 (applied to �u�) and the diamagnetic inequality
imply for this u∫

R
�u�2 dx ≤ Cn�mesR�2/n

(∫
Qd

��au�2 dx + d−2
∫
Qd

�u�2 dx
)

≤ Cn�mesR�2/n�E + d−2�
∫
Qd

�u�2 dx ≤ 2CnE�mesR�2/n
∫
Qd

�u�2 dx�
(4.29)
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if n ≥ 3, and∫
R
�u�2 dx ≤ 2C2EmesR log

(
4d2

mesR

) ∫
Qd

�u�2 dx� (4.30)

if n = 2.
Note that Lemma 4.3 and (4.13) imply

cap�R� ≤ 2Cn� cap�Qd�� (4.31)

Now for n ≥ 3, using the estimate (4.29), we see that (4.28) will follow if

E�mesR�2/n ≤ cn
8

with a sufficiently small cn > 0. Due to (4.20), this will hold if

E�cap�R��2/�n−2� ≤ cn
8

(possibly with a different cn). Recalling (4.31), we see that it suffices to take

� ≤ cn�Ed
2��2−n�/2 = cnfn��0d

2� = cnfn��̃0��

with a small cn > 0.
Now let us assume that n = 2 and use the estimates (4.30), (4.31). Taking

into account that cap�Qd� = cap�Q1� does not depend on d, we see that it suffices
to have

� ≤ c2
(
1+ log�Ed2�

)−1 = c2f2��0d
2� = c2f2��̃0�

with a sufficiently small c2 > 0.
In both cases we see that the condition

� ≤ cnfn��̃0� (4.32)

with fn as in Definition 1.1, is sufficient for the estimate (4.28) to hold. Then we
conclude that∫

Qd\R
�u�2 dx ≥ 1

4
dn�

It follows that for u′ = �u, as in (4.14),∫
Qd

�u′�2 dx ≥ 1
16

∫
Qd\R�

�u�2 dx ≥ 1
64

dn�

whenever � ∈ �0� 1/4�. Let us take � = 1/4. Then we get∫
Qd

�u′�2 dx ≥ 1
64

dn� (4.33)
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Now we can use u′ as a test function to estimate ��Qd	Ha�V �. We obviously have

��Qd	Ha�V � ≤
ha�0�u

′� u′�Qd
+ �Vu′� u′�Qd

�u′�2Qd

=
∫
Qd

��au
′�2 dx + ∫

Qd
V �u′�2 dx∫

Qd
�u′�2 dx (4.34)

Let us estimate the terms in the right hand side turn by turn. Since 0 ≤ � ≤ 1,
we obtain

ha�0�u
′� u′�Qd

=
∫
Qd

��au
′�2 dx =

∫
Qd

���au+ u���2 dx

≤ 2
∫
Qd

��au�2 dx + 2
∫
Qd

�u���2 dx�

The first term in the right hand side is estimated by 2Edn by the choice of u
(see (4.3) and (4.4)), whereas the second one is estimated, with the use of (2.7), by

2k2
∫
Qd

����2 dx ≤ Cnk
2cap�F ′�d−n

∫
Qd

���2 dx ≤ Cnk
2 cap�F ′��

Taking into account (4.13), we see that the right hand side here is estimated
by Cnk

2� cap�Qd�. Now we can choose k so that the inequality (4.12) becomes
equality, i.e.,

k2 = C̃nEd
n

� cap�Qd�
�

With this choice we get k2 cap�F ′� ≤ C̃nEd
n, so we finally get

ha�0�u
′� u′�Qd

≤ CnEd
n� (4.35)

We also obviously have

�Vu′� u′�Qd
=

∫
Qd

V �u′�2 dx ≤ k2
∫
Qd\F ′

V dx

≤ k2
∫
Qd\F

V dx = C̃nEd
n

� cap�Qd�

∫
Qd\F

V dx� (4.36)

where we used that V ≥ 0, 0 ≤ � ≤ 1 and ��F ′ = 0.
Substituting the estimates (4.35) and (4.36) into (4.34) and taking into account

(4.33), we obtain

��Qd	Ha�V � ≤ CnE

(
1+ 1

� cap�Qd�

∫
Qd\F

V dx

)
�
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Recalling the restriction (4.32), we see that it is best to take � = cnfn��̃0� with an
appropriate (sufficiently small) constant cn. Thus we arrive at the inequality (4.9)
which proves Proposition 4.1, hence Theorem 1.2. �

Remark 4.7. The condition a ∈ L�
loc��

n� can be substantially relaxed. Indeed, it
was only used to guarantee that the set � given by (3.2) (we assume that V ≥ 1)
is precompact in L2�B�0� R�� for any R ∈ �0���. Let us assume that �a� ∈
M�H1��n� → L2

loc��
n��, the space of pointwise multipliers mapping H1��n� into

L2
loc��

n�. (Here H1��n� is the standard Sobolev space of functions u ∈ L2��n� such
that �u ∈ L2��n�.) This means that for any R ∈ �0���∫

B�0�R�
�a�2�v�2 dx ≤ c�R����v�2 + �v�2�� v ∈ C�

c ��
n��

where � · � is the norm in L2��n�. Applying this to v = �u�, we obtain by the
diamagnetic inequality∫

B�0�R�
�a�2�u�2 dx ≤ c�R� for all u ∈ ��

Therefore,

��u�2L2�B�0�R�� ≤ 2��au�2L2�B�0�R�� + 2��a�u�2L2�B�0�R�� ≤ 2�1+ c�R��� u ∈ ��

It remains to note that the set

�u ∈ C�
c ��

n�� ��u�2L2�B�0�R�� + �u�2L2�B�0�R�� ≤ 3+ 2c�R�


is precompact in L2�B�0� R�� due to the Rellich Lemma.
The space M�H1��n� → L2

loc��
n�� can be described analytically in various ways

(see Maz’ya, 1973; Corollary 2.3.3 in Kerman and Sawyer, 1986; Maz’ya, 1985;
Maz’ya and Verbitsky, 1995). For example, �a� ∈ M�H1��n� → L2

loc��
n�� if and

only if for any unit ball B�x� 1�

sup
F

∫
F
�a�2 dx

cap�F�
≤ c�x��

where the supremum is taken over all compact subsets F ⊂ �B�x� 1�, and c = c�x� is
continuous on �n.

Using the inequalities (4.18) and (4.19), we see that it is sufficient to require that
a satisfies the condition∫

F
�a�2 dx ≤ c�x��mes�F���n−2�/n� n > 2�

and ∫
F
�a�2 dx ≤ c�x�

(
log

4
mes�F�

)−1

� n = 2�

It is easy to see that that the following condition on a is stronger, hence also
sufficient: a ∈ Ln

loc��
n� if n > 2 and �a�2 log+ �a� ∈ L1

loc��
2� if n = 2.

Due to the gauge invariance it suffices that one of the conditions above is
satisfied for some a′ = a+ d� with a scalar function (or a distribution) �.
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5. NECESSITY: PRECISION

In this section we will construct an operator Ha�V which will provide a proof of
Theorem 1.7, in particular, the precision of the exponents in (1.8).

Let us consider a hyperplane

L = �x � x1 + x2 + · · · + xn = 0
 ⊂ �n� (5.1)

It divides its complement in �n into two parts

L± = �x � ± �x1 + x2 + · · · + xn� > 0
� (5.2)

Let us take two operators Hã�0 and H0�Ṽ in �n, so that each of them has discrete
spectrum in �n, and then define Ha�V as follows:

Ha�V = Hã�0 in L−� Ha�V = H0�Ṽ in L+� (5.3)

So a and V are obtained by restriction of ã and Ṽ to L− and L+, respectively, with
subsequent extensions by 0 to the complementary half-spaces L+ and L−.

Theorem 1.7 will immediately follow from

Proposition 5.1. The operator Ha�V , defined by (5.3), has a discrete spectrum, and
satisfies the condition formulated in Theorem 1.7.

Proof. We will establish the discreteness of spectrum of Ha�V by the necessary and
sufficient conditions from Theorem 1.2. To this end we can use tiling cubes with
one of the faces parallel to L, and with interiors in one of the half-spaces L±
(see Remark 3.5). Then the discreteness of the spectrum of Ha�V immediately follows
from the corresponding properties of the operators Hã�0 and H0�Ṽ .

Now let us choose arbitrary d > 0, and a decreasing function f � �0�+�� →
�0� 1� satisfying (1.14) in case n ≥ 3 and (1.15) in case n = 2. We claim then that the
condition (1.9) (with cn = 1) is not satisfied for the cubes Qd with the edges parallel
to the coordinate axes (where the hyperplane L has the form (5.1)).

We will consider only the cubes Qd which have “small” intersection with L+,
with x1 + x2 + · · · + xn = � > 0 at the corner of the cube where the sum x1 +
x2 + · · · + xn is maximal. We will assume that � ≤ d. Then the intersection of Qd

with �L+ (the closure of L+) will be a tetrahedron which is isometric to the
tetrahedron{

x = �x1� � � � � xn� � xj ≥ 0�
n∑

j=1

xj ≤ �

}
�

Clearly

cap�Qd ∩�L+� = c�1�n �n−2� n ≥ 3� (5.4)

C−1
2

[
log

(
2d
�

)]−1

≤ cap�Qd ∩�L+� ≤ C2

[
log

(
2d
�

)]−1

� n = 2� (5.5)
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Since Qd ∩�L+ is free of magnetic field (a = 0 there) and contains a ball of diameter

c�2�n �, then, taking only test functions from C�
c �

	
Qd ∩ L+�, we obtain

�0�Qd� ≤ Cn�
−2� (5.6)

if Cn > 0 is sufficiently large.
Now we would like the sets Qd ∩�L+ to be negligible in the sense of

Theorem 1.2 with the use of the function f , i.e.,

cap�Qd ∩�L+� ≤ f��0d
2� cap�Qd�� (5.7)

If this is the case, then we will have M��Qd	 V� = 0 and

�0�Qd�+ d−nM��Qd	 V� ≤ Cn�
−2� (5.8)

with � = f��0d
2�. The condition (1.9) means that the left hand side of (5.8) tends to

+� as Qd → �. This will not hold if we are able to provide a sequence of cubes
Qd → � satisfying (5.8) with a fixed � > 0. This, in turn, will follow if we find � > 0
(sufficiently small) and a sequence of cubes, constructed by the procedure above,
such that the negligibility condition (5.7) holds for these cubes.

Due to the monotonicity of f and the estimate (5.6), the condition (5.7) will
follow if we have

cap�Qd ∩�L+� ≤ cnf

(
Cn

(
�

d

)−2
)
dn−2� (5.9)

where cn = cap�Q1�. Now using (5.4) and (1.14) in case n ≥ 3 we can rewrite this
condition in the form

c�1�n

(
�

d

)n−2

≤ cn

(
1+ Cn

(
�

d

)−2
)�2−n�/2

h

(
Cn

(
�

d

)−2
)
� (5.10)

so it obviously holds if �/d is sufficiently small, because h�t� → +� as t → +�.
In case n = 2, due to (5.5) and (1.15), the inequality (5.9) will be fulfilled if we

require that

C2

[
log

(
2d
�

)]−1

≤
[
1+ log

(
C2

(
�

d

)−2
)]−1

h

(
C−1

2

(
�

d

)−2
)

(5.11)

for a sufficiently large C2 > 0. This again holds if �/d is sufficiently small. �
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6. POSITIVITY

In this section we will prove Theorem 1.8. We will consider operators Ha�V with
V ∈ L1

loc��
n�, V ≥ 0, a ∈ L2

loc��
n�.

The proof will be essentially based on the same arguments as the proof of
Theorem 1.2, except that the large cubes are essential here (instead of small cubes).

We will use the notations from Sec. 1 and start with the following localization
result:

Proposition 6.1. For an operator Ha�V the following conditions are equivalent:

(a) There exists d1 > 0 such that Ha�V ≥ d−2
1 I , or, equivalently, 0 is not in

the spectrum of Ha�V in L2��n� (i.e., the spectrum is in ��0�+�� for some
�0 > 0).

(b) There exist d > 0 and d1 > 0 such that ��Qd	Ha�V � ≥ d−2
1 for every cube

Qd ⊂ �n.
(c) There exist d1 > 0 and d2 > 0 such that for every d > d2 we have

��Qd	Ha�V � ≥ d−2
1 for every cube Qd ⊂ �n.

(d) There exists d1 > 0 such that for every d > 0 we have 
�Qd	Ha�V � ≥ d−2
1

for every cube Qd ⊂ �n.
(e) There exists d1 > 0� d2 > 0 such that for every d > d2 we have 
�Qd	Ha�V � ≥

d−2
1 for every cube Qd ⊂ �n.

Proof. The equivalence of (a), (d) and (e) follows from the fact that the quadratic
form ha�V of Ha�V is obtained as the closure from the original domain C�

c ��
n�.

Using the inequality (Kondratiev and Shubin, 1999, 2002; Molchanov, 1953)

��Qd	Ha�V � ≤ 
�Qd	Ha�V � ≤ An��Qd	Ha�V �+
Bn

d2
� (6.1)

where An > 0, Bn > 0, we immediately see that (d) implies that

��Qd	Ha�V � ≥ A−1
n

[

�Qd	Ha�V �−

Bn

d2

]
≥ A−1

n

[
1

d2
1

− Bn

d2

]
≥ 1

2And
2
1

�

if d > d2 > 0 with d2
2 ≥ 2Bnd

2
1. So (d) implies (c). Obviously (c) implies (b).

Now we see that the proposition will be proved if we establish that (b) implies
(a). So let us assume that (b) holds. Then we have

�u�2Qd
≤ d2

1ha�V �u� u�Qd
� u ∈ Lip�Qd�� (6.2)

for every cube Qd with d > 0 taken from the condition (b). If we take an arbitrary
u ∈ Lipc��

n� and sum up the inequalities (6.2) over a tiling of �n by cubes Qd, we
will get the inequality �u�2 ≤ d2

1ha�V �u� u� which proves (a). �

Proof of Theorem 1.8. Clearly the following implications hold:

�e� �⇒ �c� �⇒ �b� and �e� �⇒ �d� �⇒ �b��
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So it suffices to prove the following two implications:

�b� �⇒ �a� �sufficiency of �b�� and �a� �⇒ �e� �necessity of �e���

Proof of the implication �b� �⇒ �a�. Let us assume that there exist c > 0, d1 > 0
and d > 0 such that the inequality (1.16) holds for all cubes Qd.

The desired strict positivity will follow if we prove the inequality∫
�n

�u�2 dx ≤ d2
2

∫
�n

(��au�2 + V �u�2)dx� u ∈ C�
c ��

n�� (6.3)

Note first that for every u ∈ Lip�Qd�

�0�Qd�
∫
Qd

�u�2 dx ≤
∫
Qd

��au�2 dx ≤
∫
Qd

(��au�2 + V �u�2)dx� (6.4)

As we did in the proof of Proposition 3.1, let us split the cubes Qd from a tiling
of �n into two types:

Type I (large energy of the magnetic field in Qd):

�0�Qd� >
1

2d2
1

	

Type II (small energy of the magnetic field in Qd):

�0�Qd� ≤
1

2d2
1

�

For a type I cube Qd we obtain from (6.4) that for every u ∈ Lip�Qd� the
inequality (6.2) holds with 2d2

1 instead of d2
1.

Now let Qd be a type II cube. Then we have

d−nMc�Qd	 V� ≥
1

2d2
1

�

Due to Lemma 2.2 and Remark 2.3 we obtain for every u ∈ Lip�Qd� and c > 0∫
Qd

�u�2 dx ≤ Cnd
2

c

∫
Qd

��au�2 dx +
4dn

Mc�Qd	 V�

∫
Qd

�u�2V dx�

and we get∫
Qd

�u�2 dx ≤ Cd2
∫
Qd

��au�2 dx + 8d2
1

∫
Qd

�u�2V dx�

where C = Cn/c. Taking d2 > 0 such that

d2
2 = max

(
Cd2� 8d2

1

)
�

we obtain (6.2) with d2
2 instead of d2

1.
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So we obtained the inequalities (6.2) (with d2
2 instead of d2

1) for both types of
cubes. This means that the condition (b) in Proposition 6.1 is satisfied, hence the
spectrum of Ha�V is discrete. �

Proof of the implication �a� �⇒ �e�. We will use Proposition 4.1 in the same way
as in the proof of Theorem 1.2. Recall the notation E = �0�Qd�+ d−2 which was
introduced in the formulation of Proposition 4.1, and will be used here too, though
for large d when the difference between E and �0�Qd� becomes small.

According to Proposition 6.1 we can assume that its condition (c) is satisfied,
i.e., ��Qd	Ha�V � ≥ d−2

3 for every cube Qd with d > d4, where d3� d4 > 0 are
sufficiently large. Then due to (4.1) we have for such d

�0�Qd�+
E

f��̃0�d
n−2

Mcnfn��̃0�
�Qd	 V� ≥

1

Cnd
2
3

− 1
d2

≥ 1
d2

� (6.5)

provided d2 ≥ 2Cnd
2
3.

Now note that in the case when

�0�Qd� ≥
1
d2

�

the desired inequality (1.19) becomes obvious (with c̃n = 1). So from now on we can
assume that

�0�Qd� ≤
1
d2

�

This implies that

fn��̃0� = fn��0d
2� ≥ fn�1� > 0� n ≥ 2�

We also have in this case E ≤ 2d−2. It follows that the coefficient in front of
Mcnfn��̃0�

�Qd	 V� in (6.5) is bounded from above by Cnd
−n. Hence the left hand side

in (6.5) is bounded from above by C̃n��0�Qd�+ d−nMcn
�Qd	 V�� and the desired

inequality (1.19) follows with c̃n = min�C̃−1
n � 1�. This ends the proof of Theorem 1.8.

�

7. OPERATORS IN DOMAINS

In this section we will discuss the discreteness of spectrum and strict positivity
for the magnetic Schrödinger operators in arbitrary open subsets � ⊂ �n with the
Dirichlet boundary conditions on ��. It occurs that the methods developed above
can be extended to this case and provide necessary and sufficient conditions so that
the results of the previous sections appear as a particular case when � = �n. Note
that the geometry of the domain may contribute to the discreteness of spectrum or
strict positivity and even be the only cause of these properties.

Let Ha�V be the magnetic Schrödinger operator defined as in Sec. 1 but in
L2���. We will assume that V ∈ L1

loc���, V ≥ 0, a ∈ L2
loc���. For the discreteness of
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spectrum results we will assume that a is bounded in � ∩ B�0� R� for every R > 0,
though this condition may be substantially weakened as explained in Remark 4.7.
The operator Ha�V is defined by the quadratic form (1.2) on functions u ∈ C�

c ���.
We will define the Molchanov functional in � as follows

M����Qd	 V� = inf
F

{∫
Qd\F

V dx � cap�F� ≤ � cap�Qd�� F ⊃ Qd ∩ ��n\��

}
�

where 0 < � < 1, F is a closed subset in Qd. By definition it is +� if there is no
sets F satisfying the condition in the braces, i.e., if

cap�Qd ∩ ��n\��� > � cap�Qd�� (7.1)

The numbers 
�Qd	Ha�V � and ��Qd	Ha�V � should be replaced by the numbers

��Qd	Ha�V � and ���Qd	Ha�V � which are defined by the same formulas (1.4), (1.5)
(with G = Qd) but with an additional requirement on u to vanish in a neighborhood
of Qd ∩ ��n\��. Then the same localization results (see e.g., Theorems 1.1–1.3 in
Kondratiev and Shubin, 2002) hold. For example, Ha�V has a discrete spectrum in
L2��� if and only if for any fixed d > 0

���Qd	Ha�V � → +� as Qd → ��

The appropriate modification of �0 (the local energy of the magnetic field) is

�0�� = �0���Qd� = �0���Qd	 a� = ���Qd	Ha�0��

With these notations the following theorems are obtained by simple repetition
of arguments given in the previous sections.

Theorem 7.1. Theorem 1.2 holds for Ha�V in L2��� if we replace �0 by �0�� and
M��Qd	 V� by M����Qd	 V�.

Theorem 7.2. Theorem 1.8 holds for Ha�V in L2��� if we replace �0 by �0�� and
M��Qd	 V� by M����Qd	 V�.

The appropriate modifications of Corollaries 1.5 and 1.6 hold as well. The same
replacements of �0 by �0�� and Mc by Mc�� should be made in the formulations,
and the integral in (1.12) should be replaced by M0���Qd	 V� which is equal to this
integral if Qd ⊂ � and to +� otherwise.

Now we will formulate some more specific corollaries of Theorem 7.1, which
treat the cases when one or both fields vanish. We will start with the case when
a ≡ 0� V ≡ 0.

Corollary 7.3. There exists cn > 0 such that for every function g ∈ �
(see Definition 1.1) the following conditions are equivalent:

�a� The spectrum of the operator H0�0 = −� in L2��� with the Dirichlet boundary
conditions on �� is discrete.
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�bg� ∃d0 > 0�∀d ∈ �0� d0�� ∃R=R�d� > 0�∀Qd such thatQd ∩ ��n\B�0� R�� �= ∅,
the inequality (7.1) is satisfied with � = cng�d�

−1d2.
In particular, all conditions �bg� for different g ∈ � are equivalent.

Instead of �bg� we can equivalently write that ∃d0 > 0�∀d ∈ �0� d0�

lim inf
Qd→�

cap�Qd ∩ ��n\���

cap�Qd�
> ��

with the same � as above (we can replace cn by a smaller positive number).
Note that the condition �bg� is a purely geometric condition on the open set

� ⊂ �n. The equivalence of these conditions for different functions g ∈ � is a
non-trivial geometric property of the capacity.

The next corollary treats the case when a ≡ 0, i.e., there is no magnetic field.

Corollary 7.4. There exists cn > 0 such that for every g ∈ � the following conditions
are equivalent:

�a� The spectrum of the operator H0�V = −�+ V in L2��� with the Dirichlet
boundary conditions on �� is discrete.

�bg� ∃d0 > 0, ∀d ∈ �0� d0�

M����Qd	 V� → +� as Qd → ��

where � = cng�d�
−1d2.

�cg� ∃d0 > 0�∀d ∈ �0� d0�

lim inf
Qd→�

d−nM����Qd	 V� ≥ g�d�−1�

with the same � as in �bg�.
In particular, all conditions �bg�� �cg� for different g ∈ � are equivalent.

Finally, we consider the case when V ≡ 0. To this end we need the quantity
�
���
0���Qd� which is defined as �0���Qd� if cap�Qd ∩ ��n\��� ≤ �cap�Qd� and +�

otherwise (i.e., if (7.1) is satisfied).

Corollary 7.5. There exists cn > 0 such that for every n-admissible pair �f� g�
(see Definition 1.1) the following conditions are equivalent:

�ã� The spectrum of the operator Ha�0 in L2��� with the Dirichlet boundary
conditions on �� is discrete.

�b̃g� ∃ d0 > 0, ∀ d ∈ �0� d0�

�
���
0���Qd� → +� as Qd → ��

where � = cnf��0��d
2�g�d�−1d2.
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�c̃g� ∃d0 > 0, ∀d ∈ �0� d0�

lim inf
Qd→�

�
���
0���Qd� ≥ g�d�−1�

with the same � as in �b̃g�.
In particular, all conditions �b̃g�� �c̃g� for different g ∈ � are equivalent.

We skip formulations of similar corollaries of Theorem 7.2.

APPENDIX: PROOFS OF LEMMAS 2.1, 2.2, AND 2.4

In this appendix, for the convenience of the readers, we will provide proofs of
Lemmas 2.1, 2.2, and 2.4. These proofs are simpler compared with the proofs given
in Maz’ya (1985) due to the fact that the corresponding results in Maz’ya (1985)
have much bigger generality.

Let us recall the following classical Poincaré inequality (see e.g., Gilbarg and
Trudinger, 1983, Sec. 7.8, or Kondratiev and Shubin, 1999, Lemma 5.1):

��u− ū��2Qd
≤ d2

�2

∫
Qd

��u�x��2 dx� (A.1)

where � · �Qd
is the norm in L2�Qd�, u ∈ Lip�Qd�, and

ū = d−n
∫
Qd

u�x� dx

is the mean value of u on Qd.

Proof of Lemma 2.1. Let us normalize u by

d−n
∫
Qd

�u�x��2 dx = 1�

i.e., �u�2 = 1 (we will call it the standard normalization). By the Cauchy–Schwarz
inequality we obtain

�u� ≤
(
�u�2

)1/2 = 1 (A.2)

Replacing u by �u� does not change the denominator and may only decrease the
numerator in (2.2). Therefore we can restrict ourselves to Lipschitz functions u ≥ 0.

Let us denote � = 1− u. Then � = 1 on F , and �̄ = 1− ū ≥ 0 due to (A.2).
Let us estimate �̄ from above. Obviously

�̄ = d−n/2��u� − �ū�� ≤ d−n/2�u− ū��
where � · � means the norm in L2�Qd�� So the Poincaré inequality gives

�̄ ≤ �−1d−n/2+1��u� = �−1d−n/2+1�����
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hence

�̄2 ≤ 1
�2

d2−n
∫
Qd

����2 dx�

Using the Poincaré inequality again, we obtain

���2 = ���− �̄�+ �̄�2 ≤ 2��− �̄�2 + 2��̄�2 ≤ 4d2

�2

∫
Qd

����2 dx�

or ∫
Qd

�2 dx ≤ 4d2

�2

∫
Qd

����2 dx� (A.3)

Let us extend � outside Qd by symmetries in the faces of Qd, so that the extension
�̃ satisfies∫

Q3d

���̃�2 dx = 3n
∫
Qd

����2 dx�
∫
Q3d

��̃�2 dx = 3n
∫
Qd

���2 dx�

Denote by � a continuous piecewise linear function, such that � = 1 on Qd, � = 0
outside Q2d, 0 ≤ � ≤ 1 and ���� ≤ 2d−1. Then

cap�F� ≤
∫
Q2d

����̃���2 dx ≤ 2 · 3n
(∫

Qd

����2 dx + 4d−2
∫
Qd

�2 dx

)
�

Taking into account that ���� = ��u� and using (A.3), we obtain

cap�F� ≤ Cn

∫
Qd

��u�2 dx�

which is equivalent to the desired estimate (2.2). �

Proof of Lemma 2.2. Let �� = �x ∈ Qd � �u�x�� > �
� where � ≥ 0. Since

�u�2 ≤ 2�2 + 2��u� − ��2 on ���

we have for all �∫
Qd

�u�2 dx ≤ 2�2dn + 2
∫
��

��u� − ��2 dx�

Let us take

�2 = 1
4dn

∫
Qd

�u�2 dx�

i.e., � = 1
2

(
�u�2

)1/2
. Then for this particular value of � we obtain∫

Qd

�u�2 dx ≤ 4
∫
��

��u� − ��2 dx� (A.4)
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Assume first that cap�Qd\��� ≥ � cap�Qd�. Using (A.4) and applying Lemma 2.1 to
the function ��u� − ��+, which equals �u� − � on �� and 0 on Qd\��, we see that

cap�Qd\��� ≤
Cn

∫
��

����u� − ���2 dx
d−n

∫
Qd

�u�2 dx ≤ Cn

∫
Qd

��u�2 dx
d−n

∫
Qd

�u�2 dx �

where Cn is 4 times the one in (2.2). Therefore

∫
Qd

�u�2 dx ≤ Cnd
n
∫
Qd

��u�2 dx
cap�Qd\���

≤ Cnd
n
∫
Qd

��u�2 dx
� cap�Qd�

Taking into account that cap�Qd� = cnd
n−2 we see that∫

Qd

�u�2 dx ≤ Cnd
2

�

∫
Qd

��u�2 dx (A.5)

with yet another constant Cn.
Now consider the opposite case cap�Qd\��� ≤ � cap�Qd�. Then we can write∫
Qd

�u�2V dx ≥
∫
��

�u�2V dx ≥ �2
∫
��

V dx = 1
4dn

∫
Qd

�u�2 dx ·
∫
��

V dx

≥ 1
4dn

∫
Qd

�u�2 dx · inf
F

∫
Qd\F

V dx�

where the infimum should be taken over all compact sets F ⊂ Qd such that
cap�F� ≤ � cap�Qd�, so it becomes M��Qd	 V�. Finally we obtain in this case

∫
Qd

�u�2 dx ≤ 4dn

M��Qd	 V�

∫
Qd

V �u�2 dx� (A.6)

The resulting inequality (2.3) follows from (A.5) and (A.6). �

Proof of Lemma 2.4. We start with a function � ∈ Lipc��
n� such that 0 ≤ � ≤ 1,

� = 1 in a neighborhood of F ′, � = 0 outside Qd0
(where for n = 2 we take

d0 = 2d), and

cap�F ′� ≥ c′n
∫
Qd0

����2 dx (A.7)

with c′n > 0. It follows that

cap�F ′� ≥ c′n
∫
Qd

����2 dx�

Now take � = 1− �, so 0 ≤ � ≤ 1 and ��F ′ = 0. Then ���� = ����, hence the
condition (2.5) is obviously satisfied. Now our goal will be achieved if we prove that
(2.6) holds provided (2.4) is satisfied with a sufficiently small cn > 0.
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To prove (2.6), note first that Lemma 4.4 with R = Qd gives∫
Qd

���2 dx ≤ Cnd
2
∫
Qd0

����2 dx� (A.8)

Hence, using (A.7), we obtain

�̄2 = d−n
∫
Qd

�2 dx ≤ Cnd
2−n

∫
Qd0

����2 dx ≤ C̃n�c
′
n�

−1cap�F ′�
cap�Qd�

≤ C̃n�c
′
n�

−1cn�

where cn is the constant from (2.4). Now we can adjust cn so that we have
C̃n�c

′
n�

−1cn ≤ 1/4. Then (2.6) follows from the triangle inequality. �
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