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For a second order elliptic equation of nondivergence form in the plane, we investi-

gate conditions on the coefficients which imply that all strong solutions have first order

derivatives that are Lipschitz continuous or differentiable at a given point. We assume

the coefficients have modulus of continuity satisfying the square-Dini condition, and ob-

tain additional conditions associated with a dynamical system that is derived from the

coefficients of the elliptic equation. Our results extend those of previous authors who

assume the modulus of continuity satisfies the Dini condition. Bibliography: 6 titles.

1 Introduction

We consider an elliptic equation in nondivergence form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy = 0 in Ω, (1.1)

where Ω is an open subset of R2. Suppose that u ∈ W 2,2(Ω) is a strong solution of (1.1). We

want to know how regular u is in Ω. This, of course, depends upon the smoothness of the

coefficient functions a, b, and c. If we only assume the coefficients are bounded, then u has first

order derivatives that are Hölder continuous in Ω, i.e., u ∈ C1,α(Ω) where α ∈ (0, 1) depends

on the coefficient bounds and the ellipticity constant (cf. [1]). If the coefficients are continuous

in Ω, then u ∈ C1,α(Ω) for all α ∈ (0, 1) (cf. [2]). On the other hand, if the coefficients are

Hölder continuous in Ω, or more generally if the coefficients are Dini-continuous in Ω, then it is
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well-known that u ∈ C2(Ω) (cf. [3]). In this paper, we want to find conditions on the coefficients,

weaker than Dini continuity, under which u will be second order differentiable.

Let us assume that Ω contains the origin 0 = (0, 0) and focus on the differentiability at 0.

Using ellipticity and a change of independent variables, we may arrange that a(0) = 1 = c(0)

and b(0) = 0. Consequently, we assume that the coefficients a, b, c satisfy

sup
|x|=r

(|a(x)− 1|+ |b(x)|+ |c(x)− 1|) � ω(r) as r → 0, (1.2)

where x = (x, y) and the modulus of continuity ω is a continuous, nondecreasing function for

0 � r < 1 satisfying ω(0) = 0. The coefficients being Dini continuous means that (1.2) holds

with ω(r) satisfying the Dini condition

1∫

0

ω(r) r−1 dr <∞.

Hölder continuity, of course, corresponds to the special case ω(r) = C rα where α ∈ (0, 1) and C

is a positive constant. But we assume that ω(r) satisfies the more general square-Dini condition:

1∫

0

ω2(r)
dr

r
<∞. (1.3)

Given a solution u ∈ W 2,2(Ω) of (1.1), let us introduce the vector U = (U1, U2) = (ux, uy).

Using uxx = (U1)x, uxy = (U1)y, and uyy = (U2)y, we can write (1.1) as

a(x, y) (U1)x + b(x, y) (U1)y + (c(x, y)− 1)(U2)y + (U2)y = 0.

If we differentiate this with respect to x and use (U2)yx = uyyx = uxyy = (U1)yy (where third

order derivatives are interpreted weakly), we obtain

(a(x, y) (U1)x)x + (b(x, y) (U1)y)x + ((c(x, y)− 1)(U2)y)x + (U1)yy = 0. (1.4)

Now, we perform a similar calculation using uxy = (U2)x instead of (U1)y and differentiating

with respect to y instead of x to obtain

(U2)xx + ((a(x, y)− 1)(U1)x)y + (b(x, y) (U2)x)y + (c(x, y) (U2)y)y = 0. (1.5)

Putting (1.4) and (1.5) together as a second order system, we obtain

((
a 0

0 1

)
Ux

)
x

+

((
0 0

(a− 1) b

)
Ux

)
y

+

((
b c− 1

0 0

)
Uy

)
x

+

((
1 0

0 c

)
Uy

)
y

= 0. (1.6)

Now, (1.6) may look more complicated than (1.1), but at least it is in divergence form:

(A11Ux)x + (A21Ux)y + (A12Uy)x + (A22Uy)y = 0, (1.7)

where the Aij are (2 × 2)-matrices and U ∈ W 1,2(Ω,R2) is a weak solution. Moreover, the

matrices Aij are perturbations of δijI, where I is the 2× 2 identity matrix, in that

sup
|x| = r

|Aij(x)− δijI| � ω(r) as r → 0. (1.8)
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In this way, (1.7) is reminiscent of our work [4] which considered the first order differentiability

of weak solutions to an elliptic equation in divergence form. Moreover, the first order differ-

entiability of U corresponds to the second order differentiability of u, so the conclusions of [4]

are just what we need here. However, the formulas of [4] pertain to equations and not systems

(whose coefficients are matrices so that products do not commute). Consequently, they cannot

be used directly in the present situation. Nevertheless, we can apply the methods of [4] to (1.7).

The method of [4] suggests that we find a first order dynamical system on 0 < t <∞ whose

stability properties as t → ∞ control the differentiability of the solutions of (1.7). To derive

the dynamical system, we first write x = r θ where r = |x| and θ = (θ1, θ2) = (cosϕ, sinϕ) for

0 � ϕ < 2π. Then we write

U(x, y) = U0(r) + V1(r)x+ V2(r)y +W (x, y), (1.9)

where U0, V1, and V2 are given by mean integrals

U0(r) = �

∫

S1

U(r θ) dϕ, V1(r) = �

∫

S1

U(r θ) θ1 dϕ, V2(r) = �

∫

S1

U(r θ) θ2 dϕ, (1.10)

and W (x, y) has zero spherical mean and first spherical moments:

�

∫

S1

W (r θ) dϕ = 0 = �

∫

S1

W (r θ) θ1 dϕ = �

∫

S1

W (r θ) θ2 dϕ. (1.11)

Similar to [4], we show that the 4-vector function �V (r) = (V1(r), V2(r)) satisfies a dynamical

system that depends on W , and W satisfies a partial differential equation that depends upon
�V . Ultimately, we show that the behavior of U0, �V , and W are all controlled by the asymptotic

behavior of solutions to the following first order system:

dϕ

dt
+Rϕ = 0 on 0 < t <∞, (1.12a)

where r = e−t and R(e−t) is the (4× 4)-matrix function defined on 0 < t <∞ by

R(r) :=

⎛
⎜⎜⎝
a1(r) 0 b1(r) c1(r)

a2(r) b2(r) 0 c2(r)

a2(r) 0 b2(r) c2(r)

−a1(r) −b1(r) 0 −c1(r)

⎞
⎟⎟⎠ , (1.12b)

with coefficients given by certain second spherical moments of the original coefficients:

a1(r) := �

∫

S1

a(rθ)(θ22 − θ21) dϕ, a2(r) := −2�

∫

S1

a(rθ)θ1θ2 dϕ,

b1(r) := �

∫

S1

b(rθ)(θ22 − θ21) dϕ, b2(r) := −2�

∫

S1

b(rθ)θ1θ2 dϕ,

c1(r) := �

∫

S1

c(rθ)(θ22 − θ21) dϕ, c2(r) := −2�

∫

S1

c(rθ)θ1θ2 dϕ.

(1.12c)
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As in [4], the first order regularity of solutions of (1.7) is determined by the stability properties

of (1.12). In particular, we say that (1.12) is uniformly stable as t→ ∞ if for every ε > 0 there

exists a δ = δ(ε) > 0 such that any solution ϕ of (1.12a) satisfying |ϕ(t1)| < δ for some t1 > 0

satisfies |ϕ(t)| < ε for all t � t1. We show that the following holds.

Theorem 1.1. If (1.12) is uniformly stable, then every weak solution U ∈ W 1,2(Ω,R2) of

(1.7) is Lipschitz continuous at x = 0.

Another important stability condition is that a solution of (1.12) be asymptotically constant,

i.e., that ϕ(t) → ϕ∞ as t → ∞. As discussed in [4], this is actually independent of uniform

stability, so we need to assume both conditions to conclude the differentiability of weak solutions.

We show that the following holds.

Theorem 1.2. If (1.12) is uniformly stable and every solution is asymptotically constant,

then every weak solution U ∈W 1,2(Ω,R2) of (1.7) is differentiable at x = 0.

Recalling the derivation of (1.7) from (1.1), these results yield the following.

Theorem 1.3. If (1.12) is uniformly stable, then every strong solution u ∈W 2,2(Ω) of (1.1)

has first order derivatives that are Lipschitz continuous at 0. If, in addition, every solution of

(1.12) is asymptotically constant, then u is second order differentiable at 0.

We can obtain analytic conditions on the matrix functionR that imply the desired asymptotic

properties of (1.12). The simplest condition is

r−1R(r) ∈ L1(0, ε) for some ε > 0, (1.13)

which guarantees that (1.12) is both uniformly stable and asymptotically constant (cf. [5]).

Corollary 1.1. If R as in (1.12b) satisfies (1.13), then every strong solution u ∈ W 2,2(Ω)

of (1.1) is second order differentiable at 0.

Analytic conditions weaker than (1.13) can also be obtained. For example, if we introduce the

symmetric matrix S = −(R + Rt)/2 and let μ(S) denote the largest eigenvalue of S, then it is

shown in [4] that
r2∫

r1

ρ−1μ(S(ρ)) dρ < K for all ε > r2 > r1 > 0 (1.14)

implies that (1.12) is uniformly stable. As a consequence, (1.14) guarantees that every strong

solution u ∈W 2,2(Ω) of (1.1) has first order derivatives that are Lipschitz continuous at x = 0.

In addition, it is shown in [4] that

r−1R(r)

r∫

0

ρ−1R(ρ) dρ ∈ L1(0, ε) (1.15)

implies that (1.12) is uniformly stable and asymptotically constant. As a consequence, (1.15)

guarantees that every strong solution u ∈ W 2,2(Ω) of (1.1) is second order differentiable at

x = 0.
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One may also consider special cases to better understand the significance of the role of the

dynamical system (1.12) in determining the regularity of strong solutions of (1.1). In particular,

let us assume that the coefficients b and c in (1.1) satisfy

bi(r) = ci(r) = 0 for i = 1, 2. (1.16)

This occurs, for example, when b and c are constant, or more generally if they depend only on

r: b = b(r) and c = c(r). In the case (1.16), we see that (1.12a) decouples into three scalar

equations

dϕ

dt
+ a1 ϕ = 0,

dϕ

dt
− a1 ϕ = 0,

dϕ

dt
+ a2 ϕ = 0.

But these are all of the form ϕ′ + p(t)ϕ = 0 which can be solved using the integrating factor

exp[
∫ t
p(τ)dτ ]. We conclude that the three scalar equations will be uniformly stable provided

∣∣∣∣∣∣
t∫

s

a1(τ) dτ

∣∣∣∣∣∣ < K1 and

t∫

s

a2(τ) dτ > −K2 for t > s sufficiently large. (1.17)

Moreover, the three scalar equations will be asymptotically constant provided

∞∫

T

a1(τ) dτ converges to a finite real number, and

∞∫

T

a2(τ) dτ converges to an extended real number > −∞.

(1.18)

Thus, when the coefficients b, c satisfy (1.16) and the coefficient a satisfies (1.17) and (1.18),

then every strong solution of (1.1) will be second order differentiable at 0.

2 Derivation of the Dynamical System

A weak solution U of (1.7) satisfies

∫

Ω

Aij ∂iU ∂jη dxdy = 0 (2.1)

for all η ∈ C∞
0 (Ω), where we used the Einstein summation convention of summing over repeated

indices. To obtain the dynamical system (1.12), we begin by considering (2.1) with different

choices of test functions η.

Taking η to be a radial function η(r) and using (1.9), we obtain the following first order

ordinary differential equation:

A (r)U ′
0 + rB1(r)V

′
1 + rB2(r)V

′
2 + Γ1(r)V1 + Γ2(r)V2 + Λ[∇W ](r) = 0, (2.2)
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where the (2× 2)-matrices A , Bk, and Γk are

A (r) = �

∫

S1

Aij(rθ) θiθj dϕ = I2 +O(ω(r)) as r → 0

Bk(r) = �

∫

S1

Aij(rθ) θkθiθj dϕ = O(ω(r)) as r → 0

Γk(r) = �

∫

S1

Aik(rθ) θi dϕ = O(ω(r)) as r → 0,

(2.3)

and the 2-vector Λ is

Λ[∇W ](r) = �

∫

S1

(Ai1θiWx +Ai2θiWy) dϕ. (2.4)

Using Lemma 1 in [4], we can show that

|Λ[∇W ](r)| � ω(r)�

∫

S1

|∇W | dϕ. (2.5)

Note that, although we are thinking of (2.2) as an ordinary differential equation, the coefficients

are matrices and so it is really a system of two equations.

Taking η = η(r)x and then η = η(r)y in (2.1), we obtain two second order ordinary differ-

ential equations which we can put together as a second order system

−
[
r2
((

B1 U
′
0

B2 U
′
0

)
+

(
A11 A12

A21 A22

)(
rV ′

1

rV ′
2

)
+

(
B11 B12

B21 B22

)(
V1
V2

)
+

(
P1[∇W ]

P2[∇W ]

))]′

+ r

((
Γ̃1U

′
0

Γ̃2U
′
0

)
+

(
B̃11 B̃12

B̃21 B̃22

)(
rV ′

1

rV ′
2

)
+

(
C11 C12

C21 C22

)(
V1
V2

)
+

(
Q1[∇W ]

Q2[∇W ]

))
=

(
0

0

)
, (2.6)

where the Bj are defined above, but the other (2× 2)-matrices are as follows:

Ak�(r) = �

∫

S1

Aij(rθ) θiθjθkθ� dϕ =
1

2
δk� I2 +O(ω(r)) as r → 0,

Bk�(r) = �

∫

S1

Ai�(rθ) θiθk dϕ =
1

2
δk� I2 +O(ω(r)) as r → 0,

B̃k�(r) = �

∫

S1

Aki(rθ) θiθ� dϕ =
1

2
δk� I2 +O(ω(r)) as r → 0,

Ck�(r) = �

∫

S1

Ak�(rθ) dϕ = δk�I2 +O(ω(r)) as r → 0,

Γ̃k(r) = �

∫

S1

Aki(rθ) θi dϕ = O(ω(r)) as r → 0,

(2.7)

and the 2-vectors P1, P2, Q1, Q2 are given by

Pk[∇W ](r) = �

∫

S1

Aij(rθ) θiθk
∂W

∂xj
dϕ and Qk[∇W ](r) = �

∫

S1

Aki(rθ)
∂W

∂xj
dϕ. (2.8)
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As with (2.5), we can show

|Pk[∇W ](r)|, |Qk[∇W ](r)| � ω(r)�

∫

S1

|∇W | dϕ. (2.9)

We want to use (2.2) to eliminate U ′
0 from (2.6) and then identify the leading order terms.

Since A (r) = In +O(ω(r)) as r → 0, A (r) is invertible for small r and we can write

BiU
′
0 = −BiA

−1
(
B1rV

′
1 + B2rV

′
2 + Γ1V1 + Γ2V2 + Λ[∇W ]

)
.

But the coefficients of rV ′
j and Vj in this expression are “lower order,” i.e.,

BiA
−1Bj , BiA

−1Γj = O(ω2(r)) as r → 0.

So when we plug this into (2.6), it does not affect the leading order terms in rV ′
j and Vj . Similarly

for replacing Γ̃iU
′
0 in (2.6).

Let us make the substitution r = e−t, so that r d/dr = −d/dt. Next, let us introduce

ε(t) = ω(e−t) and then write (2.6) (after the elimination of U0) as

[
e−2t

(−A �Vt +B �V + �P [∇W ] +O(ε2(t))
)]

t
+ e−2t

(− B̃ �Vt +C �V + �Q[∇W ] +O(ε2(t))
)
= 0,

where �V = (V1, V2), �P = (P1, P2), and �Q = (Q1, Q2) are 4-vectors and A, B, B̃, and C are the

(4× 4)-matrices

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, B̃ =

(
B̃11 B̃12

B̃21 B̃22

)
, C =

(
C11 C12

C21 C22

)
,

and we used O(ε2(t)) to represent terms depending linearly on �Vt, �V , or Λ[∇W ], but with

coefficients that are O(ε2(t)) as t→ ∞. We can remove the factor e−2t to obtain

[
−A �Vt +B �V + �P [∇W ] +O(ε2(t))

]
t
+ (2A− B̃)�Vt

+(C− 2B)�V − 2�P [∇W ] + �Q[∇W ] +O(ε2(t)) = 0.
(2.10)

However, this is still a second order system, and we want to avoid differentiating the coefficient

matrices, so let us convert it to a first order system by replacing the vector in the brackets in

(2.10) by a new 4-vector

�U = −A �Vt +B �V + �P [∇W ] +O(ε2(t)). (2.11)

We now have a first order system in the 8-vector (�V , �U):

�Vt −A−1B �V +A−1 �U = A−1 �P [∇W ] +O(ε2),

�Ut + (C− B̃A−1B)�V + (B̃A−1 − 2I)�U = − �Q[∇W ] +O(ε2).

where I is the (4× 4) identity matrix. The coefficients of �V and �U behave as follows:

−A−1B ∼ −I, A−1 ∼ 2I, C− B̃A−1B ∼ 1

2
I, B̃A−1 − 2I ∼ −I.
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where ∼ means differs by a term that is O(ε) as t → ∞. Consequently, let us rewrite the first

order system as

d

dt

(
�V
�U

)
+M(t)

(
�V
�U

)
=

(
F1(t,∇W )

F2(t,∇W )

)
, (2.12)

where the (8× 8)-matrix-valued function M(t) is of the form

M(t) = M∞ + S1(t) + S2(t),

with a constant matrix

M∞ =

(−I 2 I
1
2 I −I

)
.

The variable coefficient matrices S1 and S2 satisfy

S1(t) =

(
I−A−1B A−1 − 2I

C− B̃A−1B− 1
2I B̃A−1 − I

)
= O(ε(t)) as t→ ∞

and S2 = O(ε2(t)) as t→ ∞. The right-hand side of (2.12) satisfies

|Fi(t,∇W )| � ε(t) �

∫

S1

|∇W | dϕ.

In order to analyze (2.12), as in [4] we introduce a change of variables

(
�V
�U

)
= J

(
ϕ

ψ

)
, (2.13)

where the matrix

J =

(
2 I 2 I

I −I

)

diagonalizes M∞, i.e., J−1M∞J = diag (0, 0, 0, 0,−2,−2,−2,−2). We find that (ϕ, ψ) satisfies

a dynamical system of the form

d

dt

(
ϕ

ψ

)
+

(
0 0

0 −2 I

)(
ϕ

ψ

)
+R(t)

(
ϕ

ψ

)
= G(t,∇W ), (2.14)

where

R(t) =

(
R1(t) R2(t)

R3(t) R4(t)

)
,

with

R1(t) ≈ 1

4
A−1 − 1

2
A−1B+C− B̃A−1B+

1

2
B̃A−1 − I,

where ≈ means differs by a term that is O(ε2(t)) as t → ∞. The right-hand side of (2.14)

satisfies

|G(t,∇W )| � ε(t)�

∫

S1

|∇W | dϕ. (2.15)
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Estimates on W that we shall discuss in the next section together with the stability theory

presented in Section 2 of [4] show that the stability of (2.14) is determined by that of

dϕ

dt
+R1(t)ϕ = 0, (2.16)

so we need to determine the asymptotic behavior of R1. But to do this, let us write

A =
1

2
(I+A0), B =

1

2
(I+B0), B̃ =

1

2
(I+ B̃0), C = I+C0,

where |A0|, |B0|, |B̃0|, |C0| = O(ε(t)) as t → ∞. Also note that A−1 ≈ 2(I−A0). Using these,

we can simplify R1 to obtain R1 ≈ C0−B0 = C− 2B, and after a careful calculation we obtain

the formula given in (1.12b).

3 Proofs of Theorems 1.1 and 1.2

Since we are only interested in the behavior of our weak solution near 0, we may assume

Ω = Bε(0) with ε > 0 chosen small enough to make

ε∫

0

r−1ω(r) dr < δ and ω(ε) < δ, (3.1)

with δ > 0 as small as we like. In fact, for any p ∈ (1,∞) we can choose δ = δ(p) > 0 in

(3.1) small enough that the small oscillation condition on the coefficients (1.2) ensures that

∇U ∈ Lp
loc(Ω) (cf. [6, Corollary 6.2]). Henceforth, we pick p > 2 and choose ε small enough that

∇U ∈ Lp
loc(Ω). But by rescaling the independent variables, we may arrange ε > 1, so we may

assume that our weak solution U of (1.7) satisfies

∇U ∈ Lp(Ω), where p > 2 and Ω = B1(0). (3.2)

In particular, by Sobolev’s inequality we know that U is continuous in Ω.

For our analysis, it is useful to consider (1.7) on all of R2, so we extend the matrices Aij to

all of R2 by Aij = δijI for |x| > 1. We also extend our modulus of continuity ω to (0,∞) by

ω(1) for r > 1. It will also be useful to introduce the Lp-mean of a function over the annulus

Ar = {x : r < |x| < 2r}:

Mp(f, r) =

(
�

∫

Ar

|f(x)|p dx
)1/p

.

To control growth of the first derivatives of functions, we introduce

M1,p(f, r) = rMp(∇f, r) +Mp(f, r).

Let us introduce a smooth cut-off function χ(r) that is 1 for 0 � r � 1/4 and 0 for r � 1/2.

We find that χ(r)U(x, y) satisfies

(A11(χU)x)x + (A21(χU)x)y + (A12(χU)y)x + (A22(χU)y)y = F0 + (F1)x + (F2)y

where F0 = A11χ
′θ1Ux + A21χ

′θ2Ux + A12χ
′θ1Uy + A22χ

′θ2Uy, F1 = χ′(A11θ1 + A12θ2)U , and

F2 = χ′(A21θ1U +A22θ2)U . Using (2.1) with η = χ, we see that
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∫

R2

F0 dxdy = 0. (3.3)

Since we are interested in the behavior near x = 0 = y where U and χU agree, we can simply

assume that U is supported in r � 1/2 and satisfies

∂i(Aij∂jU) = F0 + ∂i(Fi), (3.4)

where F0, F1, F2 ∈ Lp(R2) are supported in 1/4 � r � 1/2 and F0 satisfies (3.3). Of course, we

now must replace (2.1) by
∫

R2

Aij ∂jU ∂iη dxdy =

∫

R2

(Fi∂iη − F0) dxdy for all η ∈ C∞
0 (Ω). (3.5)

At this point, we observe that (3.4) with (3.3) for the vector function U is identical with

(51ab) in [4] for the scalar function u. This means that we can repeat the analysis of [4] to

connect the stability of the dynamical system (1.12b) with the regularity of our weak solution.

We do not want to repeat all of the details here, but let us give an outline of the argument.

To begin with, we recall the decomposition U = U0+V1x+V2y+W in (1.9). We have shown

that �V satisfies a dynamical system (2.12) that depends on ∇W , so we need to know ∇W is

sufficiently well-behaved in order to obtain estimates for �V . This is done by showing that W

satisfies a partial differential equation that depends on �V . To derive the differential equation

for W , we introduce

Ωij = Aij − δijI, (3.6)

which satisfies |Ωij | � ω(r) for 0 < r < 1 and Ωij = 0 for r � 1. We also introduce for

f ∈ L1
loc(R

2\{0})
f(rθ)⊥ = f(rθ)− Pf(rθ), (3.7)

where P is the projection of f onto the functions on S1 spanned by 1, θ1, θ2:

Pf(rθ) = c0(r) + c1(r)θ1 + c2(r)θ2, where

c0(r) = �

∫

S1

f(rθ) dϕ and ci(r) = 2�

∫

S1

θi f(rθ) dϕ.

Note that P [Δ(U0 + V1x + V2y)] = Δ(U0 + V1x + V2y) and P [ΔW ] = 0, so W satisfies the

following perturbation of Laplace’s equation on R
2:

ΔW + [∂i(Ωij∂jU0)]
⊥ + [∂i(Ωij∂j(Vkxk))]

⊥ + [∂i(Ωij∂jW )]⊥ = [F0 + ∂i(Fi)]
⊥. (3.8)

Now, we simultaneously consider the dynamical system (2.12) for V and Equation (3.8) for

W . The analysis in [4] shows the assumptions that U ∈ W 1,2(Ω) and that (1.12) is uniformly

stable together imply that V satisfies

sup
0<r<1

(|V (r)|+ r|V ′(r)|) � C (3.9)

and W satisfies

M1,p(W, r) � C ω(r)r, 0 < r < 1. (3.10)
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(In both (3.9) and (3.10), the constants C depend upon theW 1,2-norm of U , but not on r.) Since

p > 2, we can use Sobolev embedding to conclude that |W (x, y)|r−1 � Cω(r) for 0 < r < 1, i.e.,

|W (x, y)|r−1 → 0 as r = |x| → 0. This shows that W is differentiable at 0.

To estimate U0, we use (2.2) and the estimates that we have obtained on Vi and ∇W to

conclude

|U0(r)− U0(0)| =
∣∣∣∣∣∣

r∫

0

U ′
0(ρ) dρ

∣∣∣∣∣∣ � C ω(r)

r∫

0

(
ρ|V ′(ρ)|+ |V (ρ)|+ |∇W |) dρ � C ω(r) r.

But this implies that U0 is differentiable at x = 0 and U ′
0(0) = 0.

We have now shown the assumption that (1.12) is uniformly stable is sufficient to show that

our weak solution U ∈W 1,2(Ω) satisfies

|U(x, y)− U(0)| � |U0(r)− U0(0)|+ |V1(r)| · |x|+ |V2(r)| · |y|+ |W (x, y)| � C r.

But this shows that U is Lipschitz continuous at x = 0, completing the proof of Theorem 1.11.

For Theorem 1.22, we add the assumption that every solution of (1.12) is asymptotically

constant. The dynamical systems analysis of [4] applied to (2.14) then shows that ϕ(t) → ϕ∞
and ψ(t) → 0 as t→ ∞. However, we can use (2.13) to express ϕ, ψ in terms of V and Vt:(

ϕ

ψ

)
=

(
1
2V − 1

4Vt
1
4Vt

)
+O(ε(t)).

Hence the conclusion ψ → 0 implies Vt → 0 as t→ ∞, in other words,

lim
r→0

rV ′(r) = 0. (3.11)

But (3.11) implies that V1(r)x+ V2(r)y is differentiable at 0. Since we have already shown that

U0 and W (x, y) are differentiable at 0, we obtain the conclusion of Theorem 1.22.

References

1. L. Nirenberg, “On nonlinear elliptic partial differential equations and Hölder continuity,”
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