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In this paper we derive approximate quasi-interpolants when the values of a function v and
of some of its derivatives are prescribed at the points of a uniform grid. As a byproduct of
these formulas we obtain very simple approximants which provide high order approximations
for solutions to elliptic differential equations with constant coefficients.
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1. Introduction

The method of approximate approximations is mainly directed to the numeri-
cal solution of partial integro-differential equations. The method provides simple
formulas for quasi-interpolants, which approximate functions up to a prescribed
precision very accurately, but in general the approximants do not converge. The
lack of convergence, which is not perceptible in numerical computations, is offset
by a greater flexibility in the choice of approximating functions. So it is possible
to construct multivariate approximation formulas, which are easy to implement
and have additionally the property that pseudodifferential operations can be effec-
tively performed. This allows to create effective numerical algorithms for solving
boundary value problems for differential and integral equations.
Approximate quasi-interpolants on a uniform grid are of the form

Mu(z) =D Y # (%) u(hy) (1)

JEZ™

with positive parameters, “small” h and “large” D, and the generating function
‘H is sufficiently smooth and of rapid decay. Their properties have been studied in
a series of papers [4-7] (cf. also the monograph [11]). It has been shown that the
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quasi-interpolant approximates smooth functions with

2

|Mu(z) — u(z)] < Z(h\/_)'ﬁ'laﬁ @)+ e(WWDVIVNullp.,  (2)

[3]=0

as long as #H is subject to the moment condition

/xa%(ac) de =80, 0<|a| < N. (3)
Rn

In (2) the constant ¢ depends only on H and ¢ can be made arbitrarily small if
the parameter D is sufficiently large, so that one can fix D such that in numerical
computations Mu approximates with the order O(h"). The construction of sim-
ple generating functions satisfying (3) for arbitrary N has been addressed in [9],
whereas [3, 10] extend the results to the case of nonuniform grids.

In this paper we study more general quasi-interpolation formulas with values of
a function u» and of some of its derivatives prescribed at the points of a uniform
grid. More precisely, we consider approximants of the form

DY ( ) O((~h/D)d)u(hj) ()

JEL™

where Q(t), t € R™, is a polynomial with deg @ < N.

We establish estimates of the type (2) if the generating function H and the
coefficients of Q are connected by suitable conditions (see (14)). It is shown in
particular, that for an arbitrary polynomial Q there exists H such that the ap-
proximate Hermite quasi-interpolant (4) satisfies the estimate (2). On the other
hand, the same is true if H is the Gaussian or a related function and Q is cho-
sen suitably. As a byproduct we obtain very simple approximants which provide
high order approximations to solutions of the Laplace equation or other elliptic
differential equations.

Estimate (2) is proved in Section 2 for (4) with % and Q connected by condi-
tions (14). In Section 3 we describe a simple method for the construction of H
satisfying the conditions (14) for a given polynomial Q. This result is applied in
Section 4 when we consider some examples of Hermite quasi-interpolants. In the
particular case H(z) = 7="/%(det B)~"/2e=<B7'%> with B = {b;;} symmetric
and positive definite real matrix, we obtain the following quasi-interpolant of order

O((hv'D)*M)

(det B) —1/2 —(B~Y(z=hm),z—hm)/(h>D
Mu(x)_ — n/2 Z Z 3'45 Su(hm) e (B~Y( )s )/ (R°D)
mEZ" s=0

where B is the second order partial differential operator Bu = )" =1 b;;0;0;u. In
Section 5 we use Mu for the approximation of solutions of the equation Bu =
0. If u satisfies the equation in R™ then Mwu has the simple form of the quasi-
interpolant of order O((hv/D)?) but gives an approximation of exponential order
plus a small saturation error. The same approximation property holds for functions
which satisfy the equation Bu = 0in a domain € C R”™. If the function u is extended
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by zero outside €2 then Mwu simplifies to

(det B)~1/2

(ﬂ-p)n/2 u(hm) e—(B_l(x—hm),x—hmw(hQD)‘

hmeS)

Mu(z) =

We obtain that, for any £ > 0, M u approximates pointwise u in a subdomain

Q' C Q with

2M -1
Mu(e) — u(@)| <= Y (WD)Ho u(a)| + Co(hv/D) e,

[3]=0

if we choose D and h appropriately; the constant C'g is independent of u, h, D, M
and ¢, depends on u.

In Section 6 we show that the Hermite quasi-interpolant (4) gives the simulta-
neous approximation of the derivatives of u. If 9°H exists and is of rapid decay,
for any function v € WX (R") with L > N + |3, the difference 0° Mu(x) — 0%u(z)
can be estimated by

L-1
9P Mu(e) - u(@)| < = 3 (WD ()] + ey (WD)N |V vy oyl

|v|=0

with ¢ independent of u, h and D.

2. Quasi-interpolants with derivatives

In this section we study the approximation of a smooth function u(z), € R, by
the Hermite quasi-interpolation operator

Mu(e) =D2 ¥ % (%) o) (—h\/ﬁa) u(hm) (5)

mezLn
where Q(t), t € R™, is a polynomial of degree at most N — 1

N-1
Qt) = Z at”, t € R", witha, € R and ag =1, (6)

|v|=0
0=0...0,, and H is a sufficiently smooth, rapidly decaying function. Then

N-1

Mu(z) =D 3 [ 3 (~hv/D)Ma, 07 u(hm) | # rohmy g
meZ™ \ |y|=0 ( h\/ﬁ )

Our aim is to give conditions on the generating function H such that (7) is
an approximation formula of order O((hv/D)N) plus terms, which can be made
sufficiently small.

Suppose that u € C™(R™) N L*°(R"). Taking the Taylor expansion of 07u at
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each node hm leads to
N—-1-|v|
h _ [0}
u(hm) = Z (hm — 2)* 9t u(z)

!
.
|o|=0

h _ «
oy Uy e hm), 0< Rl < N,

al
ol =N =[]
with
Us(z,y) = N/SN_laau(sx + (1-s)y)ds, |a| = N. 9)

We write Mu in the form

N-1 ag

18152 2,
%—:o ~hV D)9 u(a )% — (h,D )+ Ry (x)

with the periodic functions

0o (&, D, H) =D Y (%)a%(%) 0<l|al <N,

meZ™
and the remainder term
Rpn(z)=
B ag_q x—hm\% (z—hm
(= D)YND"/? Us(x, hm) (7) H (7) :
PR R ) AN

Therefore by using the definition of o,
Mu(x)—u(x):u(x)( (h,D H) — )

Z (=hv/D)9%u(@) 3" Lo, (7D H) + Ri(a).

I6l=1 a<p

(10)

Let us introduce the functions

ELED,H) = (¢, D, H) - /xa%(w) de,  0<l|a|<N-—1.
Rn

Then we have

0o(&, D, H) — 1= E(&, D, H) + /7{ dac—l (11)



June 9, 2008

15:46

Applicable Analysis AAhermite

Applicable Analysis 5

and for |p]|=1,...,N -1

Efﬁ“%@p?o @D?i+2fw“/<m@mw (12)

a<p a<p a<B " fa

Theorem 2.1: Suppose that H is differentiable up to the order of the smallest
integer ng > n/2, satisfies the decay condition: there exist K > N 4+ n and Cz > 0
such that

07} (2)| < Cp (1 + 27", 0<|B] <o (13)
and the conditions
/H(x)dx =1
e (14)
aﬁ—a o
> '/xH@Mx:m Bl=1,...,N —1.
ol
alf R~

Then for any ¢ > 0 there exists D > 0 such that, for all w € WY (R*) nCN(R")
the approzimation error of the quasi-interpolant (7) can be pointwise estimated by

N-—
|Mu(z) = u(z)| < E:Uwrwmwﬁ()k+th5WWVquw (15)

[3]=0

with the constant ¢ not depending on h, v and D.

Proof: Under conditions (14) the relations (11) and (12) simplify to

00(577)7%) -1= 50(577)7%)7

> a6 D H) = Y LR D).

a<p a<p

Moreover, the assumptions (13) on #H ensure that (see [10])

{0°FH(VDv)} € L(Z"), 0<|a| <K —n,

1E,(6, D, H)| = (2m)7l > |0 FH(VDY)],

vEZ™\0

0u(€. D, H) — / () do <

and

Z |0° FH(VDv)| — 0 as D — oco.
vEZ™\0

Hence for any ¢ > 0 there exists D such that the following estimates are valid

|UO(€7D7%) - 1| = |50(€7D77{)| < g, (16)
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Ag—o lag—ol
Y o6 D )| £ Y G D <5 1Bl =1 N =1 (17)
a<lp a<g
The next step is to estimate the remainder term Rj n. Since
1
Ut = N | [ 710%u(s0 4+ (1 = s)y)ds| < 107l
0
we obtain
—al
Rin @) < DY S (0] 30 e 2,0
|Bl=N 0<a<lp '
where

pmle D0 =2 3 |(S2) (S 5|

meL™

In view of the decay condition there exist constants ¢, such that, for D sufficiently

large ([10])
Hpa('vpv,}{)HLw <o, 0Z |04| < N.
Hence we obtain

R (@) < c (VDN D 07|, (18)

[31=N

with a constant ¢ not depending on h, D and u. By (10), this leads together with
(16) and (17) to the estimate (15). O

3. Construction of generating functions for arbitrary N
Here we describe a simple method for the construction of generating functions H

satisfying the conditions (14) for arbitrary given a., with ap = 1. Let us denote by
A = {A,3} the triangular matrix with the elements

0 otherwise

a5 —o O‘Sﬁv
Aaﬁz{ g 18,la] = 0,...,N 1.

The dimension of Ais (N +n—1)!/((N —1)!n!). Since det A = 1 there exists the
inverse matrix A~! = {Ag_ﬁl)} and (14) leads to the following conditions

/ P H(z)de =l ATV, Jal=0,..., N 1. (19)

These conditions can be rewritten as

0*(FH)(0) = a!(=27)ATY | Jal=0,... N - 1.
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Let us assume (see [9])

Hiw) = Pr (5 ) ()

2w Oz

where Py (t) is a polynomial of degree less than or equal to N —1 and 7 is a smooth
function rapidly decaying as |z| — oo with F7(0) # 0. Conditions (19) give

9 (Pn (N Fn(N))(0) = (=27i)*lat ALY ol =0,..., N - L.

We choose Py as the Taylor polynomial of order (N — 1) of the function

N-1 (1) o
Aby T (—2miA)
A\) = E L D W=R
o) I 1CY

Since

8 PU gp—o( -
d Q O%%AOa 27” (ﬁ—o&)'a (‘7:77) 1(0)7

where we use the notation

0" (Fn) 7 (0) = 077 (

we obtain

N-— ﬁ'
Z Z —2mi)l S0 ) T )

Therefore the equations

9" (PN (N Fn(N)(0) = 9°(QN)Fn(X)(0)
N-1
= 07 (3 AL (~2min) ) (0) = (~2ri)lat ALY

vI=0

are valid for all @ : 0 < |a] < N — 1. We have thus proved the following
Theorem 3.1: Suppose that n € CV~1(R") satisfies

In(z)| <A1+ |av|)_K7 xeR*, K>N-+n,

/IwIN_llé’“n(acﬂdx <oo, 0<]a]<N-1,

and Fn(0) # 0. Then the function

o] 07 (Fn)~H(0
Z > A (O a()!(;)m)|(ﬁ—)a|8ﬁ”($)

|8|=0a<p
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satisfies the conditions (14).

Suppose that 7(z) is radial, that is n(z) = ¢(r),r = |z|. Then 9°Fn(0) = 0 for
any o = (aq,..., o) containing at least one odd «; and we obtain the formula

S o) ALY, L0

02 ) {—4m T

Bl=0 2y<p

Let us consider the special case n(z) = 7=/ 212" with Fy(\) = e~

by Hg the Hermite polynomial of n variables defined by

. Denoting

Hg(t) = el (—g)PeltF

we derive 07 (Fn)~H(0) = (—i)"H,(0). Note that I, (0) = 0 if 4 has odd compo-
nents, otherwise H,,(0) = (—1)7(2y)!/v!. Hence

—n/2 = —|z|? (-ph (1)
1) =m0y Hp@)e N Yy e AT (20)

18]=0 2v<p |

Assuming @~ = d},jg and N = 2M we find out

M- 1 Hﬁ
—n 2
H(z) =72 }: }:
7=0 |B]=3
N~ CD e /2/2) o
_ _—n/2 zI? _ _—n/27(n 2
=7 ]EZO i Ale k=7 L (|2 P)e”

()

where L, " are the generalized Laguerre polynomials, which are defined by

ng)(y) _ eyg!_w (dily)k(e—yykﬂ) .oy > —1.

In this case we obtain the classical generating function n(z) = L),/ (|x| e lel®

(see [9, 13]).

4. Examples
Example 4.1 If N = 2, then formula (20) gives

Hir)=n 2 (1-2 3 agal)ell (21)

[31=1

For the one-dimensional case the corresponding quasi-interpolant is

Mu(z) = (xD)7/2 > " (u(hm) — hv/D a v/ (hm)) (1 - 2a xh %m Yo~ (w=hm)*/(*D)

me7Z
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Figure 1. The graphs of (Mg — I)cosz when a = 0 (solid line), a = 1/8 (dotted line) and a = 1/4 (dashed
line).

For u(z) = cosz, « € R, the difference between u(z) and M,u(z) is plotted in
Figure 1 by taking A = 0.1, D = 2 for different values of a.

Example 4.2 Now we are looking for quasi-interpolants of order O(h?). In the
one-dimensional case

AtV = o, AGY = af —an, AR = —af 4 20100 — s
and formula (20) gives

H(z) =r~ 277 [(3/2 — ALY + (545 — 12402
+ (445G = Da? + (845" — 24072,

If a; = ay = as = 0, then we get the classical generating function n(z) =
ﬂ'_l/ze_ﬁ(S/Q — 2%). Assuming a3z = ay = 0, a; = £1/2 we obtain

H(z) =7~ V21 4+ 2)e™™

and the quasi-interpolant of order O(h*):

u(z) = (D)~ V/? ulhm @U/ m T —hm emhm)z(hD)
Myu(z) = (7D) ;E:Z((h)iQ (h))(lihﬁ) hm)*[(h*D)

With the choice a1 = az = 0, az = —1/4 we obtain H(z) = 7=1/26=%" and the
quasi-interpolant of order O(h*):

2
WD 1 (han)) e=ta=hm)? (52D)

Myu(z) = (D)2 " (u(hm) -

me7Z

In the Figures 2, 3, 4 we show the error graphs for the approximation of u =
cos(z) with the quasi-interpolants Mu, M;u, Mau, respectively. We have taken D =
2, h =0.05, h = 0.1 and h = 0.2. The case of smaller h gives different pictures: it
is clearly visible that the error oscillates very fast with Mwu and M;u.

If n > 1, by taking ass = @ and ag = 0 otherwise, we obtain the radial generating
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Figure 2. The graphs of (M — I)cos(z) by assuming h = 0.2 (a), h = 0.1 (b) and A = 0.05 (c).

50
1410 4107

110°

2410 107

(a) (b) (c)

Figure 3. The graphs of (M; — I)cos(z) by assuming h = 0.2 (a), h = 0.1 (b) and A = 0.05 (c).

function

Hal2) =(1= Y (agp+ 1/4) (4270 — 2))e7 Il 7z =/
181=1

=(14 n(2a+1/2) — (1 + 4a)|z|?)e Il r=7/2
for the approximate approximation of order O(h*)

r—hm
).

Mu(z) = (xD)™""* " (u(hm) + h* D a Au(hm))Ha ( Ve

meL™

Example 4.3 Let n > 1 and set in (7) N = 2M and

ay =0, if v has odd components,

(—1)bl (22)

W7 0<|y|<M-1

A2~ =
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5400
0% 4107

1110°

240t 4107

(a) (b) (c)

Figure 4. The graphs of (M — I) cos(z) by assuming h = 0.2 (a), h = 0.1 (b) and A = 0.05 (c).

Keeping in mind that

Ivl=s
we obtain
M-1 4 4 M-1 4 4
N BV (WD) - 0N~ (CDRPDY
3=0 Iv|=3 7=0
The function H(z) = 7~"/2e~1#I" satisfies conditions (14). In fact
. 0, if & has odd components,
! /xae_|x|2dac = (_m)aH (0) = !
7777‘/2 (277)& ¢ (27) if v = 2,}/
R~ 7!22|W|7 )

Then the equations (14) are valid for all §:0 < |8| < M — 1 because of

a(B—o) _ (-plo=—t 1 B )
Z w22l ;3 (B — a)lali=al alglel Sigjos  1Bl=0,..., M —1.

alp as

Therefore, a general approximation of order N = 2M is given by

M-1
_1 s 2 2
MMu(z) = (=D)™/* Z(hﬁ)25(8'42 Au(hm) e~ lE=hmP/ED) (94
meZ™ s=0 :

If M = 2 then we find the “fourth order formula”

2
M(4)u(ac) _ (77]))_”/2 Z [u(hm) _ %Au(hm)]e—|x—hm|2/(h2D)‘
meL™
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For M = 3 we obtain the “sixth order formula”

2 4
M(G)u(ac) = (7?7))_”/2 Z [u(hm) — %Au(hm) + h™D A2 (hm)]e—|x—hm|2/(h21))‘
meL™

Note the additive structure of the formula (24)

(N+2) () (hvD)N M —|w—hml|?/(h*D)
M uw(z) = MYWu(z) + (D) n/2M14M ;nA u(hm)e .

Example 4.4 We consider the second order partial differential operator

Bu = zn: bzk@@ku,

i,k=1

where the matrix B = {b;;} € R"*" is symmetric and positive definite. Define the
quasi-interpolant

M— 1
(det B)~1/ —I*D (B o= hm)o—hm)/ (h*D)
Mu(z) = 28 7 h w—hom) o —hm)/ (h2D)
T m%; 2; 5'45 e

(25)
Assume C' such that B~' = CTC'. If we consider the linear transformation ¢ = C'z
and introduce U(§) = u(z), in the new coordinates we have ([12, p.42])

Bu(z) = AU().
Then (25) will take the form

det h2 )

Mu(z) = MU(¢) L AU (hC m) e E-hOmI/(*D)

Keeping in mind (23) and (8) we rewrite

2M -1

MU = 3 (DU (E) £5(5, D) + e
|3]=0
where
5(5@)—2(—)M2 (€, D)
TR A B - 2y T
with
_detC E—Cm ae_|%|z
Hal&P) = Gy (~5") ’

meL™
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Rale) = (h\/g;])\i/dzetC
x Z Z |W| M Z Ug(&, hC'm) (m)ﬁ—me_ -
|3|=2M 2v<B ol —27 = o

Now we use Poisson’s summation formula on affine grids (see [11, p.23])
det C' E—=Cm\é /£—Cm
n/2 Z n -
s (o

(%)kﬂ Z 85fn(\/50—TV)e2wi<f,C_TU>7

vEL™

(26)

. In our case n(z) = 7~ 2~ and Fp()\) =

where we denote by C'~ T ) !
Hs(m Ae™ M we obtain

= (7
eI, Since °Fn(N) = (—7)°

o

if § has odd components,

2y _1) bl (27)'

357”(0) = (
T o

, ifd=2v.
Formula (26) applied to X, gives

1\ lol o —T N 2mi(€,C-Tv)
(ﬁ) Z@ }—77(\/50 v)e , @ has odd components,
Eoz (57 D) = a!
2|0‘|7'

( ) Z@a]: (vpc—T )2m£CT>,04:27.

We deduce that

gﬁ(fv D) = 5|5|0
|'7| ) |ﬁ_2'7| 85_2,)/]_- ﬁc—T 27ri<f,C_Tl/>
+ Z 7Y 27 '4lw|(27r) Z i v
2v<B v#0
and
7T| Y= 5| B—2v \/—
€56, D) = Sjap0l < Z;ﬁ 15— 27)1207 - Z |07~ Fy(vDC ).

By repeating the same arguments used in the proof of Theorem 2.1 we derive
that |E5(¢, D) — 0| < &1 for prescribed £, > 0 and sufficiently large D, and the
remainder is bounded by

[Ba(©] < ep(WVD)M Y [|0°U]|=

|B|=2M
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with the constant ¢p independent of U, h, D. Hence

[Mu(z) - u(z)] = [MU(E) = U(S)]

2M -1
<er Y (WD)NPU )+ ep(hD)M Y 107U |
j31=0 lgl=2M
2M -1
<e Y (WD u(a)| + Cp(hvD)M 3 []07ul|1
=0 lgl=2m

where C'p depends only on the matrix B. Therefore the quasi-interpolant (25)
approximates u with the order O((hv/D)?*M) up to the saturation error.

5. An application of formula (24)

Here we consider the approximation of harmonic functions. Suppose that Au = 0
in some domain € C R". Then for any N = 2M and z € € the Hermite quasi-
interpolant (24) has the simple form

MWMNu(z) = Mu(z) = (xD)™"* Y~ u(hm) e =/ (7P) (27)
hmeS)

i.e., it coincides with the well known quasi-interpolation formula of second order.
However, Theorem 2.1 indicates higher approximation rates. This will be studied
here in more detail.

First we consider the case 2 = R™. Then

I
Zau —2)f, ¢eR”
151=0

and the series converges absolutely in R™. Moreover, v has the analytic extension

5
Z 8 UL) _ )8, cecn, (28)
11=0

cf. e.g. [1, 14]. Using formula (10) for the quasi-interpolant with the generating
function (24) we obtain

Mu(z) —u(z) = Epam(z) + Rpam(z) , (29)
where
Enant(2) = ule )((mp)-n/? S emlemhm/(0D) 1)
meL™

2M -1

—n —le—hml? 2 ag_qo T — hm\«
+ (@) S (~hD) o u(x) Y e lemhm/(00P) ZZ—.( s )
Bl=1 mezn agf
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constitutes the saturation error and the remainder term has the form
Ruom(z) = (=hV/D)N (D)2
% Z Z Uﬁ(w hm)e_|x_hm|2/(h2p) Z aﬁ_a ($ — hm)a ‘ (30)
’ ol \ /D

|B|=2M meZ~ 0<a<lp

From (22) we see that

a5_o a B (=1)hl B
Yot (5 g )!wﬁ =2 7!(ﬁ—27)!22|w|$ﬁ ",

a<p 29<p 29<p

which by using the representation of Hermite polynomials

Hk(T) — Z M (QT)k—Zj 7

— 929\!
oczrer ! (k—24)!

shows that

Hence we obtain

o

with the functions

oo(x,D) = (xD)~"/? Z e~le=mP/D _ 1

meZ™
(31)
T —m 2
og(x, D)= (D)™ > Hy e~lr=mB/D g =1, 2M — 1.
meL™ ( \/5 )

It follows from the definition of Hgz and from Poisson’s summation formula that

052, D) = (—1)PIDIN208 o, D) = (—2i) FIDIAV2 3 e =PIl g 2ritma),

meZm\{0}
Thus the saturation error can be expressed as
2M—1
OPu(x) fhDN\B 5 (T
Gan(e) = 3 =5 (5) P oo(57)
|8]=0 (32)

= Z tgnr (¢ 4 inhDm)e =™ PlmlPe 2mi(ma) /b
nezm\ (0}
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where
N-1
. 0P u(x
i) = Y. S -
|5]=0

is the Taylor polynomial of the analytic extension @. Note that (32) is valid for any
M.

Theorem 5.1: Suppose that the harmonic in R™ function w is such that the
series

=L 0%u(z) P
y (33)
=

converges absolutely for any y € R™. If VDh < 1, then the quasi-interpolant (27)
approzimates u with

Mu(z) —u(z) = ]\}gnoo Enanr(z) = Z i(x + mihDm)e ™ Dlml o 2mi(m.z)/h.
meZr\{0}

where 1 is the analytic extension of v onto C".

Proof: We have to show that |Rjoam(2)] — 0 as M — oco. To estimate (30) we
rewrite

> s = g ) - (0)
0<25<k

T

= St (; — 1) /Hk—l(t) dt,

0

which implies for |3| = 2M

e | EXCACO R

0<a<f Bi>0
) 5 z; /[ND
- Hg _y(t)dt.
M 1) / pi—1
2 550 (8; — 1! )
Consequently, the remainder Ry ops takes the form
hv/DN\N .
(T) (D)2 NN Up(a, hm)
|3|=2M meR"
2 2 2 ;
=|z=hm|*/(h*D) ——— | Hg (1) dt
xe H (ﬂ]—l)'/ Bi 1() )
B8;>0 0

where we use the notation z; = (x; — hm;)/(hv/D). Then Cramer’s inequality for
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Hermite polynomials
|Hy(2)] < 252kl e /? (34)
(see [2, 15]), leads to the estimate
hv/DA\N Y
Riau(@)] < (F5=) (=D)~/2
D et/ Gem) T 2 gz 7 /2
X |Ug(z, hm)|e” 170" / dt
|3]=2M meR» Bi>0 V(

< (@)N(MD)‘”/? > Cs Y Us(x, hm)| Sp(w — hm) . (35)

Bl=2M  meRn

For the last inequality we use the notations

oi—hm > |2 —hm|_w_mv2 >
Sp(r — hm) = [ e~ to—tmor/@w) T ezt hm,)/(2h2D)

B;=0 B3;>0
25]"’1/2

92M
5£[o \% ﬁ J ﬁl_>[0

and the estimate

o

By (9) we obtain for harmonic u

|Ug(z, hm)| = ‘ /SN_laﬁu(x + (1 —s)(z — hm)) ds

= Bte, (2
<) 4 a'( )‘\( hm)a\N/sN— (1 - s)llds
|or|=0 0

which shows that

> |Us(w, hm)| Sp(x — hm) <

meR™

3 o[t NT |07 u(a
(N+]a))! o

|o|=0

) Z Sg(x — hm)|(x — hm)*|.

meR™
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To get an upper bound of the last sum we write

. T . Ples+D)/2 o 11
S Jj — mj|mrem@mm/P ¢ Cp(aj+1)/2/yaje_y dy=© F(oa] + )7

S 8ot mf(e - my| < PO T (L) T st p(2E2)
meR™

2
B;=0 Bi>0

with a constant ¢ independent of «, 3, and D. Now we use that for a; > 2

F(a];_ 1) 2%/2\/_

which leads to

with another constant ¢;. Thus we derive from (35)

[Rp2n(2)]

|a|! Bt DU/ |90 F o (a)] V! V2 04]‘|‘1
<C(VD)Y Y Z IT 5z 11
sovpmo P Fal b 2 2 s VB
i 1131 plal+n)/2 |§B+ay,
:C(h\/ﬁ)Nz Z ||t 81D ‘8

(2)| o./2 \/7
|6|=2M |a|=0 6+ all H 272 T y/2(es + 1

B8;>0

with a constant C' not depending on M, D, h, and u. Since

ol 13! [@x A _ Jalti8) (a+3) _
|ﬁ‘|‘04|! ol G _|ﬁ—|-04|! ol gl = )
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()

= Y|
: {4 ,rﬁ*’ffffﬁ’ﬁ‘ﬁ‘%‘}g\‘fa! /

1-10°® S SS { ‘ g
5-10'90 llllﬁ%%}zzgfs}%}f “‘:‘g’%ﬂg&(&q&‘ “.“ “‘» ’ )
510 "zz""""".:’: Q#’i’#’i‘i / \""V v‘t\t‘\“ :
-1.10°%7 ".,'0."#.’0‘##.."/,.. \ ’ “\“ QQ' 1A

SN /- 0. 02 ’ ‘ ,

0.02 _0_ 04
0.0

Figure 5. The graphs of Mu — u with u(z1,22) = € coszz, D = 2, h = 272 (on the left) and h = 277
(on the right).

the remainder can be estimated by

> ot ()|
Riam(z)| < ChVD)N N~ Y~ = plelt/2 TT  [2(a; + 1) ;.
gl jamo V(@ 5) 8,>0
Thus, |Rp2nm(2)| — 0 for any fixed D if (33) holds. O

Remark 1: The assertion of Theorem 5.1 is a concrete realization of a general
approzimation result for analytic functions. Let u be an entire function in C" of
order less than 2. Theorem 7.1 in [7] states that the semi-discrete convolution

up(z) = Z U, e~ lz=hm|*/(h*D)

meL™

with coefficients

- /e—7r217|y|2 u(hm + iz Dhy) dy (36)
Rn

differs from u by

up(z) — u(z) = Z iz + Z'ﬂ.hpm)e—7r2D|m|2e27ri(m,gc)/h7
meZm\{0}

(cf. also [8, Lemma 2.1]). It can be easily seen from (28) and (36) that the coeffi-
cients u,, = (7D) " 2u(hm) if the restriction of u to R™ is harmonic.

We have applied the simple quasi-interpolant (27) to the harmonic function
u(xy,m3) = e cosxy in R? by assuming D = 2 (see Figure 5), D = 3 (Fig-
ure 6), D = 4 (Figure 7), h = 272 and 277. The experiments confirm that the
quasi-interpolation error Mu — u has reached its saturation bound also for large h
because it does not decrease if h becomes smaller.

Let now u be harmonic in some convex domain €2 C R™ and we consider the
approximant

Mu(z) = (D)2 Z u(hm) e~ le=hml*/(h*D) (37)
hmeQ)

Theorem 5.2: Suppose that the function w is harmonic in a convexr domain
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i

)

{0t
e

R M)
\\‘\Qg ﬁ“\“} “\“
i

Figure 6. The graphs of Mu — u with u(z1,22) = e coszz, D = 3, h = 272 (on the left) and h = 277
(on the right).

Figure 7. The graphs of Mu — u with u(z1,22) = € coszz, D = 4, h = 272 (on the left) and h = 277
(on the right).

Q C R” and satisfies for a given N =2M

2
Cu = E HaﬁuHLw(Q) | | 7@ — )1 < 00.
] !

|B|=2M B;>0

Then for any ¢ > 0 and subdomain Q' C Q there exists D > 0 and h > 0 such that
the quasi-interpolant (37) provides for all x € Q' the estimate

N-1
u(z) — Mu(z)| < C(VD)Vey +2 Y (hWD)|0u(z)] (38)

[3]=0

where the constant C' depends only on the space dimension.

Proof: Analogously to the case Q@ = R™ we obtain
[u(z) = Mu(z)] < [Rnom ()] + [En2m(2)]
with

Enana(@)] < Jua)||[(xD)~/2 Y etk 0) g
hmeS)
M-1

o hy/D\ 1810 u(2)] T —hmy\ e
‘|‘(7TD) n/2 Ho(Z ) |z—hm|?/(h*D) ]
Wz'::l( 2 ) 3! ‘hgg ﬁ( Wﬁ)
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and

Riana < ("Y2) D) S 0 Y (st ko] Sota — hm)
|8l=2M  hmeQ

see (35). Since

Us(z, hm)| < |0%ulr_) and Y Sg(z —hm) < eD"/?
hmeS)

with a constant ¢ depending only on n, we get the inequality
[ Rhom(2)] < C(AWD)YNe, .

To estimate |y 20 ()| we use the functions og given by (31) and write

(7 D)~/ Z o—lo—hm|?/(h*D) _ | _ ao(%,D) _ (xD)""/? Z o~ le=hml* /(D)
hmed hm¢Q

— hm 2 /(2
(ﬂ_p)—n/Q H x o= lz=hm|*/(h*D)
PIRECTCR

- aﬁ(%, D) - (xD)~"/ h%:ﬁ Hﬁ(xh‘\/’%m) o—la—hm|?/(h*D)

Furthermore, for x € {2 we derive

< 55(/1_1 dist(z, 09), D),

- h 2 2
(ﬂ_p)—ﬂ/? hze:g Hﬁ(wh\/ﬁm) e—|1’—hm| /(h*D)

where §3(r, D) , r > 0, denotes the rapidly decaying function

dg(r,D) = xseupl?n (xD)~"/? m%;n ‘Hg(xx;ﬁm) ‘ e~ lz=ml*/P

|z—m|>r

Thus, for any domain €2, fixed parameter h and multiindex § we can find a subdo-
main QF ; C Q such that

sgp Sp(h~ dist(z,09Q),D) < ||log(-, D)||L.. , (39)
z€ ),
which gives
2M—1 2M—1
h/DN 181 |0P u(x
Enan (@) <2 Y ( > ) | ﬂf N jios( D)l forall o e N -
|5]=0 ' |3]=0

Now we have to choose h such that ' C N Q’ﬁ 5» Which is possible since Q’ﬁ p —
as h — 0. O
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Remark 2: Obuviously the assertion of Theorems 5.1 and 5.2 can be extended to
the case that a solution u of the second order equation

n
Z bzk@@ku =0
i,k=1
in Q is approximated by the quasi-interpolant

(det B)~1/2

M) = ey

(hm) @ ~{B~ (w=hm)a—hm)/ (D)

hmeS)

with the matriz B = {b;}.

6. Approximation of derivatives

Here we study the approximation of derivatives using Hermite quasi-interpolation
operator (5). We introduce the continuous convolution (see [11])

Csv(z) = 67" / H (w 5 y) Q(—5d)v(y)dy (40)

where Q(t) is the polynomial in (6).

Theorem 6.1:  Suppose that H satisfies the decay condition (13) with K > L+n,
L € N, L > N. For any € > 0 there exists D > 0 such that for any function
u € WL(R™)

L-1
|Mu(z) = C, pu(@)| < Y (WD) (@) + e (WD)E D [107ul|L., , (41)
[v|=0 lv|=L

where the constant ¢ does not depend on w, h and v/ D.

Proof: Suppose that the function u € WZ(R"). The Taylor expansion (8) with
N replaced by L gives the following form of the quasi-interpolant Mwu in (7)

= L‘i”' (D)l
—_— Uu

ol

() (G D )

=0 lal=0

p-n/2 x—hm\® [x—hm
1+ (—hVD)E U, h ( ) U ( ) .
( | [r/=0 aTa|=ZL—|w| o m%; oD D

Similarly the Taylor expansion of u around y leads to

Csu(z) = a (—5)|Q+W|8a+7u(x)$/n TOH(T)dT
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Setting § = h\/ﬁ, we obtain

SR S T Ll

MU($) B Ch\/l_)u(w) = ey a! u( )g (h7D ,H)
pl=0 =0 '
= 1 x—hm\%, [z —hm
+ (=hvVD)* — DN Upyr (2, b ( - )’H( — )
( ) |W|:Oaﬁ W 04'[ mgz:n +W($ m) h\/ﬁ h\/ﬁ

— /TQH(T)UQ_M(JU,QU — 70)dr].
Then

N-1 L17hl o]
M)~ Crpu@l < 3 ] Y I g o)) e,(E, 2,30

al
[v|=0 |or=0
N-1
g2ty Lo N
+ (VD) 3 la] Y % (Ilpa<-7D,%>||Lw+/Rn|r %(r)ldr)-
[v[=0 o =L=||
Proceeding as in the proof of Theorem 2.1 we deduce (41). a

Theorem 6.2: If H satisfies the conditions (13) with K > N +n and (14), then
for any v € WX (R™)

|Csv(@) — v(2)| < 26V D 107v]|p.- (43)

|o|l=N

Proof: The representation (42) with L = N gives

N-—
Cio(x Z 8)lelgn( z““ /rm )dr + Rs.3(2) (44)

y<a

where the remainder Rjy satisfies

Ay — o
|Rs(x)] < 6% > [10%]|z wz' ”/ [PH(T)dT < 6™ N ][00 -

|o|l=N y<a |o|l=N
(45)
If condition (14) holds, in view of (44), we obtain (43). O

Theorem 6.2 leads immediately to the next corollary.
Corollary 6.3: Suppose that ‘H satisfies conditions (13) with K > N + n and
(14). Then for u such that 3°u € WY (R"),

G507 u(z) — 0%u(2)| < 2™ Y |07l (46)
|o|l=N

If the derivative 0°H exists and satisfies the decay condition (13) then the con-
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volution satisfies
9PCsu(x) = (WD) PICs o3 u(z) = C50°u(x) (47)

where

Coomta) =07 [ o' (“54) @(-a0)utu)dy

n

and the quasi-interpolant Mwu in (7) satisfies the equation
O Mu = (h\/ﬁ)_W'Maﬂyu (48)

with

— hm
Masyu = D™"/? 0"H (L) O (=hVD d) u(hm).
m%;n WD ( )

Hence keeping in mind (47) and (48) we write the difference

(WD)WOP Mu(z) — 0Pu(2)]
= (WDYWOP Mu(z) — 0°Csu(x)] + (WD) Csu(z) — 0P u(z)]
= [Mpspu(z) = Cs pnu()] + (WD) [C50%u(z) — %u(a)].
From (46) and (41) we obtain the following result.

Theorem 6.4: Suppose that H satisfies the conditions (13) with K > N 4+n and
(14). Moreover suppose that the derivative M exists and satisfies the conditions
(13) with K > L 4+ n. The for any ¢ > 0 there exits D > 0 such that, for any
u e WE(R™) with L > N + |3,

L-1
|0 Mu(z) — 9%u(2)| <e > (WD)l 07u(a)]
|v|=0
+er (WD) 07|, + e2(BVD)N Y (|07

ly|=L la|=N

We deduce that formula (5) gives the simultaneous approximation of the deriva-
tives @%u with the saturation term eh=1°l,

References

[1] G.Fichera, I contributi di Francesco Severi e di Guido Fubini alla teoria delle funzioni di pit variabili
complesse, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 115 (1981) suppl., pp.23—44 (1982).

[2] J. Indritz, An inequality for Hermite polynomials, Proc. Amer. Math. Soc. 12 (1961), pp.981-983.

[3] F. Lanzara, V. Maz'ya, and G. Schmidt, Approzimate Approzimations from Scattered Data, J. Ap-
prox. Theory 145 (2007), pp.141-170.

[4] V. Maz'ya, A new approzimation method and its applications to the calculation of volume potentials.
Boundary point method, in 8. DFG-Kollogium des DFG-Forschungsschwerpunktes “Randelement-
methoden”, Schloss Reisenburg, Germany, 1991.

[6] V. Maz’ya, Approzimate approwzimations, in The Mathematics of Finite Elements and Applications,
J.R. Whiteman,ed., Wiley & Sons, Chichester, 1994, pp.77-104, .

[6] V. Maz'ya and G. Schmidt, “Approzimate Approvimations” and the cubature of potentials, Rend.
Mat. Acc. Lincel 6 (1995), pp.161-184.



June 9, 2008

15:46

Applicable Analysis AAhermite

REFERENCES 25

V. Maz’ya and G. Schmidt, On approzimate approzimations using Gaussian kernels, IMA J. Numer.
Anal. 16 (1996), pp.13-29.

V. Maz’ya and G. Schmidt, Approzimate wavelets and the approzimation of pseudodifferential oper-
ators, Appl. Comp. Harm. Anal. 6 (1999), pp.287-313.

V. Maz’ya and G. Schmidt, Construction of basis functions for high order approximate approxima-
tions, in Mathematical Aspects of Boundary FElements Methods, M. Bonnet, A.-M. Sandig, W. L.
Wendland, eds., Chapman & Hall/CRC, London, 1999, pp.165-177.

V. Maz’ya and G. Schmidt, On quasi-interpolation with non-uniformly distributed centers on domains
and manifolds, J. Approx. Theory 110 (2001), pp.125—-145.

V. Maz’ya and G. Schmidt, Approzimate Approzimations, Math. Surveys and Monogr. Vol. 141, AMS
2007.

I. G. Petrovsky, Lectures on Partial Differential Equations, Interscience Publishers, New York-
London, 1954.

G. Schmidt, On approzimate approximations and their applications in The Maz’ya Anniversary col-
lection, v.1, Operator theory: Advances and Applications, Vol. 109, 1999, pp.111-138.

F. Severi, A proposito d’un teorema di Hartogs, Comment. Math. Helv. 15 (1943), pp.350-352.

O. Szész, On the relative extrema of the Hermite orthogonal functions, J. Indian Math. Soc. (N.S.)
15 (1951), pp.129-134.



