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1 Introduction

Brezis and Gallouet [BG] established the unique solvability of the initial-boundary
value problem for the nonlinear Schrödinger evolution equations with zero Dirichlet
data on the boundary of a bounded domain in R2 or its complementary domain. They
used crucially the following interpolation-embedding inequality

∥u∥L∞(Ω) ≤ C
(
1 +

(
log(1 + ∥u∥W 2,2(Ω))

)1/2
)

(1.1)

for every u ∈ W 2,2(Ω) with ∥u∥W 1,2(Ω) = 1. Applications of this inequality to the
Euler equation can be found in Chapter 13 of M.E. Taylor’s book [Ta].

Brezis and Wainger [BW] extended (1.1) to Sobolev spaces of higher order on Rn

in the form
∥u∥L∞(Rn) ≤ C

(
1 +

(
log(1 + ∥u∥W l,q(Rn))

)(n−k)/n
)

(1.2)

for every function u in W l,q(Rn) normalized by

∥u∥W k,n/k(Rn) = 1,
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where k and l are integers, 1 ≤ k < l, ql > n, and k ≤ n.
Inequalities (1.1) and (1.2) were studied in different directions in [En], [Go], [Sa].

We prove some inequalities of Brezis-Gallouet-Wainger type for various classes of
irregular domains. In particular, classes Jα introduced in [Ma1], power cusps and
λ-John domains are considered.

2 Preliminaries

Let Ω be an open domain in Rn such that mn(Ω) < ∞, where mn denotes the n-
dimensional Lebesgue measure on Ω. Given p ∈ [1,∞) and sets E ⊂ G ⊂ Ω, the
capacity Cp(E, G) of the condenser (E, G) is defined as

Cp(E, G) = inf
{∫

Ω

|∇u|pdx : u ∈ L1,p(Ω), u > 1 in E and

u ≤ 0 in Ω\G (up to a set of standard p−capacity zero)
}

. (2.1)

Here L1,p(Ω) denotes the Sobolev space defined as

L1,p(Ω) =
{
u ∈ Lp(Ω, loc) : u is weakly differentiable in Ω and |∇u| ∈ Lp(Ω)

}
,

endowed with the seminorm

∥u∥L1,p(Ω) = ∥∇u∥Lp(Ω).

We need two isocapacitary functions. The first of them

νp : [0, mn(Ω)/2] → [0,∞]

is defined by

νp(s)=inf
{
Cp(E,G) : E andG are measurable subsets of Ω such that

E ⊂ G and s ≤ mn(E), mn(G) ≤ mn(Ω)/2
}

for s ∈ [0,mn(Ω)/2]. (2.2)

Clearly, the function νp is non-decreasing. The isocapacitary inequality on Ω is a
straightforward consequence of definition(2.2) and tells us that

νp(mn(E)) ≤ Cp(E,G) (2.3)

for every measurable sets E ⊂ G ⊂ Ω with mn(G) < mn(Ω)/2.

The second isocapacitary function πp : [0,mn(Ω)/2] → [0,∞] is given by

πp(s)=inf
{
Cp(E,G) : E is a point andG is a measurable subset of Ω

such that E ∈ G and mn(G) ≤ s
}

for s ∈ [0,mn(Ω)/2]. (2.4)

The function πp is clearly non-increasing and the corresponding isocapacitary inequal-
ity on Ω is

πp(mn(G)) ≤ Cp(E, G). (2.5)

Variants of these isocapacitary functions were introduced in Chaptrs 3 and 5 of [Ma2]
and employed to provide necessary and sufficient conditions for embeddings in the
Sobolev space of functions with gradient in Lp.
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We need another function of purely geometric nature associated with Ω. It is
called the isoperimetric function of Ω and will be denoted by λ. The function λ :
[0,mn(Ω)/2] → [0,∞] is given by

λ(s) = inf
{
P (E) : s ≤ mn(E) ≤ mn(Ω)/2

}
. (2.6)

Here, P (E) is the De Giorgi perimeter of E which can be defined as

P (E) = Hn−1(∂∗E),

where ∂∗E stands for the essential boundary of E in the sense of geometric measure
theory and Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Recall that
∂∗E agrees with the topological boundary ∂E of E when E is regular enough, e.g. is
an open subset of Ω with a smooth boundary.

The very definition of λ leads to the isoperimetric inequality on Ω which reads

λ(mn(E)) ≤ P (E) (2.7)

for every measurable set E ⊂ Ω with mn(E) ≤ mn(Ω)/2. The isoperimetric function
of an open subset of Rn was introduced in [Ma1] (see also [Ma2]) to characterize
Sobolev embeddings for functions with gradient in L1. In more recent years, isoperi-
metric inequalities and corresponding isopertimetric functions have been intensively
investigated on Riemannian manifolds as well, see e.g. [BC, CF, CGL, GP, Gr, MHH,
Kle, MJ, Pi, Ri].

The functions νp and πp on one hand, and λ on the other hand, are related by the
inequalities

νp(s) ≥
(∫ mn(Ω)/2

s

dr

λ(r)p′

)1−p

(2.8)

and
πp(s) ≥

(∫ s

0

dr

λ(r)p′

)1−p

(2.9)

for s ∈ (0,mn(Ω)/2) with p′ = p/(p − 1), which follows along the same lines as in
[Ma2], Proposition 4.3.4/1. It is shown in [Ma2], Lemma 3.2.4, that λ(s) > 0 for
s > 0. Owing to inequalities (2.8) and (2.9), we have νp(s) > 0 and πp(s) > 0 for
s ∈ (0,mn(Ω)/2) as well.

Clearly,
λ(s) ≤ cn s(n−1)/n. (2.10)

Moreover, if Ω is bounded and Lipschitz, then

λ(s) ≈ s(n−1)/n near s = 0. (2.11)

Here and in what follows, the notation

f ≈ g near 0 (2.12)

for functions f, g : (0,∞) → [0,∞) means that there exist positive constants c1, c2,
and s0 such that

c1g(c1s) ≤ f(s) ≤ c2g(c2s) if s ∈ (0, s0). (2.13)

Furthermore, for any Ω,

νp(s) ≤ cn,p s(n−p)/n for n > p (2.14)
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and
νp(s) ≤ cn

(
log

1
s

)1−n for n = p. (2.15)

Both inequalities can be verified by setting appropriate test functions in the above
definition of the p-capacity.

If Ω is bounded and Lipschitz, then, by (2.11) and (2.8),

νp(s) ≈

{
s(n−p)/n if n > p,(
log 1

s

)1−n if n = p
(2.16)

near s = 0.
Similarly to (2.14) and (2.15), we obtain the equality

πp(s) = 0 for n ≥ p. (2.17)

Finally, if Ω is bounded and Lipschitz, then

πp(s) ≈ s(n−p)/n for p > n. (2.18)

In what follows we use the notations

Gσ = {x ∈ Ω : u(x) > σ},

Lσ = {x ∈ Ω : u(x) < σ},

Eσ = {x ∈ Ω : u(x) = σ}.

3 Main results for arbitrary Ω

Theorem 1 For every ε ∈ (0,mn(Ω)/2) and for all u ∈ L1,p(Ω) ∩ L1,r(Ω), p ≥ 1,
r ≥ 1,

oscΩu ≤ πp(ε)−1/p∥∇u∥Lp(Ω) + νp(ε)−1/r∥∇u∥Lr(Ω), (3.1)

where
oscΩu = ess sup

Ω
u − ess inf

Ω
u.

Proof. Let the numbers T and t be chosen so that

mn{x : u(x) > T} ≤ mn(Ω)/2 ≤ mn{x : u(x) ≥ T},

mn{x : u(x) > t} ≤ ε ≤ mn{x : u(x) ≥ t}.

Furthermore, let
S := ess sup

Ω
u.

Then

S − t ≤
(
cp(ES ,Gt)

)−1/p
(∫

Gt

|∇u|pdx
)1/p

and

t − T ≤
(
cr(Gt,GT )

)−1/r
(∫

GT \Gt

|∇u|rdx
)1/r

which implies

ess sup
Ω

u − T ≤ πp(ε)−1/p∥∇u∥Lp(GT ) + νp(ε)−1/r∥∇u∥Lr(GT ).
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An analogous estimate for T − ess infΩ u is proved in the same way. Adding both
estimates, we arrive at (3.1). �

We obtain a direct consequence of Theorem 1 and the above lower estimates for
the isocapacitary functions which is formulated in terms of the isoperimetric function
λ.

Corollary 1 Let p ≥ 1, r ≥ 1. Then, for every ε ∈ (0,mn(Ω)/2) and for all u ∈
L1,p(Ω) ∩ L1,r(Ω)

oscΩu ≤
(∫ ε

0

dµ

λ(µ)p′

)1/p′

∥∇u∥Lp(Ω)+
(∫ mn(Ω)/2

ε

dµ

λ(µ)r′

)1/r′

∥∇u∥Lr(Ω). (3.2)

Proof. The result follows from the lower estimates (5.6) and (5.7) inserted into
(3.1).

Remark 1. One can add the inequality p > n in Theorem 1 since (3.1) has no
sense for n ≥ p because of (2.17). �

In the case r = 1 the estimate (3.2) is simplified as

oscΩu ≤
(∫ ε

0

dµ

λ(µ)p′

)1/p′

∥∇u∥Lp(Ω) + λ(ε)−1∥∇u∥L1(Ω), (3.3)

where p > n.

4 Domains of the class Jα

We say that a domain belongs to the class Jα, α > 0, if there is a constant Kα such
that

λ(µ) ≥ Kα µα

for µ ∈ (0, mn(Ω)/2). This class was introduced in [Ma1] and studied in detail in
[Ma2], [Ma3].

Corollary 1 can be made more visible for Ω ∈ Jα.

Corollary 2 Let p > n, r ≥ 1 and let

1
p′

> α >
1
r′

.

Then, for every ε ∈ (0,mn(Ω)/2) and for all u ∈ L1,p(Ω)

oscΩu ≤ K−1
α

(
(1 − αp′)−1/p′

ε−α+1/p′
∥∇u∥Lp(Ω)

+(αr′ − 1)−1/r′
ε−α+1/r′

∥∇u∥Lr(Ω)

)
. (4.1)

Taking the minimum value of the right-hand side in ε, we arrive at the following
alternatives.

Corollary 3 Let the conditions of Corollary 2 hold.
(i) If

∥∇u∥Lr(Ω) ≤
r′(1 − αp′)1/p

p′(αr′ − 1)1/r

(mn(Ω)
2

)1/r−1/p

∥∇u∥Lp(Ω),
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then

oscΩu ≤ Cα,p,r K−1
α ∥∇u∥

α−1/r′
1/r−1/p

Lp(Ω) ∥∇u∥
−α+1/p′
1/r−1/p

Lr(Ω)

with
Cα,p,r = (1 − αp′)

−α+1/r′

p′(1/r−1/p) (αr′ − 1)
α−1/p′

r′(1/r−1/p)

×
(( α − 1/r′

−α + 1/p′

)−α+1/p′
1/r−1/p

+
(−α + 1/p′

α − 1/r′

) α−1/r′
1/r−1/p

)
.

(ii) If

∥∇u∥Lr(Ω) >
r′(1 − αp′)1/p

p′(αr′ − 1)1/r

(mn(Ω)
2

)1/r−1/p

∥∇u∥Lp(Ω),

then

oscΩu ≤ K−1
α

(
(1 − αp′)−1/p′

(mn(Ω)
2

)−α+1/p′

∥∇u∥Lp(Ω)

+(αr′ − 1)−1/r′
(mn(Ω)

2

)−α+1/r′

∥∇u∥Lr(Ω)

)
.

Remark 2. Without taking care of constant factors, we can deduce the following
inequality of Gagliardo-Nirenberg type (cf. [Ga], [Ni]) from Corollary 3:

oscΩu ≤ cα,p,r K−1
α ∥∇u∥γ

Lp(Ω)∥∇u∥1−γ
Lr(Ω) (4.2)

for an arbitrary function u in L1,p(Ω), where Ω is a domain of the class Jα with
1/p′ > α > 1/r′, p > n, r ≥ 1, and

γ =
α − 1/r′

1/r − 1/p
.

5 The case Ω ∈ J1/r′

We turn to the critical case when Ω belongs to the class J1/r′ .

Corollary 4 Let p > n, p > r ≥ 1 and let Ω ∈ J1/r′ . Then, for every ε ∈
(0,mn(Ω)/2) and for all u ∈ L1,p(Ω),

oscΩu ≤ K−1
1/r′

(( (p − 1)r
p − r

)1/p′

ε(p−r)/pr∥∇u∥Lp(Ω)

+
(
log

mn(Ω)
2ε

)1/r′

∥∇u∥Lr(Ω)

)
. (5.1)

Corollary 5 Let p > n, p > r ≥ 1 and let Ω ∈ J1/r′ . Then, for all u ∈ L1,p(Ω),

oscΩu ≤ 21/rK−1
1/r′ min

{( pr

p − 1

)1/r′

∥∇u∥Lr(Ω)

(
log Q

∥∇u∥Lp(Ω)

∥∇u∥Lr(Ω)

)1/r′

,

( (p − 1)r
p − r

)1/p′(mn(Ω)
2

) p−r
p(r−1) ∥∇u∥Lp(Ω)

}
, (5.2)

where

Q =
(mn(Ω)

2

) p−r
pr

(e(p − r)
p(r − 1)

)1/r′( (p − 1)r
p − r

)1/p′

. (5.3)
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Proof. Since
tε + 1 ≤ 21−ε(t + 1)ε

for t ≥ 1 and 0 ≤ ε ≤ 1, we have

oscΩu ≤ 21/rK−1
1/r′

(
Ar′

ε
p−r

p(r−1) + Br′
log

mn(Ω)
2ε

)1/r′

, (5.4)

where

A =
( (p − 1)r

p − r

)1/p′

∥∇u∥Lp(Ω) (5.5)

and
B = ∥∇u∥Lr(Ω). (5.6)

Hence

oscΩu ≤ 21/rK−1
1/r′

(
min

[0,mn(Ω)/2]
f(ε)

)1/r′

, (5.7)

where

f(ε) = Ar′
ε

p−r
p(r−1) + Br′

log
mn(Ω)

2ε
.

The only root of f ′(ε) is given by

ε0 =
(p(r − 1)

p − r

) p(r−1)
p−r

(B

A

) pr
p−r

.

If ε0 < mn(Ω)/2, then the minimum value of f on [0,mn(Ω)/2] is

f(ε0) = Br′ p(r − 1)
p − r

log
((mn(Ω)

2

) p−r
p(r−1) e(p − r)

p(r − 1)

(A

B

)r′)
. (5.8)

If ε0 ≥ mn(Ω)/2, then the minimum value of f on [0,mn(Ω)/2] is

f(mn(Ω/2) = Ar′
(mn(Ω)

2

) p−r
p(r−1)

. (5.9)

Combining this with (5.7), we arrive at

oscΩu ≤ 21/rK−1
1/r′ min

{(p(r − 1)
p − r

)1/r′

B
(
r′ log

(
Q0

A

B

))1/r′

,

A
(mn(Ω)

2

) p−r
pr

}
(5.10)

with the constant Q0 given by

Q0 =
(mn(Ω)

2

) p−r
pr

(e(p − r)
p(r − 1)

)1/r′

.

(Note that Q0A ≥ B). In order to obtain (5.2), we put the values of A and B defined
in (5.5) and (5.6) into (5.10). The result follows. �

Remark 3. Without taking into account the values of the constants in (5.1) and
(5.2), we can write both inequalities in the form

oscΩu ≤ c0

(
ε(p−r)/pr∥∇u∥Lp(Ω) +

(
log

mn(Ω)
2ε

)1/r′

∥∇u∥Lr(Ω)

)
, (5.11)
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where ε ∈ (0,mn(Ω)/2) and c0 depends only on K1/r′ , p, r, and

oscΩu ≤ c0

(
1 +

∣∣log(c2∥∇u∥Lp(Ω))
∣∣)1/r′

, (5.12)

provided ∥∇u∥Lr(Ω) = 1. We recall that p > n, p > r ≥ 1, and Ω ∈ J1/r′ . In
particular, if Ω is a bounded Lipschitz domain in Rn, then r = n and, for example,
(5.12) becomes

oscΩu ≤ c1

(
1 +

∣∣log(c2∥∇u∥Lp(Ω))
∣∣)(n−1)/n

, (5.13)

with ∥∇u∥Ln(Ω) = 1 (cf. [BG]).

6 Higher order Sobolev spaces

Theorem 2 Let Ω ∈ Jα, α < 1, and let u denote an arbitrary function in W l,q(Ω)
with integer l and q ≥ 1. Further let r = 1/(1 − α) and

l(1 − α) < 1/q. (6.1)

If
∥u∥W 1,r(Ω) = 1,

then
∥u∥L∞(Ω) ≤ Cα,q,l

(
1 +

(
log(1 + ∥u∥W l,q(Ω))

)α
)
. (6.2)

Proof. Obviously, W l−1,q(Ω) ⊂ Lp(Ω) implies W l,q(Ω) ⊂ W 1,p(Ω). If

q(l − 1)(1 − α) < 1 (6.3)

then, by Corllary 4.9/1 [Ma2], the embedding W l−1,q(Ω) ⊂ Lp(Ω) holds with

p =
q

1 − q(l − 1)(1 − α)
. (6.4)

Since by (6.4)
1
p

=
1
q
− (l − 1)(1 − α),

(6.3) obviously holds. (That is the value of p given by (6.4) can be used in (5.11).)
In the case

q(l − 1)(1 − α) = 1

by Corollary 4.9/1, [Ma2], the role of p can be played by an arbitrary large number,
and for

q(l − 1)(1 − α) > 1

we can put p = ∞ in veiw of Theorem 5.6.5/2 in [Ma2]. Therefore, we always have

∥∇u∥Lp(Ω) ≤ c ∥u∥W l,q(Ω). (6.5)

Putting the estimate (6.5) into the right-hand side of (5.11), we obtain

∥u∥L∞(Ω) ≤ c1

(
εσ∥u∥W l,q(Ω) +

(
log

mn(Ω)
2ε

)1/r′

∥u∥W 1,r(Ω)

)
(6.6)

with σ > 0 and ε ∈ (0, mn(Ω)/2). Minimizing the right-hand side in ε and arguing
as in Corollary 5, we complete the proof.
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7 Whirlpool domain

Example 1. Let Ω be the domain

{x = (x′, xn) : |x′| < φ(xn), 0 < xn < 1}, (7.1)

x

x x0

n

1 i

where φ is a continuously differentiable convex function on [0, 1], φ(0) = 0. The area
minimizing function satisfies

c [φ(t)]n−1 ≤ λ
(
vn−1

∫ t

0

[φ(τ)]n−1dτ
)
≤ [φ(t)]n−1 (7.2)

for sufficiently small t. (See [Ma2], p. 175-176). Here vn−1 is the volume of the unit
ball in Rn−1. Now the inequality (3.2) implies

oscΩu ≤ c
((∫ δ

0

φ(t)
n−1
p−1 dt

)1/p′

∥∇u∥Lp(Ω) +
(∫ 1

δ

φ(t)
n−1
r−1 dt

)1/r′

∥∇u∥Lr(Ω) (7.3)

for sufficiently small δ > 0.

For the power β-cusp

Ω =
{

x :
n−1∑
i=1

x2
i < x2β

n , 0 < xn < 1
}

, β > 1, (7.4)

one has by (7.2)

c1 sα ≤ λ(s) ≤ c2 sα, α =
β(n − 1)

β(n − 1) + 1
.

For this particular case (7.3) takes the form

oscΩu ≤ c
(
δ(1+

β(n−1)
p−1 ) p−1

p ∥∇u∥Lp(Ω) + δ(1+
β(n−1)

r−1 ) r−1
r ∥∇u∥Lr(Ω)

)
, (7.5)

where p−1+β(n−1) > 0 and r−1+β(n−1) < 0. In the critical case r−1+β(n−1) = 0
one has for small δ > 0

oscΩu ≤ c
(
δ(1+

β(n−1)
p−1 ) p−1

p ∥∇u∥Lp(Ω) +
(
log δ−1

)1/r′

∥∇u∥Lr(Ω)

)
. (7.6)
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Minimizing the right-hand side in (7.5) and (7.6), we arrive at inequalities independent
of δ of Gagliardo-Nirenberg and Brezis-Wainger type for the β-cusp. For instance,
the result of Theorem 2 for the β-cusp runs as follows.

Theorem 3 Let Ω be the β-cusp (7.4) and let u denote an arbitrary function in
W l,q(Ω), where l is integer, q ≥ 1, and

ql > β(n − 1).

If
∥u∥W 1,1+β(n−1)(Ω) = 1,

then
∥u∥L∞(Ω) ≤ Cβ,q,l

(
1 +

(
log(1 + ∥u∥W l,q(Ω))

)α)
(7.7)

with α = β(n − 1)/[1 + β(n − 1)].

Remark 4. Let us show that the power α of the logarithm in (7.7) is the best
possible. We choose

u(x) =
log 1

xn+δ(
log 1

δ

)1/[1+β(n−1)]

with a small δ > 0. Then

∥u∥L∞(Ω) ≈
(
log

1
δ

)β(n−1)/[1+β(n−1)]

and

∥∇u∥L1+β(n−1)(Ω) ≈
(
log

1
δ

)−1/[1+β(n−1)](∫ 1

0

x
β(n−1)
n dxn

(xn + δ)1+β(n−1)

)1/[1+β(n−1)]

≈ 1.

Similarly,
∥u∥W l,q(Ω) ≈ δ(1+β(n−1)−lq)/q.

Using this information in the inequality (7.7), we see that α on its right-hand side
cannot be diminished.

8 λ-John domains

We recall that a bounded domain Ω ⊂ Rn is λ-John, λ ≥ 1, if there is a constant
C > 0 and a distinguished point x0 ∈ Ω such that every x ∈ Ω can be joined to x0

by a rectifiable arc γ ⊂ Ω along which

dist(y, ∂Ω) ≥ C |γ(x, y)|λ, y ∈ γ,

where |γ(x, y)| is the length of the portion of γ joining x to y. Clearly, the class
of λ-John domains increases with λ. By Kilpeläinen and Malý [KM], every λ-John
domain belongs to the class Jλ(n−1)/n. This fact together with Theorem 2 implies
inequality (6.2) with α = λ(n − 1)/n for every λ-John domain.
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