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1 Introduction

Brezis and Gallouet [BG] established the unique solvability of the initial-boundary
value problem for the nonlinear Schrodinger evolution equations with zero Dirichlet
data on the boundary of a bounded domain in R? or its complementary domain. They
used crucially the following interpolation-embedding inequality

1/2
lullze) < C(1+ (log(1 + lullwez) ") (L1)

for every u € W*2(Q) with [|ul|w12(0) = 1. Applications of this inequality to the
Euler equation can be found in Chapter 13 of M.E. Taylor’s book [Ta].

Brezis and Wainger [BW] extended (1.1) to Sobolev spaces of higher order on R"
in the form

(n—k)/n
Jull e ey < 1+ (log (1 + ullwraeny) ") (12)

for every function u in W%9(R") normalized by

||UHwkm/k(sz) = 1,



where k and [ are integers, 1 < k <[, gl > n, and k < n.
Inequalities (1.1) and (1.2) were studied in different directions in [En], [Go], [Sa].

We prove some inequalities of Brezis-Gallouet-Wainger type for various classes of
irregular domains. In particular, classes 7, introduced in [Mal], power cusps and
A-John domains are considered.

2 Preliminaries

Let © be an open domain in R™ such that m,(£2) < oo, where m,, denotes the n-
dimensional Lebesgue measure on Q. Given p € [1,00) and sets E C G C €, the
capacity Cp(E,G) of the condenser (E, ) is defined as

Co(E,G) = inf{/ |Vu|Pde : w € L*P(Q), uw>1in F and
Q
u < 0in Q\G (up to a set of standard p—capacity zero)} . (2.1)

Here L'?(§) denotes the Sobolev space defined as
LYP(Q) = {u € LP(Q,loc) : u is weakly differentiable in  and |Vu| € LP(Q)},
endowed with the seminorm
lullLre@) = VullLeo)-
We need two isocapacitary functions. The first of them
vp + [0,ma(€)/2] = [0,00]
is defined by

vp(s)=inf{Cy(E,G): Eand G are measurable subsets of such that
E C G ands < my,(E), my(G) <m,(Q)/2} forse [0,m,()/2]. (2.2)

Clearly, the function v, is non-decreasing. The isocapacitary inequality on {2 is a
straightforward consequence of definition(2.2) and tells us that

vp(mn(E)) < Cp(E, G) (2.3)
for every measurable sets E C G C Q with m,(G) < m,(2)/2.
The second isocapacitary function 7, : [0,m,(2)/2] — [0, 0c] is given by
mp(s)=inf{C,(E,G): Eis a point and G is a measurable subset of (2

such that E € G andm,,(G) < s} fors € [0,m,(Q)/2]. (2.4)

The function m, is clearly non-increasing and the corresponding isocapacitary inequal-
ity on  is

Tp(ma(@)) < Cy(E, ). (2.5)
Variants of these isocapacitary functions were introduced in Chaptrs 3 and 5 of [Ma2]

and employed to provide necessary and sufficient conditions for embeddings in the
Sobolev space of functions with gradient in LP.



We need another function of purely geometric nature associated with Q. It is
called the isoperimetric function of © and will be denoted by A. The function A :
[0,m,(£2)/2] — [0, 0] is given by

A(s) =inf{P(E) : s < mn(E) < m,(Q)/2}. (2.6)
Here, P(E) is the De Giorgi perimeter of F which can be defined as
P(E)=H""1(0"E),

where 0*F stands for the essential boundary of E in the sense of geometric measure
theory and ‘H"~! denotes the (n — 1)-dimensional Hausdorff measure. Recall that
0*E agrees with the topological boundary OF of E when F is regular enough, e.g. is
an open subset of Q with a smooth boundary.

The very definition of A leads to the isoperimetric inequality on 2 which reads
AMmn(E)) < P(E) (2.7)

for every measurable set E C Q with m,,(E) < m,(£2)/2. The isoperimetric function
of an open subset of R™ was introduced in [Mal] (see also [Ma2]) to characterize
Sobolev embeddings for functions with gradient in L!. In more recent years, isoperi-
metric inequalities and corresponding isopertimetric functions have been intensively
investigated on Riemannian manifolds as well, see e.g. [BC, CF, CGL, GP, Gr, MHH,
Kle, MJ, Pi, Ri].

The functions v, and 7, on one hand, and A on the other hand, are related by the

inequalities
my(Q2)/2 dr 1—p
VP(S) Z (/5 )\(’I")p/> (28)

)= ([ i) (2.9)

for s € (0,my,(2)/2) with p’ = p/(p — 1), which follows along the same lines as in
[Ma2], Proposition 4.3.4/1. It is shown in [Ma2], Lemma 3.2.4, that A(s) > 0 for
s > 0. Owing to inequalities (2.8) and (2.9), we have v,(s) > 0 and m,(s) > 0 for
s € (0,m,(02)/2) as well.

Clearly,

and

A(s) < ¢p 51/, (2.10)
Moreover, if 2 is bounded and Lipschitz, then
A(s) ~ sD/™ pear s = 0. (2.11)
Here and in what follows, the notation
f=yg near 0 (2.12)

for functions f, g : (0,00) — [0,00) means that there exist positive constants ¢, ca,
and sg such that
c1g(c1s) < f(s) < cag(eas) if s € (0, sp). (2.13)

Furthermore, for any €2,

Up(s) < enps™ P/ forn > p (2.14)



and 1
vp(s) < cn (log 7)1711 for n = p. (2.15)
s

Both inequalities can be verified by setting appropriate test functions in the above
definition of the p-capacity.
If Q is bounded and Lipschitz, then, by (2.11) and (2.8),

(n—p)/n if

S i n>p,

vp(s) ~ Iy1on , P (2.16)
(log ;) ifn=p

near s = 0.
Similarly to (2.14) and (2.15), we obtain the equality

mp(s) =0 for n > p. (2.17)
Finally, if Q is bounded and Lipschitz, then

Tp(s) & 5P/ for p > n. (2.18)

In what follows we use the notations
Go ={2€Q:u(x) >0},

Lo ={ze€Q:ur) <o},
E={2eQ:uz) =0}

3 Main results for arbitrary ()

Theorem 1 For every e € (0,m,(2)/2) and for all u € L*?(Q) N LY"(Q), p > 1,
r>1,

oscau < 7,(8) 7|Vl oy + 1(&) 7 [Vl (3.)
where

0SCQU = €SS supu — essQinfu.
Q

Proof. Let the numbers T and ¢ be chosen so that
mp{z:u(z) >T} <m,(Q)/2 <mp{z:u(z) >T},

mpf{x :u(z) >t} <e <mp{z:ulx) >t}

Furthermore, let

S :=ess supu.
Q

Then

S =t < (cplE5,90) ™" ( |vu|sz)1/”

G
and

“1/r 1/r
t—T < (¢(Ge,Gr)) Y (/ \Vuvdx)
Gr\G¢
which implies

ess supu — T < (&)™ VP IV ull Loy + (&) IVl Lr o)



An analogous estimate for T" — ess infq u is proved in the same way. Adding both
estimates, we arrive at (3.1). O

We obtain a direct consequence of Theorem 1 and the above lower estimates for
the isocapacitary functions which is formulated in terms of the isoperimetric function
A

Corollary 1 Let p > 1, r > 1. Then, for every ¢ € (0,m,(Q)/2) and for all u €
LYP(Q)N LY (Q)

mp (2)/2

€ du 1/p' du 1/r
< p 7
oscou < (/0 )\(H)p/) IVul L (Q)-l-(/E )" ) [Vul

Proof. The result follows from the lower estimates (5.6) and (5.7) inserted into
(3.1).

L7'(Q). (3.2)

Remark 1. One can add the inequality p > n in Theorem 1 since (3.1) has no
sense for n > p because of (2.17). O

In the case r = 1 the estimate (3.2) is simplified as

= du N\ -1
< » 1 .
oscan < ([ 5755 ) " IVl + 26 V2o, (33)

where p > n.

4 Domains of the class 7,

We say that a domain belongs to the class J,, a > 0, if there is a constant IC, such
that
Ap) > Ko p®

for p € (0,m,(2)/2). This class was introduced in [Mal] and studied in detail in
[Ma2], [Ma3].

Corollary 1 can be made more visible for 2 € 7.

Corollary 2 Letp>n, r > 1 and let

1 1
17>CK>P.

Then, for every € € (0,m,(Q)/2) and for all u € L*?(Q)
oscou <K' ((1 - ap')_l/p/s_o”rl/p/||Vu||Lp(Q)

+ (e’ — 1)71/r’5*a+1/r’||vU||LT(Q)). (4.1)

Taking the minimum value of the right-hand side in ¢, we arrive at the following
alternatives.

Corollary 3 Let the conditions of Corollary 2 hold.
(¢) If

Vull L) <

(1 —ap )P rmg, (Q)\1/r=1/p
A

p(ar’ — 1)1/ 2



then

a—1/r" —at1/p!
oscau < Copr Ko [Vull 1170)” 1V ull gy
with b '
—a+t1/r s
Coper = (1 — apf)7OI=1753 (e’ — 1) 747470
—a+ l/p’ Py '
(i2) If
(1= ap/ )P 1m, (Q)\L/r—1/p
IVullLr o) > (ar — 1)1/T( n2 ) Valorcn,
then

s My Q —(,y—‘,—l/p,
oscou < K;* ((1 —ap/)”VP (L) 1Vl Le ()
9]

2
1y (M —a+1/r’
+(ar =) ( 2( )) IVullzre)).

Remark 2. Without taking care of constant factors, we can deduce the following
inequality of Gagliardo-Nirenberg type (cf. [Gal, [Ni]) from Corollary 3:

oscqu < capr K [0l 0y IVull5 70y (42)

for an arbitrary function u in L''P(Q), where Q is a domain of the class J, with
1/p) >a>1/r,p>n,r>1, and

a—1/r

Uik vyt

5 The case 2 € J

We turn to the critical case when € belongs to the class J; /.

Corollary 4 Let p > n, p > r > 1 and let Q € Jy). Then, for every € €
(0,m,(2)/2) and for all u € LYP(Q),

—1Dr\1/p" X
oscou < ICl/r (((Z;T)> g(P r)/mHVUHLp(Q)

+(1og mgi(gm)l/r/nvunmm). (5.1)

Corollary 5 Letp>n, p>1r>1 and let Q € Jy/. Then, for all u € LYP(Q),

l/r' Vul ;e 1/7‘/
oscau SQI/%DL““{(%) IIVUIIU(Q)OOgQ” I (Q))

! IVullLr@)
(=) () 19l } 52
where
Lz Erre(p—r /7’ — 1)y 1/0
= 2(9)) (;;Ef_li)l ((l;_lr)f : (5.3)



Proof. Since
1 <25 (t+1)°

fort >1and 0 <e <1, we have

= R ] r’ mn(Q) 1/
oscqu < 2V ICl/lr, (A err=0 4+ B" log 7e ) , (5.4)
where ( .
p—1)r\1/p
Az(;j7ﬂ IVull o) (55)
and
Hence L
cou < 2V/Kc-1 i ' 5.7
oseau < 27K L min f@)) (5.7)
where Q
f(e) = A" 70 + B log mg(e 3
The only root of f/(¢) is given by
plr— 1)\ 55 By
f0= < p—r ) (Z) '
If eg < my,(2)/2, then the minimum value of f on [0, m,,()/2] is
rp(r—1) mn(Q)\st=m e(p — 1) A\
=B" 1 = . .
f(20) p—r og(( 2 ) p(r—1) (B) ) (5:8)
If g > my,(Q)/2, then the minimum value of f on [0, m,(Q2)/2] is
r My, Q %
Flma(0/2) = a7 (MY (5.9)
Combining this with (5.7), we arrive at
— 1) /7' A /7'
< ol/rg—1 . p(r ’ a
oscou <2 K1/7-/ mln{ (7]9 — ) B(r log(QoB)> ,
m,(Q)\ 5
A5 510)
with the constant Qg given by
_ (MmN celp— )\ VT
@o = ( 2 ) (p(r — 1)) '
(Note that QoA > B). In order to obtain (5.2), we put the values of A and B defined
in (5.5) and (5.6) into (5.10). The result follows. O

Remark 3. Without taking into account the values of the constants in (5.1) and
(5.2), we can write both inequalities in the form

my (Q)\ 1/
osean < o (=07 [ Vul ey + (108 ™) vl @), 6an)



where € € (0,m,(Q)/2) and ¢y depends only on Ky, p, r, and

oscou < ¢o(1+ |1og(02||Vu||Lp(Q))|)1/TI, (5.12)

provided ||Vul|pr) = 1. We recall that p > n, p > r > 1, and Q € Jypv. In
particular, if Q is a bounded Lipschitz domain in R", then r = n and, for example,
(5.12) becomes

oscou < ¢1(1 + ‘log(02||Vu||Lp(Q))D(n_l)/n, (5.13)
with ||Vul|pno) = 1 (cf. [BG]).

6 Higher order Sobolev spaces

Theorem 2 Let Q € J,, a < 1, and let u denote an arbitrary function in WhH(Q)
with integer | and q > 1. Further letr =1/(1 — a) and

I(1-a)<1/q. (6.1)

If

lullwr. o) =1,
then
Jullz= ) < Gt (1+ (051 + ulhrae)”). (62)

Proof. Obviously, W!=14(Q) C LP(Q2) implies Wh4(Q2) ¢ WLP(Q). If

qI-1DH(1-a)<1 (6.3)

then, by Corllary 4.9/1 [Ma2], the embedding W!=1¢(Q) C LP(2) holds with
q

P - D—a) (6.4)
Since by (6.4) L
5:5*(1*1)(1*0),

(6.3) obviously holds. (That is the value of p given by (6.4) can be used in (5.11).)
In the case

gl —1)(1—a)=1

by Corollary 4.9/1, [Ma2], the role of p can be played by an arbitrary large number,
and for
qI-1D(1—-a)>1

we can put p = oo in veiw of Theorem 5.6.5/2 in [Ma2]. Therefore, we always have
IVullLe@) < ellullwra)- (6.5)

Putting the estimate (6.5) into the right-hand side of (5.11), we obtain

o My (Q2)\ 1/
HUHLOO(Q)SCl(E ||uHle‘I(Q)+(10g 9 ) ||UHWM(Q)> (6.6)

with ¢ > 0 and € € (0,m,,(Q)/2). Minimizing the right-hand side in € and arguing
as in Corollary 5, we complete the proof.



7 Whirlpool domain

Example 1. Let € be the domain

{z = (2 2,) : |2/ < p(xn), 0 <z <1}, (7.1)

where ¢ is a continuously differentiable convex function on [0, 1], ¢(0) = 0. The area
minimizing function satisfies

cle®)" " < /\(vn—l/o [o(m)]"~Hdr) < [o(t)]" (7.2)

for sufficiently small ¢. (See [Ma2], p. 175-176). Here v,_1 is the volume of the unit
ball in R"~!. Now the inequality (3.2) implies

4 n—1 1/Pl
oscqu < c((/ o(t)r1 dt) Vul £r ) + (/
0 )

for sufficiently small 6 > 0.

1

no1 1/r
o) dt) " |Vullpeo)  (73)

For the power (-cusp

n—1

Q:{xzzx§<xiﬁ,o<xn<1}, 8> 1, (7.4)
i=1
one has by (7.2)
B(n—1)
oL < « =
c1 8% < A(s) < ca8Y, «a Bn—1+1

For this particular case (7.3) takes the form

Bn—1)yp—1 B(n—1)\r—1
OSCQU§C<5(1+ p=1 ) 5| Vul| ooy + 0T

V), (75)

where p—1+8(n—1) > 0 and r—1+6(n—1) < 0. In the critical case r—14+3(n—1) = 0
one has for small § > 0

B(n:ll) )

p=1 1\ 1/
OSCQUSC(5(1Jr v 7| Vull ooy + (log6~1) ”quLT(Q))‘ (7.6)



Minimizing the right-hand side in (7.5) and (7.6), we arrive at inequalities independent
of d of Gagliardo-Nirenberg and Brezis-Wainger type for the g-cusp. For instance,
the result of Theorem 2 for the B-cusp runs as follows.

Theorem 3 Let Q2 be the B-cusp (7.4) and let u denote an arbitrary function in
Wha(Q), where [ is integer, ¢ > 1, and

gl > B(n—1).

If

Hu||W1v1+I3(n—1)(Q) =1,
then a
a0 < Caaa 1+ (10801 + fulwroca)) ) )

with o« = B(n —1)/[1 + B(n — 1)].

Remark 4. Let us show that the power « of the logarithm in (7.7) is the best
possible. We choose
1
log =
1\ /[+B(n—1)]
(1os3)

u(x) =

with a small § > 0. Then

1\ B(n—=1)/[1+B(n—1)]
|l oo () = (10g 5)

and

1\ -1/0+8m-1)] , (1 ZBODge /04801
I (= ) R

Similarly,

[ ullwa ) ~ §+Bn=1)=la)/q

Using this information in the inequality (7.7), we see that a on its right-hand side
cannot be diminished.

8 JM-John domains

We recall that a bounded domain €2 C R™ is A-John, A > 1, if there is a constant
C > 0 and a distinguished point ¢ € Q such that every x € € can be joined to xg
by a rectifiable arc v C 2 along which

dist(y, 0Q) > C |y(z, )", y €,

where |y(z,y)| is the length of the portion of 4 joining = to y. Clearly, the class
of A\-John domains increases with A. By Kilpeldinen and Maly [KM], every A-John
domain belongs to the class Jy(,—1)/n- This fact together with Theorem 2 implies
inequality (6.2) with « = A(n — 1)/n for every A-John domain.
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