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Abstract

We give necessary and sufficient conditions for a function to be a multi-
plier from one Besov space BJ'(R") into another B,(R™) where 0 < [ < m
and p € (1,00). We also show that the space of multipliers acting from
the Sobolev space W,"(R™) into a distribution Sobolev space W, *(R") is
isomorphic to Wpffnif(R") AW, e (R") for either k > m >0, k > n/p’, or

m >k >0, m>n/p, where p € (1,00) and p+p’ = pp’.

1 Introduction

By a multiplier acting from one Banach function space S7 into another Ss we call
a function ~ such that yu € Sy for any v € S1. By M(S1 — S2) we denote the
space of multipliers v : S; — So with the norm

[Vl ar(s,—52) = sup{lyulls, = [lulls, <1}

We write M S instead of M (S — 9).

A theory of pointwise multipliers was developed in our book [MS], where a com-
plete bibliography and description of related results obtained before 1985 can be
found. In particular, [MS] contains characterisation of the spaces M (H,"(R") —
H)(R™)) with 1 < p < co, where H¥(R™) is the Bessel potential space. We also
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described multipliers M (W, (R™) — W]} (R™)) in Sobolev (k integer)-Slobodetskii
(k noninteger) spaces with 1 < p < oo and both m and [ being either integer or
noninteger.

We mention known results on multipliers preserving a certain Besov space.
Necessary and sufficient conditions for a function to belong to M le)(R"), 1<p<
00, 0 < I < oo, are given in [MS]. Recently a characterization of M B;  (R™) for
1<p<q< oo, s>n/p, was obtained by Sickel and Smirnov [SS]. The spaces
MBY, (R") and MBY,  (R") were described by Koch and Sickel [KS].

The main goal of the present paper is to characterize the space M (B}'(R") —
BL(R™)) for m > 1> 0, p € (1,00).

A sufficient condition for inclusion into the space M (W"(R") — Wp’k(R”)) of
Sobolev multipliers can be found in Sect.1.5 [MS]. Recently Maz’ya and Verbitsky
[MV?2], [MV3] described the spaces M (WL (R"™) — W; ' (R")) and M (W,/*(R") —
WQ_I/ *(R™)), solving the problem of the form boundedness of the Schrédinger
and the relativistic Schrédinger operators (see [MV2] and [MV4] for further re-
sults in the same vein). We conclude the present paper by showing that the space
M(W(R™) — W, *(R™)) is isomorphic to W, kRN W, i (R™) provided
k>m >0,k >n/porm>k>0, m > n/p, where where p € (1,00) and
p+p' = pp’. This is a straightforward corollary of the above mentioned sufficient
condition from Sect. 1.5 [MS]. However, the result seems to be new even for n = 1,
except for the case k = m =1 treated in [MV4].

Let s = k + «, where a € (0,1] and k is a nonnegative integer. Further, let
Af)u(x) = u(x + 2h) — 2u(x + h) + u(x)

and y
p
Cpen@) = ([ 182 Tt |p-rean) "

R’n,

where V), stands for the gradient of order k, i.e. Viu = {09} ...09"}, an + ... +
oy, = k. The Besov space Bj;(R") is introduced as the completion of Cg°(R") in
the norm

1Cp,su; R ||z, + [[u; R |,

Let {s} and [s] denote the fractional and integer parts of a positive number s and
let

1/p
(Do) = [ 18T ()P lp-o)an)

where Apv(z) = v(x + h) — v(x). The fractional Sobolev space W is defined as
the closure of C§° in the norm

1Dp,stl|z, + llullz,-

(Here and in the sequel, we omit R™ in the notation of norms, spaces, and in the
range of integration.) For {s} > 0 the spaces B, and W have the same elements



and their norms are equivalent since
(228D, su < Cpou < (2+219)D,, su (1)
which follows directly from the identity
2u(x + h) —u(z)] = —[u(x + 2h) — 2u(x + h) + u(z)] + [u(z + 2h) — u(z)].

In what follows the equivalence a ~ b means that there exist positive constants
c1, ¢o such that ¢1b < a < ¢9b.
With any Banach space S of functions on R"™ one can associate the spaces

Sloc ={u:nue S for all ne C5}

and

Sunif - {UZ sup anu”S < 00}7
zeR"

where n,(z) = n(z — 2),n € C§°, n =1 on B;. Here and in what follows B, () is
the ball {y € R" : |y — 2| < r} and B, = B,(0). The space Supir is endowed with
the norm
[ell$umie = sup [[n2ulls-
zeR™

The obvious consequence of the definition of the multiplier space M (S; — S2)
is the imbedding
M(S1 — S2) C S2 unit-

Let A* be the operator defined for any u € R by
A = (=A+ 12 = FH (14 [g2)"°F,

where F is the Fourier transform in R™ and F~! is the inverse of F. By J; we
denote the Bessel potential of order [, that is the operator A~!. Throughout the
paper we assume that m > 0 and use the notion of the (p, m)-capacity cap, ,,(e)
of a compact set e C R™ which is defined by

cap,, (e) = inf{||f||1£p : feL, f>0andJ,f(zx)>1foralzx € e}

For properties of this capacity see [M], Ch. 7 and [AH], Ch. 2 and Sect. 4.4. In
particular, it is well known that if 0 < r < 1, then

TP for mp < n,
capy, ,, (By) ~ (10g%)17p for mp = n, (2)
1 formp > n,

and if e is a compact set in R™ with diam(e) < 1, then

c(mes,e)(n=mp)/n for mp < n,
> n _
capp’m(e) - { (log 2 )1 P for mp = n. (3)

mespe




The following assertion is the main result of this article.
Theorem 1. Let 0 < [ < m, p € (1,00), and let v € B!

ploc- Lhere holds the
equivalence relation

”'VHM(B;"—»B;)) ~ sup

e [cap, n(e)]'/P

HCI)J’Y; 6||LTJ ||’Y||L1,unif7 m > l’
(4)
Mew:  m=1,

where e is an arbitrary compact set in R™. The finiteness of the right-hand side
in (4) is necessary and sufficient for v € M(B)* — B).

The relation (4) remains valid if one adds the condition diam(e) < 1.

For mp > n the statement of the above theorem simplifies. Namely, the relation
(4) is equivalent to

My -sy) ~ e, form=>1, (5)

p,uni

and for lp > n
Yy ~ 1CaYI Ly nie + 1712 - (6)
From results of Kerman and Saywer [KeS] and Maz’ya and Verbitsky [MV1]

it follows that the supremum in the right-hand side of (4) is equivalent to each of
the suprema

sup ”JmXQ (CPJ/V)p; Q”Lp/(pfl)
{Q} ICpav;QIT"

where {Q} is the collection of all cubes, x¢ is the characteristic function of @), and

; (7)

J p\p/(p—1)
sup m (i (Cpi7)P) (2)
seRn T (Cpi7)P ()
From (4), (7), and (8) one can deduce various precise upper and lower estimates

for the norm in M(B]* — le,) formulated in more conventional terms (compare
with [MS], Ch. 3).

(8)

2 Preliminaries

In this section, we collect some auxiliary assertions used in the sequel.
Lemma 1. (see [St], Sect. 5.1) There holds the equivalence relation
«
lull g ~ 1Al s )

where p € (1,00) and o € (0, k).
By H};, k>0, pé€(1,00), we denote the space of Bessel potentials defined as
the completion of C§° in the norm

lull e = A"l (10)



The following relations are well known
VI BE—L,) ~ I8 —L,) ~
liels, Isells,
e [cap, x(e)]VP ¢ giam(e)<1 [cap, x(e)]}/P

(see [MS], Lemma 2.2.2/1, Corollary 3.2.1/1, Remark 3.2.1/1 and [AH], Sect. 4.4).

Using estimates (2) for the capacity of a ball, one obtains the following relations
from (11)

(11)

IV aeBE—L,) ~ VL e fOr PE > 10, (12)

Vlae(ps—r,) = ¢ sup PPy Bu(a)||n, for pk < m, (13)
z€R™,re(0,1)

2. (p—1
Mlarss—zy 2 ¢ sup (g =) " Py Bo(2)|L, forpk=mn.  (14)
zERM,re(0,1) r

Lemma 2. Let v, denote a mollifier of a function v which is defined as

() =" [ Ko e - )r()de
where K € C§°(By), K >0, and ||K||z, = 1. The inequalities

Vollar(sr—51) < IVlmBr—BL) < 1ilpnjonf||’7p||M(Bgl—>B;7),

Vellamrar—r,) < IVllMBr-L,) < 1ilpn_}011f||’7p\|M(Bgz—>L,,),

and

ICpmiele, - IChriels,
P Teapy (@7 = feap, (7

are valid.
Proof. The proof of two-sided estimates is the same as in Lemma 3.2.1/1
[MS]. By Minkowski’s inequality

Cocsels, _ ] KO (@t =) ez

€

[cap,, . (€)]'/P ~ [cap,, ,n ()]'/7

/B1 K(z) (/E(Cp,w(g))P(%)l/pdz

- [cap,, . (E)]'/P
where E={x —pz:x €e,z € By}

1Cp1viellL,

[cap,, . ()]'/7

< [|K||z, sup
e

Below we use the interpolation properties



Bm—k — (Bm, Hm—l) 15
P e ), (15)
and
Byt = (By, By 16
P P ey (16)
where | < k < m (see, [Tr], Th. 2.4.2). In particular, (16) implies
IVlaeg < elllfasg 0575 » (17)

where p € (1,00),0 > p>0,0< 60 < 1,and r = 0o+ (1—0)p. It follows from (11)
and (16) that v € M(B]" — BL)NM (B)*~" — L) implies v € M(By*~* — BL™F)
for 0 < k < [. Moreover,

1-k/1 k/l
IVlnrcop =ity < Py lagi— o Mg gt (18)
for 0 <k <l<mand
1-k/1 k/l
Mllacsee < clvlyest Iz (19)

for 0 < k < .

In what follows we shall use five following assertions proved in the book [MS].
Lemma 3. (see [MS], Lemma 3.1.2/1) Let M be the Hardy-Littlewood mazimal
operator defined by

1
Mu(z) = su / v(y)|dy.
@ =y [y

Also let Jﬁnﬂ) denote the Bessel potential in R"T*, s > 1. Then, for any non-
negative function f € L,(R"**)

(TS50 )@, 0) < e (I ) (@, 0) " (MP@) ',

where F(x) = || f(z,); R*||L, and 0 < 6 < 1.

Lemma 4. (see [MS], Lemma 3.2.1/3) For any nonnegative function @ €
Lppioc: p € (1,00), and 0 < X\ < p, there holds

/‘P/\p(x)df /A /@“p(x)dx 1/p
sgp<w> <c Sgp<capp,u(e)> . (20)

Lemma 5. (see [MS], Lemma 3.1.1./1) For any positive « > 0 and 8 > 0
there holds inequalities

(Cp,au)(x) < (Jﬁcp,aAﬁ“) (z), (21)



(Dp,au)(z) < (JﬁDp,aAﬁu) (@). (22)
Lemma 6. (see Lemma 3.9.1 [MS]). For § € (0,1) and any k > 1 there holds

ICp.svielL,

capy, k—1+5(¢)]

1/p
(// |Ah7(x)Ahu(x)\p|h|—"_pdhdw) < csup [ 7 ullps- (23)

Lemma 7. (see Lemma 3.1.1/2 [MS]) For any «, 5 > 0 with a + 3 < 1 there
holds
HDp,osz,ﬁuHLp <c HDp,a+ﬁu||Lp-

3 Lower estimates of the norm in M(B)" — B)

The following is the main result of this section.
Lemma 8. Let 0 <l <m and p € (1,00). Then

Iz < IVllasmy for m=1 (24)

and

Whsp-ier,y < clllaisp—ny  for m>1. (25)
Proof. Let u € Bll, and let N be a positive integer. Clearly,

1/N 1/N 1/N
Il < IVl < vl a5

Passing to the limit as N — oo we arrive at (24).

Now suppose 0 < I < m. Let v, be the mollification of v € M(B]" — Bll)). By
Lemma 2, it suffices to prove (25) for ,. To simplify the notation we write v in
place of v,.

We consider two cases: m > 20 and 2] > m > [. Assume first that m > 2l.
Let U € H;n_l+1/p(R”+1) denote an extension of the function u € BJ"~/(R") to
R"™*! such that

1T R | -t/ < cflus R | g (26)

It is standard that the converse estimate

s R gt < el U R i (27)

holds for all extensions U. Let us represent U as the Bessel potential Jgilﬁl /p f
with density f € L,(R""!). By Lemma 3,
l/m

u(@)] < e (T 1) (2, 0) " (MEP@) ™,

m+1/p



where F(z) = || f(z,-); R||,. Therefore,

n l/m m/(m— n+1 m—1)/m
lyallz, < cllfiR& L™ /=D (8D 1) G oyt

The right-hand side does not exceed

/|’y|m idxy (m—1)/mp
n l/m n m—1)/m
eIl RHE Iy (Tt L) G0l sup<—> . (28)

m+1/p Cappl( )

Setting ¢ = |~y\ﬁ A =1, pu=m—1in Lemma 4, we find that in the case
m > 2l the supremum in (28) is dominated by

JEREANGE
c<sup ) <elny)m

e cap, ,( M(B ™' = Ly)’
Hence and by (28)

n l/m m—1)/m n+1 m l m l/m
Ivallz, < ellfs R L IS e 1S 1 O ™ I -

Using first (27) and then (10) and (26), we obtain

n+l n+1 n n
[T LA 1C OBy < el T LR as = ell s R,

= c||U;R"+1||H;nfz+1/p < c||u;R"Hng,_z.

Thus,
l —1
Ivallz, < elvllyggam-i . ST e Il

which implies (25) for m > 21.
Suppose 2l > m > [. Let p be an arbitrary positive number less than m — .
By (18) with k =1 — p,

(I=p)/1 u/l
||’Y||M(B;nil+“~>BZ‘) S c ||7HM(B;H7I—>LP)|| ||M(B;n*>Bé)'

Since m — I + p > 2u, it follows from the first part of the proof that there holds
inequality (25) with m and [ replaced by m — [ + u and u, respectively, i.e.

H’YHM(B;”JﬂLP) = C||7||M(Bm SN :TE
Consequently,

)/ /l
||7H]\/[(B;)'Lil—>Lp) = CHA/”M(gm i, )”’YH?&(B;;LHB%)



and (25) is proved for 21 > m > [ as well.
By Lemma 8 and (11), the following assertion holds.

Corollary 1. Let v € M(B)" — Bl), 0 <1 <m. Then

sup v elz,

— ——<c¢ m_,BLY-
P Teapymitee = <1 =5)

Lemma 8 in combination with (18) and (19) implies
Corollary 2. Let v € M(B)" — BL), 0 <1 < m. Then v € M(By"* —
BIF), 0 <k <, and

||'Y||M(B;"*’“_>B;*") = CH’Y”M(B;;I—»B;D)-

The following assertion contains an estimate for derivatives of a multiplier.
Lemma 9. Lety € M(BJ — BL), 0 <1 <m. Then D*y € M(BJ* — By, *!)
for any multi-index o of order |a| < 1. The inequality holds

1D pr gy gty < € IMlm(sp—L)-
Proof. It suffices to consider the case |a| = 1,1 > 1. Clearly,
¥l g+ < lurllps + IVl s
< (H’Y”M(B;;L—»B;,) + ”'YHM(BL"*1_>B§)*1))”uHB;,"'
This and Corollary 2 imply
[uVAl g < ¢ Vllarsy—B) lully

which completes the proof.

Lemmas 8 and 9 imply the following
Corollary 3. Let v € M(B)' — Bll)), 0 <1< m. Then, for any multi index

a of order |a| <1, D%y € M(Bgl_‘o‘| — L) . The inequality holds

HDQWHM(B;"*IHM_,L,)) < clllmer-nt)-

4 Proof of necessity in Theorem 1

In this section we derive the inequalities

1Cp.ivsellr,

NCparielr, ‘B < e m 2
e [cap,, ,(e)]'/r +Isetg>n|\% 1@z, < clVllmsp_ny), m (29)

and
[Cpavsellr,

[cap, ,(e)]/7 = : 30
e [capm(e)]l/p . < C“7||MB;J (30)
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The core of the proof is the following assertion.
Lemma 10. Let v € M(B}" — B}), where 0 <1 < m and p € (1,00). Then

1Cpviellr,
[Cap (6)]1/p < C”’Y”M(BL"—*BL) (31)
¢ p,m

Proof. We use induction in ! and start by showing that (31) is valid for
le(0,1].
(i) Let I € (0,1). We have
[uCpivllz, < e(llvullsy, + 17Crull,)
< c(Ilarcsy -yl sg + [1Cpull, ). (32)

Consider first the case m = [. Clearly, |[vCpullz, < |[7VlL. Hu||B;) which together
with (32) and (24) gives

[uCpi7llz, < ¢ lvllas llullpy-

Therefore, HC’p,l'yHM(BéﬁLp) < C”'YHMBé and, in view of (11), we obtain (31).
Suppose now that [ < m. By (21)

H’YC ,lu”Lp < H’Y”M(B;"—lHLP)H‘Ln—lcp’lAmiluHB;”—"- (33)
Owing to Lemma 1, the last norm does not exceed
c||CpaA™ ulr, < e A"l 1 < cllull gy
which in combination with with (33) implies
1VCpaullz, < clivllypr-1or,)lullsy- (34)

Using (32), (34) and Lemma 8, we arrive at

[uCpllz, < clVliarpr—5y)llulls-
Thus,
1Cp VB —L,) < clVar(B— 1)
which together with (11) gives (31).
(ii) Let I = 1. In view of the identity

A;lz)(*yu) = WAELQ)U + uAff)y + AopyAopu — 20 vARu (35)

one has
[uCp17lL, < vullss + IVCpaulL,
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4 / / |Ay(z) Apu(a) P 1|7 b e (36)

for any u € C§°.
We proceed separately for m =1 and m > 1. Let first m = 1. Using (23) with
k=1and 6 € (0,1) together with (36) and (24), we find

[Cp.s57;€llL,,
[uCp1vlL, < <||’YHMB; +Slip W)HUHB},- (37)

In view of part (i) of this proof, the last supremum is majorized by CH'VHMBg-
Hence (37) leads to the inequality

1CpavselL,
ey < ¢ (llassy + 1lacg)- (38)
e p71

Since by Corollary 2 there holds |[v|lasrps < cl[v[[mpy, we arrive at (31) for m =
l=1.

Next we estimate the right-hand side of (36) for m > 1. By (21), its second
term is majorized by

I m-1Cp i A ulln, < ellllarept g,y I Im-1Cpt Al s

<c H’YHM(B;”*_)LP)HC ,lAm_lunL,,

< cllaar-1— )N Mullzy < clvllaep— sy lull sy (39)
The last inequality in this chain follows from (9) and (25). We estimate the third
term in the right-hand side of (36) using (23) with k& = m > 1 and (31) with
l =6 < 1. Then this term does not exceed
¢ sup 1Cps7i€llL,
e lcap, ,,_q1.s(e)]t/P

Furthermore, by Corollary 2

lullsp < el 145 gy llull B (40)

||’YHM(B;"’71+5~>B1§) < CHV”M(B;"HB;)-

Therefore, the third term on the right in (36) is dominated by ¢ [|v[|ar(5y — 51 llull By
This along with (36) and (39) implies

luCpillz, < eIz — Il

and thus (31) holds for I = 1.

(iii) Suppose that [ is a positive integer and that the lemma is proved for
yeM (B;" — B]’,f)7 where k is any positive integer not exceeding [ — 1. Applying
(35), we find

-1 -1

[wCpyllz, < Ivullsy +¢ D 1IVAICrigull, + ¢ I1VulCpi-lle,
j=0 j=1
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S 1/p
+CZ(//|Ahvﬂ($)|p|Ahvl—1—jU\p|h|_”_pdhdaz> . (41)
=0

By (21) with a« =1—j, 8 =m — 1+ j we have
(Cpi—ju)(@) < (Tn—t4jCpa—g A"~ ) (2).

Therefore, for j=1,...,l—1and m > 1,

1V 571Cp—jullL, < eIV vllar -1+ g, I Fm-t45Cpi i A™ Tt g
< IV A asqaap-+5 1, | Coamg A, (42)
According to (9),
c J_jAm—Hju”Lp < ||Am7l+juHBL—-7 < C||u||B;ﬂ.. (43)
By Corollary 3,
||vj7HM(H;"71+J‘_>Lp) SC”,‘)/HM(B];"—>B§))7 .7 = ]-a"'al* ]-a m > l. (44)

For j = 0 by Lemma 8 we obtain
IWCoatllz, < IWlncmy—ssylulsp- (45)
Unifying (42)-(45), we find that for all j =0,...,l—1and 1 <[ <m,
[V iCpi—jullz, < clivlivsy—p)llullBy- (46)
For any j =1,...,1 — 1 we have

1Cpi—jvielr,
[cap — p,m — j(e)]1/P

[ 1V;ulCpi—j¥lL, < csup [ullBg- (47)
e

From the induction assumption and Corollary 2 it follows that for m > [ one has

ICp—jsellL,
T \Ti/p < c m—j -7 < C m__ 48
e [Capp,m_j(e)}l/p = ||7||M(Bp iophiy = HWHM(BP BL) ( )

which together with (47) implies
1V ulCpi iz, < clrllassy ompllullsg, G=1,i=1.  (49)

Next we estimate the last sum in (41). Let § € (0,1) be such that m + ¢
is a noninteger. By (23) with v replaced by V;~v, u replaced by V;_i_ju, and
k=m —1+j+1 each term of the last sum in (41) does not exceed

Cpirsy;e
csup || p,j+87 ||Lp1/
e [Capp,m—l+j+5(e)] p

IVic1—jull gr-riss (50)
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By the induction assumption and Corollary 2 this implies
e 1/p
([ 180959 @P 18091 supin| " Pdnde)
< el yrqpp-ros+s—ppesy sy < cillsep—mplulz. (G
Combining this with (49) and (47), we obtain from (41)

[uCp iz, < clvllmy—bylullsy (52)

and thus (31) follows for all integer .
(iv) Now let I be noninteger. Suppose that

1Cp.ai€ll,

—— < m_
1P Teapy e))p = Itz

for all noninteger [ € (0, N), where N is integer. Let N <1 < N 4 1. In view of
the equivalence Cy, ;v ~ D, 7y we have

N N
[uDp e, < llvulls + ¢ 1V AIDpi—julle, + ¢ 1 VulDpijvle,. (53)
j=0 j=1

Let t € (Oom—I+j)ifm>lorm=1,j>0andlett=0if m=1and j =0.
By (22) with =1 — j and § =t one has

(Dp—ju)(z) < (JiDpi—jAu) ().
Hence
11591 Dpa—jull, < IVivlarwy—+i g, 17 Dp i Al gy
< ¢ IV aseap-+5 o, 1Dy At yoss-e. (54)
By definition of the operator D, ; and the space Wzl),
I1Dpi—jvllyym—i+i—e = [ Dpm—t+j—Dp 1y Vii—jivllz, + |1Dpi—jvllL,-

We use Lemma 7 with « = m — 14 j —t, § = {l} assuming ¢ to be so close to
m—1+jthat 0 <m —¢—[l] +7 < 1. Then

I1Dpm—t4j—tDp 11y Vi—5vllL, < ellDpm—t——3 Vig—jvllz, < cllvllyzm—e (55)

We may also choose ¢ in such a way that m—t is noninteger so that W;”*t = B;"’t.
Then (54) and (55) with v = Atu, together with Corollary 3 imply

V591Dl < e 1V yrametos g 1Al o
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< c|Vllmar—pyllullsy- (56)
By the induction hypothesis, we have for j =1,..., N

Dot e
1Vl Dpi—7llz, < csupM

V; m—j
. [Capp,m,j(e)]l/p H jUHB}D

< ¢ IMlasgp—i i lull g (57)

which together with Corollary 2 implies
I'1VjulDpi—iylz, < clvlvep—sylulsy-
Hence and by (56) it follows from (53) that

luDpivlL, < VB —nyllulsy-

The proof is complete.

The following simple corollary contains the required lower estimate of the norm
in M (B — BL) in Theorem 1. It also finishes the proof of necessity in Theorem
1.

Corollary 4. Let v € M(B)* — Bl), where 0 <1 <m and p € (1,00). Then

Cpriv;e
c(sup [| p,l7Y ||L,,
€

& )< P Bl 58
cappm(e)]l/erzseuFE)nH’Y 1@z, ) < IVllaesp—n) (58)

For m =1 the second term on the left should be replaced by ||v||L.. -
Proof. Since vy € M(B]" — B}) it follows that

Ivnllz, < IVlamep—s)lnlsg

for any n € C§°(Bz2(z)), n = 1 on By(z), where x is an arbitrary point of R™.
Therefore,

sup | Ba(@)l1z, < elvllnrzp—n)-
weR"

The result follows by combining this with Lemma 10.

The next corollary contains one more lower estimate for the norm in the space
M(B;n — Bé).

Corollary 5. Lety € M(B)' — Bll)), where 0 <1 < m, p € (1,00). Then, for
any k =0,...,[l] there holds the inclusion Cp;_y € M(B"~* — L,) and

Ic ,l*k'VHM(B;””“—»Lp) < C”'V”M(BITHB}))-
Proof. By Corollaries 4 and 2,
[Cpi—r7i€llL,
! W < C||’7||M(B;””“—>Bé,’k) = C||'7HM(B;"—>B§))~ (59)

It remains to make use of (11).
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5 Proof of sufficiency in Theorem 1

The aim of this section is to prove the upper estimate of ||v[[a(py—pt) in (4).

Lemma 11. Let v € B;f),loc’ p € (1,00). Then form > 1

¢llmpr—py < sup (60)

e,diam(e

(IIC,w;eIILP N v ellz, )
y<1\[cap, ., (e)]Y/P  [cap, ,,_;(e)]/P /"

For m =1 the second term should be replaced by ||v||L..-

Proof. It follows from the finiteness of the right-hand side of (60) that v €
Ly unis- Let v, denote the mollifyer of v with radius p. From <y € Ly upi it follows
that all derivatives of 7, are bounded. Hence v, € M(By* — Bl).

For integer [ we find by (35) that there holds the estimate

-1 -1
Il sy < (32 11V 30l Crasullz, + 3 H5ulChims I,
j=0 j=0

-1

([ (1809 @80 ana) ). o

§=0
By Corollary 3, for any a € (0,1)
||Vj’ypHM(B;n—l+j*}Lp) S C H'}/p||M(B;nfl+j+a*>Bg+a). (62)
In view of (18), for m > [ the right-hand side in (62) does not exceed

l—7—a)/l +a) /1
C”Wﬂ”gw(jB;n—)l/A’Lp)||’YPH§\]4(BZVL/~>BL)

Combining this with (42) and (43) we obtain
11V370|Cpa—jullz, < (ellvollarmp -5ty + c@Mollarpp-1—r,) lull sy, (63)

where 7 =0,...,l — 1, and ¢ is an arbitrary positive number.
In case m = [ inequalities (62) and (19) imply

) . (I=9)/1 i/l
IVivellarsi—r,) < el Il s, -

unifying this with (42) and (43) for m = we obtain
11V370|Cpa—jullz, < (ellvollarsy + c(@)lvpllzo )l s - (64)
It follows from (47), (48), and (18), (19) that for j > 0

11V 6lCramgrollz, < (Elallaney -5t + c@pllargap-r—p ) ulsp,  (65)
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if m>1and

11V 5ulCpi-%oll L, < (lvollarm + e@)lvpllLa) lulls (66)

ifm=1

The third sum in the right-hand side of (61) is estimated by using (51) and
(18), (19) and has the same majorant as the right-hand side of (65) for m > [ or
(66) for m = 1. Thus, for m > [ we find

Ioullzs < (elollarp—s1) + c©plhsp-i -,

[Cpi7p3 €llz
+e e | (67)
e,diam(e)<1 [Capp,m(e)]l/p
Similarly, for m = [,
IChavmielle
Istllsy < (clvollaem +e@lploe +e  sup Bl Yl . (68)
PEIBy PIME, p e,diam(e)<1 [Ca‘pp,l(e)}l/p .

For noninteger [ the following estimate, simpler than (61), holds

[M-1 -1
oz < e( D2 I19571Cnisuills, + Z | 195uCramiollz, )
J=0

Combining (56) with Corollary 3 and (18), (19), we arrive at (63) and (64) in the
same way as for integer I. We also note that (57) and (18) for m > [ and (19)
for m = I imply (65) and (66) for noninteger [. Reference to (11) and Lemma 2
completes the proof.

The required upper estimate of [|v[|ap; in (4) is obtained in Lemma 11. In

order to show that for m > [ the second term on the right in (60) can be replaced
by V]|, wuir» We need several auxiliary assertions. Let v(z,y) denote the Poisson

integral of a function v € L1 ynif-

Lemma 12. (see Lemma 5.1.2 [MS]) Let I be noninteger and let v € Wi

1,loc*
Then a1
F10 @ y) 1Py g VP
([ e prt00) <0y,

Lemma 13. (Verbitsky, see Sect. 2.6 [MS]) For any k = 0,1, ... there holds
the inequality

8k+1

@< (Il + [ |2 o). (69)

The following two lemmas are similar to those due to Verbitsky as presented
in Sect. 2.6 [MS].
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Lemma 14. Let vy € Wl[l]loc, y € (0,1]. Then
Mty (x,y)
2 <l sup ™R D,y Br(2) |2, -
oyl z€R",r€(0,1) v
Proof. We introduce the notation

K= sup ™ "?|Dyuy; Be(2)|,- (70)
zeR™,re(0,1)

Let r € (0,1]. By Lemma 12

[l]+1 ) p —1—p{l} n—m
/B( )/ 8y[l]+1 ‘ yrr e dy di < K (71)

Applying the mean value theorem for harmonic functions we find for § <y <Z

‘a[l]HW( - 1/ /
oyli+t 1= Bo(a) Jr/a

By Holder’s inequality the right-hand side is dominated by

¢ pi-1- n/p / /
B (z) Jr/4

which by (71) does not exceed cri}=™=1K . The proof is complete.
Lemma 15. Let v € wl

1,loc*

0n +1 ‘ dnt.

8[l]+1

1/
o +1 np_l_p{l}dndt) P
nl!

Then for all x € R™ there holds inequality

m—n l/m m—1)/m
Al <e(( s RID, B ) " (D (@) ™0y ).
zeR™,re(0,1)
Proof. We put
)6““17(3:,1/)
v(y): ay[l]-i-l
0 fory > 1.

‘ for0 <y <1,

Then, for any R > 0

Loty (z, y) oo R oo
Y W gy = Wy = [ [
/0‘ Oyll+1 ‘y dy /O v(y)y-dy /O v(y)y dy+/R v(y)ydy.

Applying Holder’s inequality, we find

" & 1/p
/0 U(y)ymdySCRl(/o (v@)yy 0 ay)
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By Lemma 14,
‘a[l]-&-l

3y[z]+1
where K is defined by (70). Hence

- - 1/p
/ oly)yay < o(R'( / )y tay) " R,
0 0

Putting here

’<0Ky{l} m=1

o —1/pm
R:Kl/m(/ v(y)py”"’{”‘ldy) "
0

we arrive at
h = (m=1)/pm
/ v(y)yldy < k' ( / v(y)y Oy .
0 0

Combining this with (69) for k = [I] we arrive at

o (m—=1)/pm
@)l < (K ([ owryrr-tdy) s )
0

Reference to Lemma 12 completes the proof.

Now, we are in a position to prove the principle result of this section.
Lemma 16. Let 0 <l <m, p € (1,00). Then

1Cpuvsellr,

||7||M(B;”—>BIL)) S C( sup (6)}1/p + ||7||L1,unif)' (72)

e,diam(e)<1 [Capp,m

Proof. By (20) with ¢ = |7p\ﬁ, A=m—1, p = m — &, where ¢ is a positive
number less than [ such that both [ — ¢ and m — € are nonintegers, we find

/|7p|p )dx /|7 |m lp Ydx\ W=t
<c sup( ) (73)

P cap, () cap, - ()

e Capp m— l

Owing to Lemma 15 with [ replaced by I — e and m replaced by m — ¢

(=9)p

(m—e)p _ m—l
[l <o sw DB @) X
e zeR™,r€(0,1)

(m—e)p
J1Dpicrlrde + Il mese).
e

Hence
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(m— E)p
/|7P m— d(p (m 5)p fn_ss
(e) < c{( sup P | Dp,i—ep; Br(2) |, ) X

Capp,m—e zeR™,re(0,1)

m—1

D, _ ;e m—e
(up[”l—””) ; vanl,M}. (74)

CaPy m—e (e)] 1/p

By Corollary 2

1 Dpi—=pi €llL,

" Leap, n,_o(eqi/r = el -e—wie)

= C”'VPHM(BIT{L*_,B;*E) < C||’Vp||M(B;ﬂ—>Bé)'

Thus, the left-hand side of (74) has the majorant

m—1
o((swp D B ) I e gy + Pl )
zeR™,re(0,1)

which together with (73) implies the inequality

/"Vp|p )da
sup( ) 0(5) sup rm HDpl 6'7;)7 ( )”L

e Capy m— l( ) zeR™,re(0,1)

+olvpllar (s —51) + Vol e (75)

where § is an arbitrary positive number.
Next we show that

sup T p”Dpl s’Ypa ( )HL
zeR",r€(0,1)

<eclo)  sup T Coupi Be(@)ln, + 0 pllaecmp—mt) (76)
z€R™,re(0,1)
where ¢ is an arbitrary positive number. We note that by (1) Dp;_.v, can be
replaced by Cp;—.7,. Let w denote a positive number to be chosen later. Further,
let k=1—1and A =1 for integer [ and k = [I] and A = {l} for noninteger . We
have

|h|ntP(A=—e)
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-9 P
< (wry / dy / Vire(y +2h) = 2Viy,(y + h) + Vi, W)I” )
Bo(@) /B

|h|mteA
< (wr)P?N|Cp v Br ()T, - (77)
Besides,
/ dy/ IVivp(y +2h) — 2V, (y + 1) + Vi, () [P dh
B, ( R™\B., [h|ntp(A=e)
2 h
/ / [Vio( y(t l; dh+/ / IVmp+y:r ))I dh
B.(z) JRMB,, [|b[MTPATE B Jrmp,, [|hntPOE
@)V Vh B, )- (78)

Further, we have
2h)|P
Bo(z) JRM\Bo., |h|” pA=e

< e (e IV, (2)[Pdz
/Rn\zsw |h\"+p(’\_e) Lr(z+2h) ?

Scwp(E—A)rn—Pmﬂ’E sup pP(m=2) n||vk’7p7 (z )”L
zeR" re(0,1)

By (12)—(14) the last supremum is dominated by
c ||vk7l7 ‘|§)\4(W;n7>‘—>Lp)
which by Corollary 3 does not exceed ¢ ”’YPH?W(B;”HB}))'
Clearly, the second term in the right in the right-hand side of (78) is estimated
in the same way. Similarly, the third term does not exceed

C WP

Hence

/ d / |vk7p Y+ 2h) - QVk’Yp(y + h) + vk’}/p(y)‘p dh
Yy n+p(A—e)
B (z) R\ B, |h|tP

< pr(e—/\)rn—pm+pe”,yp P (79)

A—

From (77) and (79) we obtain

P R Dyl < (W TP Co o Br(@)z, + w5 M a1 ) -
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Setting o = cw®™* we arrive at (76).

By (12)—(14) and (76),

sup T’m_e_%||Dp,l—s’Yp§Br(z)HLp
zeR",r€(0,1)

1Cp1vpi el
<c sup ——————— m_,
< AV e, e N5 =)

which together with (75) and Lemma 11 results at

I1Cp,17pi el
m_, Bl Sc(su —_— = P
H%HM(BP BL) e10 [cap, . (€)]'/7

Estimating the right-hand side of (80) by Lemma 2 and using the equivalence (see,
Proposition 2.1. 5 [MS])

1 it ) (30)

cap,, , (€) ~ Y cap, (e N BY),
i>1

where {BW},5¢ is a covering of R" by balls of diameter one with multiplicity
depending only on n, we complete the proof.

6 The case mp >n

For mp > n Theorem 1 admits a simpler formulation.
Corollary 6. Let 0 <l <m, mp >mn, and p € (1,00). Then

IV arBy—B1) ~ Selg)n(HCp,l’V;Bl(x)”Lp + 1y Bi(@)llz,)- (81)

For m =1 the second term on the right should be replaced by ||v| L. -
Proof. The lower estimate of ||7\|M(B;n_)3é) follows from the relation

capp,m(e) ~1 (82)

valid for mp > n and e with diam(e) < 1, combined with Corollary 4. The upper
estimate results from

IVarsp—m1) < Wllarsy < e (- sup NCorviel, + Ivlz.)

e,diam(e)<
< ¢ sup (ICpav; Ba(@) || + [l Bi (@)l r,)-
rzeR™

The proof is complete.

Remark 1. One can easily verify that the right-hand side in (81) is equivalent
to the norm of v in le),unif' Hence M(B]' — le,) is isomorphic to Bé’unif for

0<l<m,mp>n,pe(l,00).
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Let W, denote the usual Sobolev space with p € (1,00) and integer m, and let
W, ¥ stand for the dual space (W})*, p+p' = pp’. In [MS], the following sufficient
condition for inclusion into the distribution space M (W," — VVp_’c ) can be found.

We supply it with the proof for completeness and reader’s convenience.
Theorem 2. (see Sect. 1.5 [MS]) (i) Let p € (1,00), m < k. If

v=Y_ D%

la| <k
with
Yo € M(Wy — WE™™) N M(W," — L),

then v € M(W,» — W, ).
(ii) Let p € (1,00), m > k. If

Y= Z D%yq
la<m
with
Yo € MW" - W )N M(W), — Ly),
then v € M(W,» — W, ).
Proof. Tt suffices to prove only (i) since (ii) follows from (i) by duality.
Let u € W;ﬁ, m < k. Since

uD%y, = Z cxaDM(YaDY M),  cra = const,
A<a

we have

||'Y“HW;’€ <c Z H’YQDQ—AUHWILAI%
[A<lal<k

<ec Z ||’Ya||]VI(W;n—k+M|*}WT\)M—k)||'U/||W£n+\a|+k.
[A<]al<k
Applying the interpolation inequality

k=X /k Al/k
el —++131 i+ < ellvallypmnts e elnr(wp -,

which follows from the interpolation property of Sobolev spaces (see [Tr], Sect.

2.4) we obtain from from (85)

vl < € (Pallarwm—t v + s —z,)llullwge.
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It remains to note that
||70z||M(W;"—’“HWp—’“) = ”'VaHM(W:,HWs,—’")-

The following assertion shows that this theorem provides a complete character-
isation of M (W;” — Wp_k) which holds under some conditions involving k,m, p,
and n.

Corollary 7. Let k and m be positive integers and let either k > m > 0 and

k>n/p orm>k>0 andm>n/p. Thenye MW" — W) if and only if
7€ Wp_,llfnif n Wp_’,?;nif' (86)

In particular, if max{k,m} > n/2 then M(W — W, *) is isomorphic to

W—min{m,k}
5 .

Proof. It suffices to consider the case k > m > 0, k > n/p’, because the case
m >k > 0, m > n/p results by duality.

Necessity. It follows from the inclusion v € M(W,* — W, %) that v € Wpffnif.
Since M(W,* — W, *) is isomorphic to M (W), — W,,™), we have v € W /" .
as well.

Sufficiency. It is standard and easily proved (compare with Sect. 1.1.14 [M])
that v € Wpfffnif N Wp7?llnif if and only if (83) holds with v4 € Lp unit N W]f,jl’;’if.
Since M(W} — W}™™) is isomorphic to W} ", for p'k > n, it follows that
Yo € MW} — W5™™).

It remains to show that v, € M(W;* — L,). We choose ¢ and r to satisfy

1/¢ > max{0,1/p —m/n} > —c + 1/q,

1/r > max{0,1/p' — (k —m)/n} > —e +1/r
with a sufficiently small e. Since 1/p > 1 — k/n, we have 1/p > 1/q+ 1/r. By
Holder’s inequality
Vol Ly nie < € 1VallLwnie [ 2 g nie

and by Sobolev’s imbedding theorem

Vol Ly e < € l1vallys—m llullwe,
p’ ,unif P
This means that v, € M(W;" — L,). The proof is completed by reference to
assertion (i) of Theorem 2.
Remark 2. Note that by Sobolev’s imbedding theorems Wp7,7;lnif C WZ; 1’1€nif’
k > m, if and only if either n < (k —m)p or

_ 9_
n > (k—m)p, K UL P

n p
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Under these conditions, M (W)™ — W, *) is isomorphic to W e i kp" > n.
Analogously, if m > k, mp > n and either n < (m — k)p’ or
m—k _ p—2

n>(m—k)p, - ZT,

then M (W;’L — Wp—k) is isomorphic to Wp_,fnif.

We finish by stating a direct but important application of Corollary 8 to the
theory of differential operators.

Corollary 9. Let k and m be integers and let L,,+1(D) denote a differential
operator of order m + k with constant coefficients. If either k > m and kp’ > n,
orm >k >0 and mp > n then the operator

W3 u— L(D)u+y(x)ueW,™*
s continuous if and only if

—k _
v EW, i NW,

p,uni ,unif*
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