BEHAVIOUR OF SOLUTIONS. TO THE DIRICHLET PROBLEM
FOR THE BIHARMONIC OPERATOR AT A BOUNDARY POINT

VoGo Maz’ya, Leningrad

1°, Introduction. According to the classical result by Wiener
[1] s [2] the regularity of a boundary point O for the Laplace equa-
tion in a domain QcRn, n>2 1is equivalent to the divergence of the
series

oo
D X eapc Q)
k=1 2
where Cf = {xeRn: 9/2 < x| f?} and cap is the harmonic capa-
city. Wiener’s theorem was extended (sometimes only with respect to
sufficiency) to different classes of linear and quasilinear second
order partial differential equations ([3] - [11] end others). However,
results of this type for higher order equations seem to be unknown.
In the present paper we study the behaviour near a boundary point
of solutions to the Dirichlet problem with zero boundary data for the
equation A2y < £, fe CS”(Q), Q ¢ R®. The proof covers only di-
mensions n = 4,5,6,7 {(the case n<4 is not interesting). We show
in particular that the condition

[ -]
;l 2k(n-4)cap2(c2'k\g) =, n = 5,647,

where cap, is the so called biharmonic capacity, guarantees the
continuity of the solution at the point O. This result follows
from an estimate of the modulus of continuity. Such estimates, for-
mulated in terms of the rate of divergence of Wiener?’s series were
known only for second erder equations ([12] ’ [7] ’ [9] , [13] Yo

In the last section we obtain some pointwise estimates for the
Green function  G(x,y) of the Dirichlet problem for A2 ya1ig
without any restrictions on the boundary 9{2. In particular it is
proved that IG(x,y)| = clx—yl""n where n = 5,6,7 and ¢ is a
positive constant depending cnly on ne.

The author takes pleasure in thanking E.M. Landis for stimulating
discussionss

2°, Preliminaries end definitions. Let $) denote an open subset
of Buclidean space R" with a compact closure ) and a boundary
21 . Let O be a point of £ and Bsa ={,x:lx| ‘S"}' cib =
BY\BS’ /2° We denote by c, Cyyeoo positive constants depending

. yA v o

only én n and write V,= {3%/2 X L oeee x n}, Vl =V. We
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consider only real functions.
°2 o, >
Let Wz(ﬂ) be the closure of the space CO(Q) in the norm

I|V2u ” Lg(Q)e
We introduce the biharmonic capacity of a compact e with res-
pect to an open domain G, GDe:

cap,(e;@) = inf {flvzulz dx: u€Cy (G,
G

u =1 in a neighbourhood of e }.

We write cap,(e) instead of cap2(e;Rn).

Let [' denote the fundamental solution for the biharmonic
operator, i.e.
| x)4-0

(1) Mz =

if n >4,
2(n=4)(n-2)w

-1 a . _
(4(04) logm if n = 4,

M(x)

where Q@ _ = mes ¥B and d 1is a constant.

o n . n-1 i - 2

3 s "Weighted" positivity of A e,

Lemma 1, Let ue\%‘g(ﬂ)nc"‘(ﬂ) and 4 £ n = 7. Then for every
point pe ) (and in the case n = 4 for any d satisfying 4 =

2 diem (supp u)) we have

2
(2) u(p)? cf[(VEu(x))z + AVuG)T] [(xp) ax S
Q 'p-X|

£ J A u(x) e A(ul(x) I—'(x-p)) dxe
Q

Proof. Let (r,@) be the spherical coordinates with the center
p and let G denote the image of € under the mapping x —» (t,w)
where t = - log r. Since

r?Ay = 1 P(r3/3 1) [r*%(r3/2 ru] + dp u

where (fw is the Beltrami operator on the unit sphere Sn-:L

get for the function v(t,w) = u(x)

we

2 - =
r Ay = Vi (n-2)vt + 0y, Vv = Lv.

Consider first the case n>4. By a simple computation

(3) c(n)JA u(x) e A (ul(x) Mx-p)) ax = f eIt 1 (ve(P=4)ty414q =
Lo} G
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= f(vtt'(n"2)vt+ 5w v)(vtt+(n-6)vt-2(n-4)v+ é’w v) dtdw
G
where c¢(n) = 2(n—2)(n—4)6)n. We remark that

(4) 2 jvtv dt do = j v(oo,oJ)2 da = wnu(p)?‘.
-1
G st

The following identities are also obvious:

(5) fvtcfwv dt dw = 0, /vtvtt dt dw = O.
G G
Thus the last integral in (3) becomes

(6) f[vit-(n-Z)(n—6)v§-2(n—4)vttv+2vtt Jwv+(¢§w v)2-

G
- 2(n=4)vdv] at aw + L8 u(p)2,
After integrating by parts we rewrite (6) as

({2 (& mPav (= 8, v)re(net)v(=d,y v) +
G

+ [5—(n—5)2]v,§} dt dw + C(g) u(p)?e

Using the former variables (r,«)) we obtain

r rn-4

_{[uir"' _22 (kur)2+2 n;% (vou)2+ ﬁl“l’l_)l_;l:ll wl] dx . e f21 u(p)?.
r r r
Q

This completes the proof of (2) for n = 5,6 In the case n = 7
one can use the inequality

2 3dx > (.2 _ax
furr -7 jur =2
Q Q

which is a corollary of the one-dimensional inequality

oo oo

fw(r)er dr ff w’(r)2r(3) dre
0 0]
Now let n = 4. We have

J 44)4 Du(x)e Alulx) M(x-p)) dx = _[Au(x)A(u(x)log P‘+PI) dx =
Q fo]

=f LveL((£ +t)v) dt dw
G
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where .l = log d. The last integral is equal to

(8) [ran? at aw + 2 [ vy at qw
G G
Applying (4) and (5) we rewrite (8) in the form

(9) f(l +£)(Lv)° at da + 2 f[(vwv)z-vﬁjdt dw + 20 u(p)?,
G G
For the first integral in (9) we have

f (£+t)(Lv)? at de = f["it“‘“’i*(‘gw 2L +t) at dw +
G G

+ 2 f (vyy O V-2V, o v=2v, v, (4 +8) a4t dw,
G
and integrating by parts, we get

Jidrram? ot aw = [ [v2rav2e(8,m22(T,v)2] (L) ot a0~
G G

-2 J[ (V- 2] ataw .
G
Therefore

4¢d4f Au.Atul") ax =f [v§t+4v§+(¢§w V72 +
a G
+ 2(Vyv)?] (£ +t) at dw + 20,7,

This identity together with the following easily checked one

j (3&,‘:)2 dw Z (n-1) j (va)2 dw
Sn—l

Sn-l

implies

2 fAuaA(u M ax Z ¢ f[(vzv)2 + (V)2 (£ +t) dt dw +
Q G

2
+u(p)? Z cj (Vw2 + Y Y95, — 9 gy + u(p)?.
a v |%-p1° e

The proof is complete.
Lemma 1 fails for n Z 8, Indeed, let the function ueCS (Q\p)
depend only on r =1lx-p! . Then (see [7])
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+ oo + oo
c(n)/Au(x)oA(u(x) P (x-p)) ax = c.)n/vgt dt - ¢ jvi dt
Q - o0 - oo

where v(t) = u(e_t)o Therefore rhe estimate (2) is impossible.
400 Local estimates. In the next lemma and henceforth we use the
notation:

M’,(u)=f_n f u?® ax,
n.nczf

2
N = | (Vw2 FW2] pey
¥ 0 NB, I x=p

where M= r'(x-p) end we set 4 = 3§> for the case n =4 1in
the definition of l".
Lemma 2. Let 7 € C5°(B,, ), 7% =1 in a neighbourhood of the
02 .
ball Bp suews(Q )nc(‘)"(ﬂ)° Then for any point per /2

100 [ A2 A2 ax = [ Au Aty b ax +
Q Q

+ ¢ Mf (u)l/2 1\73,(71211)1/2 +cM ¢ (u)e

Proof. Since

A P0A( 2l - Auw Ayl =
= [A,"Zz]u.A("Zzu ™M - Aulag 2]"2,2‘1 M=
= [A,nlz_]u.[A,fzz r’] ~ Au. [[A ,17 2]o’22r1]u

(the square brackets denote the commutator of operators), we must
estimate the difference of the integrals

4 =n][A:°l2]u°[A"7,2P]u dx, i =$_{Au.[[A 1 2]”712 Mu ax.

We begin with the estimate of i2o Clearly
2 2
[[2,2°1m M = 20V 2V (q 21 = 4un 2 PV )24g V7 V).

Hence

(11) i, = qu((f2nzzu) éx,
o

where (¢, = 4(2 I"(Vnz)z *”LV"z'V Me 1In general, we denote

further by ‘fi the functions from CO°°(B2f\_BS, ) satisfying
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< 1-n—k -
Ivkyl - CP k = O,l, ece
The inequality
. 2
|12| ¢ M ¢ w2y e (nzzu}/ +cMSo (u)
is a straightforward consequence of (ll). Now we pass to the estimate

of ipe Since

[Aa :'72]u°[A:fQ2r'.]u =
= (4n Va4 Vu+ uhg?)(2Vu. V(g 2T) + ul(g? ),

we have
(12) i, = 8 f(VronZ Y (V (1 2.V u) dx + f (.fou2 dx,

where ¢, "A”L .A("l 2m - div(Am °V(72I")> -
- 2d1v(A(”l, ")em ¥V 7). The first term on the right hand side of
(12) can be written in the form

il = 8J (VUOVIZ )(ZPV’Z +"LV P).V(”Z 2\1) dx +
a
8 [u? aiv {(Vop .V 2TV } ax =
!

= fu div(thV(-'?z 2u)) dx + f uztfo dxe
Q Q
Hence

il ew g @ w22+ oy o @),

97

which completes the proof.

Using Lemmas 1 and 2 we get

Corollary 1, Let 4 = n = 7, ueglg(Q), A% =0 in Q.n132 N
Then for all points pEBg /2 P
(13) u(p)@+ f (V) 2+ lz-pl"2(Vw?) I (x-p) 0x T ¢ Mg ().

QnB,,

Corollary 2., Let 4 % n £ 7 and let the function ue W 2
satisfy the equation A% =0 in Q\Bg, « Then for all p01nts
pé€ 9\829 )

< _L n-~4 1/2
(14) Jup)] = ¢ ¢ 57 ) Mf (u)~%,

Proof. Let G be the image of {1 under the inversion

p p|p|'2° We make use of the Kelvin transform U(q)=lql4-nu(qlq|-

2)
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which maps u into a biharmonic function in GNB _;. One can

easily see that the Kelvin transform preserves the class ﬁvg. By

the inequality (13) for all points qe GNB -1
(2? )
@2 fee® [ um? oy

B _N\B -1
o %9
or which is the same,
|q|2(4-n)U(QIQ|-2)2 < c?n j 'yl2(4"n)u(y|y|-2)2 dy'o
B \B
2$’-l -1

Setting here p = q|q|-2, X = y|y|—2 we obtain the estimate (14).
5° Local estimates in terms of capacity.
Lemma 3. Let 4=n=7 and let the function uewg satisfy the
equation A2u =0 in Q nB29 » Then for all points pe st/ 2

(15)  u(p)? + [ (Vw2 + | x=pl"(Vw)?) M (x-p) ax £
QNB

f
T J (Vw2 +1 x-p|"2(vw)?) [M(x-p) ax
rie ) anzy

where (50) =§4-ncap2(02\§2) for n»4 and Jv(sg) =
= cap2(c2 \SZ;B2 ) for n’= 4; in the case n =4 we set 4 = 3?
in the definition’of the fundsmental solution.

Proof. The results of [14] , [15] imply

[ ——fﬁ [ «vm? g 2T

an .an
%p

Noting that ¢ Z el x-pl, r‘(x-p) Zcop
end using Corollary 1 we complete the proof.
Lemma 4. Under the conditions of Lemma 3 for 2r < e it holds

4=n
for xeC29 s D€ B$‘,/2

‘b
ae  f [(vm2nxm2vw?] |n —E g (wexp(-e [pl) L
QnB, T

Proofs By (15), for sufficiently small § > O and r = e

] ((Vzu)2 + 1 x-pl72(Vw)?) M (x-p) ax =
QN(B\Bg)
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o ol f (Vw2 +1 x=p|"2(Vw)?) [ (x-p) ax.
r Qnc,,

Taking limits with p — O and then with ¢ — + O we get

f ((Vzu)2 +1x172(guw)d)l 2140 ax =
QnBr

c
< <y [ (v +xI"2Twd) x4 ax.
QnC2I‘

We denote the left hand side of this inequality by 14 (r) and set

r=2 k. Then
-k -k, < 1-k
(n (l+02r(2 ))1,/(2 ) Y.
Since ]r‘ is a bounded function, the estimate (17) is equivalent to

Y(2_k) = exp[-cBr(2'k)] 1’/(21'1‘).
So for m >[

£1 _
(18) Y (278) = exp[-03 Zr(z‘J)] y(z'l Yo
Jj=m

Let numbers m and A satisfy the inequalities

ama 274z = 21" . Then (18) and (13) yield

-1
< - & =3 .
y(2) = coexp [~c4 & re iIMso (u)

Using simple properties of the biharmonic capacity (see for example
[15]) we obtain (16) from the last estimate.

6%, Regularity of a boundary point. We say that a point 0€3Q)
is regular for the biharmonic operator if the solution ue glg(ﬂ)
of the equation Azu = f with an arbitrary right hand side from
CS"(.Q) is continuous at O.

Theorem ls Let 4 = n< 7 and

(19) fr(fc)d?"’=n
0

where r is the function introduced in Lemma 3. Then the point O
is regular for AE. Moreover if ueﬁ'g(Q) and A2u =0 in

Q nB2§ for some e > 0 then there exists a constant ¢ such
that
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(20) lim  exp(ec fr(’r) iz ) suplu(p)l
r—»0 lpj<r

Proof. According to (15) we have for all pe Br/2 with r = @

(21) u(P)2 = ‘—%?y f ((Vgu)2 +1 x173(vw?) x4 ax.
r anzr

Let S(r) = sup{u(p)®: pe B.o}+ From (21) it follows that

[ v
0 QﬂCz,c,

r
S sterple) &= [ L [ (vl "2(Vw?) x4 e =
0
r/2
ce [ 4T [ ]l (Vw2 (Tw?) dw
0 T st
which by the change of integration order becomes
r/2
[stwrpr e [ «vmBis (v x4 o
0 Qng,
Using this estimate and Lemma 4 we obtain
r/2 e .
dT_ =< . o]
(22) b[ Stz )y (v) G- ug (exp(-c [ piz) &),
T

Let

¢
for s [ e %
T

The inequality (22) assumes the form

[ Stz af e My (wexpl-c ().
f(r/2) f f f f
Since the function f — s{t (f )) decreases and f(r) < f (r/2) -
- ¢, ¢>0 we conclude
L 2f}r)
(zr/2)s(§ 7 (2¢(x/2))) & S(t (§))d
f f f f(r/Z) E f

where is the inverse function to f('r Jo We set R =
= § M2 f(x/2)). Then

M? (u)exp(-cf(r/Z)),

-1

(RYexp( € £(R))S(R) € 2¢ M, (u)
2

®
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for all RS f'l(z §(p/4)). Therefore

lim  exp( %f(R))S(R) =
R—>0
The result followss,
An immediate consequence of Theorem 1 is
Corollary 3. If 4 <n <7 and

lim /r('r)——>0
r—)Olog

then the solution ue W2(Q) of the equatlon A u =f with
fecd"'(ﬂ) satisfies the inequality |u(x)| 2 clx]® , o >0 in
a neighbourhood of O,

7°. Examples of regular points for A‘?., The proof of the fol-
lowing assertions can be performed in the same way as the proofs of
analogous facts for (p,l)-capacity in [9] s Po 53=55.

If n =4 and the point 0 belongs to a continuum which is a
part of R™N\{l then r('u’) Z const >0 and consequently the condi-
tion of Corollary 3 holds.

Let the exterior of €1 in a neighbourhood of the point O
contain the domain {x: 0<x, <1, xi + oaee + x121_1< f(xn)e} , where
f(t) 1is an increasing positive continuous function on (0,1) such
that £(0) = £2(0) = 0. Then (%) 2 cllog £(Z)|™* for n =5
and 2 (7) ¥ [z le(e )] for n>s.

Hence the point O is regular for A2, if

_/ | log fe)tetar = o for n = 5,
0

/['z"lf(t) 2527l g7 = e for n
0

6,7.

8°. Estimates for the Green function. Let G(x,y) be the Green
function of the Dirichlet problem for the biharmonic operatore.
Theorem 2. Let 5 £n €7 and dy = dist(y,?2 Q). Then

4-n
d
¢ Y

clx-yi4n it |x-yl>a4

1A

(23) latx,y) - Mx~y)| if |x=yl%a

y’

1A

IG(X»y)' ¥?

and consequently |G(x,y)| < clx=yI4™ for all xe€Q, ye Q.
Proof. Let B(y) ={x: | x-yl<dy} and aB(y) ={x:|x—yl< ady}.
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We denote by 7 a function from CO°°|:0,1) equal to unity on the
segment [0,1/2) and set

H(x,y) = G(x,y) - 7 ( I—%‘}i )P(x-y).
y

Obviously the function x - H(x,y) belongs to the class
W (Q)OC“’(Q), the support of the function x — A2H(x,y) lies
1n B(y N ?B(y) and |A H(x,y)l = dyn Applying Lemma 1 to the
function x -~ H(x,y) we get

H(p,y)2 22 j AiH(x,y).H(x,y) M(x=-p) ax.

B(y)nQ
Therefore
(24) sup H(p }’)2 £
pe 2B(y)nQ ’
= sup | H(x, )l sup f |A§H(x,y)| M (x~p) dx,
x € B(y)nQ p € 2B(y)NQ B(y)nQ
and hence
(25) sup |H(p y)‘ < a2 sup _/ Mx-p) dx S ¢ g4 ,
pe2B(y)NQ ’ Y pe2B(y)NQ B(;)NQ y

Since Agﬁ(p,y) = 0 for peB(y) we obtain from (25) and Corollary
2 (in which O must be substituted by p) for p& 2B(y)

TH(p,y)| = ¢ ( I——l,- R4 sup [H(x,y)| £ clp=yl4 D,
Py x € 2B(y)NQ

The result follows.
Theorem 3. Let n = 4, dy = dist(y,282), let Q ©be a domain
with a diameter @ and

- -1 9
P(X-y) = (40.)4) log TR=y7 *
Then
) .
le(x,3) = Mx=y)| £ ¢ log G + ¢, if | x-y| = dys
1G(x,7) ! Sc::310g532—+c4 if | x~y|l > a_.
¥ Yy

Proof. Proceeding in the same way as in the proof of Theorem 2
we come to (24). Hence
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sup [H(p,y)| = ca4 sup Jr M(x-p) dx =
Y pe 2B(y)NQ B(;)NQ

< J
- cllog 3; + cs

which together with Corollary 2 gives for pé€ 2B(y)

Since

[1]
2]
(3]
[4]

[5]
[e]

(7]
(8]

(o]
[0
[11]
[22]
[3]

‘H(p,Y)I Ze sup [g2(p,y)| = c(c log éﬁ +cy)e
x€ 2B(y)NQ y
G(p,y) = H(p,y) <for pe€:2B(y) the result followss
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