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1 Introduction

Let Ω be an open set in R
n and let µ and ν be locally finite nonzero Borel measures

on Ω. We also use the following notation: l is a positive integer, 1 ≤ p < ∞, q > 0,
dx is an element of the Lebesgue measure mn on R

n, and f is an arbitrary function
in C∞

0 (Ω), i.e. an infinitely differentiable function with compact support in Ω. By
Mt we mean the set {x ∈ Ω : |f(x)| > t}, where t > 0. We shall use the equivalence
relation a ∼ b to denote that the ratio a/b admits upper and lower bounds by positive
constants depending only on n, l, p, q.

In this paper we discuss variants and applications of the inequality

∫ ∞

0

capp(Mat, Mt)d(tp) ≤ c(a, p)

∫

Ω

|gradf |pdx, (1)

where a = const > 1 and capp is the so called conductor p-capacitance (see (10)).
A discrete version of (1) and its analogue involving second order derivatives of a
nonnegative f were obtained by the author in 1972 [M4].
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By monotonicity of capp the conductor inequality (1) implies

∫ ∞

0

capp(Mt, Ω)d(tp) ≤ C(p)

∫

Ω

|gradf |pdx, (2)

which was also proved in [M3] with the best constant

C(p) = pp(p − 1)1−p.

(For p = 2 inequality (2) with C(2) = 4 was used without explicit formulation already
in [M1]-[M3].)

Inequality (2) and its various extensions are sometimes called either capacitary or
strong type capacitary inequalities.

They are of independent interest and have numerous applications to the theory of
Sobolev spaces, linear and nonlinear partial differential equations, calculus of varia-
tions, theories of Dirichlet forms and Markov processes, etc. ([M3], [Ad], [M4], [Dah],
[Han], [Ne],[AP], [Ka], [MN], [Vo], [AH], [HMV], [V1], [V2], [Ta], [Fi], [FU1], [FU2],
[AX1], [AX2], [Xi] et al).

It is, perhaps, worth mentioning that the proof of (1) is so simple and generic that
it works in a much more general frame of analysis on manifolds and metric spaces
(see [Gr], [Haj], et al.).

In what follows, we deal mostly with applications of conductor inequalities to two
measure Sobolev type imbeddings which seem to be unattainable with the help of
capacitary strong type inequalities. In particular, we sometimes assume that n = 1
and we study inequalities of the type

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|f (l)|pdx +

∫

Ω

|f |pdν

)1/p

, (3)

where f ∈ C∞
0 (Ω), and their analogues involving a fractional Sobolev norm. Inequal-

ity (3) and its applications were the subject of extensive work. See, for example,
books [Da1], [KP], [M5], [MO], [OK], papers [CW], [Da2], [M3], [Mu], [NS], [Oi], [Ot],
[SU], and references given there.

Let n = 1, x ∈ R, d > 0, and let σd(x) denote the open interval (x−d, x+d). The
equivalence of the inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|f ′|pdx +

∫

Ω

|f |pdν

)1/p

(4)

with an arbitrary f ∈ C∞
0 (Ω) and q ≥ p, and the statement

µ(σd(x))p/q ≤ const(τ1−p + ν(σd+τ (x))), (5)

where x, d and τ are such that σd+τ (x) ⊂ Ω, is valid without complementary assump-
tions about µ and ν. Criterion (5) is a particular case of a general multi-dimensional
condition equivalent to the inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|φ(x, gradf)|pdx +

∫

Ω

|f |pdν

)1/p

(6)

obtained in [M3] (see also [M5], Theorem 2.3.7). The condition just referenced is
formulated in terms of the conductor capacitance generated by the integral

∫

Ω

|φ(x, gradf)|pdx,
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where the function: Ω×R
n 3 (x, y) → φ(x, y) is positively homogeneous in y of degree

1 and subject to the Caratheodory condition. In the one-dimensional case, when this
capacitance is calculated explicitly (see either Lemma 4 in [M3] or Lemma 2.2.2/2 in
[M5]), the general criterion just mentioned takes a much simpler form, which is given
in (5).

We conclude Introduction with a brief outline of the contents of the paper. A
proof of (1) is given in Section 2. In Sections 3 and 4 we discuss inequality (4) and
give a criterion for its multiplicative analogue. A necessary and sufficient condition
for the compactness and two-sided estimates of the essential norm of the imbedding
operator associated with (4) are obtained in Section 5.

In Section 6 we characterise the inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|f ′′(x)|pdx +

∫

Ω

|f |pdν

)1/p

(7)

with 1 < p ≤ q < ∞, restricted to nonnegative functions f ∈ C∞
0 (Ω), by requiring

the condition

µ(σd(x))p/q ≤ const(τ1−2p + ν(σd+τ (x)) (8)

to be valid for all intervals σd+τ (x) ⊂ Ω. A simple example shows that (8) does not
guarantee (7) for all f ∈ C∞

0 (Ω). We also give counterexamples showing that the
necessary condition for (3)

µ(σd(x))p/q ≤ const(τ1−lp + ν(σd+τ (x)) (9)

is not sufficient if l ≥ 3.

Section 7 is dedicated to multi-dimensional conductor (p, l)-capacitance inequal-
ities for fractional Sobolev Lp-norms of order l in (0, 1) and (1, 2). The article is
concluded with necessary and sufficient conditions for two-measure multi-dimensional
inequalities of type (6) involving fractional norms.

2 Inequality (1)

Let g and G denote arbitrary bounded open sets in R
n subject to ḡ ⊂ G, Ḡ ⊂ Ω.

We introduce the p-capacitance of the conductor G\g (in other terms, the relative p-
capacity of the set ḡ with respect to G) as

capp(ḡ, G)=inf
{

∫

Ω

|grad ϕ(x)|pdx : ϕ ∈ C∞
0 (G), 0 ≤ ϕ ≤ 1 on G

and ϕ = 1 on a neighborhood of g
}

. (10)

This infimum does not change if the class of admissible functions ϕ is enlarged to

{ ϕ ∈ C∞(Ω) : ϕ ≥ 1 on g, ϕ ≤ 0 on Ω\G } (11)

(see Sect. 2.2 in [M5]).

Now, we derive a generalization of the conductor inequality (1).

Proposition 1. For all f ∈ C∞
0 (Ω) and for an arbitrary a > 1 inequality (1) holds

with

3



c(a, p) =
p log a

(a − 1)p
.

Proof. We show first that the function t → capp(Mat, Mt) is measurable. Let us
introduce the open set S := {t > 0 : |grad f | > 0 on ∂Mt} whose complement has
zero one-dimensional Lebesgue measure by the Morse theorem. Let t0 ∈ S. Given
an arbitrary ε > 0, there exists a function ϕ ∈ C∞

0 (Mt0), ϕ = 1 on a neighbourhood
Mat0 , and such that

‖gradϕ‖p
Lp

≤ capp(Mat0 , Mt0) + ε.

Since t0 ∈ S we deduce from (10) that for all sufficiently small δ > 0

‖gradϕ‖p
Lp

≥ capp(Ma(t0−δ), Mt0+δ).

Therefore,
capp(Ma(t0±δ), Mt0±δ) ≤ capp(Mat0 , Mt0) + ε,

which means that the function t → capp(Mat, Mt) is upper semicontinuous on S. The
measurability of this function follows.

Let γ denote a locally integrable function on (0,∞) such that there exist the limits
γ(0) and γ(∞). Then there exists the improper integral

∫ ∞

0

(γ(t) − γ(at))
dt

t
:= lim

ε→0+,N→+∞

∫ N

ε

(γ(t) − γ(at))
dt

t
,

and the following identity
∫ ∞

0

(γ(t) − γ(at))
dt

t
= (γ(0) − γ(∞)) log a (12)

holds. Setting here

γ(t) :=

∫

Mt

|gradf |pdx ,

we obtain

∫

Ω

|gradf |pdx ≥
1

log a

∫ ∞

0

∫

Mt\Mat

|gradf |pdx
dt

t
.

By (10) the right-hand side exceeds

(a − 1)p

p loga

∫ ∞

0

capp(Mat, Mt) d(tp)

and (1) follows. �

3 Applications of (1)

The following lemma, essentially resulting from (1), is a particular case of the general
result from [M3] and mentioned in Introduction.

Lemma 1. Let 1 ≤ p ≤ q. The inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|gradf |pdx +

∫

Ω

|f |pdν

)1/p

(13)

4



holds for all f ∈ C∞
0 (Ω) if and only if there exists a constant K > 0 such that for all

open bounded sets g and G, subject to ḡ ⊂ G, Ḡ ⊂ Ω, the inequality

µ(g)1/q ≤ K(capp(ḡ, G) + ν(G))1/p (14)

is valid.

We prove this lemma here for readers’ convenience.

Proof. The necessity is proved simply by putting any function ϕ from class (11)
into (13). Let us prove the sufficiency of (14). We use the obvious identity

|f |q =
(

∫ ∞

0

χMtd(tp)
)q/p

,

where χMt stands for the characteristic function of the set Mt. Hence

‖f‖Lq(µ) =
∥

∥

∥

∫ ∞

0

χMtd(tp)
∥

∥

∥

1/p

Lq/p(µ)
, (15)

where the notation

‖f‖Lq(µ) =
(

∫

Ω

|f |qdµ
)1/q

is used. Since q ≥ p, it follows by Minkowski’s inequality that the right-hand side in
(15) does not exceed

(

∫ ∞

0

‖χMt‖Lq/p(µ)d(tp)
)1/p

.

Hence

‖f‖p
Lq(µ) ≤

∫ ∞

0

µ(Mt)
p/qd(tp). (16)

Let a ∈ (1,∞). By (16) and (14)

‖f‖p
Lq(µ) ≤ ap

∫ ∞

0

µ(Mat)
p/qd(tp) ≤ apKp

∫ ∞

0

(capp(Mat, Mt) + ν(Mt))d(tp)

which, together with Proposition 1, implies

‖f‖p
Lq(µ) ≤ Kp

(p ap loga

(a − 1)p

∫

Ω

|grad f |pdx + ap

∫

Ω

|f |pdν
)

.

The sufficiency of (14) follows. �

From Lemma 1, we shall deduce a sufficient condition for (13) which does not
involve the p-capacitance.

Corollary 1. Let n < p ≤ q. If for all bounded open sets g and G in R
n such that

g ⊂ G, G ⊂ Ω

µ(g)1/q ≤ K
(

(dist(∂g, ∂G)n−p + ν(G)
)1/p

, (17)

then (13) holds for all f ∈ C∞
0 (Ω).

Proof. Let ϕ be an arbitrary admissible function in (10). By Sobolev’s integral
representation (see, for example, [M5], 1.1.10), we have for all y ∈ g and z ∈ Ω\G

1 ≤ (ϕ(y) − ϕ(z))p ≤ c |y − z|p−n

∫

Ω

|gradϕ(x)|pdx,
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which implies
(dist(∂g, ∂G))n−p ≤ c capp(g, G).

It remains to refer to Lemma 1. �

Let us see how criterion (5) follows from Lemma 1.

Theorem 1. Let n = 1 and 1 ≤ p ≤ q < ∞. Inequality (4) holds for all

f ∈ C∞
0 (Ω) if and only if condition (5) is satisfied. The sharp constant C in (4) is

equivalent to

sup
x,d,τ

µ(σd(x))1/q

(τ1−p + ν(σd+τ (x))1/p
,

where x, d, τ are the same as in (5).

Proof. Let g0 = (a, b), G0 = (A, B) and A < a < b < B. It is an easy exercise to
show that

capp(g0, G0) = (a − A)1−p + (B − b)1−p. (18)

(For the proof of a more general formula for a weighted p-capacitance see either
Lemma 4 in [M3] or Lemma 2.2.2/2 in [M5].) Hence, by setting g = σd(x) and
G = σd+τ (x) into (14), we obtain

µ(σd(x))1/q ≤ K(2τ1−p + ν(σd+τ (x))1/p

which implies the necessity of (5). In order to prove the sufficiency we need to obtain
(14) for all admissible sets g and G. Let G be the union of nonoverlapping intervals
Gi and let gi = Gi ∩ g. Denote by hi the smallest interval containing gi and by τi

the minimal distance from hi to R\Gi. By definition of the p-capacitance (10) in the
one-dimensional case, we have

capp(ḡi, Gi) = capp(h̄i, Gi)

and

capp(g, G) =
∑

i

capp(gi, Gi).

Hence, and by (18) applied to the intervals hi and Gi,

capp(ḡ, G) ≥
∑

i

τ1−p
i . (19)

Using (5), we obtain

µ(gi)
1/q ≤ µ(hi)

1/q ≤ A(τ1−p
i + ν(Gi))

1/q ,

where A is a positive constant independent of g and G. Since q ≥ p, we have

µ(g)p/q ≤
∑

i

µ(gi)
p/q

which, together with (19), implies

µ(g)p/q ≤ Ap
∑

i

(τ1−p
i + ν(Gi)) ≤ Ap(capp(ḡ, G) + ν(G)).

The result follows from Lemma 1. �
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In the next remark some other straightforward extensions of Theorem 1 are col-
lected.

Remark 1. We obtain from (16) that the left-hand side in (4) can be replaced
with

(

∫ ∞

0

µ(Mt)
p/qd(tp)

)1/p

without affecting Theorem 1. In other words, the space Lq(µ) can be changed for the
Lorentz space Lq,p(µ).

Another possible modification of Theorem 1 concerns the Orlicz space LM (µ),
where M is an arbitrary convex function on (0,∞), M(+0) = 0. Let N denote the
complementary convex function to M . One can easily show (compare with Theorem
4 in [M3]) that the condition

µ(σd(x))N−1
( 1

µ(σd(x))

)

≤ const(τ1−p + ν(σd+τ (x)))1/p

is necessary and sufficient for the inequality

∫ ∞

0

µ(Mτ ) N−1
( 1

µ(Mτ )

)

d(τp) ≤ c
(

∫

Ω

|f ′|pdx +

∫

Ω

|f |pdν
)

as well as for the inequality

‖ |u|p ‖LM (µ) ≤ c
(

∫

Ω

|f ′|pdx +

∫

Ω

|f |pdν
)

.

It is well known that the weight w in the integral

∫

Ω

|f ′(x)|pw(x)dx

can be removed by the change of the variable x:

ξ =

∫

dx

w(x)1/(p−1)
.

Therefore, Theorem 1 leads to a criterion for three-weight inequality

(

∫

Ω

|f |qdµ
)1/q

≤
(

∫

Ω

|f ′|pdλ +

∫

Ω

|f |pdν
)1/p

,

where λ is a nonnegative measure. Note that the singular part of λ does not influence
the validity of the last inequality (compare with [Mu] and Sect. 1.3.1 in [M5]).

Remark 2. Let n = 1. With p ∈ (1,∞) and the measure ν, we associate a
function R of an interval σd(x) by the equality

R(σd(x)) = sup{τ : τ1−p > ν(σd+τ (x))}, (20)

with σd+τ (x) ⊂ Ω as everywhere. Clearly,

R(σd(x))1−p ≤ inf{τ : τ1−p + ν(σd+τ (x))} ≤ 2R(σd(x))1−p (21)

which shows that criterion (5) can be written as
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sup
σd(x)⊂Ω

R(σd(x))(p−1)/pµ(σd(x))1/q < ∞.

Remark 3. According to Theorem 2 in [M3] (see also Theorem 2.1.3 in [?]),
inequality (4) with p = 1, q ≥ 1, is equivalent to the inequality

µ(g)1/q ≤ C(2 + ν(g)),

where g is an arbitrary interval and C is the same constant as in (4). �

Similarly to (4), we can characterise the inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|f ′|pdx

)δ/p (
∫

Ω

|f |rdν

)(1−δ)/r

(22)

by using the following assertion proved in [M4].

Lemma 2. (see [M3] Theorem 5 or [M5] Theorem 2.3.9). Let n ≥ 1, p ≥ 1 and

δ ∈ [0, 1]. If the inequality

(
∫

Ω

|f |qdµ

)1/q

≤ C

(
∫

Ω

|gradf |pdx

)δ/p (
∫

Ω

|f |rdν

)(1−δ)/r

(23)

is valid for all f ∈ C∞
0 (Ω) and some positive r and q, then there exists a constant α

such that for all open bounded subsets g and G of Ω such that ḡ ⊂ G, G ⊂ Ω, the

inequality

µ(g)p/q ≤ α capp(ḡ, G)δν(G)(1−δ)p/r (24)

holds.

If (24) holds for all g and G as above, then (23) is valid for all functions f ∈ C∞
0 (Ω)

with 1/q ≤ (1 − δ)/r + δ/p.

Arguing as in the proof of Theorem 1, we arrive at the following criterion for (22).

Theorem 2. Let n = 1, p ≥ 1 and δ ∈ [0, 1]. If inequality (22) holds for all

f ∈ C∞
0 (Ω) and some positive r and q, then there exists a constant β > 0 such that

µ(σd(x))1/q ≤
β

τ δ(p−1)/p
ν(σd+τ (x))(1−δ)/r (25)

for all x ∈ Ω, d > 0 and τ > 0 such that σd+τ (x) ⊂ Ω. Conversely, if (25) is true for

some positive r and q such that 1/q ≤ (1 − δ)/r + δ/p, then (22) holds.

Note that for p = 1 condition (25) is simplified

µ(σd(x))r/q(1−δ) ≤ const ν(σd(x)).

For the particular case µ = ν, inequality (22) admits the following simpler char-
acterisation which results from Theorem 5 [M3].

Theorem 3. (i) Let n = 1, and let the inequality

µ(σd(x))α ≤ const τ (1−p)/p (26)
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with p ≥ 1, and α > 0, hold for all x ∈ Ω, d > 0 and τ > 0 such that σd+τ (x) ⊂ Ω.
Furthermore, let q be a positive number satisfying one of the conditions: (i) q ≤ α−1

if αp ≤ 1 or (ii) q < α−1 if αp > 1. Then the inequality

(

∫

Ω

|f |qdµ
)1/q

≤ C
(

∫

Ω

|f ′|pdx
)δ/p(

∫

Ω

|f |rdµ
)(1−δ)/r

(27)

with r ∈ (0, q) and δ = (q − r)/(1 − αr)q, is valid for any function f ∈ C∞
0 (Ω).

(ii) Conversely, let p ≥ 1, α > 0 and r ∈ (0, α−1]. Furthermore, let the inequality

(27) with δ = (q − r)/(1 − αr)q be fulfilled for any function f ∈ C∞
0 (Ω). Then (26)

holds for all x and d such that σd+τ (x) ⊂ Ω.

Remark 4. Comparing Theorems 1 and 3 we see that the multiplicative inequality
(27) is equivalent to

(

∫

Ω

|f |1/αdµ
)α

≤ C
(

∫

Ω

|f ′|pdx
)1/p

if αp ≤ 1. �

The next assertion concerning an arbitrary charge λ (not a nonnegative measure
as elsewhere) follows directly from Theorem 2.3.8 in [M5].

Theorem 4. Let n = 1, and let λ+ and λ− denote the positive and negative parts

of the charge λ, respectively.

(i) Let ε ∈ (0, 1) and p > 1. If the inequality

λ+(σd(x)) ≤ Cετ
1−p + (1 − ε)λ−(σd+τ (x))

holds for all x ∈ Ω, d > 0, τ > 0, such that σd+τ (x) ⊂ Ω, then for all f ∈ C∞
0 (Ω)

∫

Ω

|f |pdλ ≤ C

∫

Ω

|f ′|pdx. (28)

(ii) If (28) is true, then

λ+(σd(x)) ≤ C τ1−p + λ−(σd+τ (x)) (29)

for all x ∈ Ω, d > 0, τ > 0, such that σd+τ (x) ⊂ Ω.

Example 1. We show that (29) is not sufficient for (28). Let λ+ and λ− be the
Dirac measures concentrated at the points 0 and 1, respectively. We introduce the
sequence of piecewise linear functions {ϕm}∞m=1 on R by

ϕm(x) = 0 for |x| > mp/(p−1),

ϕm(0) = 1, ϕm(1) = 1 − m−1.

Then

∫

R

|ϕm|pdλ =
p

m
(1 + o(1)) and

∫

R

|ϕ′
m|pdx ∼ m−p as m → ∞

and therefore (28) fails. However, condition (29) holds with C = 1. In order to check
this, we need to consider only the case λ+(σd(x)) = 1 and λ−(σd+τ (x)) = 0, when
clearly τ ≤ 1 and τ1−p ≥ 1.
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4 A p-capacity depending on ν and its applications
to inequalities (4) and (13)

Let n ≥ 1 and let K denote a compact subset of Ω. We introduce a relative p-capacity
of K with respect to Ω, depending on the measure ν, by

capp(K, Ω, ν) = inf
(

‖grad ϕ‖p
Lp

+

∫

Ω

|ϕ|pdν
)

, (30)

where infimum is extended over all functions ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 1 on K.

Arguing as in Sect. 2.2 in [M5], one can show that the infimum in (30) will be
the same if the set of admissible functions is replaced with {ϕ ∈ C∞

0 (Ω) : ϕ =
1 on K 0 ≤ ϕ ≤ 1 on Ω}. �

Making small changes in the proof of Proposition 1, one arrives at the inequality

∫ ∞

0

capp(Mat, Mt, ν)d(tp) ≤ c(p)
(

‖gradf‖p
Lp

+

∫

Ω

|f |pdµ
)

where a = const > 1 and f ∈ C∞
0 (Ω). By this inequality one can easily obtain the

following condition, necessary and sufficient for (13) with q ≥ p:

µ(g)p/q ≤ const capp(g, Ω, ν) (31)

for all bounded open sets g with g ⊂ Ω. �

The next lemma shows directly that (31) is equivalent to (14).

Lemma 3. The equivalence relation holds,

capp(K, Ω, ν) ∼ inf
G

(capp(K, G) + ν(G)), (32)

where infimum is taken over all bounded open sets G such that K ⊂ G and G ⊂ Ω.

Proof. Let ε > 0, f ∈ C∞
0 (Ω), f = 1 on K, 0 ≤ f ≤ 1 on Ω and

capp(K, Ω, ν) + ε ≥ ‖grad f‖p
Lp

+

∫

Ω

|f |pdν.

Then

capp(K, Ω, ν)+ ε ≥
∞
∑

k=0

2−p(k+1)

∫

M
2−k−1\M

2−k

|grad(2k+1f − 1)|pdx+

∫ 1

0

ν(Mt)d(tp)

≥ c

∞
∑

k=0

2−pk
(

capp(M2−k , M2−k−1) + ν(M2−k−1)
)

.

Since capp(M2−k , M2−k−1) ≥ capp(K, M2−k−1), it follows that

capp(K, Ω, ν) + ε ≥ c inf
G

(capp(K, G) + ν(G)).

The estimate

capp(K, Ω, ν) ≤ capp(K, G) + ν(G)
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is obvious. The result follows. �

We introduce the capacity minimising function

Sp(t) = inf capp(g, Ω, ν),

where the infimum is taken over all bounded open sets g, g ⊂ Ω, satisfying µ(g) > t.

By Lemma 3,

Sp(t) ∼ inf
g,G

(capp(g, G) + ν(G))

with the infimum extended over open sets g and G such that g ⊂ G, G ⊂ Ω, and
µ(g) > t. Obviously, condition (31) is equivalent to

sup
tp/q

Sp(t)
< ∞.

Making trivial changes in the proof of Theorem 1 [MN] (see also Theorem 8.5.3
[MP]), we arrive at the condition, necessary and sufficient for (13) with 0 < q < p,
p ≥ 1 :

∫ ∞

0

( tp/q

Sp(t)

)q/(p−q) dt

t
< ∞. (33)

It follows from the proof of Theorem 1 that in the one-dimensional case

Sp(t) ∼ inf {τ : τ1−p + ν(σd+τ (x))}

with the infimum taken over all x, d, τ such that σd+τ (x) ⊂ Ω and

µ(σd(x)) > t. (34)

By (21),

Sp(t) ∼ inf R(σd(x))1−p,

where the infimum is taken over all intervals σd(x), σd(x) ⊂ Ω, satisfying (34).

5 Compactness and essential norm

We define the space W̊ 1
p (ν) as the closure of C∞

0 (Ω) with respect to the norm

‖f‖W̊ 1
p (ν) =

(

∫

Ω

|f ′(x)|pdx +

∫

Ω

|f(x)|pdν
)1/p

.

Condition (5) is a criterion of boundedness for the imbedding operator

Ip,q : W̊ 1
p (ν) → Lq(µ)

for q ≥ p ≥ 1. By Theorem 1,

‖Ip,q‖ ∼ sup
x,τ,d

µ(σd(x))1/q

{τ1−p + ν(σd+τ (x))}1/p
, (35)

11



where x, τ and d are subject to σd+τ (x) ⊂ Ω.

In this section we establish a compactness criterion for Ip,q with q ≥ p ≥ 1 and
obtain sharp too-sided estimates for the essential norm of Ip,q . We recall that the
essential norm of a bounded linear operator A acting from X into Y , where X and Y
are linear normed spaces, is defined by

ess ‖A‖ = inf
T

‖A − T‖

with infimum taken over all compact operators T : X → Y .

Theorem 5. If q ≥ p ≥ 1, then the operator Ip,q is compact if and only if

lim
M→∞

sup
x,τ,d

µ(σd(x) \ [−M, M ])1/q

{τ1−p + ν(σd+τ (x))}1/p
= 0 , (36)

where x, τ and d are the same as in (35).

Proof. Sufficiency. Let µ′ for the restriction of µ to the segment [−M, M ] and
let µM = µ − µ′

M . We define the imbedding operators

IM : W̊ 1
p (ν) → Lq(µM ) and I ′M : W̊ 1

p (ν) → Lq(µ
′
M )

as well as the imbedding operators

iM : Lq(µM ) → Lq(µ) and i′M : Lq(µ
′
M ) → Lq(µ).

We have

Ip,q = iM ◦ IM + i′M ◦ I ′M . (37)

We prove that I ′
M is compact. Consider the imbedding operators

IC
M : W̊ 1

p (ν) → C([−M, M ]),

iCM : C([−M, M ]) → Lq(µ
′
M ),

where C([−M, M ]) is the space of continuous functions with the usual norm. Clearly,
I ′M = iCM ◦ IC

M . Since IC
M is compact for any M > 0 by the Arzela theorem, the

operator I ′
M is compact too. The condition ‖IM‖ → 0 as M → ∞ is equivalent to

(36) owing to (35), with IM instead of Ip,q .

Necessity. Let Ip,q be compact and let B denote the unit ball in W̊ 1
p (ν). The set

Ip,qB is relatively compact in Lq(µ). Therefore, for any ε > 0 there exists a finite
ε-net {fj}

N
j=1 ⊂ Ip,qB = B for the set Ip,qB. Given any fj , there exists a number

Mj(ε) such that

∫

|x|>Mj(ε)

|fj(x)|qdµ(x) < εq.

Let M(ε) be equal to sup
j

Mj(ε). Then for any f ∈ B and for some i ∈ {1, N} we

have

(

∫

Ω

|f(x)|qdµM(ε)(x)
)1/q

≤ ‖f − fj‖Lq(µ) +
(

∫

Ω

|fj(x)|qdµMj (ε)(x)
)1/q

< 2ε.

Hence inequality (4) holds with µM(ε) and 2ε instead of µ and C. Now (36) follows
from the necessity part in Theorem 1.

12



Theorem 6. Let q ≥ p ≥ 1 and

E(µ, ν) := lim
M→∞

sup
x,τ,d

µ(σd(x) \ [−M, M ])1/q

{τ1−p + ν(σd+τ (x))}1/p
.

There exist positive constants c1 and c2 such that

c1E(µ, ν) ≤ ess ‖Ip,q‖ ≤ c2E(µ, ν). (38)

Proof. We use the same notation as in the previous theorem. The upper bound
in (38) is a consequence of the sufficiency part in the proof of Theorem 3.

Let T be any compact operator: W̊ 1
p (ν) → Lq(µ) and let ε be any positive number.

We choose T to satisfy

ess‖Ip,q‖ ≥ ‖Ip,q − T‖ − ε. (39)

There exists a positive M(ε) such that for any f ∈ B

∫

Ω

|Tf(x)|qdµM(ε)(x) < εq. (40)

We introduce the truncation operator τM : Lq(µ) → Lq(µM ) by

(τMf)(x) =

{

0, |x| < M

f(x), |x| ≥ M.

Using (39) and (40), we obtain

ess ‖Ip,q‖ ≥ ‖IM(ε) − τM(ε) ◦ T‖ − ε ≥ ‖IM(ε)‖ − 2ε.

By (35) applied to IM(ε) instead of Ip,q ,

‖IM(ε)‖ ≥ c sup
x,τ,d

µM(ε)(σd(x))1/q

{τ1−p + ν(σd+τ (x))}1/p
≥ c1 E(µ, ν).

The result follows.

Remark 5. Making obvious changes into the proof of Theorem 8.6.2 [MP], one
can conclude that the imbedding operator Ip,q with 0 < q < p, p ≥ 1 is compact and
bounded simultaneously. In other words, condition (33) is necessary and sufficient for
the compactness of Ip,q with these p and q.

6 Inequality (3) with l ≥ 2

From Theorem 1 we deduce a characterisation of inequality (7) for nonnegative func-
tions.

Theorem 7. Let n = 1 and 1 < p ≤ q < ∞. Inequality (7) holds for all f ∈ C∞
0 (Ω)

and f ≥ 0 on Ω if and only if there exists a constant K > 0 such that

µ(σd(x))1/q ≤ K(τ1−2p + ν(σd+τ (x)))1/p (41)

13



for all x ∈ Ω, d > 0 and τ > 0 satisfying σd+τ (x) ⊂ Ω.

Proof. In order to prove the necessity, we set a function f in (7), which is subject
to f ∈ C∞

0 (Ω), f = 1 on σd(x), f = 0 outside σd+τ (x) and 0 ≤ f(x) ≤ 1 on Ω. Then

µ(σd(x))1/q ≤ C
(

∫

σd+τ (x)\σd(x)

|f ′′(y)|pdy + ν(σd+τ (x))
)1/p

.

Clearly, f can be chosen on σd+τ (x)\σd(x) so that the integral on the right does not
exceed c(p)τ1−2p. Estimate (41) follows.

Let us turn to the proof of sufficiency of (41). Let f ∈ C∞
0 (Ω) satisfy suppf =

[a, b] ⊂ Ω and f > 0 for x ∈ (a, b). Then f 1/2 ∈ W 1
2p(a, b) and

∫ b

a

|f ′|2p

fp
dx ≤

(2p − 1

p − 1

)p
∫ b

a

|f ′′|pdx (42)

according to [M5], Lemma 8.2.1. (One can easily construct a sequence of functions f
showing that the constant factor in the right-hand side of (42) is sharp.) By Theorem
1 we find that the function u := f1/2 satisfies

(

∫ b

a

|u|2qdµ
)1/2q

≤ cK1/2
(

∫ b

a

|u′|2pdx +

∫ b

a

|u|2pdν
)1/2p

.

This inequality, being combined with (42), gives (7).

Let f be an arbitrary nonnegative function in C∞
0 (Ω). Representing Ω as the

union of nonoverlapping intervals with the same properties as (a, b) we complete the
proof. �

An alternative proof of Theorem 7 relies upon the following conductor inequality
whose proof is based upon the smooth level truncation introduced in [M3] (see also
Sect 8.2.1 in [M5]).

Proposition 2. Let n ≥ 1, f ∈ C∞
0 (Ω), f ≥ 0, a = const > 1, and p > 1. Then

∫ ∞

0

cap+
p,2(Mat, Mt)d(tp) ≤ c(p, a)

∫

Ω

|grad2f |
pdx, (43)

where grad2 = {∂2/∂xi∂xj}
n
i,j=1 and

cap+
p,2(g, G) = inf

{

∫

G

|grad2ϕ(x)|pdx : ϕ ∈ C∞
0 (G), 1 ≥ ϕ ≥ 0 on G,

ϕ = 1 in a neighborhood of g
}

. (44)

(Concerning the measurability of the function t → cap+
p,2(Mat, Mt) see the begin-

ning of the proof of Proposition 1.)

Proof. Let H ∈ C2(R),

H(x) =

{

0, for x < ε,

1, for x > 1 − ε,

where ε is an arbitrary number in (0, 1). By (44),

cap+
p,2(Mat, Mt) ≤

∫

Ω

∣

∣

∣
grad2

(

H
(f(x) − t

(a − 1)t

)) ∣

∣

∣

p

dx
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≤
c(a)

tp

∫

Mt\Mat

( |grad f |2p

fp
+ |grad2f |

p
)

dx.

Hence the left-hand side in (43) is dominated by

p c(a)

∫ ∞

0

∫

Mt\Mat

( |grad f |2p

fp
+ |grad2f |

p
)

dx
dt

t
.

Owing to (12), this can be written as

p c(a) log a

∫

Ω

( |gradf |2p

fp
+ |grad2f |

p
)

dx

which does not exceed the right-hand side of inequality (43) in view of (42). The
result follows.

Example 2. Let us show that condition (41) is not sufficient for (7) with p = 1.
Let ν be Dirac’s measure concentrated at x = 0 and let dµ(x) = (1 + x2)−1dx.
Obviously, condition (41) holds. We construct a sequence of nonnegative functions
ηm ∈ C∞

0 (R), m = 1, 2, . . . , defined by ηm(x) = ϕm(x − m − 1), where ϕm is a
smooth, nonnegative, even function on R, vanishing for x ≥ m + 1 and such that
ϕm(x) = m + 1 − x for 1 ≤ x ≤ m. Then ηm(0) = 0,

∫

R

|η′′
m|dx = const,

∫

R

ηq
mdµ → ∞,

i.e. inequality (7) with p = 1 fails.

Example 3. We shall check that (41) does not suffice for (7) to be valid for all
f ∈ C∞

0 (R) if p ≥ 1. Let ν and µ be Dirac’s measures concentrated at 0 and 1,
respectively. Consider the function ϕ0 ∈ C∞

0 (R) such that ϕ0(x) = x for x ∈ [−1, 1].
We set ϕm(x) = ϕ0(x/m). Then

(
∫

R

|ϕm|qdµ

)1/q

= m−1,

(
∫

R

|ϕ′′
m|pdx

)1/p

= c m−2+1/p

and inequality (7) fails for p > 1. The case p = 1 was treated in Example 2.

Example 4. Now we consider the case of the derivative of order l ≥ 3 in inequality
(3) for all f ∈ C∞

0 (Ω) such that f(x) ≥ 0 on Ω. By the obvious relation

inf
{

∫ b

a

|f (l)(x)|pdx : f ∈ C∞[a, b], f(x) ≥ 0, f(a) = 0, f(b) = 1
}

=

= cl,p(b − a)1−lp

we obtain the following necessary condition for (3)

sup
x∈Ω,d>0

µ(σd(x))1/q
(

inf
σd+τ (x)⊂Ω

(

τ1−pl + ν(σd+τ (x))
) )−1/p

< ∞. (45)

We shall verify that this condition is not sufficient for (3) when l ≥ 3 and p ≥ 1.

Suppose first that p > 1. Let ν and µ be Dirac’s measures concentrated at 0 and
1, respectively. Then (45) holds. Let ϕ0 be a nonnegative function in C∞

0 (R) such
that ϕ0(x) = x2 for |x| ≤ 1. We put ϕm(x) = ϕ0(x/m), m = 1, 2, . . .. Then

∫

R

|ϕm|qdµ = m−2q,

∫

R

|ϕ(l)(x)|pdx = c m1−pl

15



and inequality (3) fails.

Consider the remaining case l = 3, p = 1. Let ν be Dirac’s measure at O. Then
condition (1) has the form

sup
x

(1 + x2)µ((x,∞))1/q < const.

For dµ(x) = (1 + |x|)−2q−1 the last condition holds.

We introduce the sequence {Γm(x)}m≥1 by

Γm(x) =

∫ x

0

ηm(t)dt for |x| ≤ 2m + 2,

where ηm is the same as in Example 2. For |x| ≥ 2m+2 we define Γm so that Γm ≥ 0
and

sup
m

∫ ∞

2m+2

|Γ(3)
m (t)|dt < ∞.

We see that

∫

R

|Γ(3)
m |dt =

∫ 2m+2

−∞

|ϕ′′
m|dt +

∫ ∞

2m+2

|Γ(3)
m |dt < ∞

and inequality (3) with p = 1, l = 3 does not hold.

7 Two-weight inequalities involving fractional Sobolev

norms

Let us consider the inequality

(

∫

Rn

|f |qdµ
)1/q

≤ c
(

〈f〉pp,l +

∫

Rn

|f |pdν
)1/p

, (46)

where f ∈ C∞
0 (Rn), p ≥ 1, 0 < l < 1, and

〈f〉pp,l =

∫

Rn

∫

Rn

|f(x) − f(y)|p

|x − y|n+pl
dxdy.

As is well known [U], any smooth extension of f onto R
n+1 admits the estimate

〈f〉pp,l ≤ c

∫

Rn+1

|xn+1|
p(1−l)−1|gradF |pdxdxn+1 (47)

and there exists a linear extension operator f → F ∈ C∞(Rn+1) decaying to 0 at
infinity and such that

∫

Rn+1

|xn+1|
p(1−l)−1|gradF |pdxdxn+1 ≤ c 〈f〉pp,l. (48)

The same argument as in Proposition 1 leads to a conductor inequality, similar to
(1), for the integral

∫

Rn+1

|xn+1|
p(1−l)−1|gradF |pdxdxn+1, (49)
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with the left-hand side involving the conductor capacitance generated by (49) ( com-
pare with (10)).

Minimizing (49) over all extensions of f and using (47) and (48), we arrive at the
fractional conductor inequality

∫ ∞

0

capp,l(Mat, Mt)d(tp) ≤ c(l, p, a)〈f〉pp,l , (50)

where a > 1 and
capp,l(g, G) = inf〈ϕ〉pp,l (51)

with the infimum taken over all ϕ ∈ C∞
0 (G) subject to ϕ = 1 on g, ϕ = 0 outside G,

and 1 ≥ ϕ ≥ 0 on G. This infimum does not change if one requires ϕ ∈ C∞
0 (Rn),

ϕ ≥ 1 on g and ϕ ≤ 0 outside G.

By (50) we obtain the following criterion for (46).

Theorem 8. Let 1 ≤ p ≤ q. Inequality (46) holds for all f ∈ C∞
0 (Rn) if and only

if there exists a constant K such that for all open bounded sets g and G subject to

g ⊂ G there holds

µ(g)1/q ≤ K
(

capp,l(g, G) + ν(G)
)1/p

. (52)

The proof does not differ from that of Lemma 1 (see Lemma 4 in [M3] or Lemma
2.2.2/2 in [M5]).

Remark 6. The last criterion can be simplified for p = 1, q ≥ 1, as follows

µ(g)1/q ≤ K
(

∫

g

∫

Rn\g

dxdy

|x − y|n−pl
+ ν(g)

)

for all open bounded sets g. In fact, the necessity results by setting the characteristic
function of g into (46). The sufficiency follows from

〈u〉1,l = 2

∫∫

|u(x)|≤|u(y)|

∫ |u(y)|

|u(x)|

dt
dxdy

|x − y|n+l
= 2

∫ ∞

0

∫

Mt

∫

Rn\Mt

dxdy

|x − y|n+l
dt

combined with (14) where p = 1. �

We turn to the inequality

(

∫

Rn

|f |qdµ
)1/q

≤ c
(

〈gradf〉pp,1+l +

∫

Rn

|f |pdν
)1/p

, (53)

where f ∈ C∞
0 (Rn), f ≥ 0, and 0 < l < 1.

Lemma 4. Let F ∈ C∞(Rn+1) and F ≥ 0. Then there exists a positive constant

c = c(n, p, l) such that

∫

Rn+1

|xn+1|
p(1−l)−1 |gradF |2p

F p
dxdxn+1

≤ c

∫

Rn+1

|xn+1|
p(1−l)−1|grad2F |pdxdxn+1. (54)

Proof. Estimate (54) with (∂F/∂x1, . . . , ∂F/∂xn) instead of gradF in the left-
hand side follows immediately from (42). In order to estimate the integral involving
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only the derivative ∂F/∂xn+1 we need the next inequality for nonnegative functions
of one variable

∫

R

|t|p(1−l)−1 |f
′(t)|2p

f(t)p
dt ≤ c

∫

R

|t|p(1−l)−1|f ′′(t)|pdt (55)

which can be proved as follows. According to [MK],

f ′(t)2

f(t)
≤ c Mf ′′(t),

where M is the Hardy-Littlewood maximal operator. Since the weight |t|p(1−l)−1

belongs to the Muckenhoupt class Ap, inequality (55) results from the boundedness
of M in Lp(R; |t|p(1−l)−1dt). The proof of (54) is complete. �

We state a direct corollary of Lemma 4.

Corollary 2. Let F be the same as in Lemma 4 and let h be a function in

C1,1(0,∞) such that C := sup{t > 0 : |h′(t)| + t |h′′(t)| < ∞}. Then

‖ |xn+1|
1−l−1/pgrad2h(F )‖Lp(Rn+1) ≤ c C ‖ |xn+1|

1−l−1/pgrad2F‖Lp(Rn+1). �

Let f ∈ C∞
0 (Rn), f ≥ 0. The standard extension operator with nonnegative radial

kernel gives a nonnegative extension F ∈ C∞(Rn+1) of f satisfying

‖ |xn+1|
1−l−1/pgrad2F‖Lp(Rn+1) ≤ c 〈f〉p,1+l.

Therefore, arguing as in the proof of Proposition 2 and using the last inequality and
the trace inequality (47), we arrive at the conductor inequality

∫ ∞

0

cap+
p,1+l(Mat, Mt)d(tp) ≤ c(l, p, a)〈f〉pp,1+l, (56)

where
cap+

p,1+l(g, G) = inf{〈ϕ〉pp,1+l : ϕ ∈ C∞
0 (G), 1 ≥ ϕ ≥ 0 on G,

and ϕ = 1 on a neighbourhood of g}.

Repeating the proof of Lemma 1 and using (56) instead of (1), we arrive at the
following criterion.

Theorem 9. Let 1 ≤ p ≤ q. Inequality

(

∫

Rn

|f |qdµ
)1/q

≤ c
(

〈f〉pp,1+l +

∫

Rn

|f |pdν
)1/p

holds for all nonnegative f ∈ C∞
0 (Rn) if and only if there exists a constant K such

that

µ(g)1/q ≤ K
(

cap+
p,1+l(g, G) + ν(G)

)1/p

for all open bounded sets g and G subject to g ⊂ G.
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from S. L. Sobolev-L. N. Slobodeckĭı spaces. Zap. Nauchn. Sem. Leningrad. Ot-
del. Mat. Inst. Steklov. (LOMI) 92 (1979), 192–202.

[M5] V.G. Maz’ya. Sobolev Spaces, Springer, 1985.

[MK] V. Maz’ya, A. Kufner. Variations on the theme of the inequality (f ′)2 ≤
2f sup |f ′′|, Manuscripta Math., 56 (1986), 89-104.

[MN] V. Maz’ya, Yu. Netrusov. Some counterexamples for the theory of Sobolev
spaces on bad domains. Potential Analysis, 4, 1995, 47-65.

[MP] V. Maz’ya, S. Poborchi. Differentiable Functions on Bad Domains. World Sci-
entific, 1997.

[Mu] B. Muckenhoupt. Hardy’s inequalities with weights. Stud. Math. 44 (1972),
31-38.

[MO] K. T. Mynbaev and M. O. Otelbaev. Weighted Functional Spaces and Differ-
ential Operator Spectrum. Moscow, Nauka, 1988.

[NS] M. Nasyrova and V. Stepanov. On maximal overdetermined Hardy’s inequality
of second order on a finite interval. Math. Bohemica 124 (1999), 293-302.

[Ne] Yu.V. Netrusov. Sets of singularities of functions in spaces of Besov and Lizorkin-
Triebel type. Trudy Math, Inst. Steklov 187 (1990), 185-203.

[Oi] R. Oinarov. On weighted norm inequalities with three weights. J. London Math.
Soc. 48 (1993), 103-116.

[OK] B. Opic and A. Kufner. Hardy-type Inequalities. Pitman Research Notes in
Math., 129, 1990, Longman.

20



[Ot] M.O. Otelbaev. Imbedding theorems for spaces with a weight and their applica-
tion to the study of spectrum of a Schrödinger operator. Trudy Mat. Inst. Steklov
150 (1979), 265-305.

[Ta] M. Takeda. Lp-independence of the spectral radius of symmetric Markov semi-
groups. Canadian Math. Soc. Conference Proceedings, 29 (2000), 613-623.

[SU] V.D. Stepanov and E.P. Ushakova. On integral operators with variable limits of
integration. Trudy Math. Inst. Steklov 232 ( 2001), 298-317.

[U] S.V. Uspenskii, Imbedding theorems for classes with weights. Trudy Math. Inst.
Steklov 60 (1961), 282-303 (Russian). English translation: Amer. Math. Soc.
Transl., 87 (1970), 121-145.

[V1] I.E. Verbitsky. Superlinear equations, potential theory and weighted norm in-
equalities. Proceedings of the Spring School VI, Prague, May 31- June 6, 1998.

[V2] I. E. Verbitsky. Nonlinear potentials and trace inequalities. Operator Theory,
Advances and Applications, Vol. 110, The Maz’ya Anniversary Collection, vol.
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