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Abstract. Integral inequalities that concern the weighted positivity of a differential
operator have important applications in qualitative theory of elliptic boundary value
problems. Despite the power of these inequalities, however, it is far from clear which
operators have this property. In this paper, we study weighted integral inequalities
for general second order elliptic systems in IR™ (n > 3) and prove that, with a weight,
smooth and positive homogeneous of order 2 — n, the system is weighted positive
only if the weight is the fundamental matrix of the system, possibly multiplied by a
semi-positive definite constant matrix.
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1. Introduction

The goal of this paper is to study a subclass of weighted integral
inequalities of the type

/ Lu-Yudx > 0, (1)
Q

where  is a domain in IR" (n > 3), L(x, D,) is an elliptic operator of
order 2m and W is positive homogeneous of order 2m —n. This inequal-
ity, or in other words the weighted positivity of the operator L, has a
number of applications in qualitative theory of elliptic boundary value
problems [1-6]. For the time being, the weighted positivity has been
established for certain scalar operators, and it remains an interesting
question whether a similar property holds for systems. In this paper, we
study the weighted positivity of general second order elliptic systems
and prove the following necessary condition for (1): if the weight W is
smooth in IR™\{0} and is positive homogeneous of order 2 — n, then
¥ must be the fundamental matrix of L7 (0, D,) multiplied by a semi-
positive definite constant matrix. It is worth noting that this result is
new even for the Laplacian, in which case W is the fundamental solution
of —A.

This paper is organized as follows. In Section 2 we formulate the
main result along with several remarks, and in Section 3 we give its
proof.

';‘.‘ © 2006 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Luo and Maz’ya
2. Formulation of the Theorem
2.1. GENERAL SECOND-ORDER ELLIPTIC SYSTEMS

Let © be a domain in IR™ (n > 3) with smooth boundary and assume
0 € Q. Consider the second order elliptic system on €2 defined by

N n 2
o 0 u;
Lin D=3 3 ()5
i=la,f=1 at™h
=: —AZ/B(.%')DQQUJ ('L = 1,2,...,N), (2)

where as usual repeated indices indicate summation. We assume through-
out this paper that A%ﬁ (x) are real-valued, continuous functions on 2
and there exists A > 0 such that the strong Legendre condition

AP (@)e el = N2, vee RN

holds uniformly on €. Without loss of generality, we may also assume
that

AP (@) =A%) (,j=1,2,...,N, a,f=1,2,...,n).

DEFINITION 2.1. The operator L is said to be positive with weight
U(x) = (Vy(2) N5y if

/QLu Vudr = — /Q A?kﬁ(:v)Daguk(x) cuj(x)Wi(z)de >0 (3)

for all real valued, smooth vector functions u = (u;)N.;, u; € C5().

Remark. The positivity of L(x, D,) actually reduces to the positivity
of L(0, D,) (with the same weight). Indeed, if u = (u;); is a smooth
vector function that is supported near the origin (say, in a d-ball By)
and ue(z) = u(e 'z), then

/QLu6 Ve dr = — /B Af‘kﬁ(m)Daﬁuek(fL‘) e (2)Wi(x) da
€d
=—" /B Af‘kﬁ(z:)(Daﬁuk)(e_lx) cuj (et o) Wy (e ) do
€d
=~ [ A @) Dususv) - w0y dy (e =),
Since the integrand in the last integral is bounded by

P2 AR oo () el 22 ][ Wi | oo (51,
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Weighted Positivity 3

which is clearly in L' (Bs), the dominated convergence theorem and the
continuity of A%ﬁ implies that

timy [ Luc Wucds = = [ A57(0) Dagun(y) - s () iy (w) dy
s

e—0+

:/ L(0,Dy)u - Vudz.
Q
Hence the positivity of L is in effect a local property at the origin.

In the sequel, we shall establish a necessary condition for (3) under
the assumptions that
\Ilz‘j ECOO(RTL\{OD (i,j:1,2,...,N)
() = |o2 0 (ﬁ) = 2 (), (4)
x

where r = |z| and w = x/|x|. The main result will be formulated below.

2.2. OTHER NOTATIONS

We denote by Br(zp) the n-dimensional ball centered at z¢ with radius
R and by S™~! the n-dimensional sphere. If 2y = 0, we write Bg instead
of Br(0). Generally we use v = (v;)7_; to denote a surface outward
normal, and to simplify writings, we write [ vdx instead of [ vdx if
Q= IR".

We usually use u = (u;))¥; to denote a vector valued function and
use v, w to denote its scalar components. The Euclidean norm of a

vector is always denoted by | - |, and in the following,
\u\z = Zulz, \Du|2 = Z(Diuj)Q.
( 2

As usual, the Fourier transform of u is denoted by .

We also identify the elements in C>°(S™~!) with those in C°°(IR™\{0})
that are homogeneous of degree 0. This is to say, to each v € C°(S"~1)
we associate a v € C°(IR™\{0}) with

v(x)=wv (&,) .

Similarly, to each 7 € C*°(IR™\{0}) we associate a v € C°°(S"~1) with
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4 Luo and Maz’ya

In this convention, we understand that

oot = o (3]

(Dav)(w) = Dtﬂ?(lﬂ

and
(a=1,2,...,n).

T=w

2.3. THE MAIN THEOREM

The main result we shall establish in this paper is the following theorem.

THEOREM 2.2. Suppose L is an elliptic operator as defined in (2)
and U satisfies (4). If L is positive with weight U (and so is L(0, D)),
then LT (0, D,)V = 6 M where § is the Dirac delta function, LT (0, D,)
is the formal adjoint of L(0, Dy),

LT(0, Dy)u = =A% (0)Dapu;  (i=1,2,...,N),

and M € RN*N is a symmetric, semi-positive definite matriz. Fur-
thermore,

M AP (rw)absVip(w) >0,  VEER'  (p=1,2,...,N)
i,a,3

for all r > 0, w € S™ ! such that rw € Q. That is to say, the n x n
matriz (Y, Aff(rw)‘llip(w))gﬂzl is pointwise semi-positive definite.

Remark. Several extensions of the above result are possible. First, in
this theorem we considered only real coefficient elliptic operators and
real valued test functions. It is then natural to ask whether the same
result holds for complex cases. Second, it is interesting to ask whether
the set of operators that are positive in the sense of (1) is “open” in
some suitable topology. In other words, we wonder whether a “small”
perturbation of a positive operator still leaves the operator positive.
Finally, it would be interesting to apply the above theorem to concrete
problems, say the Lamé system. We actually proved (not shown here)
that the Lamé system on IR>:

Ul
Lu := —pAu — (X + p) grad div u, u= (t@)
u3

is positive with weight ®, its fundamental matrix, if (A/p) + 1 is small
and fails to be so if \/u is large. It would be interesting to find the
“critical value” A\g/po for which the system changes its behavior.
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Weighted Positivity 5

3. Proof of Theorem 2.2

In this section we give the proof of Theorem 2.2. Without loss of gen-
erality, for the first part of the theorem we may assume €2 = IR" and
L is a constant coeflicient elliptic operator.

First some preliminaries.

3.1. SPHERICAL HARMONICS

Let s denote the linear space of homogeneous polynomials of degree
k that are harmonic; they are the so-called solid spherical harmonics
of degree k. The space of restrictions of J#, to the unit sphere, Hy, are
the so-called surface spherical harmonics of degree k. It is well known
that each f € L?(S™" 1) admits the decomposition

flw)=> Yi(w), Yi€H,
k=0

where the series converges in the L? sense. Since Hj, can be shown to
be mutually orthogonal (see, for example, [7]), Parseval’s identity

[ @@= [ ¥i)Zuw)do

=0 Sn—1

holds for all f,g € L?(S™!) where

fw) =3 Yiw),  gw) =2 Z(w).
k=0 k=0

3.2. SUPPORT AT THE ORIGIN

The first observation we make is that, in order for L to be positive with
weight ¥, LTV has to be supported at the origin.

PROPOSITION 3.1. Suppose L is a constant coefficient elliptic oper-
ator as defined in (2) and ¥ satisfies (4). If L is positive with weight
U, then LTV is supported at the origin.

We start the proof of this proposition by observing some elementary
properties of the matrix W.

LEMMA 3.2. Suppose ¥ = (\Ilij)f?;:l satisfies (4). Then
DaWij(x) = ri "W (w) (i,j=1,2,...,N),
DogWij(z) = r "0 (w) (a,3=1,2,...,n),
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6 Luo and Maz’ya

where \I/%,\I/%’g € C>®(S" 1) and
/ U (w)do =0
ij = 0.
Sn—1

Proof. According to (4),

DoV;;(x) = Dq (TQ_n‘Ijij (w))

. To . To T
=(2-n)r'";(w) - s +r! (Dﬁq’ij)(w)<5a5 T 76>

=117 [(2 = )wa Wi (@) + (DaWig) (@) — waws (D) ()]
=: rl_"\I/%(w),
where
Ui(w) = (2 = n)waPij(w) + (DaVij) (w) — waws(Dp¥ij) (w).
Similarly one can show that
Dog¥ii(x) = D, (rlfn‘lliﬁj(w)) = r*”\I/%’G(w).

To prove the last statement, we integrate the above identity on By\ B
and obtain

1—n.1, B - —na1,00
/32\81 D, (r \I'ij(w)) dz —/ 0 (w) d

Bs\B1
Note that
/ D, (7‘17"\115 (w)) dx = / Tlfnlll;@] (W)ve do
B>\B1 9(B2\B1)
= / rl_”\Ilg.(w)wa do — / 7“1_"\1!% (W)wq do
632 aBl
= Jo, \Ilfj(w)wa do — /S" ) ‘Iliﬁj(w)wa do
and

So the result follows.

Since the proof of Proposition 3.1 is long, we break it up into two
lemmas.
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Weighted Positivity 7

LEMMA 3.3. Under the assumptions of Proposition 3.1, if L is posi-
tive with weight W, then (LTV),, (p = 1,2,...,N) is supported at the
origin.

Proof. Step 1. By definition, we wish to show that

N AW Dag¥ip =0 on R™{0} (p=1,2,...,N).
i7a7B

Taking u = (u;)}¥., where

i = {0’ TP e o (R (o)),

v, 1=0D
we have
/Lu -Vudr = —/A?kﬁDaguk ~u; Wy de

= —/ Z Angaﬂv oWy, do

i7a76
- / S A DavDgy - Wy da + / S A Dyv - vDyWy, da
i,a,ﬁ iza’ﬁ
=11 + Is.

Step 2. By assumption (4), it is easy to see that
| < c/r2fn|m|2dx. (5)

As for Is, we observe Dyv - v = %DQ(UQ), so integrating by part once
more gives

1
I = _5/ S A2 D50, da (6)
i7a7ﬁ

Now assume

> A DagWip, 0 on IR™{0}.
i,a,3

By Lemma 3.2,
DC!,B\IJip = rfn\IJ%ﬁ(w),

SO we may write

> A DapWip = Y AY U (W) =T (),
i7a7ﬁ iza’ﬁ
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8 Luo and Maz’ya

where

\IJH Z Aaﬁ\pa/@
i,0,0

" o
/Sn W (@) do =0,
Substituting this into (6) and switching to spherical coordinates, we

have | oo
_ _ -1 2\
I, = 2/0 rodr /Sn_lv v (w) do. (7)

Step 3. Let
U (w Z Yi(w Yy € Hg

where Y,,, Z 0. Note that m > 1 since
/Sn—l Uy, (w)do = 0.

Now take v(x) = ((r)Q2(w) where

¢ € C5°(0,00) s to be determined later,
Qw) =e ' +V,(w), e>0.

Substituting this into (7), applying Parseval’s identity and recalling
that m > 1, we have

I = —% OOO r 13 (r) dr /SW1 (671 + Ym(w))2 Z Yi(w) do
k=m
1 o0
< ~2J; r_lg“z(r) dr (26_1 /Sni1 Yé(w) do + C) .

This implies, for small €, that

I < —006*1/ 13 (r) dr
0

On the other hand, we note that (5) implies that

0] <€ [ [P0 w) + 12 C I To0w) P do

— 2

- C/O r(((r))? dr/STHQ (w) do
+C [T ar [ VaYu@)Pdo

=: In1 + 12,
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Weighted Positivity 9

where V, is the spherical part of the gradient D.
Step 4. We first choose € small enough so that

c/ Vo Yon(w)?do < Co(20)7",
Sn—
where C' is the constant appearing in (5). For this fixed €, we have
he < Go29)™! [T IR0y dr, V€ CFE(0,%0).
0

Next, we appeal to Lemma 3.4 below and choose ( so that

o0

I < 00(26)71/ T71C2(T’) dr.
0

This shows that
L+1,<0

and gives us the desired contradiction.

LEMMA 3.4. For any given C > 0, there ezists ¢ € C§°(0,00) so that
/ 13 (r) dr > C/ r(¢'(r))? dr.
0 0

Proof. Take ¢ € C*°(IR) such that

For 0 <9 < %, define

e tr—1), 0<r<1
o(-r+2), r>1 '

Go(r) = {
Clearly (5 € C5°(0,00) (Fig.1). Now

o) 1 1
/ 1R (r) dr > / r~tdr = log —,
0 26 26

(3] 0
[T Gz = [T rGen i [ Gy ar

20 2
<62l [ rdr+ 5 [rar

< Cll¢'l12-
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10 Luo and Maz’ya

28 1 2

Figure 1. The function (s used in Lemma 3.4.

So the result follows by choosing J sufficiently small.

While Lemma 3.3 proves the statement of Proposition 3.1 for di-
agonal elements of LT W, the next one takes care of the off-diagonal
elements.

LEMMA 3.5. Under the assumptions of Proposition 3.1, if L is positive
with weight W, then (LTW),, (p,q =1,2,...,N, p # q) is supported at
the origin.

Proof. Step 1. By definition, we wish to show that

Az)ﬁDag\I/iq:O on IR™\{0} (p,qg=1,2,...,N, p#q).

Taking u = (u;)}¥.; where

0, ©#pq
U =14v, i1=p , v,w e C5P(IR™M\{0}),
w, 1=¢q

we have

/Lu Vudr = —/Af‘kﬁDaguk cu; Wy da
- / AP DouDgu; - Wi da + / AP Doy, - u; DWi; da
=: 11 + Is.

Step 2. By assumption (4) and Cauchy’s inequality, it is easy to see
that

I < c/rH\Dude < c/r%"(ymﬁ D) dr. (8)
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Weighted Positivity 11

As for Is, it follows from Lemma 3.3 that
/Angav ~vDgV¥;, dr = /A%ﬂDaw ~wDgW,,dx = 0.
So
I = / AP Dov - wDgWiq da: + / A Dow - vDg Wy da
=— /AZD% (Dang\I/iq + wDag\I!iq) dx + /A;?;ﬁDaw -vDg¥y, dx
- / A vwDasWig dz + / vDaw(A;"qﬁ DgWy, — A3 Dﬁxp,-q) dz

=— /r‘"vwlllgq(w) dx + /rl_"vDaw (\I/;qp(w) - \I/’apq(w)) dx
(9)
=: Iy + I2a.
In the derivation of (9) we have used Lemma 3.2 again, where
Wiy () = AW (@),

\qu(w) = Az'o;ﬁ‘l’%ﬁ(w)a /Sn—1 V" (w)do = 0.

Now assume

A DogWiq 20 on  R™\{0}.

Then we have
W, (w) #0.
Step 3. Let

00
\Iqu(w) = Z Yk’(w)a Yk € Hk
k=m

where Y,,, Z 0. Note that m > 1 since

/Sn—l ) (w)do =0.

Now take
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12 Luo and Maz’ya

where ¢ € C§°(0,00) is to be determined later. Substituting this into
(9), applying Parseval’s identity and recalling that m > 1, we have

I = —/OOO r 3 (r) dr /S%1 € Y (w) k;nYk(w) do

_ [T —1e 2
= —¢ /0 r ¢ (T)dr/sn_lYm(w)dU
= —Cpe? /OO L¢3 (r) dr,
0
Ipg = ¢! /0°° C(r)¢'(r) dr /Sn—l waYm(w)(\IJ'aqp(w) — \I/flpq(w)) do
=0

So -
I, = *C’oe_l/ =3 (r) dr.
0

On the other hand, (8) implies that
110 [P [COPFAE) + 20T Yn( )P + (0 de
= C/O r(¢'(r))* dr /S"—l (Yn%(w) + 6_2) do
12 2
+c/0 P13 (r) dr/sn_l IV, Yin ()2 do.

Now we may proceed as in Lemma 3.3 and choose €, ¢ appropriately
to derive the desired contradiction.

Now Proposition 3.1 is a direct consequence of Lemma 3.3 and
Lemma 3.5.

3.3. POSITIVE DEFINITENESS OF LT
By Proposition 3.1, we can write LTV as
LTW = 6M,

where ¢ is the Dirac delta function and M is a real N x N matrix. Now
we show M is symmetric and semi-positive definite.

PROPOSITION 3.6. Suppose L is a constant coefficient elliptic opera-
tor as defined in (2) and ¥ satisfies (4). If L is positive with weight ¥,
then LTW = §M where § is the Dirac delta function and M € IRN*N
is a symmetric, semi-positive definite matriz.
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Weighted Positivity 13

We start the proof of this proposition by writing M explicitly in
terms of Af‘jﬂ and U,;.

LEMMA 3.7. Under the assumptions of Proposition 3.6, if L is positive
with weight U, then LTV = 6 M where M € RN*N

My == [ A do
= _/,H wa ¥, (W) do (p,qg=1,2,...,N).

Here \IIZ(w), U, pg(w) are as defined in Lemma 3.2 and Lemma 3.5.

Proof. By Lemma 3.2 and Proposition 3.1, for any u € C§°(IR"),
Mpqu(0) = (LT @), u) = (= A3 DogWig,u)
= 7/A3f\1/iqDa/gu dx
— /AZDBDﬂ\IliqDau dx

1 aB A
= lg% o, Aip DgV¥;qDyudx

e—0

IRT af o - af o
— lim ( /a A Dy - uvedo /}R o, 2 Do udw)

— 7 af 1-ng,B .
= lg% o, Ay T (W) - uwg do

- _ 1 BB
= —lim Ay Vi (W)u(ew)wq do

e—0 Jgn—-1

= —u(0) /SH?1 A%ﬁwa\ﬂg(w) do.
So the result follows.

As before, we break up the proof of Proposition 3.6 into two Lemmas.

LEMMA 3.8. Under the assumptions of Proposition 3.6, if L is positive
with weight U, then LTV = 6 M where M € RN*N is symmetric.
Proof. Step 1. By definition, we wish to show that

Mpq:qu (p,q:13277N7p7éq)

As in the proof of Lemma 3.5, we take u = (u;) |, where

0, ©#pq
U =1v, i1=p , v,w e CP(IR™M\{0}),
w, 1=¢q
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14 Luo and Maz’ya

and obtain

/Lu Uy dr = /Af‘kﬁDaukDguj Uy dx + /Af‘kﬁDauk ~u;jDgV;; dx
=11 + 5.

Step 2. As before, we have

L < C’/r2_”<|DU|2 +|Dwl) d (10)

I, = — /r*"vw‘l/gq(w) dx + /rlfnvDaw (ﬁl;qp(w) - \I/;pq(w)) dx.

Note that
Uy (w) =0
by Proposition 3.1, so
I = / P70 Do (W (@) — Wy () ) i (11)

Step 3. Now take
v(z) = ¢(r),
w(zx) =n(r) := —esgn(Mpq — Myp) /OT p~C¢(p) dp, € >0,
where ¢ € C§°(0,00) is to be determined later. Substituting this into

(11), switching to spherical coordinates and applying Lemma 3.7, we
have

b= [Ty [ () — W) do
ey M) Oy 2y [ 0
= —€[Mpq — Mgy | /00o rt¢3(r) dr.
On the other hand, (10) implies that
n <0 [P0+ )] da

—c|[Trcwrarse [Tl
=: I11 + Io.
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Step 4. Assume M,; — Mg, # 0. We first choose € small enough so
that

1
Ce < §’Mpq — Myl

where C' is the constant appearing in (10). For this fixed ¢, we have
€ 1.2
hio < 51 My = M| [~ 77130 dr, G € G0, 00).
Next, we appeal to Lemma 3.9 below and choose ( so that
€ 1.2
I < 51 My = M| [ 77630 dr.

This shows that
IL+1, <0

and gives us the desired contradiction.

LEMMA 3.9. For any given C > 0, there ezists ( € C§°(0,00) so that

/OOO r= 13 (r) dr > C’/OOOT(C’(T))er

and
r_lC(T) =n'(r) for somen € C§°(0, ).

Proof. We first note that for any ¢ € C§°(0, 00),
r~1¢(r) = n/(r) for some n € C°(0, 0)
if and only if

/Ooo r=1¢(r) dr = 0.

Let ¢ € C*(IR) be as given in Lemma 3.4. For 0 < § < 1 and R > 2,
define

06 tr —1), 0<r<3
Go.r(r) = ¢ 20(—2r + %) -1, % <r<RnR.
o(R'r—1)—-1, >R

Clearly (s,r € C§°(0,00) (Fig.2). For each ¢ small, we may choose
R = Rj so that

/oO Co.rs () dr = 0.
0
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Figure 2. The function (5 r used in Lemma 3.9.

This is always possible since the integral above changes continuously

with R and
/ 7“_1(575/4(7“) dr >0 if 4 is sufficiently small,
0

/ rr(r)dr — —c00  as R — oc.
0

Now

/OOTACQ (r)dr>/3/4r1dr—lo 3
0 5,R5 - 9 - g867

0
S ) 26 5/4 2Rs ) )
/ 7(Cs Ry (r))" dr = {/ + + 7(Cs,r, (1)) dr
0 5 3/4 Rs
26 5/4 2Rs
<RI [ rdr 161G [ rdr v B [ e
1) 3/4 Rs

< Cll¢'[1%-
So the result follows by choosing § sufficiently small.
Now we show M is semi-positive definite.

LEMMA 3.10. Under the assumptions of Proposition 3.6, if L is posi-
tive with weight ¥, then LTW = 6 M where M € IRN*N is semi-positive
definite.
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Proof. Step 1. Take u = (u;)XY.; where u; € C$°(IR") (note that u;
does not necessarily vanish near the origin). As before we have

/ Lu - Vude = / A%’ DoupDguj - Ui da + / A%’ Douy, - uj D0 da
=11 + Is.

Step 2. Clearly
I < C/rQ_"]Du\Qd:U. (12)

As for Is, we write

I, = /Z A?kﬁDauzg ~u; DV dw + / Z A%Dawc ~uiDpWij d
k<j k>j

+ / Z A?kﬁDauk . Ung\I/ij dl‘
k=3
=: Ip1 + Ioo + Io3.

Similar to the calculations in Lemma 3.7, we have

121 = Z/A?kﬁDauk . u]‘Dg\I/ij dl’
k<j

= — Z (uk(O)u](O)/ ) wa\I/’akj (w) do + /A?kﬁukDaung\Ilij d.fC)
Sn—=

k<j
= 3 Oy O)My ~ 3 [ A ;Do Dy da,
k<j i<k

123 = Z/A?kﬁDauk . ung\I/ij dx
k=j

1
=3 > uk(0)u; (0) M.
k=j
Since M is symmetric, this implies that
. 1 af af
Iy = 5 0 ur(0)uj (0)Myj + 3 [ ujDous (457 DaWi; — A DV ) da
k.j k>j

1

= Su” (0)Mu(0) + 3 / wj Doy (A5 DaWi; — A7 DaWyy) da.
k>j

(13)

Step 3. Assume M is not semi-positive definite, then there exists
¢ € RYN such that
erME <.
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Take

log r .
uj(:c):@go(@—l), 0<e<l1 (j=1,2,...,N),

where ¢ € C*(IR) is as given in Lemma 3.4. Substituting this into
(13), switching to spherical coordinates and applying Lemma 3.8, we
have

o0 log r log r !
b= e 600t ) [ (02 1) [ (15 1) o
= 0 og € og €

= S€7Me

On the other hand

; log r w
D 2 — D ; 2 _ 51 / ( o 1) w
| Dyl EZ:‘ | EZ: logeso loge T
= |£|22 |:S0/ <1Ogr o 1>:|2’
r2log” e log e
o (12) implies that
2 1 2
|I|<C/ <l { (Ogr—1>} dx
rlog? e log €
C!«SP /

_ i 12
[loge| ™" "%

This shows that
L1+1,<0 if € is sufficiently small

and gives us the desired contradiction.

Now Proposition 3.6 is a direct consequence of Lemma 3.8 and
Lemma 3.10.

It is natural to ask whether one can improve the results of Proposi-
tion 3.6 by showing that actually M = I, the N x N identity matrix.
The following example shows that this is not the case.

Example. Assume n > 3 and consider L = —A - I, where A is the

Laplacian:
Au = Dyou,  Vu € C*(R"),
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and I is the N x N identity matrix. It is not hard to see that the
fundamental matrix of LT = L is given by ® = I, where

1 2—n
= - g d
V() PR R Al N

is the fundamental solution of —A. For any M € RN*N with M
symmetric and semi-positive definite, we have

M = PTAP
where P is orthogonal and A is diagonal with non-negative diagonal
elements Aq,...,A\y. Now for any u = (u;)Y,, v € C(R") (i =
1,2,...,N),

/ Lu- (M)uds = — / (AT Mudz
__ / ~(Aw)" PTAPu dz
_ / +(A(Pw)TA(Pu) dz.
Setting v = Pu, we have
- / (A0 Ao da = %Aivf(O) + / | Doi[2y dar

. 1 2 2
> .
‘ 1m’2}nm’N{)\Z} <2|v(0)| + / | Dv| 'ydw>

1=
> 0.
3.4. POINTWISE POSITIVE DEFINITENESS

With judicious choices of the test function u, we now proceed to show
the pointwise “positive definiteness” of W.

PROPOSITION 3.11. Suppose L is an elliptic operator as defined in
(2) and W satisfies (4). If L is positive with weight W, then

S AP (rw)easTip(w) >0,  VEER"  (p=1,2,...,N)
i,a,,3

for all > 0, w € S"! such that rw € Q. That is to say, the n x n
matriz (3, A%ﬁ(rw)\llip(w))gﬂzl is pointwise semi-positive definite.
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20 Luo and Maz’ya

Proof. Let r > 0, w € 8"~ ! be fixed and rw € 2. We follow the idea
in [5] and take u = (Uj);\’:l, where

o, Jj#P
’U,](.’E) - { —n/2’£‘ (6 (.I‘ _ rw))eix'g, ] =p ’

e>0, (€ R", 0#ne CyP(R").

By definition (with y = e !(z — rw)),

Re/ Lu - Yudx
Q

Re{ = ig172 [ 3 45 Das[n)e™] - nly)e 40, do

Jyo,8

_ e / > AT (y) — Eakam(y) | n(y) Wy da
2 a8
> 0.

We first let |{| — oo along a fixed direction and obtain

—n 60( 5[3 Oéﬂ
<" Tl o > AT (y) ¥y dr > 0.

Jaﬁ

By substituting y = e !(x — rw) for x and letting ¢ — 0, we then
conclude that

S A ) [t >0,
JrouB

which is what to be shown.

This completes the proof of Theorem 2.2.
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