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The classical problem of regularity of boundary characteristic points for semilinear

heat equations with homogeneous Dirichlet conditions is considered. The Petrovskii

(2
√
log log) criterion (1934) of the boundary regularity for the heat equation can be

adapted to classes of semilinear parabolic equations of reaction–diffusion type and takes

the form of an ordinary differential equation (ODE) regularity criterion. Namely, af-

ter a special matching with a boundary layer, the regularity problem reduces to a one-

dimensional perturbed nonlinear dynamical system for the first Fourier-like coefficient of

the solution in an inner region. A similar ODE criterion, with an analogous matching

procedures, is shown formally to exist for semilinear fourth order biharmonic equations

of reaction-diffusion type. Extensions to regularity problems of backward paraboloid ver-

tices in R
N are discussed. Bibliography: 54 titles. Illustrations: 1 figure.

1 Introduction

1.1 Semilinear reaction-diffusion PDEs near parabola vertices

The present paper is devoted to a systematic study of the regularity of the origin (0, 0) as a

boundary point for semilinear heat (reaction-diffusion) equations, which we first consider in 1D:

ut = uxx + f(x, t, u) in Q0 ⊂ R× [−1, 0),

u = 0 on ∂Q0,

u(x,−1) = u0(x),

(1.1)
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where Q0 is a sufficiently smooth domain such that (0, 0) ∈ ∂Q0 (∂Q0 denotes the lateral

boundary of Q0) is its only characteristic boundary point, i.e., in the {x, t}-plane,
(i) the straight line {t = 0} is tangent to ∂Q0 at this point, and

(ii) no such points exist on ∂Q0 for t ∈ [−1, 0).

According to (1.1), we impose the zero Dirichlet condition on the lateral boundary ∂Q0 and

prescribe arbitrary bounded initial data u0(x) at t = −1 in Q0 ∩ {t = −1}.
We assume that the nonlinearities f(x, t, u) in (1.1) satisfy necessary regularity and growth

in u assumptions that guarantee the existence and uniqueness of a smooth classical solution

u ∈ C2,1
x,t (Q0) ∩ C(Q0)

1) of (1.1) in Q0 by the classical parabolic theory (cf., for example, the

well-known monographs [1]–[4]). A standard regularity issue in the general theory of partial

differential equations is then as follows: how to control the solution at the vertex, i.e.,

u(0, 0−) =?

Note that this does not a priori exclude blow-up at the vertex (regardless zero Dirichlet condi-

tions on the lateral boundary), where |u(0, 0−)| = +∞, in the sense of lim sup.

More precisely, as customary in the regularity theory, the goal is to derive conditions showing

how given smooth nonlinear perturbations f(·) can affect the regularity of the vertex (0, 0) of such

a backward parabola ∂Q0. The regularity of (0, 0) (in the Wiener sense) means:

u(0, 0−) = 0 for any initial data u0. (1.2)

As is well known, for nonlinearities f(·) ≡ 0, i.e., for the pure heat equation

ut = uxx in Q0,

u = 0 on ∂Q0,

u(x,−1) = u0(x),

(1.3)

this regularity problem was solved by Petrovskii [5, 6] in 1934, who introduced his celebrated

Petrovskii regularity criterion (the so-called 2
√
log log–criterion).

Indeed, many and often strong and delicate boundary regularity and related asymptotic

results are now known for a number of quasilinear parabolic equations, including even a few

for degenerate porous medium operators. Nevertheless, some difficult questions remain open

even for the second order parabolic equations with order-preserving semigroups. We refer to

the results and surveys in [7]–[11] as a guide to a full history and already existing interesting

extensions of these important results. Concerning further developing of Wiener’s ideas in linear

parabolic equations we refer to the bibliography and results in [12]–[15]. However, a more sys-

tematic study of those regularity issues for equations such as (1.1) with rather general nonlinear

perturbations f(·) was not done properly still. In fact, it turned out that, for such arbitrary f(·),
the classical barrier methods hardly applied and another asymptotic approach was necessary.

We propose this in the present paper for a wide class of semilinear parabolic partial differential

equations.

1) As customary in parabolic partial differential equations [1], the closure Q0 does not include the “upper lid,”

which is the vertex (0, 0) only.
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1.2 Layout of the paper: key models, nonlinearities, and extensions

Section 2 contains some preliminary discussions and results. In Sections 3–5, the main goal

is to show how a general “nonlinear perturbation” f(·) in (1.1) affects the regularity conditions

by deriving sharp asymptotics of solutions near characteristic points. For this purpose, we apply

the method of a matched asymptotic (blow-up) expansion, where the boundary layer behavior

close to the lateral boundary ∂Q0 (cf. Section 4) is matched, as t→ 0−, with a center subspace

behavior in an inner region (cf. Section 5). This leads to a nonlinear dynamical system for

the first Fourier coefficient in the eigenfunction expansion via standard Hermite polynomials as

eigenfunctions of the linear Hermite operator obtained after blow-up scaling near the vertex.

Overall, the vertex regularity is shown to be governed by an ODE criterion, which principally

does not admit any simply integral (Osgood–Dini type) treatment as in Petrovskii’s one.

Indeed, such an approach falls into the scope of typical ideas of the asymptotic PDE theory,

which got a full mathematical justification for many problems of interest. In particular, we

refer to a recent general asymptotic analysis performed in [16]. According to its classification,

our matched blow-up approach corresponds to perturbed one-dimensional dynamical systems,

i.e., to a rather elementary case being however a constructive one that detects a number of new

asymptotic/regularity results.

In particular, to show a typical “interaction” between the linear Laplacian and the nonlinear

perturbations in (1.1), we initially concentrate on the simplest case with

f(·) = 1

(−t) κ(u)u for t ∈ [−1, 0), (1.4)

where κ(u) is a smooth enough function satisfying

κ(u) → 0 as u→ 0,

|κ(u)| � 1, κ(u) 	= 0 for u 	= 0.
(1.5)

We show that the nonlinear perturbation (1.4) will then affect the Petrovskii 2
√
log log-time-

factor starting from some awkward looking functions such as

κ(u) ∼ | ln |u| | 13 e−(3
√
π| ln |u| |)2/3 → 0 as u→ 0. (1.6)

For more general nonlinearities we derive the so-called ODE regularity criterion of the ver-

tex (0, 0), meaning that a special nonlinear ordinary differential equation for the first Fourier

coefficients of rescaled solutions takes responsibility for the vertex regularity/irregularity.

The present research has been inspired by the regularity study of quasilinear elliptic equations

with quadratic gradient-dependent nonlinearities [17], where, in 2D, new asymptotics of solutions

near conical points were discovered. We also refer to the monographs [18]–[22] and [23]–[26] as an

update guide to elliptic regularity theory including higher order equations. Sharp asymptotics

of solutions of the heat equation in domains with conical points were derived in [27]–[30]. Higher

order parabolic equations were treated in [31, 32]. It turned out that, unlike the present study,

such asymptotics are of a self-similar form. See also [33] for a good short survey including

compressible/incompressible Stokes and Navier–Stokes problems.
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Therefore, as a next key model regularity problem, we briefly reflect the main differences and

difficulties, which occur by studying the regularity issues for parabolic equations with a typical

quadratic gradient dependence in the nonlinear term:

ut = uxx + κ(u)u (ux)
2 in Q0,

u = 0 on ∂Q0,

u(x,−1) = u0(x).

(1.7)

Then the ODE regularity criterion is expressed in terms of another 1D dynamical system, with

a weaker nonlinearity. We then convincingly show that, for any κ(u) in (1.7) satisfying (1.5),

the Petrovskii linear regularity criterion takes place, i.e., it remains the same as for the heat

equation (1.3).

We also pay some attention to extensions to similar regularity problems in domains Q0 ⊂
R
N × [−1, 1), with ∂Q0 having a backward paraboloid shape and the vertex (0, 0) being their

characteristic point. In Section 3, we thus discuss the semilinear problems

ut = Δu+

⎧
⎪⎨

⎪⎩

κ(u)u

(−t)
κ(u)u|∇u|2

in Q0,

u = 0 on ∂Q0.

(1.8)

Finally, in Appendix B (Appendix A is devoted to the corresponding spectral theory of

rescaled operators), we show how our approach can be extended to higher order partial differen-

tial equations, for example, for the semilinear biharmonic equations having similar nonlinearities,

with also zero Dirichlet conditions on ∂Q0 and bounded initial data u0 in Q0 ∩ {t = −1}. The

mathematical analysis becomes much more difficult, and we do not justify rigorously all its main

steps such as the boundary layer and matching with the inner region asymptotics. Moreover,

the 1D dynamical system for the first Fourier coefficients becomes also more delicate and does

not admit such a complete analysis, although some definite conclusions are possible. We must

admit that this part of our study is formal, although some steps are expected to admit a full

justification, which nevertheless can be rather time-consuming.

2 Petrovskii’s 2
√
log log–Criterion of 1934

and Some Extensions

We need to explain some details of Petrovskii’s classical regularity analysis for the heat equa-

tion performed in 1934-35. Following his study, we consider the one-dimensional case N = 1,

where the analysis becomes more clear. Moreover, our further extensions to biharmonic opera-

tors (Appendix B) will be also performed for N = 1, in view of rather complicated asymptotics

occurred, so we are not interested in involving extra technicalities.

After Wiener’s pioneering regularity criterion [34] for the Laplace equation in 1924, I. G. Petro-

vskii [5, 6] was the first who completed the study of the regularity question for the 1D and 2D

heat equation in a noncylindrical domain. We formulate his result in a blow-up manner, which

in fact was already used by Petrovskii [5] in 1934.
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Petrovskii considered the question on an irregular or regular vertex (x, t) = (0, 0) in the

initial-boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = uxx in Q0 = {|x| < R(t), − 1 < t < 0},
R(t) → 0+ as t→ 0−,

with bounded smooth data u(x, 0) = u0(x) on [−R(−1), R(−1)].

(2.1)

Here, the lateral boundary {x = ±R(t), t ∈ [−1, 0)} is given by a function R(t) that is assumed

to be positive, strictly monotone, C1-smooth for all −1 � t < 0 (with R′(t) > 0), and is allowed

to have a singularity of R′(t) at t = 0− only. The regularity analysis then detects the value of

u(x, t) at the end “blow-up” characteristic point (0, 0−), to which the domain Q0 “shrinks” as

t→ 0−.

Remark 2.1 (on the first parabolic regularity results for m = 1 and m � 2). It is well-

known that, for the heat equation, the first existence of a classical solution (i.e., continuous at

(0, 0)) was obtained by Gevrey [35] in 1913–1914 (cf. Petrovskii’s references in [5, p. 55] and [6,

p. 425]), which assumed that the Hölder exponent of R(t) is larger than 1/2. In our setting, at

t = 0−, this comprises all types of boundaries given by the functions

R(t) = (−t)ν with any ν > 1/2 are regular ([Gevrey, 1913–1914]. (2.2)

For the 2mth order parabolic polyharmonic equations such as (A.3) below, a similar result

for R(t) = (−t) 1
2m the problem is uniquely solvable (2.3)

was proved 2) by Mikhailov [36] almost sixty years later and fifty years ago.

Definition 2.1. (i) As usual in potential theory, the point (x, t) = (0, 0) is called regular

(in the Wiener sense, cf. [25]) if any value of the solution u(x, t) can be prescribed there by

continuity as a standard boundary value on ∂Q0. In particular, as a convenient and key for us

evolution illustration, (0, 0) is regular if the continuity holds for any initial data u0(x) in the

following sense:

u = 0 at the lateral boundary {|x| = R(t), − 1 � t < 0} =⇒ u(0, 0−) = 0. (2.4)

(ii) Otherwise, the point (0, 0) is irregular if the value u(0, 0−) is not fixed by boundary

conditions, i.e., u(0, 0) 	= 0 for some data u0, and hence is given by a “blow-up evolution” as

t→ 0−. Hence, formally, (0, 0) does not belong to the parabolic boundary of Q0.

2) However, in the Slobodetskii–Sobolev classes, i.e., the continuity at (0, 0) is not understood in the above Wiener

classical sense. In fact, for m = 2 Wiener’s one (2.4) fails for the parabola with R(t) = 5(−t)
1
4 in (2.3), while the

one with R(t) = 4(−t)
1
4 remains regular (cf. [8, § 4.3]).
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Petrovskii’s 2
√
log log–criterion

Using novel barriers as upper and lower solutions of (2.1), Petrovskii [5, 6] established the

following 2
√
log log-criterion:

(i) R(t) = 2
√−t

√
ln | ln(−t)| =⇒ (0, 0) is regular, and

(ii) R(t) = 2(1 + ε)
√−t

√
ln | ln(−t)|, ε > 0 =⇒ (0, 0) is irregular.

(2.5)

More precisely, he also showed that, for the curve expressed in terms of a positive function

ρ(h) → 0+ as h→ 0+

(
ρ(h) ∼ 1

| lnh| is about right
)

as follows:

R(t) = 2
√−t

√
− ln ρ(−t), (2.6)

the sharp regularity criterion holds (in Petrovskii’s original notation):

∫

0

ρ(h)
√| ln ρ(h)|
h

dh < (=) +∞ =⇒ (0, 0−) is irregular (regular). (2.7)

Both converging (irregularity) and diverging (regularity) integrals in (2.7) as Dini–Osgood

type regularity criteria already appeared in the first Petrovskii paper [5, p. 56] of 1934. Further

historical and mathematical comments concerning Petrovskii’s analysis including earlier (1933)

Khinchin’s criterion [37] in a probability representation can be found in a survey in [8].

Petrovskii’s integral criterion of the Dini–Osgood type given in (2.7) is true in the N -

dimensional radial case with (cf. [7] for a more recent updating)

√
| ln p(h)| replaced by | ln p(h)|N2 . (2.8)

It is worth mentioning that, as far as we know, (2.5) is the first clear appearance of the

“magic”
√
log log in the theory of partial differential equations, currently associated with the

“blow-up behavior” of the domain Q0 and corresponding solutions. Concerning other classes of

nonlinear partial differential equations generating blow-up
√
log log in other settings, we refer

the reader to [38].

Thus, since the 1930s, the Petrovskii regularity
√
log log–factor entered the parabolic theory

and generated new types of asymptotic blow-up problems, which have been solved for a large

class of parabolic equations with variable coefficients, as well as for some quasilinear ones.

Nevertheless, such asymptotic problems were very delicate and some of them of Petrovskii type

remained open even in the second order case, i.e., for (1.1), to be solved in the present paper for

the first time.
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3 Preliminaries of Matched Asymptotic Expansion

3.1 The basic initial-boundary value problem

Thus, we consider the semilinear parabolic equation (1.1), with a simple, “basic” nonlinear

perturbation, which we take in the separable form (1.4). The eventual ODE regularity criterion

will then also include the behavior of the nonlinear coefficient κ(u) as u→ 0.

Hence our basic second order initial-boundary value problem takes the form
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = uxx +
1

(−t) κ(u)u in Q0 = {|x| < R(t), − 1 < t < 0},

u = 0 at x = ±R(t), −1 � t < 0,

u(x, 0) = u0(x) on [−R(−1), R(−1)],

(3.1)

where u0(x) is a bounded and smooth function, u0(±R(−1)) = 0. We then apply Definition 2.1

to the problem (3.1).

3.2 Slow growing factor ϕ(τ)

According to (2.5), we need to assume that

R(t) = (−t) 1
2 ϕ(τ),

where τ = − ln(−t) → +∞ as t→ 0−.
(3.2)

Here, ϕ(τ) > 0 is a smooth monotone increasing function satisfying ϕ′(τ) > 0,

ϕ(τ) → +∞, ϕ′(τ) → 0+, and
ϕ′(τ)
ϕ(τ)

→ 0 as τ → +∞. (3.3)

Moreover, as a sharper characterization of the above class of slow growing functions, we use the

following criterion:
( ϕ(τ)

ϕ′(τ)

)′ → ∞ as τ → +∞ (ϕ′(τ) 	= 0). (3.4)

This is a typical condition in blow-up analysis, which distinguishes classes of exponential (the

limit in (3.4) is 0), power-like (a constant 	= 0), and slow-growing functions (cf. [39, Lemma 1,

pp. 390-400], where extra properties of slow-growing functions (3.4) are proved). For instance,

one can use a comparison of such a ϕ(τ) with any power:

for any α > 0 ϕ(τ)  τα and ϕ′(τ)  τα−1 for τ � 1. (3.5)

Such estimates are useful in evaluating perturbation terms in the rescaled equations.

Thus, the monotone positive function ϕ(τ) in (3.2) is assumed to determine a sharp behavior

of the boundary of Q0 near the shrinking point (0, 0) to guarantee its regularity. In the Petrovskii

criterion (2.5), the almost optimal function satisfying (3.3) and (3.4) is

ϕ∗(τ) = 2
√
ln τ as τ → +∞. (3.6)
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3.3 First kernel scaling and two region expansion

By (3.2), we perform the similarity scaling

u(x, t) = v(y, τ), where y =
x

(−t)1/2 . (3.7)

Then the rescaled function v(y, τ) now solves the rescaled initial-boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vτ = B∗v + κ(v)v ≡ vyy − 1

2
yvy + κ(v)v in Q0 = {|y| < ϕ(τ), τ > 0},

v = 0 at y = ±ϕ(τ), τ � 0,

v(0, y) = v0(y) ≡ u0(y) on [−R(−1), R(−1)].

(3.8)

The rescaled equation in (3.8), for the first time, shows how the classical Hermite operator

B∗ = D2
y −

1

2
yDy (3.9)

occurs after blow-up scaling (3.7). By the divergence (3.3) of ϕ(τ) → +∞ as τ → +∞, it

follows that sharp asymptotics of solutions will essentially depend on the spectral properties of

the linear operator B∗ on the whole line R (cf. Appendix A), as well as on the nonlinearity

κ(v)v, so that such an asymptotic “interaction” between linear and nonlinear operators therein

eventually determines regularity of the vertex.

Studying asymptotics for the rescaled problem (3.8), as usual in asymptotic analysis, this

blow-up problem is solved by matching of expansions in two regions:

(i) in the inner region which includes arbitrary compact subsets in y containing the origin

y = 0, and

(ii) in the boundary region close to the boundaries y = ±ϕ(τ), where a boundary layer occurs.

Actually, such a two-region structure, with the asymptotics specified below, defines the class

of generic solutions under consideration. We begin with the simpler analysis in the boundary

region (ii).

4 Boundary Layer (BL) Theory

4.1 BL-scaling and a perturbed parabolic equation

Sufficiently close to the lateral boundary of Q0, it is natural to introduce the variables

z =
y

ϕ(τ)
and v(y, τ) = w(z, τ) =⇒ wτ =

1

ϕ2
wzz − 1

2
zwz +

ϕ′

ϕ
zwz + κ(w)w. (4.1)

We next introduce the BL-variables

ξ = ϕ2(τ)(1 − z) ≡ ϕ(ϕ − y), ϕ2(τ)dτ = ds,

w(z, τ) = ρ(s)g(ξ, s),
(4.2)
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where ρ(s) > 0 for s� 1 is an unknown scaling time-factor depending on the function ϕ(τ). As

usual, this ρ-scaling is chosen to get uniformly bounded rescaled solutions, i.e., for nonnegative

solutions

sup
ξ
g(ξ, s) = 1 for all s� 1 (4.3)

(for solutions which remain of changing sign for s � 1, one takes |g(ξ, s)| in (4.3)). By the

strong maximum principle (the Sturm theorem on zero sets, cf. [40]), vy(y, τ) has a finite

number of zeros in y for any τ > 0 (possible supremum points), and a standard argument

ensures that the normalization (4.3) implies that such a ρ(s) can be treated as sufficiently

smooth for s � 13). This describes the class of solutions under consideration. For instance, by

the maximum principle, it is particular easier to work out, when:

(4.3) holds for all nonnegative solutions u(x, t) 	≡ 0. (4.4)

Respectively, for nonpositive solutions one can use −1 as the normalization in (4.3).

On substitution into the partial differential equation (4.1), we obtain the following small

nonlinear perturbation of a linear uniformly parabolic equation:

gs = Ag − 1

2

1

ϕ2
ξgξ − ϕ′

τ

ϕ

(
1− ξ

ϕ2

)
gξ − 2

ϕ′
τ

ϕ3
ξgξ − ρ′s

ρ
g +

1

ϕ2
κ(ρg) g, (4.5)

where

Ag = g′′ +
1

2
g′.

As usual in the boundary layer theory, this means that we then are looking for a generic pattern

of the behavior described by (4.5) on compact subsets near the lateral boundary,

|ξ| = o
(
ϕ−2(τ)

)
=⇒ |z − 1| = o

(
ϕ−4(τ)

)
as τ → +∞. (4.6)

On these space-time compact subsets, the second term on the right-hand side of (4.5) be-

comes asymptotically small, while all the other linear ones are much smaller in view of the slow

growth/decay assumptions such as (3.4) for ϕ(τ) and ρ(s).

4.2 Passing to the limit and convergence to a BL-profile

Thus, we arrive at a uniformly parabolic equation (4.5) perturbed by a number of linear

and nonlinear terms being, under a given assumption, asymptotically small perturbations of

the stationary elliptic operator A. In particular, the last nonlinear term in (4.5) is clearly

asymptotically small by the assumptions (1.5) and (3.3), so that for uniformly bounded g

1

ϕ2(τ)
g κ(ρ(s)g) → 0 as τ → +∞. (4.7)

3) On the other hand, one can normalize in (4.2) by the smooth function ρ(s) ≡ v(0, τ ), which also can be

regarded as positive (negative) for τ � 1 (infinitely many sign changes of v(0, τ ) for τ � 1 also mean that v(y, τ )

has infinitely many zeros in y that is impossible for the heat equation [40]). This leads to some slight technical

differences, although makes the normalization (4.8) below more straightforward.
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By rescaling and (4.3), the BL-representation (4.2) naturally leads to the following asymp-

totic behavior at infinity:

lim
s→+∞ g(ξ, s) → 1 as ξ → +∞, (4.8)

where all the derivatives also vanish. Then we arrive at the problem of passing to the limit as

s→ +∞ in the problem (4.5), (4.8). Since the rescaled orbit {g(s), s > 0} is uniformly bounded

by the definition in (4.2) (cf. [4, 3, 41]), one can pass to the limit in (4.5) along a subsequence

{sk} → +∞ by using the classical parabolic interior regularity theory. Namely, uniformly on

compact subsets defined in (4.6), as k → ∞,

g(sk + s) → h(s), where hs = Ah,

h = 0 at ξ = 0,

h
∣
∣
ξ=+∞ = 1.

(4.9)

Consider this limit (at s = +∞) equation obtained from (4.5):

hs = Ah ≡ hξξ +
1

2
hξ in R+ × R+,

h(0, s) = 0,

h(+∞, s) = 1.

(4.10)

It is a linear parabolic partial differential equation in the unbounded domain R+, governed by

the operator A admitting a standard symmetric representation in a weighted space. Namely,

we have the following assertion.

Proposition 4.1. (i) (4.10) is a gradient system in a weighted L2-space, and

(ii) for bounded orbits the ω-limit set Ω0 of (4.10) consists of a unique stationary profile

g0(ξ) = 1− e−ξ/2, (4.11)

and Ω0 is uniformly stable in the Lyapunov sense in a weighted L2-space.

Proof. As a second order equation, (4.10) is written in a symmetric form

eξ/2hs = (eξ/2hξ)ξ (4.12)

and hence admits the multiplication by hs in L2 that yields the monotone Lyapunov function

1

2

d

ds

∫

eξ/2(hξ)
2 dξ = −

∫

eξ/2(hs)
2 dξ � 0. (4.13)

Note that, in (4.12), the derivatives hξ and hs have to have an exponential decay at infinity in

order the seminorms involved to make sense. It is essential that the limit profile (4.11) perfectly

suits both.

Thus, the problem (4.5) is a perturbed gradient system, that allows to pass to the limit

s→ +∞ by using power tools of gradient system theory (cf., for example, [42]).
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(ii) For a given bounded orbit {h(s)} we denote h(s) = g0 + w(s), so that w(s) solves the

same equation (4.12). Multiplying by w(s) in L2 yields

1

2

d

ds

∫

eξ/2w2 dξ = −
∫

eξ/2(wξ)
2 dξ < 0 (4.14)

for any nontrivial solutions, whence the uniform stability (contractivity) property.

Finally, we state the main stabilization result in the boundary layer, which establishes the

actual class of generic solutions we are dealing with.

Theorem 4.1. (i) There exists a class of solutions of the perturbed equation (4.5) for which,

in a weighted L2-space and uniformly on compact subsets,

g(ξ, s) → g0(ξ) as s→ +∞. (4.15)

(ii) (4.15) is particularly true for all nontrivial nonnegative solutions.

Proof. (i) Under given assumptions, the uniform stability result in (ii) of Proposition 4.1

implies [43, Chapter 1] that the ω-limit set of the asymptotically perturbed equation (4.5) is

contained in that for the limit one (4.10), which consists of the unique profile (4.11).

(ii) This follows from the construction since then ρ(s) in (4.2) can be chosen always positive.

Then in the limit we are guaranteed to arrive at the gradient problem (4.9) admitting the unique

uniformly stable stationary point (4.11).

5 Inner Region Expansion:
Towards an ODE Regularity Criterion

5.1 The Cauchy problem setting, eigenfunction expansion, and matching

In the inner region, we deal with the original rescaled problem (3.8). Without loss of gen-

erality, again for simplicity of final, rather technical and involved calculations, we consider even

solutions defined for y > 0 by assuming the symmetry condition at the origin

vy = 0 at y = 0. (5.1)

As customary in the classical PDEs and potential theory (cf., for example, [44, § 6]), we

extend v(y, τ) by 0 beyond the boundary points, i.e., for y > ϕ(τ):

v̂(y, τ) = v(y, τ)H(ϕ(τ) − y) =

⎧
⎨

⎩

v(y, τ), 0 � y < ϕ(τ),

0, y � ϕ(τ),
(5.2)

where H is the Heaviside function. Since v = 0 on the lateral boundary {y = ϕ(τ)}, one can

check that, in the sense of the theory of distributions,

v̂τ = vτH,

v̂y = vyH,

v̂yy = vyyH − vy
∣
∣
y=ϕ

δ(y − ϕ).

(5.3)
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Therefore, v̂ satisfies the Cauchy problem

v̂τ = B∗v̂ + vy
∣
∣
y=ϕ(τ)

δ(y − ϕ(τ)) + κ(v̂)v̂ in R× R+. (5.4)

Since the extended solution (5.2) is uniformly bounded in L2
ρ∗(R) by construction, we can use

the converging in the mean (and uniformly on compact subsets in y) the eigenfunction expansion

via the standard Hermite polynomials given in (A.22) for m = 1:

v̂(y, τ) =
∑

(k�0)

ak(τ)ψ
∗
k(y). (5.5)

Actually, as follows from the BL-theory in Section 4 (cf. Theorem 4.1), the only possible solutions

admitting matching with (4.15) possess a constant in y behavior on compact subsets in y, i.e.,

v̂(y, τ) = a0(τ) · 1(1 + o(1)) as τ → +∞. (5.6)

Indeed, this “1” well corresponds to the first Hermite polynomial ψ∗
0(y) ≡ 1 in (5.5). Since

λ0 = 0 for this “polynomial,” the behavior (5.6) can be referred as to a “center subspace” one

for the operator B∗ in (3.9), although we do not use this fact at all.

Thus, by the boundary layer theory establishing the boundary behavior (4.2) for τ � 1,

which we state again: in the rescaled sense, on the given compact subsets,

v̂(y, τ) = ρ(s)g0

(
ϕ2(τ)(1 − y

ϕ(τ)
)
)
(1 + o(1)). (5.7)

Overall, in the class of generic solutions satisfying the BL-expansion, we concentrate on the first

Fourier pattern associated with

k = 0 : λ0 = 0 and ψ∗
0(y) ≡ 1

(
ψ0(y) ≡ F (y), the Gaussian (A.13)

)
. (5.8)

The corresponding normalization condition is key for further projections:

〈ψ0, ψ
∗
0〉 ≡

∫

F = 1. (5.9)

Proposition 5.1. Under the given assumptions:

(i) for solutions in Theorem 4.1(i) the relation (5.6) holds with a0(τ) > 0 for τ � 1, and then

the matching with the boundary layer behavior in (4.2) requires

a0(τ)

ρ(s)
→ 1 as τ → +∞ =⇒ ρ(s) = a0(τ)(1 + o(1)); (5.10)

(ii) in particular, these assertions are true for nontrivial nonnegative solutions.

Proof. (i) follows from the construction of the boundary layer. (ii) follows from Theorem

4.1(ii).

12



Thus, projecting Equation (5.4) onto the center subspace of B∗ (i.e., multiplying in L2 by

ψ0(y) = F (y)) yields, for the leading mode a0(τ), the following “ordinary differential equation”:

a′0 = vy
∣
∣
y=ϕ(τ)

ψ0(ϕ(τ)) + 〈κ(v̂)v̂, ψ0〉. (5.11)

The convergence (5.7), which by a standard parabolic regularity is also true for the spatial

derivatives, yields, as τ → +∞,

vy
∣
∣
y=ϕ(τ)

= ρ(s)ϕ(τ)γ1(1 + o(1)) = a0(τ)ϕ(τ)γ1(1 + o(1)),

γ1 = g′0(0) =
1

2
.

(5.12)

Finally, we need to estimate the last term in (5.11). By (5.6), using that κ(a0(τ)) 	= 0 for

any a0(τ) 	= 0 via (1.5), we have

〈κ(v̂)v̂, ψ0〉 = 〈κ(a0)a0, F 〉(1 + o(1)) = κ(a0)a0(1 + o(1)). (5.13)

Indeed, since
∫
F = 1 for the Gaussian (A.13), in the last estimate, we have

ϕ∫

0

F (y) dy ≡ 1

2
−

∞∫

ϕ

F (y) dy =
1

2
−O

( 1

ϕ
e−ϕ2/4

)
as ϕ = ϕ(τ) → +∞.

Thus, bearing in mind all above assumptions and estimates for generic patterns including

(5.6), (5.10), (5.7), and (5.13), we obtain the following asymptotic ordinary differential equation

for the first expansion coefficient a0(τ) 	= 0: as τ → +∞,

a′0(τ)
a0(τ)

= − 1

4
√
π
ϕ(τ) e−ϕ2(τ)/4(1 + o(1)) + κ(a0(τ))(1 + o(1)) . (5.14)

One can see that, by the assumptions (1.5), all the solutions of the nonautonomous ordinary

differential equation (5.14) are well defined for τ ∈ [0,+∞). Moreover, by the classical compari-

son/monotonicity results for ordinary differential equations (Chaplygin’s theorem [45] of 1920s),

it follows that, under the above assumptions, solutions of (5.14) satisfy

a0(0) 	= 0 =⇒ a0(τ) 	= 0 for all τ > 0. (5.15)

Therefore, we can always consider positive orbits:

a0(τ) > 0 for all τ � 0. (5.16)

This makes our further asymptotic analysis easier. In particular, in view of (5.15) and (1.5), we

can always omit all higher order terms appeared via the above asymptotics.

5.2 ODE regularity criterion

From (5.14) it follows that a natural way to formulate a regularity criterion for the parabolic

partial differential equation (3.1) is to use the “ordinary differential equation language”4).

4) In fact, this is quite natural and unavoidable: for semilinear PDEs the characteristic point regularity de-

pends on asymptotic properties of ODEs, i.e., the regularity issues for infinite-dimensional dynamical systems are

characterized by 1D ones. This reveals a sufficient and successful reduction of dimensions.
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Theorem 5.1 (ODE regularity criterion). In the parabolic problem (3.1), the origin (0, 0)

is regular if and only if 0 is globally asymptotically stable for the ordinary differential equation

(5.14), i.e., any solution of (5.14) is global and satisfies

a0(τ) → 0 as τ → +∞, i.e., ln |a0(τ)| → −∞. (5.17)

Proof. (i) Necessity. Given any classical solution u(x, t) (3.1), one can always construct

positive and negative barrier solutions u±(x, t) such that

u−(x, t) � u(x, t) � u+(x, t) in Q0 (5.18)

by standard comparison (maximum principle) arguments [1]. Since, by Theorem 4.1(ii) and

Proposition 5.1, such non sign-changing solutions u±(x, t) do obey our matched asymptotics,

their positive (negative) first Fourier coefficients satisfy the asymptotic ordinary differential

equation (5.14) for τ � 1. Hence, by the BL-construction, (5.17) implies that u±(x, t) → 0 as

t→ 0− uniformly, so, by comparison (5.18), the same does an arbitrary u(x, t).

(ii) Sufficiency by contradiction. Let there exist a solution {a0(τ)} of (5.17) (by (5.15), we

may assume it to be positive) such that

lim sup
τ→+∞

a0(τ) > 0. (5.19)

Then, by the ODE comparison, the same is true for solutions of (5.17) with arbitrarily large

Cauchy data at τ = 0, i.e., for any

a0(0) > a0(0). (5.20)

Therefore, there exists a sufficiently large positive solution u+(x, t) of (3.1), whose first Fourier

coefficient satisfies (5.14) and (5.20), so the regularity is violated by (5.19).

For the heat equation (1.3), with κ = 0, integrating (5.14) immediately yields

κ = 0 : (0, 0) is regular ⇐⇒
∞∫
ϕ(τ) e−

ϕ2(τ)
4 dτ = +∞, (5.21)

which is indeed another equivalent form of the Petrovskii criterion (2.7) (in the Khinchin form).

5.3 Applications: further regularity results

We now present a few corollaries of Theorem 5.1, with simpler and more traditional conditions

of regularity/irregularity.

First of all, from the ordinary differential equation (5.14) it follows (and actually is true by

comparison) that negative coefficients κ(v) can “improve” the regularity of (0, 0). Moreover, in

this simpler case, we find a condition, under which any backward parabola has a regular vertex.

Proposition 5.2. Let κ(u) satisfy (1.5), and let

κ(u) < 0 for u > 0. (5.22)

Then for any backward parabola ∂Q0 with arbitrary ϕ in (3.2) and (3.3) the vertex (0, 0) is

regular.
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Proof. From (5.14) it follows that for τ � 1

a′0
a0

� −|κ(a0)|(1 + o(1)) � −1

2
|κ(a0)|. (5.23)

Then, on integration, assuming without loss of generality that a0(0) = 1 and checking an

Osgood–Dini type condition ∫

0+

dz

z|κ(z)| = ∞, (5.24)

which obviously holds for the coefficients (1.5), we have

1∫

a0(τ)

dz

z|κ(z)| �
τ

2
→ +∞ as τ → ∞. (5.25)

Hence, (5.24) reinforces (5.17) to hold.

Second, for positive coefficients κ the regularity can be destroyed. We first state the result

establishing the conditions on monotone κ(v) > 0, under which the nonlinear term changes

regularity for the pure heat equation into the irregularity.

Proposition 5.3. Let κ(u) satisfy (1.5), and let

κ(u) > 0 be increasing for u > 0. (5.26)

Let (5.21) be valid, i.e., (0, 0) is regular for the heat equation (1.3) for N = 1. Denote by

â0(τ) → 0 as τ → ∞ the corresponding Fourier coefficient satisfying (5.14) for κ = 0 :

â0(τ) = â0(0) exp

{

− 1

4
√
π

τ∫

0

ϕ(s) e−ϕ2(s)/4 ds

}

for τ � 1. (5.27)

Then the linear regularity criterion (5.21) fails for the semilinear problem (3.1) and (0, 0) be-

comes irregular provided that the nonlinearity κ is such that

+∞∫ [

− 1

4
√
π
ϕ(τ)e−

ϕ2(τ)
4 + κ(â0(τ))

]

dτ > −∞. (5.28)

Proof. One can see that, in the present proof of a sharp estimate, one can omit both o(1)-

terms in (5.14), meaning that one can replace those by 1+ε and 1−ε with an ε > 0 respectively

and pass to the limit ε→ 0+.

As the first iteration of the full ordinary differential equation (5.14), we have for τ � 1

a′0
a0

� − 1

4
√
π
ϕ(τ) e−

ϕ2(τ)
4 =⇒ a0(τ) � â0(τ). (5.29)

In view of (5.26) and (5.28), we then obtain via the second iteration of (5.14):

a′0
a0

� − 1

4
√
π
ϕ(τ)e−

ϕ2(τ)
4 + κ(â0(τ)) for τ � 1. (5.30)

Integrating this yields, by (5.14), that (0, 0) is no more regular for such nonlinear coefficients

κ(v).
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Corollary 5.1. Under the assumptions of Proposition 5.3, the Petrovskii backward parabola

with the 2
√
log log-factor (3.6) is no more a regular vertex of Q0 for the semilinear problem (3.1)

provided that

κ(v) � | ln |v|| 13 e−(3
√
π| ln |v||)2/3 as v → 0. (5.31)

Thus, (5.31) is the estimate, where the function in (1.6) comes from.

Proof of Corollary 5.1. From (5.14) with κ = 0 it follows that the function (5.27) reads

â0(τ) ∼ e
− 1

3
√

π
(ln τ)3/2

as τ → ∞. (5.32)

Substituting (5.32) into (5.28) and changing the variable â0(τ) = v yields (5.31).

Further iterating inequalities such as (5.30), one can obtain other sufficient conditions of the

origin irregularity. For instance, if the integral in (5.28) still diverges to −∞, integrating (5.30)

gives the next iteration estimate: for τ � 1

a0(τ) � â
(1)
0 (τ) ≡ a0(0) exp

{ τ∫

0

[

− 1

4
√
π
ϕ(η)e−ϕ2(η)/4

+ κ

(

C1 exp

{

− 1

4
√
π

η∫

0

ϕ(s)e−ϕ2(s)/4 ds

})]

dη

}

, (5.33)

where C1 > 0 is some constant. Then, the next iteration leads to an awkward looking inequality:

a′0
a0

� − 1

4
√
π
ϕ(τ)e−ϕ2(τ)/4 + κ

(

a0(0) exp

{ τ∫

0

[

− 1

4
√
π
ϕ(η)e−ϕ2(η)/4

+ κ

(

C1 exp

{

− 1

4
√
π

η∫

0

ϕ(s)e−ϕ2(s)/4 ds

})]

dη

})

. (5.34)

Integrating it gives an estimate of a0(τ) � â
(2)
0 (τ) for τ � 1 from below to be used also for the

purpose of the irregularity, if a
(2)
0 (τ) 	→ 0 as τ → +∞. If this fails, we then apply the third

iteration of the ordinary differential equation (5.14) again leading to a sharper estimate from

below for the regularity etc.

Since the number of such iterations can increase without bound (and hence the same do

the numbers of exponents and corresponding integrals in the argument of κ(·) in (5.34) etc.),

it seems inevitable that a single and a simply finite integral criterion of irregularity, similar

to the Petrovskii one (5.21), cannot be derived for the nonlinear dynamical system (5.14) in

the maximal generality. In other words, the ODE criterion of Theorem 5.1 is a right way to

regularity issues and is even optimal.

In more general cases of equations in (3.1), where, in our notation,

κ = κ(x, t, u, ux), (5.35)
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the derivation of matched asymptotics remains the same. The only difference is that, in accurate

estimating of the integral in the last nonlinear term in (5.11), we should take into account that

vy ≈ 0 in the whole inner region due to the “center subspace expansion” (5.6), so actually we

integrate there κ(·, 0). But this term must also include integrals over the boundary layers close to

y = ±ϕ(τ), where the solution v and its derivative vy is sharply given by (5.7) with the matching

condition (5.10). We do not perform these general and, at the same time, rather straightforward

and not that principal computations here, and restrict our attention to a particular model.

5.4 Equations with a gradient-dependent nonlinearity

Let us very briefly consider Equation (1.7). The first rescaling (3.7) gives the equation

vτ = B∗v + κ(v)v(vy)
2. (5.36)

It is easy to check that the BL-analysis yields the same asymptotics as in (5.7), with a similar

proof. However, the eventual derivation of the 1D dynamical system for the first Fourier co-

efficient a0(τ) is now different: the nonlinear term is much weaker since vy ≈ 0 on the center

subspace patterns, except a (1/ϕ(τ))-neighborhood of the boundary point y = ϕ(τ). Overall,

the nonlinear perturbation in (5.14) is estimated as follows:

J(a0) = 〈κ(a0)a20
[
g′0
(
ϕ2

(
1− y

ϕ

))]2
(−ϕ)2, ψ0(y)〉

= κ(a0)a
2
0ϕ

2 1

2
√
π

ϕ∫

0

[
g′0
(
ϕ2

(
1− y

ϕ

))]2
e−y2/4 dy, (5.37)

where ψ0 = F given by (A.13). Using the BL-profile (4.11) and setting z = y/ϕ yields

J(a0) = κ(a0)a
2
0ϕ

3 1

8
√
π

1∫

0

e−ϕ2(1−z)e−ϕ2z2/4 dz

= κ(a0)a
2
0ϕ

3 1

8
√
π
e−ϕ2

1∫

0

eϕ
2z(1− z

4
) dz. (5.38)

Estimating roughly the last integral as follows:

1∫

0

eϕ
2z(1− z

4
) dz � e

3
4
ϕ2
,

we obtain the following approximate dynamical system for a0(τ) > 0:

a′0
a0

� − 1

4
√
π
ϕ(τ) e−ϕ2(τ)/4 +

1

8
√
π
κ(a0)a

2
0ϕ

3(τ)e−ϕ2(τ)/4 + . . . . (5.39)

This is enough for us to prove that the nonlinear perturbation is now much weaker than that

in (5.14).

Proposition 5.4. For (5.39), the Petrovskii double log-function (3.6) forms a regular vertex

(0, 0) for any function κ(u) satisfying (1.5).
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Proof. Assuming that the linear term is dominant that creates the behavior (5.32), one can

check that, on this â0(τ), the nonlinear term in (5.39) is always negligible, so (5.30) follows.

5.5 Backward paraboloid in R
N

More carefully, aspects of checking regularity of the vertex of a backward paraboloid in R
N

was done in [46], where the authors applied matching techniques to the Navier–Stokes equations

in R
3. Now, we present a few comments.

For the N -dimensional case (1.8), the lateral boundary of the domain Q0 in R
N+1 is given

by a backward paraboloid of the form

∂Q0 :

√
√
√
√

N∑

i=1

ai|xi|2 =
√−t ϕ(τ), τ = − ln(−t), ai > 0,

∑
a2i = 1. (5.40)

Then a boundary layer close to the rescaled (via (4.1)) boundary

∂Q̂0 :
∑

ai|zi|2 = 1, (5.41)

leads to a linear elliptic problem, which can be solved. Moreover, in the direction of the unit

inward normal n to ∂Q̂0, the boundary layer profile g0(ξ) remains one-dimensional depending

on the single variable

η = ξ · n, (5.42)

so that g0 = g0(η) is still given by (4.11). Therefore, in the expanding domain with the boundary

∂Q̃0(τ) :
∑

ai|yi|2 = ϕ(τ) → +∞ as τ → +∞, (5.43)

the BL-profile is expressed in terms of the distance function:

g0(y, τ) = 1− e−
1
2
ϕ(τ) dist {y,∂ ˜Q0(τ)}. (5.44)

This allows us to apply the same blow-up scaling and matching techniques.

The final ordinary differential equation for a0(τ) takes a similar to (5.14) form, with ϕ in the

first term replaced by ϕN , in a full accordance to (2.8). However, the computations get more

involved and further coefficients of this asymptotic ODE will essentially depend on the geometric

shape of the backward paraboloid (5.40) in a neighborhood of its characteristic vertex (0, 0).

However, final regularity conclusions remain approximately the same as for N = 1, including

both cases of nonlinearities in (1.8).

Appendix A.

Hermitian Spectral Theory for Operator Pair {B, B∗}

For the maximal generality and further applications, we describe the necessary spectral

properties of the linear 2mth order differential operator in R
N

B∗ = (−1)m+1Δm
y − 1

2m
y · ∇y, (A.1)
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and of its adjoint B in the standard L2-metric given by

B = (−1)m+1Δm
y +

1

2m
y · ∇y +

N

2m
I (I denotes the identity). (A.2)

Both operators occur after global and blow-up scaling respectively of solutions of the polyhar-

monic equation

ut = −(−Δ)mu in R
n × R+. (A.3)

Of course, for m = 1 the operators (A.1) and (A.2) are classical Hermite selfadjoint operators

with completely known spectral properties (cf., for example, [47, pp. 44-48]). However, for any

m � 2 both operators (A.1) and (A.2), although looking very similar to those for m = 1, are

not symmetric and do not admit a selfadjoint extension, so we follow more recent paper [48] in

presenting necessary spectral results. In what follows, we mainly must concentrate on the less

known case m � 2, naturally assuming that, for the classical selfadjoint case m = 1, we can

borrow any result from several textbooks and/or monographs.

A.1 Fundamental solution, rescaled kernel, and first estimates

We begin with the necessary fundamental solution b(x, t) of the linear polyharmonic parabolic

equation (A.3), which is of standard similarity form and satisfies, in the sense of bounded

measures:

b(x, t) = t−
N
2mF (y), y = x/t

1
2m such that b(x, 0+) = δ(x), (A.4)

where δ(x) is the Dirac delta. The rescaled kernel F = F (|y|) is then the unique radially

symmetric solution of the elliptic equation with the operator (A.2), i.e.,

BF ≡ −(−Δ)mF +
1

2m
y · ∇F +

N

2m
F = 0 in R

N , with

∫

F = 1. (A.5)

In the case m = 1, F is the classical positive Gaussian

F (y) =
1

(4π)N/2
e−|y|2/4 > 0 in R

N . (A.6)

For any m � 2 the rescaled kernel function F (|y|) is oscillatory as |y| → ∞ and satisfies the

estimate (for m = 1 this is trivial, with α = 2) [3, 49]

|F (y)| < D e−d0|y|α in R
N , where α =

2m

2m− 1
∈ (1, 2), (A.7)

for some positive constants D and d0 depending on m and N .

A.2 Sharp estimates in one dimension

For further use in our regularity study, we need some sharp estimates of the rescaled kernel,

which we present for N = 1, where the regularity analysis gets also rather involved. Taking the

Fourier transform in (A.5) leads to the expression

F (y) = α0

∞∫

0

e−s2m cos(sy) ds, (A.8)
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where α0 > 0 is the normalization constant, and, more precisely [41],

F (y) =
1√
2π

∞∫

0

e−s2m
√
s|y| J− 1

2
(s|y|) ds in R, (A.9)

where Jν denotes the Bessel function. The rescaled kernel F (y) satisfies (A.7), where d0 admits

an explicit expression (cf. below). Such optimal exponential estimates of the fundamental

solutions of higher order parabolic equations are well known and were first obtained by Evgrafov–

Postnikov (1970) and Tintarev (1982) (cf. [50, 51] for key references and results).

As a crucial issue for the further boundary point regularity study, we will need a sharper,

than given by (A.7), asymptotic behavior of the rescaled kernel F (y) as y → +∞. To get that,

we rewrite Equation (A.5) on integration once as

(−1)m+1F (2m−1) +
1

2m
yF = 0 in R. (A.10)

Using standard classical WKBJ asymptotics, we substitute into (A.10) the function

F (y) ∼ y−δ0 eay
α

as y → +∞, (A.11)

exhibiting two scales. This gives the algebraic equation for a:

(−1)m(αa)2m−1 =
1

2m
and δ0 =

m− 1

2m− 1
> 0 . (A.12)

Note that the slow algebraically decaying factor y−δ0 in (A.11) is available for any m � 2.

For m = 1 this algebraic factor is absent for the exponential positive Gaussian profile

F (y) =
1

2
√
π
e−y2/4 (m = N = 1). (A.13)

By construction, one needs to get the root a of (A.12) with the maximal Re a < 0. This

yields (cf., for example, [50, 51] and [52, p. 141])

a =
2m− 1

(2m)α

[

− sin
( π

2(2m− 1)

)
+ i cos

( π

2(2m − 1)

)
]

≡ −d0 + i b0 (d0 > 0). (A.14)

Finally, this gives the following double-scale asymptotic of the kernel:

F (y) = y−δ0 e−d0yα
[
C1 sin(b0y

α) + C2 cos(b0y
α)
]
+ . . . as y → +∞, (A.15)

where C1,2 are real constants, |C1|+ |C2| 	= 0. In (A.15), we present the first two leading terms

from the m-dimensional bundle of exponentially decaying asymptotics.

In particular, for the linear biharmonic operator in (B.1) (N = 1), we have

m = 2 : α =
4

3
, d0 = 3 · 2− 11

3 , b0 = 3
3
2 · 2− 11

3 , and δ0 =
1

3
. (A.16)
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A.3 The discrete real spectrum and eigenfunctions of B

Both linear operators B and the corresponding adjoint operator B∗ should be considered

in weighted L2-spaces with the weight functions induced by the exponential estimate of the

rescaled kernel (A.7). We again more concentrate on the non-selfadjoint case m � 2, and refer

to [47] for the classical case m = 1.

For m � 2, we consider B in the weighted space L2
ρ(R

N ) with the exponentially growing

weight function

ρ(y) = ea|y|
α
> 0 in R

N , (A.17)

where a ∈ (0, 2d0) is a fixed constant. We next introduce a standard Hilbert (a weighted Sobolev)

space of functions H2m
ρ (RN ) with the inner product

〈v,w〉ρ =

∫

RN

ρ(y)
2m∑

k=0

Dk
yv(y)D

k
yw(y) dy

and the induced norm

‖v‖2ρ =

∫

RN

ρ(y)

2m∑

k=0

|Dk
yv(y)|2 dy.

Then

H2m
ρ (RN ) ⊂ L2

ρ(R
N ) ⊂ L2(RN )

and B is a bounded linear operator fromH2m
ρ (RN ) to L2

ρ(R
N ). The necessary spectral properties

of the operator B are as follows [48].

Lemma A.1. (i) The spectrum of B comprises real simple eigenvalues only,

σ(B) =
{
λβ = − k

2m
, k = |β| = 0, 1, 2, . . .

}
. (A.18)

(ii) The eigenfunctions ψβ(y) are given by

ψβ(y) =
(−1)|β|√

β!
DβF (y) for any |β| = k (A.19)

and form a complete set in L2(R) and in L2
ρ(R).

(iii) The resolvent (B− λI)−1 for λ 	∈ σ(B) is a compact integral operator in L2
ρ(R

N ).

By Lemma A.1, the center and stable subspaces of B are given by

Ec = Span{ψ0 = F},
Es = Span{ψβ , |β| > 0}.

Note also that the operators B has the zero Morse index, i.e., no eigenvalues have positive real

part. In the classical Hermite case m = 1 (the only selfadjoint case), the spectrum is again

given by (A.18) and the eigenfunction formula (A.19) with the rescaled kernel (A.13) generates

standard Hermite polynomials (cf. [47, p. 48] for a full spectral account for the operator B).
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A.4 The polynomial eigenfunctions of the operator B∗

We now consider the adjoint operator (A.1) in the weighted space L2
ρ∗(R

N ) (〈·, ·〉ρ∗ is the

inner product and ‖ ·‖ρ∗ is the norm) with the “adjoint” exponentially decaying weight function

ρ∗(y) ≡ 1

ρ(y)
= e−a|y|α > 0. (A.20)

We ascribe to B∗ the domain H2m
ρ∗ (RN ), which is dense in L2

ρ∗(R
N ), and then

B∗ : H2m
ρ∗ (RN ) → L2

ρ∗(R
N )

is a bounded linear operator. The operator B is adjoint to B∗ in the usual sense: denoting by

〈·, ·〉 the inner product in the dual space L2(RN ), we have

〈Bv,w〉 = 〈v,B∗w〉 for any v ∈ H2m
ρ (RN ) and w ∈ H2m

ρ∗ (RN ). (A.21)

The eigenfunctions of B∗ take a particularly simple polynomial form and are as follows.

Lemma A.2. (i) σ(B∗) = σ(B).

(ii) The eigenfunctions ψ∗
β(y) of B

∗ are polynomials in y of the degree |β| given by

ψ∗
β(y) =

1√
β!

[

yβ +

[|β|/2m]∑

j=1

1

j!
(−Δ)mjyβ

]

(A.22)

and form a complete subset in L2
ρ∗(R

N ).

(iii) B∗ has a compact resolvent (B∗ − λI)−1 in L2
ρ∗(R

N ) for λ 	∈ σ(B∗).

Of course, for m = 1, (A.22) yields standard Hermite polynomials, so, for m � 2, we call

(A.22) generalized Hermite polynomials. The biorthonormality condition holds:

〈ψβ , ψ
∗
γ〉 = δβγ . (A.23)

Remark A.1 (on closure). This is an important issue for using eigenfunction expansions of

solutions. First, as is well known, for m = 1 the sets of eigenfunctions are complete and closed

in the corresponding spaces (cf. [47]).

Second, form � 2 one needs some extra speculations. Namely, using (A.23), we can introduce

the subspaces of eigenfunction expansions and begin with the operator B. We denote by L̃2
ρ the

subspace of eigenfunction expansions

v =
∑

cβψβ

with coefficients cβ = 〈v, ψ∗
β〉 defined as the closure of the finite sums

{
∑

|β|�M

cβψβ

}
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in the L2
ρ-norm. Similarly, for the adjoint operator B∗ we define the subspace L̃2

ρ∗ ⊆ L2
ρ∗ . Note

that, since the operators are not selfadjoint and the eigenfunction subsets are not orthonormal,

in general, these subspaces can be different from L2
ρ and L2

ρ∗ , and the equality is guaranteed

in the selfadjoint case m = 1, a = 1/4 only. For m � 2, in the above subspaces obtained via

suitable closure, we can apply standard eigenfunction expansion techniques as in the classical

selfadjoint case m = 1.

For m = 2 and N = 1 (this simpler case will be treated in greater detail) the first “adjoint”

generalized Hermite polynomial eigenfunctions are as follows:

ψ0(y) = 1, ψ1(y) = y,

ψ2(y) =
1√
2
y2, ψ3(y) =

1√
6
y3,

ψ4(y) =
1√
24

(y4 + 24), , ψ5(y) =
1

2
√
30

(y5 + 120 y),

ψ6(y) =
1

12
√
5
(y6 + 360y2) etc.

(A.24)

with the corresponding eigenvalues

0, − 1

4
, − 1

2
, − 3

4
, − 1, − 5

4
, − 3

2
etc.

Appendix B.
Semilinear Biharmonic Equations

B.1 Regularity problem setting

Here, we show how our approach can be extended to higher order PDEs, for examples,

for the semilinear biharmonic equations having similar nonlinearities, with also zero Dirichlet

conditions on ∂Q0 and bounded initial data u0 in Q0 ∩ {t = −1}:

ut = −uxxxx +

⎧
⎪⎨

⎪⎩

κ(u)u

(−t)
κ(u)u(ux)

4

in Q0,

u = ux = 0 on ∂Q0,

u(x,−1) = u0(x).

(B.1)

Then, after a proper similar matching with a boundary layer, we again arrive a nonlinear dynam-

ical system viewed as a “center subspace” approximation of solutions in the space of generalized

Hermite polynomials as eigenfunctions of a rescaled non-selfadjoint operator. We also discuss

the regularity problems for backward paraboloids ∂Q0 in R
N×[−1, 0), where the initial-boundary

value problem reads
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ut = −Δ2u+

⎧
⎪⎨

⎪⎩

κ(u)u

(−t)
κ(u)u|∇u|4

in Q0,

u =
∂u

∂n
= 0 on ∂Q0,

(B.2)

where n is the unit inward normal to the smooth boundary of the domain Q0 ∩ {t}. Further

extensions to 2mth order parabolic partial differential equations are also discussed.

Thus, we now show that a similar sequence of mathematical transformations can be per-

formed for the fourth order semilinear biharmonic equations (B.1).

B.2 Initial-boundary value problem

We again fix N = 1, i.e., consider (B.1) with the simplest nonlinearity (1.4), leading to the

initial-boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = −uxxxx + 1

(−t) κ(u)u in Q0 = {|x| < R(t), − 1 < t < 0},

u = ux = 0 at x = ±R(t), −1 � t < 0,

u(x, 0) = u0(x) on [−R(−1), R(−1)],

(B.3)

where u0(x) is bounded and satisfies

u0 = u′0 = 0 at x = ±R(−1).

B.3 Slow growing factor ϕ(τ)

Similar to (2.5), we assume that

R(t) = (−t) 1
4 ϕ(τ), where τ = − ln(−t) → +∞ as t→ 0−. (B.4)

Here, the main scaling factor (−t)1/4 naturally comes from the biharmonic kernel variables (cf.

(3.7) and (A.4)), and ϕ(τ) > 0 is again a slow growing function satisfying (3.3). For “shrinking

backward parabolas” with

ϕ(τ), ϕ′(τ) → 0 as τ → ∞,

the regularity in the linear case κ = 0 was proved by Mikhailov [53, 54] in 1963; in a certain

sense, this extended the Gevrey-like result (2.2) for m = 1 (cf. (2.3)).

B.4 First kernel scaling

By (3.2), we perform the similarity scaling

u(x, t) = v(y, τ), where y =
x

(−t)1/4 . (B.5)

24



The rescaled function v(y, τ) solves the rescaled initial-boundary value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vτ = B∗v + κ(v)v ≡ −vyyyy − 1

4
yvy + κ(v)v in Q0 = {|y| < ϕ(τ), τ > 0},

v = vy = 0 at y = ±ϕ(τ), τ � 0,

v(0, y) = v0(y) ≡ u0(y) on [−R(−1), R(−1)].

(B.6)

B.5 Boundary layer

Sufficiently close to the lateral boundary of Q0, we naturally introduce the variables

z =
y

ϕ(τ)
, v(y, τ) = w(z, τ) =⇒ wτ = − 1

ϕ4
wzzzz − 1

4
zwz +

ϕ′

ϕ
zwz + κ(w)w. (B.7)

The BL-variables now read
ξ = ϕ

4
3 (τ)(1 − z),

ϕ
4
3 (τ)dτ = ds,

w(z, τ) = ρ(s)g(ξ, s),

(B.8)

where ρ(s) is a slow varying function for which eventually (5.10) will hold by matching.

Substituting into (B.7) yields the perturbed equation

gs = Ag − 1

4

1

ϕ4/3
ξgξ − ϕ′

τ

ϕ

(
1− ξ

ϕ4/3

)
gξ − 4

3

ϕ′
τ

ϕ1/3
ξgξ − ρ′s

ρ
g +

1

ϕ4/3
κ(ρg) g,

where Ag = −g(4) + 1

4
g′.

(B.9)

In this boundary layer, we are looking for a generic pattern of the behavior described by (B.9)

on compact subsets near the lateral boundary,

|ξ| = o
(
ϕ− 4

3 (τ)
)

=⇒ |z − 1| = o
(
ϕ− 8

3 (τ)
)

as τ → +∞. (B.10)

We next pose the same asymptotic behavior (4.8) at infinity. Assuming that, by (B.8), the

rescaled orbit {g(s), s > 0} is uniformly bounded, by the parabolic theory [3], we can again pass

to the limit in (B.9) in the asymptotically small perturbations, along a subsequence {sk} → +∞.

Therefore, uniformly on compact subsets defined in (B.10), as k → ∞,

g(sk + s) → h(s),

where Ahs = Ah, h = hξ = 0 at ξ = 0, h
∣
∣
ξ=+∞ = 1.

(B.11)

The limit equation obtained from (B.9),

hs = Ah ≡ −hξξξξ + 1

4
hξ (B.12)

is again a standard linear parabolic partial differential equation in the unbounded domain R+,

although now it is governed by a non-selfadjoint operator A. Actually, we need to show that, in
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Figure 1: [8] The unique stationary solution g0(ξ) of the problem (B.13).

an appropriate weighted L2-space if necessary and under the assumption (4.8), the stabilization

holds, i.e., the ω-limit set of the orbit {h(s)}s>0 consists of a single equilibrium: as s→ +∞,
{
h(ξ, s) → g0(ξ), where Ag0 = 0 for ξ > 0,

g0 = g′0 = 0 at ξ = 0, g0(+∞) = 1.
(B.13)

The characteristic equation for the linear operator A yields

−λ4 + 1

4
λ = 0 =⇒ λ1 = 0 and λ2,3 =

1

41/3

(
− 1

2
± i

√
3

2

)
. (B.14)

This gives the unique solution of (B.13), shown in Figure 1,

g0(ξ) = 1− e
− ξ

25/3

[
cos

(√3 ξ

25/3

)
+

1√
3
sin

(√3 ξ

25/3

)]
. (B.15)

It turns out that the limit problem (B.12) possesses a number of strong gradient and con-

tractivity properties. Namely setting by linearization

h(s) = g0 + w(s) =⇒ ws = Aw ≡ −wξξξξ +
1

4
wξ, w = wξ = 0 at ξ = 0, (B.16)

we arrive at the following assertion (cf. Proposition 4.1 for m = 1).

Proposition B.5. (i) (B.16) is a gradient system in L2, and

(ii) in the given class of solutions, the ω-limit set Ω0 of (B.16) consists of the origin only and

it is uniformly stable.

Proof. (i) One can see that (B.16) admits a monotone Lyapunov function obtained by

multiplying wξξ in L2:
1

2

d

ds

∫

(wξ)
2 = −

∫

(wξξξ)
2 � 0. (B.17)

Hence (ii) also follows.
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Thus, quite similar to the second order case, under given assumptions, we can pass to

the limit s → +∞ along any sequence in the perturbed gradient system (B.9). Then, again

similarly to m = 1, the uniform stability of the stationary point g0 in the limit autonomous

system (B.12) in a suitable metric guarantees that the asymptotically small perturbations do

not affect the omega-limit set (cf. [43, Chapter 1]). However, at this moment, we cannot

avoid the following convention, which for m = 2 is much more key than for m = 1, where

the maximum principle makes this part of the analysis simpler, at least, for nonnegative or

nonpositive solutions (but for others of changing sign, this remains necessary). Actually, the

convergence (B.11) and (B.13) for the perturbed dynamical system (B.9) should be considered as

the main hypothesis characterizing the class of generic patterns under consideration (and then

(4.8) is its partial consequence). Since the positivity (negativity) is not an invariant property for

biharmonic equations, a more clear characterization of this class of generic patterns is difficult.

It seems that a correct language of doing this (in fact, for both cases m = 1 and m � 2) is to

reinforce a “center subspace behavior” as in (5.6), rather than other (possibly, “stable”) ones.

Or, equivalently (and even more solidly mathematically), to impose the BL-behavior (B.13).

Finally, we summarize these conclusions as follows.

Proposition B.6. Under the given assumptions and conditions, the problem (B.9) admits

a family of solutions (called generic) satisfying (B.13).

Such a definition of generic patterns looks rather nonconstructive, which is unavoidable

for higher order parabolic partial differential equations without positivity and order-preserving

features. However, we expect that (B.13) occurs for “almost all” solutions.

B.6 Inner region analysis: towards the dynamical system

As usual, in the inner region, we treat the original rescaled problem (B.6). For simplicity of

calculations, we again consider symmetric solutions defined for y > 0 by assuming the symmetry

at the origin:

vy = vyyy = 0 at y = 0. (B.18)

We next extend v(y, τ) by 0 for y > ϕ(τ) and use the change (5.2). Since v = vy = 0 on the

lateral boundary {y = ϕ(τ)}, one can check that, in the sense of the theory of distributions,

v̂τ = vτH, v̂y = vyH, v̂yy = vyyH,

v̂yyy = vyyyH − vyy
∣
∣
y=ϕ

δ(y − ϕ),

v̂yyyy = vyyyyH − vyyy
∣
∣
y=ϕ

δ(y − ϕ)− vyy
∣
∣
y=ϕ

δ′(y − ϕ).

(B.19)

Therefore, v̂ satisfies the following equation:

v̂τ = B∗v̂ − vyyy
∣
∣
y=ϕ

δ(y − ϕ)− vyy
∣
∣
y=ϕ

δ′(y − ϕ) + κ(v̂)v̂ in R+ × R+. (B.20)

Since such an extended solution orbit (5.2) is uniformly bounded in L2
ρ∗(R), we use the eigen-

function expansion via the generalized Hermite polynomials (A.22):

v̂(y, τ) =
∑

(k�0)

ak(τ)ψ
∗
k(y). (B.21)
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Substituting (B.21) into (B.20) and using the biorthonormality property (A.23) yields a dynam-

ical system: for k = 0, 1, 2, . . . ,

a′k = λkak − vyyy
∣
∣
y=ϕ(τ)

〈δ(y − ϕ(τ)), ψk〉 − vyy
∣
∣
y=ϕ(τ)

〈δ′(y − ϕ), ψk〉+ 〈κ(v̂)v̂, ψk〉, (B.22)

where λk = −k/4 by (A.18). Here, λk < 0 for all k � 1. More importantly, the corresponding

eigenfunctions ψ∗
k(y) are unbounded polynomials and are not monotone for k � 1 according to

(A.24). Therefore, regardless proper asymptotics given by (B.22), these inner patterns cannot

be matched with the BL-behavior such as (4.8), and demand other matching theory. However,

these are not generic, so we skip them.

Thus, we concentrate on the “maximal” first Fourier generic pattern associated with

k = 0 : λ0 = 0 and ψ∗
0(y) ≡ 1

(
ψ0(y) = F (y)

)
, (B.23)

which corresponds to a “center subspace behavior” (5.6) for the equation (B.22), which can be

treated as another characterization of our class of generic patterns. The equation for a0(τ) is:

a′0 = −vyyy
∣
∣
y=ϕ(τ)

ψ0(ϕ(τ)) + vyy
∣
∣
y=ϕ(τ)

ψ′
0(ϕ(τ)) + 〈κ(a0)a0, ψ0〉+ .. . (B.24)

Next, we use the boundary behavior (B.8), (B.13) for τ � 1, which for convenience we state

again: in the rescaled sense, on the given compact subsets,

v(y, τ) = ρ(s)g0

(
ϕ

4
3 (τ)(1− y

ϕ(τ)
)
)
+ . . . , (B.25)

where g0 is as in (B.15). Then, by the matching of both regions for such generic patterns, (5.10)

must remain valid. Therefore, by (B.25), which by a standard parabolic regularity is also true

for the spatial derivatives, we have that, as τ → +∞,

vyy
∣
∣
y=ϕ(τ)

→ ρ(s)ϕ
2
3 (τ)γ1 → a0(τ)ϕ

2
3 (τ)γ1, where γ1 = g′′0 (0) = 2−

4
3 ,

vyyy
∣
∣
y=ϕ(τ)

→ −ρ(s)ϕ(τ)γ2 → −a0(τ)ϕ(τ)γ2, where γ2 = g′′′0 (0) = −1

4
.

(B.26)

Finally, for such generic patterns, we arrive at the asymptotic ordinary differential equation

for the first Fourier coefficient:

a′0
a0

= G4(ϕ(τ), κ) ≡ γ2ϕ(τ)ψ0(ϕ(τ)) + γ1ϕ
2
3 (τ)ψ′

0(ϕ(τ)) + κ(a0) + . . . for τ � 1, (B.27)

where, as usual, we omit higher order terms relative all those remaining. Note that, for this

ordinary differential equation, the properties (5.15) and (5.16) remain valid by comparison.

B.7 ODE regularity criterion and further applications

In general, the criterion of regularity (5.17) remains the same. However, it now reads:

Theorem B.2 (ODE regularity criterion). In the fourth order parabolic problem (B.3), the

origin (0, 0) is regular in the class of generic solutions if an d only if any solution of the ordinary

differential equation (B.27) satisfies (5.17).
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Recall that by generic solutions we mean those that obey the boundary layer behavior (B.25)

and hence, by matching with the inner region asymptotics, lead to the asymptotic ordinary

differential equation (B.27). In this class, the proof of Theorem B.2 is straightforward.

However, we must admit that we do not have a constructive way of describing generic

solutions. In fact, this is not that exciting and/or surprising since, even in the second order

case, solutions of constant sign were attributed to generic ones only by using the maximum

principle, which is not available for biharmonic operators. For both second- and fourth order

parabolic equations conditions of attributing solutions of changing sign to generic patterns are

not fully known.

Linear biharmonic equation: κ = 0. However, the integrals in (B.27) are, in general, oscil-

latory, so that a proper regularity analysis becomes not straightforward even in the linear case

κ = 0 (cf. [8]). Then

κ = 0 :

∞∫
G4(ϕ(τ), 0) dτ diverges to −∞ ⇐⇒ a0(τ) → 0 as τ → +∞. (B.28)

Using asymptotic expansions of the kernel (A.15) and the corresponding eigenfunctions, as well

as sharp values of the parameters (A.16), yields a more practical condition:

a′0
a0

= ϕ
2
3 (τ)C3 cos

(
b0ϕ

4
3 (τ) + C4

)
e−d0ϕ4/3(τ) + . . . for τ � 1, (B.29)

with some constants C3,4 depending in an obvious way on C1,2 in (A.15) and other parameters

from (A.16). Integrating yields

ln |a0(τ)| =
τ∫

ϕ
2
3 (s)C1 cos

(
b0ϕ

4
3 (s) + C2

)
e−d0ϕ4/3(s) ds+ . . . for τ � 1. (B.30)

The regularity condition (B.28) is then reformulated according to (B.30). Namely, the “critical”

backward parabola occurs for the function (cf. [8, § 7])

ϕ∗(τ) = 3−
3
4 2

11
4
(
ln τ

) 3
4 + . . . for τ � 1, (B.31)

although, to guarantee divergence to minus infinity in (B.28), a special “oscillatory cut-off” of

the function ϕ∗(τ) may be necessary.

Semilinear equations. For κ 	= 0, instead of the linear (B.29), we deal with a nonlinear

ordinary differential equation

a′0
a0

= γ̂ϕ
2
3 (τ)C3 cos

(
b0ϕ

4
3 (τ) + C4

)
e−d0ϕ4/3(τ) + κ(a0) + . . . for τ � 1, (B.32)

and the analysis becomes more difficult. However, some of the results from Section 5.3 can be

extended. First, Proposition like 5.2 can be restored provided an oscillatory cut-off of ϕ(τ) is

performed for the first integral on the right-hand side of (B.32) to be nonpositive (although this
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business could look too artificial). Second, a statement similar to Proposition 5.3 remains valid

with the “linear” function (5.27) replaced by

â0(τ) = a0(0) exp

{

γ̂C3

τ∫

0

ϕ
2
3 (s) cos

(
b0ϕ

4
3 (s) + C4

)
e−d0ϕ4/3(s) ds

}

(B.33)

and with the corresponding changes in the integrals in (5.27) and (5.28).

Let us briefly (and more formally) derive “critical” nonlinearities κ. It is easy to see that a

somehow optimal and close to the critical dependence (B.31) is then achieved for the nonlinearity

κ(v) = − 1

| ln v| < 0 for v ≈ 0+. (B.34)

Indeed, solving the corresponding ordinary differential equation without the linear term yields

ã′0 = κ(ã0) =⇒
1∫

ã0(τ)

dz

z|κ(z)| = τ, where ã0(τ) → 0+ as τ → ∞. (B.35)

From (B.35) it follows that, for the nonlinear coefficient (B.34),

ã0(τ) = e−
√
2τ , (B.36)

so that, as is easy to see, the linear term in negligible on the asymptotics (B.36), i.e.,

ϕ
2
3 (τ) e−d0ϕ4/3(τ) = o

(|κ(ã0(τ))|
)

as τ → ∞, (B.37)

provided that

ϕ(τ) � (ln τ)
3
4 for τ � 1 (cf. (B.31)). (B.38)

We thus arrive at a conclusion, which is similar to that in Proposition 5.2: for such negative

κ’s the vertices of arbitrarily “wide” backward parabolas ∂Q0 are regular.

Nevertheless, there are some principal differences with the much simpler second order case.

For instance, if the integral in (B.30) diverges and both linear and nonlinear terms on the right-

hand side of (B.32) are sufficiently “balanced,” i.e., both equally involved in the asymptotics of

a0(τ), the actual checking regularity/irregularity of the origin becomes a principally nonsolvable

problem. It is curious that the most interesting “interactional case” (of linear and nonlinear

terms in (B.32)) also begins at functions such as (1.6), where the explicit constant 3
√
π must be

replaced by a more complicated one composed from those in (A.16) and γ1,2 in (B.26) uniquely

given by the BL-profile (B.15).

On the other hand, if the nonlinear term is asymptotically negligible on the “linear solutions”

of (B.32), then the regularity and/or irregularity conditions remain practically the same as for

the pure biharmonic flow. These are rather trivial results, which we do not intend to state and

avoid such artificial “rigorous” theorems.
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B.8 Gradient dependent nonlinear perturbation

For the second equation in (B.1), the rescaled equation in (B.6) takes the form

vτ = B∗v + κ(v)v (vy)
4, (B.39)

so that using the same BL-profile (B.27) and the variables (B.8), we obtain a similar dynamical

system as in (B.32), where the weaker nonlinear perturbation is estimates as in Section 5.4

(cf. (5.37)), where ψ0(y) ≡ F (y) is the oscillatory kernel (A.15). One can complete these

computations; however, as before, such gradient dependent nonlinear terms do not affect the

linear regularity criterion.

B.9 Backward paraboloid in R
N

Again, in greater detail, regularity analysis in R
N for Burnett equations (with the bi-

Laplacian rather than the pure Laplacian in the Navier–Stokes equations) is performed in [46,

App. A], so we present here a brief notice only. For the equations (B.2), the lateral boundary

of the domain Q0 in R
N+1 can be given by the corresponding backward paraboloid

(
N∑

i=1

ai|xi|2m
) 1

2m

= (−t) 1
2m ϕ(τ), τ = − ln(−t), ai > 0,

∑
a2mi = 1. (B.40)

Again, a boundary layer study close to the rescaled (via (4.1)) boundary

∂Q̂0 :
∑

ai|zi|2m = 1, (B.41)

leads to a linear elliptic problem, which in the orthogonal direction becomes “quasi” one-

dimensional, so that g0(ξ) given in (B.15) depends on the single variable (5.42). Eventually,

in the inner region, the BL-behavior leads to the stabilization to

g0(y, τ) = g0
(
ϕ

1
3 (τ) dist {y, ∂Q̃0(τ)}

)
, (B.42)

where g0(ξ) is as in (B.15). This makes it possible to derive the asymptotic dynamical system

for the first Fourier coefficient and hence an ODE regularity criterion for generic solutions.

The resulting asymptotic ordinary differential equation for a0(τ) is similar to (B.27), with

the extra multiplier ϕN−1 in the first two terms on the right-hand side. Inevitably, the final

ordinary differential equation will depend on the geometry of the backward paraboloid (B.40)

in a neighborhood of its characteristic vertex (0, 0), which, in the most sensitive critical cases,

makes it even less suitable for a definite regularity conclusion.

B.10 More on generalizations

Using the above approach, there is no much principle differences and difficulties to treat the

asymptotics of characteristic points for 2mth order polyharmonic equations

ut = (−1)m+1Δmu+ f(x, t, u,∇u,D2u, . . .) in Q0, (B.43)
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with zero Dirichlet (or others homogeneous) boundary conditions on ∂Q0. Although, of course,

some involved technicalities occur indeed. Since the first rescaled variables are

u(x, t) = v(y, τ), y =
x

(−t)1/2m , τ = − ln(−t), (B.44)

most interesting nonlinear terms in (B.43) are now:

f(·) = 1

(−t) κ(u)u, κ(u)u |∇u|2m, κ(u)u|D2u|m etc.

Then scalings (B.44) lead to the rescaled parabolic equations

vτ = B∗v +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ(v)v,

κ(v)v |∇v|2m,
κ(v)v|D2v|m

etc., (B.45)

where B∗ is the linear adjoined operator (A.1). The corresponding dynamical systems for the

expansion coefficients are obtained, as above, by (i) constructing a BL, and (ii) projecting

the resulting PDEs (B.45), with the BL-approximation, onto generalized Hermite polynomials

(A.22). The dynamical system, in general, becomes extremely oscillatory, and both linear and

nonlinear terms can essentially affect regularity of the vertex (0, 0).

Finally, we again mention that here our main goal: to show how the evolution of the first

Fourier coefficient of generic solutions of biharmonic partial differential equations leads to an

ODE regularity criterion, has been We must admit however that, in some cases, this did not end

up with constructive/deterministic regularity conclusions, which are not always possible and are

even illusive in general for higher order nonlinear parabolic partial differential equations.
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