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1 Introduction

The maximum principle for harmonic functions is one of the fundamental results in the
theory of elliptic equations. It holds in arbitrary domains and guarantees that every solution
to the Dirichlet problem for the Laplace equation, with bounded data, is bounded. An
analogue of the maximum principle for the higher order elliptic operators is unknown, even
for the model case of the bilaplacian (see Problem 4.3, p.275, in J.Nečas’s book [19]).

To be more specific, let Ω ⊂ Rn be a bounded domain and consider the boundary value
problem

∆2u = f in Ω, u ∈ W̊ 2
2 (Ω), (1.1)

where the Sobolev space W̊ 2
2 (Ω) is a completion of C∞

0 (Ω) in the norm ‖u‖W̊ 2
2 (Ω) = ‖∆u‖L2(Ω)

and f is a reasonably nice function. According to the counterexamples built in [17] and [20],
the gradient of the solution to the Dirichlet problem (1.1) is not necessarily bounded when
n ≥ 4 (thus, the maximum principle fails). In dimension three this problem has been open.

The absence of any information about the geometry of the domain puts this question
beyond the scope of applicability of the previously devised methods, which typically rely
on specific assumptions on Ω: positive results have been available only when Ω ⊂ R3 is
sufficiently smooth ([3]), Lipschitz ([21]), or diffeomorphic to a polyhedron ([8], [16]). The
techniques developed in the present paper allow us to establish the boundedness of the
gradient of a biharmonic function under no restrictions on the underlying domain. We prove
the following:

Theorem 1.1 Let Ω be an arbitrary bounded domain in R3 and let u be the solution to the
Dirichlet problem (1.1). Then

|∇u| ∈ L∞(Ω). (1.2)

Moreover, as a by-product of this result we obtain the estimate

|∇x∇y G(x, y)| ≤ C|x− y|−1, x, y ∈ Ω, (1.3)
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where G is Green’s function for the biharmonic equation and C is a numerical constant
independent of Ω.

Theorem 1.1 is sharp in the sense that the solution generally does not exhibit more
regularity than implied by (1.2). Indeed, let Ω be the three-dimensional punctured unit ball
B1 \ {O}, where Br = {x ∈ R3 : |x| < r}, and consider a function η ∈ C∞

0 (B1/2) such that
η = 1 on B1/4. Let

u(x) := η(x)|x|, x ∈ B1 \ {O}. (1.4)

A straightforward computation shows that u ∈ W̊ 2
2 (Ω) and ∆2u ∈ C∞

0 (Ω). While∇u satisfies
(1.2), it is not continuous at the origin. Therefore, the improvement of (1.2) is not possible
in general and must depend on some delicate properties of the domain.

Even in the case of the Laplacian an analogous issue, the continuity of the solution to the
Dirichlet problem, is very subtle. It has been resolved in 1924, when Wiener gave his famous
criterion for the regularity of a boundary point [23]. Wiener’s result set a new framework
for the subject of potential theory and influenced the development of partial differential
equations, function spaces and probability. Over the years, it has been extended to a variety
of second order elliptic and parabolic equations ([10], [7], [6], [4], [11], [2], [24], [9], [5]; see
also the review papers [14], [1]). However, the case of higher order operators is largely
underdeveloped. While substantial progress has been made in the study of the continuity
of solutions for a certain family of higher order elliptic equations in [15] (see also [12], [13]),
there have been no general results providing necessary or sufficient geometrical conditions for
continuity of the derivatives of solutions, in particular, describing the phenomenon addressed
in (1.4).

In what follows, we establish an analogue of the Wiener’s test governing the gradient of
a solution to problem (1.1). To set the stage, let us recall the original Wiener’s criterion.
Roughly speaking, it states that a point O ∈ ∂Ω is regular (i.e. every solution to the Dirichlet
problem for the Laplacian, with continuous data, is continuous at O) if and only if the
complement of the domain near the point O, measured in terms of the Wiener (harmonic)
capacity, is sufficiently large. More specifically, the harmonic capacity of a compactum
K ⊂ Rn can be defined as

cap (K) := inf
{
‖∇u‖2

L2(Rn) : u ∈ C∞
0 (Rn), u = 1 in a neighborhood of K

}
, (1.5)

where n ≥ 3. Then the regularity of the point O is equivalent to the condition∫ 1

0

cap (Bs \ Ω)s1−n ds = +∞. (1.6)

The aforementioned developments in [15] extend (1.5)–(1.6) to the context of the bihar-
monic equation in dimensions 4, 5, 6 and 7, using potential-theoretic Bessel capacity of order
four in place of (1.5). In dimension three, on the other hand, it is natural to expect a higher
order of smoothness for solutions of the biharmonic equation or, more generally, higher order
elliptic equations. However, being confined to the issue of continuity of a solution, the results
in [15] can not be extended to treat its derivatives.
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Turning to this problem, we start with a suitable notion of capacity. Let Π denote the
space of functions

P (x) = b0 + b1
x1

|x| + b2
x2

|x| + b3
x3

|x| , x ∈ R3 \ {O}, bi ∈ R, i = 0, 1, 2, 3, (1.7)

and Π1 := {P ∈ Π : ‖P‖Π = 1}. Then, given a compactum K ⊂ R3 \ {0} and P ∈ Π1, let

CapP (K) := inf
{
‖∆u‖2

L2(R3) : u ∈ W̊ 2
2 (R3 \ {0}), u = P in a neighborhood of K

}
. (1.8)

Such biharmonic capacity first appeared in [18], in conjunction with the upper estimates on
supr(

1
r3

∫
Br
|∇u(x)|6 dx)1/6 for a solution of (1.1).

We say that a point O ∈ ∂Ω is 1-regular if for every f ∈ C∞
0 (Ω) the solution to (1.1) is

continuously differentiable at O, i.e. ∇u(x) → 0 as x → O; and O is 1-irregular otherwise.
Our main result in this direction is the following.

Theorem 1.2 Let Ω be an open set in Rn. If for some a ≥ 4 and some c > 0∫ c

0

inf
P∈Π1

CapP (Cs,as \ Ω) ds = +∞, (1.9)

then the point O is 1-regular.
Conversely, if the point O ∈ ∂Ω is 1-regular then for every c > 0 and every a ≥ 8

inf
P∈Π1

∫ c

0

CapP (Cs,as \ Ω) ds = +∞. (1.10)

Here Cs,as is the annulus {x ∈ R3 : s < |x| < as}.
In [18] the authors defined the biharmonic capacity as the infimum over P ∈ Π1 of

CapP (·). However, the proof of the “necessity” in Theorem 1.2 required that we place the
infimum outside the integral in (1.10). Later, in §9, we show that this is a natural effect as
(1.9) cannot play a role of the necessary condition for 1-regularity.

Our results are accompanied by the corresponding estimates, in particular, we prove the
following refinement of (1.3):

|∇x∇yG(x, y)|

≤ C


|x− y|−1 exp

(
− c
∫ c2|x|

c1|y| inf
P∈Π1

CapP (Cs,as \ Ω) ds
)
, if |y| ≤ c0|x|,

|x− y|−1 exp
(
− c
∫ c2|y|

c1|x| inf
P∈Π1

CapP (Cs,as \ Ω) ds
)
, if |x| ≤ c0|y|,

|x− y|−1, if c0|y| ≤ |x| ≤ c−1
0 |y|,

where a ≥ 4 and c0, c1, c2 are some constants depending on a.
It has to be noted that Theorem 1.2 brings up a peculiar role of circular cones for

1-regularity of a boundary point. For example, if the complement of Ω is a compactum
located on the circular cone {x ∈ R3 \ {0} : b0|x| + b1x1 + b2x2 + b3x3 = 0} such that the

3



harmonic capacity cap (R3 \ Ω) = 0, then CapP (R3 \ Ω) = 0 for P associated to the same
bi’s. Hence, by Theorem 1.2, the point O is not 1-regular.

Another surprising effect, strikingly different from the classical theory, is that 1-irregularity
turns out to be unstable under affine transformations of coordinates.

In conclusion, we provide some examples further illustrating the geometric nature of
conditions (1.9)–(1.10). Among them is the model case when Ω has an inner cusp, i.e. in a
neighborhood of the origin Ω = {(r, θ, φ) : 0 < r < c, h(r) < θ ≤ π, 0 ≤ φ < 2π}, where
h is a non-decreasing function such that h(br) ≤ h(r) for some b > 1. For such domain
Theorem 1.2 yields the following criterion:

the point O is 1-regular if and only if

∫ 1

0

s−1h(s)2 ds = +∞. (1.11)

Some other examples can be found in the body of the paper.

2 The global estimates

Let us start with a few remarks about the notation.
Let (r, ω) be the spherical coordinates in R3, i.e. r = |x| ∈ (0,∞) and ω = x/|x| ∈ S2, the

unit sphere. Occasionally we will write the spherical coordinates as (r, θ, φ), where θ ∈ [0, π]
stands for the colatitude and φ ∈ [0, 2π) is the longitudinal coordinate, i.e.

ω = x/|x| = (sin θ cos φ, sin θ sin φ, cos θ). (2.1)

Now let t = log r−1. Then by κ and κ we denote the mappings

R3 3 x
κ−→ (r, φ, θ) ∈ [0,∞)× [0, 2π)× [0, π]; R3 3 x

κ−→ (t, ω) ∈ R× S2. (2.2)

The symbols δω and∇ω refer, respectively, to the Laplace-Beltrami operator and the gradient
on S2.

For any domain Ω ⊂ R3 a function u ∈ C∞
0 (Ω) can be extended by zero to R3 and we will

write u ∈ C∞
0 (R3) whenever convenient. Similarly, the functions in W̊ 2

2 (Ω) will be extended
by zero and treated as functions on R3 without further comments.

We open with the following generic identity.

Lemma 2.1 Let Ω be an open set in R3, u ∈ C∞
0 (Ω) and v = et(u ◦ κ−1). Then∫

R3

∆u(x)∆
(
u(x)|x|−1 G(log |x|−1)

)
dx

=

∫
R

∫
S2

[
(δωv)2G + 2(∂t∇ωv)2G + (∂2

t v)2G− (∇ωv)2
(
∂2

t G + ∂tG + 2G
)

−(∂tv)2
(
2∂2

t G + 3∂tG−G
)

+
1

2
v2
(
∂4

t G + 2∂3
t G− ∂2

t G− 2∂tG
)]

dωdt, (2.3)

for every function G on R such that both sides of (2.3) are well-defined.
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Proof. In the system of coordinates (t, ω) the 3-dimensional Laplacian can be written as

∆ = e2tΛ(∂t, δω), where Λ(∂t, δω) = ∂2
t − ∂t + δω. (2.4)

Then passing to the coordinates (t, ω), we have∫
R3

∆u(x)∆
(
u(x)|x|−1G(log |x|−1)

)
dx =

∫
R

∫
S2

Λ(∂t − 1, δω)v Λ(∂t, δω)(vG) dωdt

=

∫
R

∫
S2

(
∂2

t v − 3∂tv + 2v + δωv
) (

∂2
t (vG)− ∂t(vG) + G δωv

)
dωdt

=

∫
R

∫
S2

(
∂2

t v − 3∂tv + 2v + δωv
)

×
(
G δωv + G ∂2

t v + (2∂tG−G) ∂tv + (∂2
t G− ∂tG) v

)
dωdt

=

∫
R

∫
S2

((
(δωv)2 + 2 δωv∂2

t v + (∂2
t v)2

)
G

+
(
vδωv + v∂2

t v
) (

∂2
t G− ∂tG + 2G

)
+
(
δωv∂tv + ∂2

t v∂tv
)
(2∂tG− 4G)

+(∂tv)2 (−6∂tG + 3G) + v∂tv
(
−3∂2

t G + 7∂tG− 2G
)

+ v2
(
2∂2

t G− 2∂tG
))

dωdt. (2.5)

This, in turn, is equal to∫
R

∫
S2

(
G (δωv)2 − 2G δω∂tv∂tv + G (∂2

t v)2

+(∇ωv)2
(
−∂2

t G− (∂2
t G− ∂tG + 2G) + (∂2

t G− 2∂tG)
)

+(∂tv)2
(
−(∂2

t G− ∂tG + 2G) + (−∂2
t G + 2∂tG) + (−6∂tG + 3G)

)
+v∂tv

(
−(∂3

t G− ∂2
t G + 2∂tG) + (−3∂2

t G + 7∂tG− 2G)
)

+v2
(
2∂2

t G− 2∂tG
))

dωdt, (2.6)

and integrating by parts once again we obtain (2.3). �

In order to single out the term with v2 in (2.3) we shall need the following auxiliary
result.

Lemma 2.2 Consider the equation

d4g

dt4
+ 2

d3g

dt3
− d2g

dt2
− 2

dg

dt
= δ, (2.7)

where δ stands for the Dirac delta function. A unique solution to (2.7) which is bounded and
vanishes at +∞ is given by

g(t) = −1

6

{
et − 3, t < 0,

e−2t − 3 e−t, t > 0.
(2.8)
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Proof. Since the equation (2.7) is equivalent to

d

dt

(
d

dt
+ 2

)(
d

dt
+ 1

)(
d

dt
− 1

)
g = δ, (2.9)

a bounded solution of (2.7) vanishing at +∞ must has the form

g(t) =

{
a et + b, t < 0,

c e−2t + d e−t, t > 0,
(2.10)

for some constants a, b, c, d. Once this is established, we find the system of coefficients so
that ∂k

t g is continuous for k = 0, 1, 2 and limt→0+ ∂3
t g(t)− limt→0− ∂3

t g(t) = 1. �

With Lemma 2.2 at hand, a suitable choice of the function G yields the positivity of the
left-hand side of (2.3), one of the cornerstones of this paper. The details are as follows.

Lemma 2.3 Let Ω be a bounded domain in R3, O ∈ R3 \Ω, u ∈ C∞
0 (Ω) and v = et(u◦κ−1).

Then for every ξ ∈ Ω and τ = log |ξ|−1 we have

1

2

∫
Sn−1

v2(τ, ω) dω ≤
∫

Rn

∆u(x)∆
(
u(x)|x|−1g(log(|ξ|/|x|))

)
dx, (2.11)

where g is given by (2.8).

Proof. Representing v as a series of spherical harmonics and noting that the eigenvalues of
the Laplace-Beltrami operator on the unit sphere are k(k + 1), k = 0, 1, ..., we arrive at the
inequality ∫

S2

|δωv|2 dω ≥ 2

∫
S2

|∇ωv|2 dω. (2.12)

Now, let us take G(t) = g(t − τ), t ∈ R. Since g ≥ 0, the combination of Lemma 2.2,
(2.3) and (2.12) allows to obtain the estimate∫

Rn

∆u(x)∆
(
u(x)|x|−1g(log(|ξ|/|x|))

)
dx

≥
∫

R

∫
Sn−1

[
−(∇ωv)2

(
∂2

t g(t− τ) + ∂tg(t− τ)
)

−(∂tv)2
(
2∂2

t g(t− τ) + 3∂tg(t− τ)− g(t− τ)
)]

dωdt +
1

2

∫
Sn−1

v2(τ, ω) dω. (2.13)

Thus, the matters are reduced to showing that

∂2
t g + ∂tg ≤ 0 and 2∂2

t g + 3∂tg − g ≤ 0. (2.14)

Indeed, we compute

∂tg(t) = −1

6

{
et, t < 0,

−2e−2t + 3 e−t, t > 0,
(2.15)
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and

∂2
t g(t) = −1

6

{
et, t < 0,

4e−2t − 3 e−t, t > 0,
(2.16)

which gives

∂2
t g(t) + ∂tg(t) = −1

3

{
et, t < 0,

e−2t, t > 0,
(2.17)

and

2∂2
t g(t) + 3∂tg(t)− g(t) = −1

6

{
4et + 3, t < 0,

e−2t + 6e−t, t > 0.
(2.18)

Clearly, both functions above are non-positive. �

3 The local estimates and the Dirichlet problem

This section is devoted to estimates for a solution of the Dirichlet problem near a boundary
point, in particular, the proof of Theorem 1.1. To set the stage, let us first record the
well-known result following from the interior estimates for solutions of the elliptic equations.

Lemma 3.1 Let Ω be an arbitrary domain in R3, Q ∈ R3 \ Ω and R > 0. Suppose

∆2u = f in Ω, f ∈ C∞
0 (Ω \B4R(Q)), u ∈ W̊ 2

2 (Ω). (3.1)

Then ∫
Bρ(Q)∩Ω

|∇2u|2 dx +
1

ρ2

∫
Bρ(Q)∩Ω

|∇u|2 dx ≤ C

ρ4

∫
Cρ,2ρ(Q)∩Ω

|u|2 dx (3.2)

for every ρ < 2R.

Here and throughout the paper Br(Q) and Sr(Q) denote, respectively, the ball and the
sphere with radius r centered at Q and Cr,R(Q) = BR(Q) \ Br(Q). When center is at the
origin, we will write Br in place of Br(O), and similarly Sr := Sr(O) and Cr,R := Cr,R(O).
Also, ∇2u stands for a vector of all second derivatives of u.

We omit the proof of Lemma 3.1 (see, e.g., [3], [22]) and proceed to the estimates for a
biharmonic function near the boundary invoking the inequalities derived in §2.

Proposition 3.2 Let Ω be a bounded domain in R3, Q ∈ R3 \ Ω, and R > 0. Suppose

∆2u = f in Ω, f ∈ C∞
0 (Ω \B4R(Q)), u ∈ W̊ 2

2 (Ω). (3.3)

Then
1

ρ4

∫
Sρ(Q)∩Ω

|u(x)|2 dσx ≤
C

R5

∫
CR,4R(Q)∩Ω

|u(x)|2 dx for every ρ < R, (3.4)

where C is an absolute constant.
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Proof. For notational convenience we assume that Q = O. Let us start approximating Ω by
a sequence of domains with smooth boundaries {Ωn}∞n=1 with the properties

∞⋃
n=1

Ωn = Ω and Ωn ⊂ Ωn+1 for every n ∈ N. (3.5)

Choose n0 ∈ N such that supp f ⊂ Ωn for every n ≥ n0 and denote by un the solution of the
Dirichlet problem

∆2un = f in Ωn, un ∈ W̊ 2
2 (Ωn), n ≥ n0. (3.6)

Since f ∈ C∞
0 (Ωn) for every n ≥ n0, the solution to (3.6) exists and is unique. Moreover,

{un}∞n=n0
converges to u in W̊ 2

2 (Ω) (see, e.g., [19], §6.6).
Next, take some η ∈ C∞

0 (B2R) such that

0 ≤ η ≤ 1 in B2R, η = 1 in BR and |∇kη| ≤ C/|x|k, k ≤ 4. (3.7)

Also, fix τ = log ρ−1 and let g be the function defined in (2.8).
Consider the difference∫

R3

∆
(
η(x)un(x)

)
∆
(
η(x)un(x)|x|−1g(log(ρ/|x|))

)
dx

−
∫

R3

∆un(x)∆
(
un(x)|x|−1g(log(ρ/|x|))η2(x)

)
dx. (3.8)

One can view this expression as∫
R3

(
[∆2, η]un(x)

)(
η(x)un(x)|x|−1g(log(ρ/|x|))

)
dx, (3.9)

where the integral is understood in the sense of pairing between W̊ 2
2 (Ωn) and its dual. Ev-

idently, the support of the integrand is a subset of supp∇η ⊂ CR,2R, and therefore, the
difference in (3.8) is bounded by

C
2∑

k=0

1

R5−2k

∫
CR,2R

|∇kun(x)|2 dx. (3.10)

Since un is biharmonic in B4R and η is supported in B2R, the second term in (3.8) is
equal to zero. Turning to the first term, we shall employ Lemma 2.3 with u = η un. The
result of the Lemma holds for such a choice of u. This can be seen directly by inspection of
the argument or one can approximate each un by a sequence of C∞

0 (Ωn) functions in W̊ 2
2 (Ωn)

and then take a limit using that O 6∈ Ωn. Then (3.8) is bounded from below by

C

ρ4

∫
Sρ

|η(x)un(x)|2 dσx. (3.11)

Hence, for every ρ < R

1

ρ4

∫
Sρ

|un(x)|2 dσx ≤ C

2∑
k=0

1

R5−2k

∫
CR,2R

|∇kun(x)|2 dx. (3.12)
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Now the proof can be finished applying Lemma 3.1 and taking the limit as n →∞. �

By virtue of the interior regularity of biharmonic functions (3.4) yields the pointwise
estimates, leading to Theorem 1.1.

Corollary 3.3 Let Ω be a bounded domain in R3, Q ∈ R3 \ Ω, R > 0 and

∆2u = f in Ω, f ∈ C∞
0 (Ω \B4R(Q)), u ∈ W̊ 2

2 (Ω). (3.13)

Then for every x ∈ BR/4(Q) ∩ Ω

|∇u(x)|2 ≤ C

R5

∫
CR/4,4R(Q)∩Ω

|u(y)|2 dy, (3.14)

and

|u(x)|2 ≤ C
|x−Q|2

R5

∫
CR/4,4R(Q)∩Ω

|u(y)|2 dy. (3.15)

In particular, for every bounded domain Ω ⊂ R3 the solution to the boundary value
problem (3.13) satisfies

|∇u| ∈ L∞(Ω). (3.16)

Proof. By the interior estimates for solutions of the elliptic equations (see [3])

|∇u(x)|2 ≤ C

d(x)3

∫
Bd(x)/2(x)

|∇u(y)|2 dy, (3.17)

where d(x) denotes the distance from x to ∂Ω. Let x0 be a point on the boundary of Ω such
that d(x) = |x − x0|. Since x ∈ BR/4(Q) ∩ Ω and Q ∈ R3 \ Ω, we have x ∈ BR/4(x0), and
therefore

1

d(x)3

∫
Bd(x)/2(x)

|∇u(y)|2 dy ≤ C

d(x)5

∫
B2d(x)(x0)

|u(y)|2 dy ≤ C

R5

∫
C3R/4,3R(x0)

|u(y)|2 dy, (3.18)

using Lemma 3.1 for the first estimate and (3.4) for the second one. Indeed, d(x) ≤ R/4
and therefore, 2d(x) < 3R/4. On the other hand, u is biharmonic in B4R(Q) ∩ Ω and

|Q− x0| ≤ |Q− x|+ |x− x0| ≤ R/2. (3.19)

Hence, u is biharmonic in B3R(x0)∩Ω and Proposition 3.2 holds with x0 in place of Q, 3R/4
in place of R and ρ = 2d(x). Finally, (3.19) yields

C3R/4,3R(x0) ⊂ CR/4,4R(Q), (3.20)

and that finishes the argument for (3.14).
To prove (3.15), we start with the estimate

|u(x)|2 ≤ C

d(x)3

∫
Bd(x)/2(x)

|u(y)|2 dy, (3.21)

and then proceed using (3.4), much as in (3.18)–(3.20). �

Using the Kelvin transform, an estimate on a biharmonic function near the origin can be
translated into an estimate at infinity. In particular, Proposition 3.2 and Corollary 3.3 lead
to the following result.
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Proposition 3.4 Let Ω be a bounded domain in R3, Q ∈ R3 \ Ω, r > 0 and assume that

∆2u = f in Ω, f ∈ C∞
0 (Br/4(Q) ∩ Ω), u ∈ W̊ 2

2 (Ω). (3.22)

Then
1

ρ2

∫
Sρ(Q)∩Ω

|u(x)|2 dσx ≤
C

r3

∫
Cr/4,r(Q)∩Ω

|u(x)|2 dx, (3.23)

for any ρ > r.
Furthermore, for any x ∈ Ω \B4r(Q)

|∇u(x)|2 ≤ C

|x−Q|2 r3

∫
Cr/4,4r(Q)∩Ω

|u(y)|2 dy, (3.24)

and

|u(x)|2 ≤ C

r3

∫
Cr/4,4r(Q)∩Ω

|u(y)|2 dy. (3.25)

Proof. As before, it is enough to consider the case Q = O. Retain the approximation of Ω
with the sequence of smooth domains Ωn satisfying (3.5) and define un according to (3.6).
We denote by I the inversion x 7→ y = x/|x|2 and by Un the Kelvin transform of un,

Un(y) := |y|un(y/|y|2), y ∈ I(Ωn). (3.26)

Then
∆2Un(y) = |y|−7(∆2un)(y/|y|2), (3.27)

and therefore, Un is biharmonic in I(Ωn) ∩B4/r. Moreover, (3.27) implies that∫
I(Ωn)

|∆Un(y)|2 dy =

∫
Ωn

|∆un(x)|2 dx, (3.28)

so that
Un ∈ W̊ 2

2 (I(Ωn)) ⇐⇒ un ∈ W̊ 2
2 (Ωn). (3.29)

Observe also that Ωn is a bounded domain with O 6∈ Ωn, hence, so is I(Ωn) and O 6∈ I(Ωn).
Following Proposition 3.2, we show that

ρ4

∫
S1/ρ

|Un(y)|2 dσy ≤ C r5

∫
C1/r,4/r

|Un(y)|2 dy, (3.30)

which after the substitution (3.26) and the change of coordinates yields

1

ρ2

∫
Sρ

|un(x)|2 dσx ≤
C

r3

∫
Cr/4,r

|un(x)|2 dx. (3.31)

Turning to the pointwise estimates (3.24)–(3.25), let us fix some x ∈ Ω\B4r(Q). Observe
that

|∇un(x)| ≤ C|x|−1
∣∣(∇Un)(x/|x|2)

∣∣+ ∣∣Un(x/|x|2)
∣∣ , (3.32)
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since un(x) = |x|Un(x/|x|2). Therefore, combining (3.32) and Corollary 3.3 applied to the
function Un, we deduce that

|∇un(x)|2 ≤ C
r5

|x|2

∫
C1/(4r),4/r

|Un(z)|2 dz =
C

|x|2 r3

∫
Cr/4,4r

|un(z)|2 dz, (3.33)

and

|un(x)|2 ≤ Cr5

∫
C1/(4r),4/r

|Un(z)|2 dz =
C

r3

∫
Cr/4,4r

|un(z)|2 dz. (3.34)

At this point, we can use the limiting procedure to complete the argument. Indeed,
since un converges to u in W̊ 2

2 (Ω), the integrals in (3.31), (3.33) and (3.34) converge to the
corresponding integrals with un replaced by u. Turning to |∇un(x)|, we observe that both
un and u are biharmonic in a neighborhood of x, in particular, for sufficiently small d

|∇(un(x)− u(x))|2 ≤ C

d5

∫
Bd/2(x)

|un(z)− u(z)|2 dz. (3.35)

As n →∞, the integral on the right-hand side of (3.35) vanishes and therefore, |∇un(x)| →
|∇u(x)|. The similar considerations apply to un(x). �

4 Estimates for Green’s function

Let Ω be a bounded three-dimensional domain. As in the introduction, we denote by G(x, y),
x, y ∈ Ω, the Green’s function for the biharmonic equation. In other words, for every fixed
y ∈ Ω the function G(x, y) is the solution of the problem

∆2
xG(x, y) = δ(x− y), x ∈ Ω, (4.1)

in the space W̊ 2
2 (Ω). Here and throughout the section ∆x stands for the Laplacian in x

variable, and similarly we use the notation ∆y, ∇y, ∇x for the Laplacian and gradient in y,
and gradient in x, respectively. As before, d(x) is the distance from x ∈ Ω to ∂Ω.

Proposition 4.1 Let Ω ⊂ R3 be a bounded domain. Then for every x, y ∈ Ω∣∣∣∇x∇y(G(x, y)− Γ(x− y))
∣∣∣ ≤ C

max{|x− y|, d(x), d(y)}
, (4.2)

where Γ(x− y) = |x−y|
8π

is the fundamental solution for the bilaplacian. In particular,

|∇x∇yG(x, y)| ≤ C|x− y|−1 for all x, y ∈ Ω. (4.3)

Proof. Let us start with some auxiliary calculations. Consider a function η such that

η ∈ C∞
0 (B1/2) and η = 1 in B1/4, (4.4)
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and define a vector-valued function R = (R1,R2,R3) by

Rj(x, y) :=
∂

∂yj

G(x, y)− η

(
x− y

d(y)

)
∂

∂yj

Γ(x− y), x, y ∈ Ω, (4.5)

where j = 1, 2, 3. Also, let us denote

fj(x, y) := ∆2
xRj(x, y) = −

[
∆2

x, η

(
x− y

d(y)

)]
∂

∂yj

Γ(x− y), j = 1, 2, 3. (4.6)

It is not hard to see that for every j

fj(·, y) ∈ C∞
0 (Cd(y)/4,d(y)/2(y)) and |fj(x, y)| ≤ Cd(y)−4, x, y ∈ Ω. (4.7)

Then for every fixed y ∈ Ω the function x 7→ Rj(x, y) is a solution of the boundary value
problem

∆2
xRj(x, y) = fj(x, y) in Ω, fj(·, y) ∈ C∞

0 (Ω), Rj(·, y) ∈ W̊ 2
2 (Ω), (4.8)

so that ∥∥∇2
xRj(·, y)

∥∥
L2(Ω)

= ‖Rj(·, y)‖W 2
2 (Ω) ≤ C‖fj(·, y)‖W 2

−2(Ω), j = 1, 2, 3. (4.9)

Here W 2
−2(Ω) stands for the Banach space dual of W̊ 2

2 (Ω), i.e.

‖fj(·, y)‖W 2
−2(Ω) = sup

v: ‖v‖
W̊2

2 (Ω)
=1

∫
Ω

fj(x, y)v(x) dx. (4.10)

Recall that by Hardy’s inequality∥∥∥∥ v

| · −Q|2

∥∥∥∥
L2(Ω)

≤ C
∥∥∇2v

∥∥
L2(Ω)

for every v ∈ W̊ 2
2 (Ω), Q ∈ ∂Ω. (4.11)

Then for some y0 ∈ ∂Ω such that |y − y0| = d(y)∫
Ω

fj(x, y)v(x) dx ≤ C

∥∥∥∥ v

| · −y0|2

∥∥∥∥
L2(Ω)

∥∥fj(·, y)| · −y0|2
∥∥

L2(Ω)

≤ Cd(y)2
∥∥∇2v

∥∥
L2(Ω)

‖fj(·, y)‖L2(Cd(y)/4,d(y)/2(y)), (4.12)

and therefore, by (4.7) ∥∥∇2
xR(·, y)

∥∥
L2(Ω)

≤ Cd(y)−1/2. (4.13)

Turning to (4.2), let us first consider the case |x − y| ≥ Nd(y) for some large N to be
specified later. As before, we denote by y0 some point on the boundary such that |y− y0| =
d(y). Then by (4.7) the function x 7→ R(x, y) is biharmonic in Ω \ B3d(y)/2(y0). Hence, by
Proposition 3.4 with r = 6d(y)

|∇xR(x, y)|2 ≤ C

|x− y0|2 d(y)3

∫
C3d(y)/2,24d(y)(y0)

|R(z, y)|2 dz, (4.14)
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provided |x− y| ≥ 4r + d(y), i.e N ≥ 25. The expression above is bounded by

Cd(y)

|x− y0|2

∫
C3d(y)/2,24d(y)(y0)

|R(z, y)|2

|z − y0|4
dz ≤ C d(y)

|x− y0|2

∫
Ω

|∇2
zR(z, y)|2 dz ≤ C

|x− y|2
, (4.15)

by Hardy’s inequality and (4.13).
Now one can directly check that

|∇x∇yΓ(x, y)| ≤ C

|x− y|
for all x, y ∈ Ω, (4.16)

and combine it with (4.14)–(4.15) to deduce that∣∣∣∇x∇y(G(x, y)− Γ(x− y))
∣∣∣ ≤ C

|x− y|
whenever |x− y| ≥ Nd(y). (4.17)

We claim that this settles the case

|x− y| ≥ N min{d(y), d(x)}. (4.18)

Indeed, if d(y) ≤ d(x), (4.17) gives the desired result and if d(y) ≥ d(x) and |x−y| ≥ Nd(x),
we employ the version of (4.17) with d(x) in place of d(y) which follows from the symmetry
of the Green’s function and the fundamental solution in x and y variables.

Next, assume that |x− y| ≤ N−1d(y). For such x we have η(x−y
d(y)

) = 1 and therefore

∂

∂yj

(G(x, y)− Γ(x− y)) = Rj(x, y). (4.19)

By the interior estimates for solutions of elliptic equations

|∇xR(x, y)|2 ≤ C

d(y)5

∫
Bd(y)/8(x)

|R(z, y)|2 dz, (4.20)

since the function R is biharmonic in Bd(y)/8(x) ⊂ Bd(y)/4(y). Now we bound the expression
above by

C

d(y)

∫
Bd(y)/4(y)

|R(z, y)|2

|z − y0|4
dz ≤ C

d(y)

∥∥∇2
xR(·, y)

∥∥2

L2(Ω)
≤ C

d(y)2
. (4.21)

When |x− y| ≤ N−1d(y), we have

(N − 1) d(y) ≤ Nd(x) ≤ (N + 1) d(y), (4.22)

i.e. d(y) ≈ d(x), and therefore (4.20)–(4.21) give the desired result. By symmetry, one can
handle the case |x− y| ≤ N−1d(x) and hence all x, y ∈ Ω such that

|x− y| ≤ N−1 max{d(x), d(y)}. (4.23)

Finally, it remains to consider the situation when

|x− y| ≈ d(x) ≈ d(y), (4.24)
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or more precisely, when

N−1 d(x) ≤ |x− y| ≤ Nd(x) and N−1 d(y) ≤ |x− y| ≤ Nd(y). (4.25)

In this case we use the biharmonicity of x 7→ G(x, y) in Bd(x)/(2N)(x). By the interior
estimates, with x0 ∈ ∂Ω such that |x− x0| = d(x), we have

|∇x∇yG(x, y)|2 ≤ C

d(x)5

∫
Bd(x)/(2N)(x)

|∇yG(z, y)|2 dz

≤ C

d(x)5

∫
Bd(x)/(2N)(x)

|∇yΓ(z − y)|2 dz +
C

d(x)

∫
B2d(x)(x0)

|R(z, y)|2

|z − x0|4
dz

≤ C

d(x)5

∫
Bd(x)/(2N)(x)

|∇yΓ(z − y)|2 dz +
C

d(x)

∫
Ω

|∇2
zR(z, y)|2 dz

≤ C

d(x)2
+

C

d(x)d(y)
, (4.26)

invoking Hardy’s inequality and (4.13). In view of (4.24) this finishes the argument. �

The Green’s function estimates proved in this section allow to investigate the solutions
of the Dirichlet problem (1.1) for a wide class of data. For example, consider the boundary
value problem

∆2u = div f, u ∈ W̊ 2
2 (Ω), (4.27)

where f = (f1, f2, f3) is some vector valued function. Then the solution satisfies the estimate

|∇u(x)| ≤ C

∫
Ω

|f(y)|
|x− y|

dy, x ∈ Ω, (4.28)

provided the integral on the right-hand side of (4.28) is finite.
Indeed, the integral representation formula

u(x) =

∫
Ω

G(x, y) div f(y) dy, x ∈ Ω, (4.29)

follows directly from the definition of the Green’s function. It implies that

∇u(x) = ∇x

∫
Ω

G(x, y) div f(y) dy =

∫
Ω

∇x(∇yG(x, y) · f(y)) dy, (4.30)

and Proposition 4.1 leads to (4.28).
One can further observe that by the mapping properties of the fractional integral operator

(4.28) yields the estimate
‖∇u‖L∞(Ω) ≤ C‖f‖L3/2,1(Ω), (4.31)

where L3/2,1(Ω) is the Lorentz space. In particular,

‖∇u‖L∞(Ω) ≤ C‖f ‖Lp(Ω), p > 3/2, (4.32)

whenever f ∈ Lp(Ω) for some p > 3/2.
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5 Biharmonic capacity

This section will be devoted to basic properties of the biharmonic capacity of the type (1.8).
A part of the results presented here and in §9 have been obtained in [18]. For the convenience
of the reader we present a self-contained discussion.

To begin, we introduce the biharmonic capacity of a compactum K relative to some open
set Ω ⊂ R3 \ {O}, K ⊂ Ω. To this end, recall that Π is the space of functions (1.7) equipped
with some norm. For example, we can take

‖P‖Π =
√

b2
0 + b2

1 + b2
2 + b2

3, (5.1)

and Π1 := {P ∈ Π : ‖P‖Π = 1}. A different norm in the space Π would yield an equivalent
relative capacity.

Now fix some P ∈ Π1. Then

CapP (K, Ω) := inf

{∫
Ω

(∆u(x))2 dx : u ∈ W̊ 2
2 (Ω), u = P in a neighborhood of K

}
, (5.2)

and
Cap (K, Ω) := inf

P∈Π1

CapP (K, Ω). (5.3)

Observe that in the introduction, for the sake of brevity, we dropped the reference to Ω.
There we had Ω = R3 \ {0}.

It follows directly from the definitions that the biharmonic capacity is monotone in the
sense that for every P ∈ Π1

K1 ⊆ K2 ⊂ Ω =⇒ CapP (K1, Ω) ≤ CapP (K2, Ω), (5.4)

K ⊂ Ω1 ⊆ Ω2 =⇒ CapP (K, Ω1) ≥ CapP (K, Ω2), (5.5)

and analogous statements hold for Cap in place of CapP .
We shall mostly be concerned with the case when a compactum is contained in some

annulus centered at the origin for the reasons that will become apparent in the sequel. In
such case, it will be convenient to work with an equivalent definition of capacity by means
of the form

Ψ[u; Ω] =

∫
eκ(Ω)

(
(∂2

rv)2 + 2r−2(∂rv)2 + 2r−2|∂r∇ωv|2 + r−4(δωv)2 + 2r−4vδωv
)

r2 dωdr,

(5.6)
where (r, ω) are the spherical coordinates in the three dimensional space, κ̃ is the mapping

R3 3 x
eκ−→ (r, ω) ∈ [0,∞)× S2, (5.7)

and v = u ◦ κ̃−1.
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Lemma 5.1 For every 0 < r < R < ∞ and every function u ∈ W 2
2 (Cr,R)

Ψ[u; Cr,R] =

∫
Cr,R

[
(∆u)2

− 2

|x|4
(
xi

∂

∂xi

− 1
)((

xj
∂u

∂xj

+ u
)(
|x|2∆u− xi

∂

∂xi

(
xj

∂u

∂xj

)
− u
)

+ u2
))]

dx, (5.8)

where, as customary, we imply summation on repeated indices. Furthermore, for every open
set Ω in R3 \ {0} and every u ∈ W̊ 2

2 (Ω)

Ψ[u; Ω] =

∫
Ω

(∆u(x))2 dx. (5.9)

The formulas (5.8)–(5.9) can be checked directly using the representation of the Laplacian
in spherical coordinates

∆u = r−2
(
∂r(r

2∂r) + δω

)
. (5.10)

They give rise to an alternative definition of the biharmonic capacity. Indeed, if K is a
compact subset of Ω ⊂ R3 \ {0}, then for every P ∈ Π1

CapP (K, Ω) = inf{Ψ[u; Ω] : u ∈ W̊ 2
2 (Ω), u = P in a neighborhood of K} (5.11)

and an analogous equality holds for Cap in place of CapP .

Lemma 5.2 Suppose K is a compactum in Cs,as for some s > 0, a > 1. Then for every
P ∈ Π1

CapP (K, R3 \ {O}) ≈ CapP (K, Cs/2,2as) and CapP (K, Cs/2,2as) ≤ Cs−1, (5.12)

with the constants are independent of s.

Proof. The inequality
CapP (K, R3 \ {O}) ≤ CapP (K, Cs/2,2as) (5.13)

is a consequence of the monotonicity property (5.5). As for the opposite one, we take
u ∈ W̊ 2

2 (R3 \ {O}) such that u = P in a neighborhood of K and

CapP (K, R3 \ {O}) + ε >

∫
R3

|∆u(x)|2 dx = Ψ[u; R3 \ {O}]. (5.14)

Consider now the cut-off function

ζ ∈ C∞
0 (1/2, 2a), ζ = 1 on [3/4, 3a/2], (5.15)

and let w(x) := ζ(|x|/s)u(x), x ∈ R3. Then

w ∈ W̊ 2
2 (Cs/2,2as) and w = P in a neighborhood of K. (5.16)
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Hence,
CapP (K, Cs/2,2as) ≤ Ψ[w; Cs/2,2as] (5.17)

and

Ψ[w, Cs/2,2as] =

∫ 2as

s/2

∫
S2

(
(∂2

r (ζ(r/s)v))2 + 2r−2(∂r(ζ(r/s)v))2

+2r−2|∂r(ζ(r/s)∇ωv)|2 + r−4ζ2(r/s)(δωv)2 + 2r−4ζ2(r/s)vδωv

)
r2 dωdr

≤ Ψ[v, Cs/2,2as], (5.18)

using the properties of ζ and the one dimensional Hardy’s inequality in the r variable. This
finishes the proof of the first assertion in (5.12).

As for the second one, observe first that if v(x) = u(sx), x ∈ R3, the functions u and v
belong to W̊ 2

2 (R3 \ {O}) simultaneously, and u = P in a neighborhood of K if and only if
v = P in a neighborhood of s−1K := {x ∈ R3 : sx ∈ K}. Also,∫

R3

|∆v(x)|2 dx =

∫
R3

|∆xu(sx)|2 dx = s

∫
R3

|∆yu(y)|2 dy, (5.19)

so that
sCapP (K, R3 \ {O}) = CapP (s−1K, R3 \ {O}). (5.20)

However, s−1K ⊂ C1,a and therefore by (5.12) the right-hand side of (5.20) is controlled by
CapP (C1,a, R3 \ {O}), uniformly in s. �

Lemma 5.3 Assume that for some s > 0, a > 1 the function u ∈ L2(Cs,as) is such that
Ψ[u; Cs,as] < ∞. Then there exists Q = Q(u, s, a) ∈ Π with the property

‖u−Q‖2
L2(Cs,as)

≤ Cs4Ψ[u; Cs,as]. (5.21)

Proof. Let us start with the expansion of u by means of spherical harmonics:

u =
∞∑
l=0

l∑
m=−l

um
l (r)Y m

l (ω), (5.22)

where Y m
l are the spherical harmonic functions of the degree l (i.e. corresponding to the l-th

eigenvalue of δω) and order m. By Poincaré’s inequality, for l = 0, 1, and the corresponding
m there exist constants um

l such that∫ as

s

|um
l (r)− um

l |
2 dr ≤ Cs2

∫ as

s

|∂ru
m
l (r)|2 dr. (5.23)

Let
Q(x) := um

0 + u1
1

x1

|x|
+ u−1

1

x2

|x|
+ u0

1

x3

|x|
, x ∈ R3 \ {O}. (5.24)

Then (5.23) yields (5.21). �
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Proposition 5.4 Suppose s > 0, a ≥ 2 and K is a compact subset of Cs,as. Then for every
u ∈ L2(Cs,as) such that Ψ[u; Cs,as] < ∞ and u = 0 in a neighborhood of K

1

s3

∫
Cs,as

|u(x)|2 dx ≤ C

Cap (K, R3 \ {O})
Ψ[u; Cs,as], (5.25)

provided Cap (K, R3 \ {O}) > 0.

Proof. For the purposes of this argument let us take ‖P‖Π := ‖P‖L2(C1,a) and let Π1 := {P ∈
Π : ‖P‖Π = 1} with such a norm. This is an equivalent norm in the space Π and hence it
yields the biharmonic capacity equivalent to the one defined in (5.1)–(5.2). We claim that
for every P ∈ Π1

CapP (K, Cs/2,2as) ≤ Cs−4‖P − u‖2
L2(Cs,as)

+ CΨ[u; Cs,as]. (5.26)

To prove this, let us denote by V 2
2 (Cs,as) a collection of functions on Cs,as such that

‖u‖V 2
2 (Cs,as) :=

(
1

s4

∫
Cs,as

|u(x)|2 dx + Ψ[u; Cs,as]

)1/2

, (5.27)

is finite. One can construct an extension operator

Ex : V 2
2 (Cs,as) → V 2

2 (Cs/2,2as) (5.28)

with the operator norm independent of s satisfying the properties

Ex u = u in Cs,as, Ex P = P for every P ∈ Π1, (5.29)

and such that if u = 0 in some neighborhood of K intersected with Cs,as then Ex u vanishes in
a neighborhood of K contained in Cs/2,2as. For example, one can start with the corresponding
one-dimensional extension operator and then use the expansion (5.22) to define Ex.

Having this at hand, we define w(x) := ζ(|x|/s)(P (x) − Ex u(x)), x ∈ Cs/2,2as, where ζ
is a function introduced in (5.15). Then w satisfies (5.16) and therefore CapP (K, Cs/2,2as) is
controlled by

Ψ[w; Cs/2,2as] ≤ Ψ[P − Ex u; Cs/2,2as] = Ψ[Ex (P − u); Cs/2,2as]

≤ Cs−4‖P − u‖2
L2(Cs,as)

+ CΨ[P − u; Cs,as], (5.30)

where the first inequality is proved analogously to (5.18) and the second one follows from
the mapping properties of Ex. Using that δωωi = −2ωi, i = 1, 2, 3, one can directly check
that

Ψ[P − u; Cs,as] = Ψ[u; Cs,as], (5.31)

and obtain (5.26).
The next step is to pass from (5.26) to (5.25). Without loss of generality we may assume

that ‖u‖L2(Cs,as) = s3/2. Then the desired result reads as

inf
P∈Π1

CapP (K, Cs/2,2as) ≤ Ψ[u; Cs,as]. (5.32)
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Let Q = Q(u, s, a) be a function in Π satisfying (5.21), and denote by C0 the constant C
in (5.21). First of all, the case

Ψ[u; Cs,as] ≥ 1/(4C0s) (5.33)

is trivial, since Lemma 5.2 guarantees that the right-hand side of (5.33) is bounded from
below by the biharmonic capacity of K, modulo a multiplicative constant.

On the other hand,

Ψ[u; Cs,as] ≤ 1/(4C0s) =⇒ 2‖u−Q‖L2(Cs,as) ≤ ‖u‖L2(Cs,as), (5.34)

by (5.21) and our assumptions on u. This, in turn, implies that

s3/2

2
≤ ‖Q‖L2(Cs,as) ≤

3s3/2

2
. (5.35)

Finally, we choose

P :=
Q

‖Q‖L2(C1,a)

= s3/2 Q

‖Q‖L2(Cs,as)

. (5.36)

Then
‖u− P‖2

L2(Cs,as)
≤ 16‖u−Q‖2

L2(Cs,as)
≤ 16C0s

4Ψ[u; Cs,as], (5.37)

by (5.21). Combining (5.37) with (5.26), we complete the argument. �

6 1-regularity of a boundary point

Let Ω be a domain in R3 and consider the boundary value problem

∆2u = f in Ω, f ∈ C∞
0 (Ω), u ∈ W̊ 2

2 (Ω). (6.1)

We say that the point Q ∈ ∂Ω is 1-regular (with respect to Ω) if for every f ∈ C∞
0 (Ω) the

gradient of the solution to (6.1) is continuous, i.e.

∇u(x) → 0 as x → Q, x ∈ Ω. (6.2)

Otherwise, Q ∈ ∂Ω is called 1-irregular.
Observe that in the case Q = O this definition coincides with the one given in the

introduction.
In this section we would like to show that 1-regularity is a local property. In particular,

while most of the statements in Sections 1–5 were confined to the case of a bounded domain,
the proposition below will allow us to study 1-regularity with respect to any open set in R3.

Proposition 6.1 Let Ω be a bounded domain in R3 and the point Q ∈ ∂Ω be 1-regular with
respect to Ω. If Ω′ is another domain with the property that Br(Q) ∩ Ω = Br(Q) ∩ Ω′ for
some r > 0 then Q is 1-regular with respect to Ω′.

The proof of the proposition rests on the ideas from [15]. It starts with the following
result.
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Lemma 6.2 Let Ω be a bounded domain in R3 and the point Q ∈ ∂Ω be 1-regular with
respect to Ω. Then

∇u(x) → 0 as x → Q, x ∈ Ω, (6.3)

for every u ∈ W̊ 2
2 (Ω) satisfying

∆2u =
∑

α: |α|≤2

∂αfα in Ω, fα ∈ L2(Ω) ∩ C∞(Ω), fα = 0 in a neighborhood of Q. (6.4)

Proof. Take some η ∈ C∞
0 (Ω) and let v be the solution of the Dirichlet problem

∆2v =
∑

α: |α|≤2

∂α(ηfα) in Ω, v ∈ W̊ 2
2 (Ω), (6.5)

and w := u − v ∈ W 2
2 (Ω). Since the point Q is 1-regular, the function v automatically

satisfies (6.3) and it remains to consider w.
Since fα = 0 in a neighborhood of Q, the function w is biharmonic in some neighborhood

of Q and, therefore, for some R > 0 depending on the supp fα, we have

|∇w(x)| ≤ C

d(x)3

∫
Bd(x)/2(x)

|∇w(y)|2 dy ≤ C

R5

∫
CR/4,4R(Q)

|w(y)|2 dy, ∀ x ∈ BR/4(Q), (6.6)

analogously to (3.17)–(3.18). On the other hand, according to Lemma 2.3 the last expression
in (6.6) is controlled by

C sup
ξ∈CR/4,4R(Q)∩Ω

∫
Rn

∆w(y)∆

(
w(y)

|x−Q|
g
(

log
|ξ −Q|
|y −Q|

))
dy

≤ C sup
ξ∈CR/4,4R(Q)∩Ω

∑
α: |α|≤2

∫
Rn

(1− η(y))fα(y)(−∂y)
α

(
w(y)

|y −Q|
g
(

log
|ξ −Q|
|y −Q|

))
dy, (6.7)

where g is given by (2.8). The integral in (6.7) is controlled in terms of the size of supp (1−η).
The latter can be chosen arbitrarily small as x approaches Q and, thus, |∇w(x)| → 0 when
x → Q. �

Proof of Proposition 6.1. Consider the solution of the Dirichlet problem

∆2u = f in Ω′, f ∈ C∞
0 (Ω′), u ∈ W̊ 2

2 (Ω′), (6.8)

and take some cut-off function η ∈ C∞
0 (Br(Q)) equal to 1 on Br/2(Q). Then ηu ∈ W̊ 2

2 (Ω)
and

∆2(ηu) = ηf + [∆2, η]u. (6.9)

Since ηf ∈ C∞
0 (Ω),

[∆2, η] : W̊ 2
2 (Ω) −→ (W̊ 2

2 (Ω))∗ = W 2
−2(Ω) and supp ([∆2, η]u) ⊂ Cr/2,r(Q) ∩ Ω, (6.10)
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one can write

∆2(ηu) =
∑

α: |α|≤2

∂αfα, for some fα ∈ L2(Ω) ∩ C∞(Ω), (6.11)

with fα = 0 in a neighborhood of Q given by the intersection of Br/2(Q) and the complement
to supp f . Then, by Lemma 6.2, the gradient of ηu (and therefore, the gradient of u) vanishes
as x → Q. �

7 Sufficient condition for 1-regularity

In the following two sections we investigate the necessary and sufficient conditions for the
1-regularity of a point Q ∈ ∂Ω. As before, by applying a simple shift of coordinates, we can
assume that O 6∈ Ω, and thus we can take Q = O. This will be convenient since the origin
plays a special role in our definition of the biharmonic capacity.

The following proposition provides the first part of Theorem 1.2, i.e. sufficiency of con-
dition (1.9) for 1-regularity of a boundary point.

Proposition 7.1 Let Ω be a bounded domain in R3, O ∈ R3 \ Ω, R > 0 and

∆2u = f in Ω, f ∈ C∞
0 (Ω \B4R), u ∈ W̊ 2

2 (Ω). (7.1)

Fix some a ≥ 4. Then for every x ∈ BR/a4 ∩ Ω

|∇u(x)|2 +
|u(x)|2

|x|2
≤ C

R5

∫
CR,4R∩Ω

|u(y)|2 dy

× exp

(
− c

∫ R/a2

a2|x|
Cap (Cs,as \ Ω, R3 \ {O}) ds

)
. (7.2)

In particular, when O is a boundary point of Ω,

if

∫ R/a2

0

Cap (Cs,as \ Ω, R3 \ {O}) ds = +∞ then O is 1-regular. (7.3)

Proof. Fix s ≤ R/a2 and let us introduce some extra notation. First,

γ(s) := Cap (Cs,a2s \ Ω, R3 \ {O}). (7.4)

Further, let Qτ [u; Ω], τ ∈ R, be the quadratic form

Qτ [u; Ω] :=

∫
κ(Ω)

[
(δωv)2g(t− τ) + 2(∂t∇ωv)2g(t− τ) + (∂2

t v)2g(t− τ)

−(∇ωv)2
(
∂2

t g(t− τ) + ∂tg(t− τ) + 2g(t− τ)
)

−(∂tv)2
(
2∂2

t g(t− τ) + 3∂tg(t− τ)− g(t− τ)
)]

dωdt, (7.5)
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where v = et(u ◦ κ−1), g is defined by (2.8) and κ is the change of coordinates (2.2).
Throughout this proof τ = log s−1.

Now take η ∈ C∞
0 (B2s) such that

0 ≤ η ≤ 1 in B2s, η = 1 in Bs and |∇kη| ≤ C/|x|k, k ≤ 4. (7.6)

Following the argument in (3.8)–(3.10) and the discussion after (3.10), and then passing to
the limit as n →∞, we have

Qτ [u; Bs] ≤ Qτ [ηu; Ω] ≤
∫

R3

∆
(
η(x)u(x)

)
∆
(
η(x)u(x)|x|−1g(log(s/|x|))

)
dx

≤ C
2∑

k=0

1

s5−2k

∫
Cs,2s

|∇ku(x)|2 dx ≤ C

s5

∫
Cs,4s

|u(x)|2 dx. (7.7)

Denote

ϕ(s) := sup
|x|≤s

(
|∇u(x)|2 +

|u(x)|2

|x|2

)
+ Qτ [u; Bs], τ = log s−1, s ≤ R

a2
. (7.8)

Then combining (7.7) with Corollary 3.3 and Proposition 3.2,

ϕ(s) ≤ C

s5

∫
Cs,16s

|u(x)|2 dx ≤ C

s5

∫
Cs,a2s

|u(x)|2 dx. (7.9)

For γ(s) > 0 the expression on the right-hand side of (7.9) is further controlled by

C

s3

∫
Cs,a2s

|u(x)|2

|x|2
dx ≤ C

γ(s)
Ψ

[
u

|x|
; Cs,a2s

]
≤ C

sγ(s)
Qτ [u; Cs,a2s], (7.10)

where we used Proposition 5.4 for the first inequality. The second one can be proved directly
using that e−τ = s and calculations from the proof of Lemma 2.3. All in all,

ϕ(s) ≤ C

sγ(s)
Qτ [u; Cs,a2s] ≤

C

sγ(s)

(
ϕ(a2s)− ϕ(s)

)
, (7.11)

which, in turn, implies that

ϕ(s) ≤ 1

1 + C−1 sγ(s)
ϕ(a2s) ≤ exp (−csγ(s)) ϕ(a2s), (7.12)

since sγ(s) is bounded by (5.12). In particular, employing (7.12) for s = a−2jr, r ≤ R,
j ∈ N, one can conclude that

ϕ(a−2lr) ≤ exp

(
−c

l∑
j=1

a−2jr γ(a−2jr)

)
ϕ(r), (7.13)

for all l ∈ N.
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Let us choose l ∈ N so that

a−2l−4R ≤ |x| ≤ a−2l−2R. (7.14)

Next, observe that by (5.4)∫ R/a2

a2|x|
Cap (Cs,as \ Ω, R3 \ {O}) ds

≤
l∑

j=1

2∑
k=1

∫ a−2j+k−2 R

a−2j+k−3 R

Cap (Cs,as \ Ω, R3 \ {O}) ds

≤ C
l∑

j=1

2∑
k=1

a−2j+k−3 R Cap (Ca−2j+k−3 R,a−2j+k−1 R \ Ω, R3 \ {O})

≤ C

l∑
j=1

2∑
k=1

a−2jrk γ(a−2jrk), (7.15)

where rk = ak−3 R, k = 1, 2. Using (7.13) with r = rk, we deduce that for every x ∈ BR/a4∩Ω
and l defined by (7.14)

|∇u(x)|2+ |u(x)|2

|x|2
≤ ϕ(a−2lrk) ≤ exp

(
−c

l∑
j=1

a−2jrk γ(a−2jrk)

)
ϕ(R/a), k = 1, 2, (7.16)

which implies

|∇u(x)|2 +
|u(x)|2

|x|2
≤ exp

(
−c

l∑
j=1

l∑
k=1

a−2jrk γ(a−2jrk)

)
ϕ(R/a)

≤ exp

(
− c

∫ R/a2

a2|x|
Cap (Cs,as \ Ω, R3 \ {O}) ds

)
ϕ(R/a), (7.17)

by (7.15).
Finally, analogously to (7.7)–(7.9)

ϕ(R/a) ≤ sup
|x|≤R/a

(
|∇u(x)|2 +

|u(x)|2

|x|2

)
+ C

2∑
k=0

∫
CR/a,2R/a

|∇ku(x)|2

|x|5−2k
dy

≤ C

R5

∫
CR/a,16R/a

|u(y)|2 dy ≤ C

R5

∫
CR,4R

|u(y)|2 dy, (7.18)

using Proposition 3.2 for the last inequality. Combining (7.17) and (7.18), we finish the
proof of (7.2). The statement (7.3) is a direct consequence of (7.2) and the definition of the
1-regularity. �

Given the result of Proposition 7.1, we can derive the estimates for biharmonic functions
at infinity as well as those for the Green’s function in terms of the biharmonic capacity of
the complement of Ω, in the spirit of (7.2).
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Proposition 7.2 Let Ω be a bounded domain in R3, O ∈ R3 \ Ω, r > 0 and assume that

∆2u = f in Ω, f ∈ C∞
0 (Br/4 ∩ Ω), u ∈ W̊ 2

2 (Ω). (7.19)

Fix some a ≥ 4. Then for any x ∈ Ω \Ba4r

|∇u(x)|2 +
|u(x)|2

|x|2
≤ C

|x|2 r3

∫
C r

4 ,r∩Ω

|u(y)|2 dy

× exp

(
− c

∫ |x|/a2

a2r

Cap (Cs,as \ Ω, R3 \ {O}) ds

)
. (7.20)

Proof. Recall the proof of Proposition 3.4. With the notation (3.26) the results (3.27)–(3.29),
(3.32) allow to apply Proposition 7.1 to Un, R = 1/r, in order to write

|∇un(x)|2 +
|un(x)|2

|x|2
≤ C

|(∇Un)(x/|x|2)|2

|x|2
+
∣∣Un(x/|x|2)

∣∣2
≤ C

r5

|x|2

∫
C 1

r , 4r

|Un(z)|2 dz × exp

(
− c

∫ 1/(a2r)

a2/|x|
Cap (Cs,as \ I(Ωn), R3 \ {O}) ds

)

≤ C

|x|2 r3

∫
C r

4 ,r

|un(z)|2 dz × exp

(
− c

∫ |x|/a2

a2r

Cap (C 1
s
, a
s
\ I(Ωn), R3 \ {O}) ds

s2

)
.

We claim that

Cap (C 1
s
, a
s
\ I(Ωn), R3 \ {O}) ≈ s2 Cap (Cs,as \ Ωn, R3 \ {O}), (7.21)

where the implicit constants are independent of s.
Indeed,

Cap (C 1
s
, a
s
\ I(Ωn), R3 \ {O}) ≈ Cap (C 1

s
, a
s
\ I(Ωn), C 1

2s
, 2a

s
), (7.22)

and for every u ∈ W̊ 2
2 (C 1

2s
, 2a

s
) the function y 7→ |y|u(y/|y|2) belongs to W̊ 2

2 (C s
2a

,2s) by

(3.29) and therefore, if U(y) := u(y/|y|2) then U ∈ W̊ 2
2 (C s

2a
,2s). In addition, if u = P in a

neighborhood of C 1
s
, a
s
\ I(Ωn) then U(y) = P (y/|y|2) = P (y) for all y in the corresponding

neighborhood of C s
a
,s \ Ωn. Finally, by (3.28)∫

C 1
2s , 2a

s

|∆u(x)|2 dx =

∫
C s

2a ,2s

|∆(|y|u(y/|y|2))|2 dy ≈ s2

∫
C s

2a ,2s

|∆U(y)|2 dy, (7.23)

since u ∈ W̊ 2
2 (C 1

2s
, 2a

s
). This proves the “≥” inequality in (7.21). The opposite one can be

derived by the same method.
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All in all,

|∇un(x)|2 +
|un(x)|2

|x|2

≤ C

|x|2 r3

∫
C r

4 ,r

|un(z)|2 dz × exp

(
− c

∫ |x|/a2

a2r

Cap (Cs,as \ Ωn, R3 \ {O}) ds

)

≤ C

|x|2 r3

∫
C r

4 ,r

|un(z)|2 dz × exp

(
− c

∫ |x|/a2

a2r

Cap (Cs,as \ Ω, R3 \ {O}) ds

)
, (7.24)

using the monotonicity property (5.4). Now the argument can be finished using the limiting
procedure similar to the one in Proposition 3.4. �

The following Proposition is a more precise version of the estimate on Green’s function
we announced in the introduction after Theorem 1.2.

Proposition 7.3 Let Ω be a bounded domain in R3, O ∈ ∂Ω. Fix some a ≥ 4 and let
ca := 1/(32a4). Then

|∇x∇yG(x, y)|

≤


C

|x−y| × exp
(
− c
∫ |x|/a2

32a2|y| Cap (Cs,as \ Ω, R3 \ {O}) ds
)
, if |y| ≤ ca|x|,

C
|x−y| × exp

(
− c
∫ |y|/a2

32a2|x| Cap (Cs,as \ Ω, R3 \ {O}) ds
)
, if |x| ≤ ca|y|,

C
|x−y| , if ca|y| ≤ |x| ≤ c−1

a |y|.

Proof. The estimate for the case ca|y| ≤ |x| ≤ c−1
a |y| was proved in Proposition 4.1, and the

bound for |x| ≤ ca|y| follows from the one for |y| ≤ ca|x| by the symmetry of the Green’s
function. Hence, it is enough to consider the case |y| ≤ ca|x| only.

The function x 7→ ∇yG(x, y) is biharmonic in Ω \ {y}. We use Proposition 7.2 with
r = 32|y| to write

|∇x∇yG(x, y)|2 ≤ C

|x|2 |y|3

∫
C8|y|,32|y|

|∇yG(z, y)|2 dz

× exp

(
− c

∫ |x|/a2

32a2|y|
Cap (Cs,as \ Ω, R3 \ {O}) ds

)
, (7.25)

for x ∈ Ω \Bc−1
a |y|. Recall now the function R introduced in the proof of Proposition 4.1. If

y0 is a point on ∂Ω such that |y − y0| = d(y), then

C8|y|,32|y| ⊂ C6|y|,34|y|(y0), (7.26)

and ∇yG(z, y) = R(z, y) for every z ∈ C6|y|,34|y|(y0). Therefore,

1

|x|2 |y|3

∫
C8|y|,32|y|

|∇yG(z, y)|2 dz ≤ 1

|x|2 |y|3

∫
C6|y|,34|y|(y0)

|R(z, y)|2 dz

≤ C

|x|2 d(y)3

∫
C3d(y)/2,6d(y)(y0)

|R(z, y)|2 dz ≤ C

|x|2
≤ C

|x− y|2
. (7.27)
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The second inequality above follows from Proposition 3.4, the third one has been proved in
(4.14)–(4.15) and the last one owes to the observation that

|x− y| ≤ |x|+ |y| ≤ (1 + ca)|x| whenever |y| ≤ ca|x|. (7.28)

Combining (7.25)–(7.27), we finish the proof. �

8 Necessary condition for 1-regularity

This section will be entirely devoted to the proof of the second part of Theorem 1.2, i.e. the
necessary condition for 1-regularity. We recall that CapP (K) = CapP (K, R3 \ {0}) for any
compactum K by definition, and begin with

Step I: the set-up. Suppose that for some P ∈ Π1, c > 0, a ≥ 8 the integral in (1.10) is
convergent. Then for every ε > 0 there exists a number N ∈ N such that∫ 2−N

0

CapP (Cs,as \ Ω, R3 \ {O}) ds < ε. (8.1)

However, the integral above is bounded from below by

∞∑
j=N

∫ 2−j

2−j−1

CapP (Cs,as \ Ω, R3 \ {O}) ds ≥ C
∞∑

j=N

2−jCapP (C2−j ,2−j−1a \ Ω, R3 \ {O})

≥ C
∞∑

j=N

2−jCapP (C2−j ,2−j+2 \ Ω, R3 \ {O}), (8.2)

using the monotonicity property (5.4). Therefore, for every ε > 0 there exists N ∈ N such
that

∞∑
j=N

2−j CapP (C2−j ,2−j+2 \ Ω, R3 \ {O}) < ε. (8.3)

Now let K := B2−N \ Ω and D := R3 \ K. We shall prove that the point O is not
1-regular with respect to D, and therefore with respect to Ω, since D coincides with Ω in a
fixed neighborhood of O (see Proposition 6.1).

To this end, fix P ∈ Π1 and let P(x) := |x|P (x), x ∈ R3. Then take some cut-off
η ∈ C∞

0 (B2) equal to 1 on B3/2 and denote f := −[∆2, η]P ∈ C∞
0 (B2 \ B3/2). Finally, let V

be a solution of the boundary value problem

∆2V = f in D, V ∈ W̊ 2
2 (D). (8.4)

Our goal is to show that |∇V | does not vanish as x → O, x ∈ D.
Let us also consider the function U := V + η P. One can check that

∆2U = 0 in D, U = P on K, U ∈ W̊ 2
2 (R3). (8.5)
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Therefore, U can be seen as a version of a biharmonic potential. In fact, it is (8.5) that gave
an original idea for the above definition of V .

Step II: the main identity. Let B denote the bilinear form associated to the quadratic
form in (2.3), i.e.

B(v, w) =

∫
R

∫
S2

[
(δωv)(δωw) G + 2(∂t∇ωv) · (∂t∇ωw) G + (∂2

t v)(∂2
t w) G

−(∇ωv) · (∇ωw)
(
∂2

t G + ∂tG + 2G
)
− (∂tv)(∂tw)

(
2∂2

t G + 3∂tG−G
)

+
1

2
v w
(
∂4

t G + 2∂3
t G− ∂2

t G− 2∂tG
)]

dωdt. (8.6)

As before, we fix some point ξ ∈ R3, τ := log |ξ|−1 and let G(t) = g(t − τ), t ∈ R. By
Bτ (v, w) we shall denote B(v, w) for this particular choice of G. Then∫

R3

∆U(x)∆
(
P(x)|x|−1 g(log(|ξ|/|x|))

)
dx

+

∫
R3

∆P(x)∆
(
U(x)|x|−1 g(log(|ξ|/|x|))

)
dx = 2Bτ (u, q), (8.7)

where u = et(U ◦ κ−1) and q = et(P ◦ κ−1) = P ◦ κ−1.
The identity above can be proved along the lines of the argument for Lemma 2.1, as long

as the integration by parts and absence of the boundary terms is justified. To this end, we
note that for any fixed ξ ∈ R3 the function x 7→ g(log(|ξ|/|x|)) is bounded by a constant as
|x| → ∞, while x 7→ |x|−1 g(log(|ξ|/|x|)) is bounded by a constant as x → O. If vs ∈ C∞

0 (D),
s ∈ N, is a collection of functions approximating V in the W̊ 2

2 (D)-norm, we let us := vs +ηP.
Then us converges to U in W̊ 2

2 (R3). This, combined with the above observation about the
behavior of g, shows that it suffices to prove (8.7) for us in place of U . Finally, since us is
compactly supported in R3 and is equal to P in a neighborhood of 0, it is a matter of direct
calculation to establish (8.7).

Since |x|
8π

is the fundamental solution of the bilaplacian,

∆2P(x) = ∆2(b0|x|+ b1x1 + b2x2 + b3x3) =
b0

8π
δ(x), (8.8)

where δ is the Dirac delta function. Therefore, the second term on the left-hand side of (8.7)
is equal (modulo a multiplicative constant) to U(0) = 0.

Going further, we show that∫
R3

∆U(x)∆
(
(U(x)− P(x))|x|−1 g(log(|ξ|/|x|))

)
dx = 0. (8.9)

Indeed, the expression in (8.9) is equal to∫
R3

∆U(x)∆
(
V (x)|x|−1 g(log(|ξ|/|x|))

)
dx

+

∫
R3

∆U(x)∆
(
(η(x)− 1)P(x)|x|−1 g(log(|ξ|/|x|))

)
dx. (8.10)
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Then, using the aforementioned approximation by vs, s ∈ N, in the first integral, an obser-
vation that supp (η− 1)P ⊂ D in the second one, and the biharmonicity of U in D we arrive
at (8.9).

Now the combination of (8.7)–(8.10) leads to the identity∫
R3

∆U(x)∆
(
U(x)|x|−1 g(log(|ξ|/|x|))

)
dx = 2Bτ (u, q). (8.11)

Finally, since the identity (2.3) applies to our function U , (8.11) implies that

Bτ (u, u) = 2Bτ (u, q). (8.12)

Recall now that g is a fundamental solution of the equation (2.7), and therefore with the
notation

B̃τ (v, w) =

∫
R

∫
S2

[
(δωv)(δωw) g(t− τ) + 2(∂t∇ωv) · (∂t∇ωw) g(t− τ)

+(∂2
t v)(∂2

t w) g(t− τ)− (∇ωv) · (∇ωw)
(
∂2

t g(t− τ) + ∂tg(t− τ) + 2g(t− τ)
)

−(∂tv)(∂tw)
(
2∂2

t g(t− τ) + 3∂tg(t− τ)− g(t− τ)
)]

dωdt, (8.13)

we have

Bτ (v, w) = B̃τ (v, w) +
1

2

∫
S2

v(τ, ω)w(τ, ω) dω. (8.14)

Then the equality in (8.12) can be written as∫
S2

(u(τ, ω)− q(τ, ω))2 dω =

∫
S2

q2(τ, ω) dω + 4B̃τ (u, q)− 2B̃τ (u, u), (8.15)

so that if |ξ| < 3/2, τ = log |ξ|−1,∫
S2

v2(τ, ω) dω =

∫
S2

q2(τ, ω) dω + 4B̃τ (u, q)− 2B̃τ (u, u), (8.16)

where v = et(V ◦ κ−1).

The identity (8.16) is our major starting point. We shall show that B̃τ (u, q) and B̃τ (u, u)
can be estimated in terms of the series in (8.3) and hence, can be made arbitrarily small by
shrinking ε in (8.3). On the other hand,∫

S2

q2(τ, ω) dω =

∫
S2

(
b2
0 +

3∑
i=1

b2
i ω

2
i

)
dω = 4πb2

0 +
4π

3

3∑
i=1

b2
i , (8.17)

so that
4π

3
≤
∫

S2

q2(τ, ω) dω ≤ 4π. (8.18)
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Therefore, by (8.16), ∫
S2

v2(τ, ω) dω =
C

|ξ|4

∫
S|ξ|

V 2(ξ) dσξ (8.19)

does not vanish as ξ → O, which means that ∇V does not vanish at O either, as desired. It
remains to estimate B̃τ (u, q) and B̃τ (u, u).

Step III: the estimate for B̃τ (u, q). Since q = P ◦ κ−1 is independent of t,

B̃τ (u, q) =

∫
R

∫
S2

[
(δωu)(δωq) g(t− τ)

−(∇ωu) · (∇ωq)
(
∂2

t g(t− τ) + ∂tg(t− τ) + 2g(t− τ)
)]

dωdt. (8.20)

Next, δωωi = −2ωi for i = 1, 2, 3, and therefore δωq = −2
∑3

i=1 biωi, so that

B̃τ (u, q) =

∫
R

∫
S2

[
2b0δωu g(t− τ)− (∇ωu) · (∇ωq)

(
∂2

t g(t− τ) + ∂tg(t− τ)
)]

dωdt

= −
∫

R

∫
S2

[
(∇ωu) · (∇ωq)

(
∂2

t g(t− τ) + ∂tg(t− τ)
)]

dωdt

≤
(∫

R

∫
S2

[
|∇ωu|2

(
−∂2

t g(t− τ)− ∂tg(t− τ)
)]

dωdt

)1/2

×
(∫

S2

|∇ωq|2 dω

∫
R

(
−∂2

t g(t− τ)− ∂tg(t− τ)
)

dt

)1/2

=: I1 × I2, (8.21)

using the Cauchy-Schwarz inequality and the positivity of the weight function (see (2.17)).
Inspecting the argument of Lemma 2.3 one can see that

I1 ≤ (B̃τ (u, u))1/2. (8.22)

On the other hand,

I2
2 =

8π

3

3∑
i=1

b2
i

∫
R

(
−∂2

t g(t− τ)− ∂tg(t− τ)
)

dt

=
8π

9

3∑
i=1

b2
i

(∫ τ

−∞
et−τ dt +

∫ ∞

τ

e−2(t−τ) dt

)
=

4π

9

3∑
i=1

b2
i ≤

4π

9
. (8.23)

Therefore,

B̃τ (u, q) ≤ 2
√

π

3
(B̃τ (u, u))1/2. (8.24)

Step IV: the estimate for B̃τ (u, u), the set-up. Let us now focus on the estimate for

B̃τ (u, u). To this end, consider the covering of K = B2−N \ Ω by the sets K ∩ C2−j ,2−j+2 ,
j ≥ N , and observe that

K ∩ C2−j ,2−j+2 = C2−j ,2−j+2 \ Ω, j ≥ N + 2, (8.25)

K ∩ C2−j ,2−j+2 ⊆ C2−j ,2−j+2 \ Ω, j = N, N + 1. (8.26)
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Let {ηj}∞j=N be the corresponding partition of unity such that

ηj ∈ C∞
0 (C2−j ,2−j+2), |∇kηj| ≤ C2kj, k = 0, 1, 2, and

∞∑
j=N

ηj = 1. (8.27)

By U j we denote the capacitary potential of K ∩ C2−j ,2−j+2 with the boundary data P , i.e.
the minimizer for the optimization problem

inf

{∫
C

2−j−2,2−j+4

(∆u(x))2 dx : u ∈ W̊ 2
2 (C2−j−2,2−j+4),

u = P in a neighborhood of K ∩ C2−j ,2−j+2

}
. (8.28)

Such U j always exists and belongs to W̊ 2
2 (C2−j−2,2−j+4) since P is an infinitely differentiable

function in a neighborhood of K ∩ C2−j ,2−j+2 . The infimum above is equal to

CapP{K ∩ C2−j ,2−j+2 , C2−j−2,2−j+4} ≈ CapP{K ∩ C2−j ,2−j+2 , R3 \ {O}}. (8.29)

Let us now define the function

T (x) :=
∞∑

j=N

|x|ηj(x)U j(x), x ∈ R3, (8.30)

and let ϑ := et(T ◦ κ−1). Then by the Cauchy-Schwarz inequality

B̃τ (ϑ, ϑ) ≤ C
2∑

k=0

∞∑
j=N

∫
C

2−j ,2−j+2

|∇k(U j(x))|2

|x|3−2k
dx. (8.31)

Next, since U j ∈ W̊ 2
2 (C2−j−2,2−j+4), the Hardy’s inequality allows us to write

B̃τ (ϑ, ϑ) ≤ C
∞∑

j=N

2−j

∫
C

2−j−2,2−j+4

|∇2U j(x)|2 dx ≤ C
∞∑

j=N

2−j

∫
C

2−j−2,2−j+4

|∆U j(x)|2 dx

≤ C

∞∑
j=N

2−j CapP{K ∩ C2−j ,2−j+2 , R3 \ {O}}

≤ C
∞∑

j=N

2−j CapP{C2−j ,2−j+2 \ Ω, R3 \ {O}} < Cε, (8.32)

by (8.29), (8.25)–(8.26), the monotonicity property (5.4), and (8.3).
Having at hand (8.32), we need to consider the difference U − T in order to obtain the

estimate for B̃τ (u, u). Let us denote W := U − T , w := et(W ◦ κ−1).
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Step V: the estimate for Bτ (w, w). First of all, one can show that W ∈ W̊ 2
2 (D). Roughly

speaking, it comes from the fact that both U and T belong to W̊ 2
2 (R3). For U this was

pointed out in (8.5), the statement about T can be proved along the lines of (8.31)–(8.32):

‖T‖W̊ 2
2 (R3) ≤ C

2∑
k=0

∞∑
j=N

2j(4−2k)

∫
C

2−j ,2−j+2

|∇k(|x|U j(x))|2 dx

≤ C

∞∑
j=N

2−2j

∫
C

2−j−2,2−j+4

|∆U j(x)|2 dx

≤ C
∞∑

j=N

2−2j CapP{C2−j ,2−j+2 \ Ω, R3 \ {O}} < Cε. (8.33)

To prove that W actually belongs to W̊ 2
2 (D), it remains to show that the boundary data is

zero in the sense of W̊ 2
2 (D), but that follows fairly directly from the definitions. We leave

the details to the interested reader.
Furthermore, ∆2W = −∆2T in D by (8.5). Then, with the notation w := et(W ◦ κ−1)

we have the formula

Bτ (w, w) =

∫
R3

∆W (x)∆
(
W (x)|x|−1 g(log(|ξ|/|x|))

)
dx

= −
∫

R3

∆T (x)∆
(
W (x)|x|−1 g(log(|ξ|/|x|))

)
dx. (8.34)

In what follows we will show that

−
∫

R3

∆T (x)∆
(
W (x)|x|−1 g(log(|ξ|/|x|))

)
dx ≤ Cε1/2(Bτ (w, w))1/2. (8.35)

Observe that according to (8.34) and (2.11) the expression on the left-hand side of (8.35)
is positive. Next, analogously to (2.5),

−
∫

R3

∆T (x)∆
(
W (x)|x|−1 g(log(|ξ|/|x|))

)
dx

= −
∫

R

∫
S2

(
∂2

t ϑ− 3∂tϑ + 2ϑ + δωϑ
)(

g(t− τ) δωw + g(t− τ) ∂2
t w

+(2∂tg(t− τ)− g(t− τ)) ∂tw + (∂2
t g(t− τ)− ∂tg(t− τ)) w

)
dωdt. (8.36)

Now recall the formula for −(2∂2
t g + 3∂tg − g) from (2.18). It is evident that for any Dt –

differential operator in t of the order greater than or equal to 0 we have

|Dtg| ≤ C(−2∂2
t g − 3∂tg + g), (8.37)
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where C generally depends on Dt, and hence,∫
R

∫
S2

(∂tw)2 |Dtg(t− τ)| dωdt

≤ −C

∫
R

∫
S2

(∂tw)2(2∂2
t g(t− τ) + 3∂tg(t− τ)− g(t− τ)) dωdt ≤ CB̃τ (w, w), (8.38)

where the last inequality follows from the calculations in Lemma 2.3. Then for 0 ≤ i+k ≤ 2∫
R

∫
S2

|∂k
t ∇i

ωϑ| |∂tw| |Di,k
t g(t− τ)| dωdt

≤ C

(∫
R

∫
S2

|∂k
t ∇i

ωϑ|2 |Di,k
t g(t− τ)| dωdt

)1/2

(B̃τ (w,w))1/2

≤ C
2∑

j=0

(∫
R3

|∇jT (x)|2

|x|5−2j
dx

)1/2

(B̃τ (w, w))1/2 ≤ Cε1/2(B̃τ (w, w))1/2, (8.39)

where Di,k
t are some differential operators in t and the last inequality follows from (8.31)–

(8.32).
For similar reasons,∫

R

∫
S2

|∂k
t ∇i

ωϑ| |∂2
t w| g(t− τ) dωdt ≤ Cε1/2(B̃τ (w, w))1/2, (8.40)

and ∫
R

∫
S2

|∂k
t ∇i

ωϑ| |∂t∇ωw| g(t− τ) dωdt ≤ Cε1/2(B̃τ (w, w))1/2, (8.41)

for 0 ≤ i + k ≤ 2.
Invoking (8.39)–(8.41) and integrating by parts, we see that the expression in (8.36) is

bounded by∣∣∣∣ ∫
R

∫
S2

(
δωϑδωw g(t− τ)−∇ωϑ · ∇ωw (2∂2

t g(t− τ) + 2∂tg(t− τ) + 2g(t− τ))

+ϑw(∂4
t g(t− τ) + 2∂3

t g(t− τ)− ∂2
t g(t− τ)− 2∂tg(t− τ))

)
dtdω

∣∣∣∣
+Cε1/2(B̃τ (w, w))1/2. (8.42)

Also,∣∣∣∣∫
R

∫
S2

(δωϑ · δωw − 2∇ωϑ · ∇ωw) g dt dω

∣∣∣∣
≤
(∫

R

∫
S2

[
(δωϑ)2 − 2(∇ωϑ)2

]
g dt dω

)1/2(∫
R

∫
S2

[
(δωw)2 − 2(∇ωw)2

]
g dt dω

)1/2

≤ Cε1/2(B̃τ (w, w))1/2, (8.43)
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using (2.12) and the Cauchy-Schwarz inequality for the bilinear form on the left-hand side
of (8.43). In view of (8.43) and (2.7) the expression in (8.42) is further controlled by∣∣∣∣ ∫

R

∫
S2

∇ωϑ · ∇ωw (−2∂2
t g(t− τ)− 2∂tg(t− τ)) dtdω

∣∣∣∣
+

1

2

∣∣∣∣∫
S2

ϑ(τ, ω)w(τ, ω) dω

∣∣∣∣+ Cε1/2(B̃τ (w, w))1/2

≤ Cε1/2(B̃τ (w, w))1/2 +
1

2

(∫
S2

ϑ2(τ, ω) dω

)1/2

(Bτ (w, w))1/2. (8.44)

For the last inequality we used the positivity of −2∂2
t g − 2∂tg (see (2.17)) and the argu-

ment similar to (8.38)–(8.39) to estimate the first term, and the Cauchy-Schwarz inequality
together with (2.11) for the second one.

Finally, we claim that ∫
S2

ϑ2(τ, ω) dω < Cε. (8.45)

Indeed, by definition (8.45) is equal to

1

|ξ|4

∫
S|ξ|

T 2(ξ) dσξ ≤ C
∑

j: 2−j≤|ξ|≤2−j+2

1

|ξ|2

∫
S|ξ|

(U j(ξ))2 dσξ

≤ C
∑

j: 2−j≤|ξ|≤2−j+2

∫
R3

∆
(
|x|U j(x)

)
∆
(
U j(x) g(log(|ξ|/|x|))

)
dx, (8.46)

using (2.11) for the function x 7→ |x|U j(x) in W̊ 2
2 (C2−j−2,2−j+4). Finally, the right-hand side

of (8.46) is bounded by

C
∑

j: 2−j≤|ξ|≤2−j+2

2∑
k=0

∫
C

2−j ,2−j+2

|∇k(|x|U j(x))|2

|x|5−2k
dx < Cε, (8.47)

by the estimate following (8.31). This completes the proof of (8.35), which together with
(8.34) yields Bτ (w, w) < ε. and therefore,

B̃τ (w, w) < Bτ (w, w) < Cε. (8.48)

The last estimate, in turn, implies that Bτ (u, u) < Cε by the results of Step IV. At last, the
combination with (8.24) finishes the argument. �

9 Examples and further properties of the biharmonic

capacity

Lemma 9.1 Consider a domain Ω shaped as an exterior of a cusp in some neighborhood of
O ∈ ∂Ω, i.e.

Ω ∩Bc = {(r, θ, φ) : 0 < r < c, θ > h(r)}, for some c > 0, (9.1)
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where (r, θ, φ), r ∈ (0, c), θ ∈ [0, π], φ ∈ [0, 2π), are the spherical coordinates in R3 and
h(r) : (0, c) → R is a nondecreasing function satisfying the condition h(br) ≤ Ch(r) for
some b > 1 and all r ∈ (0, c).

Then

O is 1-regular if and only if

∫ c

0

s−1h(s)2 ds = +∞. (9.2)

Proof. We claim that for every P ∈ Π1 and every a ≥ 4

CapP (Cs,as \ Ω, R3 \ {O}) ≥ Cs−1h(s)2, 0 < s < c/a. (9.3)

Indeed, recall from Lemma 5.2 that

CapP (Cs,as \ Ω, R3 \ {O}) ≈ CapP (Cs,as \ Ω, Cs/2,2as). (9.4)

By definition of the biharmonic capacity, for every ε > 0 there exist some u ∈ W̊ 2
2 (Cs/2,2as)

such that

CapP (Cs,as \ Ω, Cs/2,2as) + ε ≥ C

∫
Cs/2,2as

(∆u(x))2 dx, (9.5)

and u = P in a neighborhood of Cs,4s \ Ω. Since u ∈ W̊ 2
2 (Cs/2,2as), by Hardy’s inequality∫

Cs/2,2as

(∆u(x))2 dx =

∫
Cs/2,2as

|∇2u(x)|2 dx

≥ C

∫
Cs/2,2as

|u(x)|2

|x|4
dx ≥ C

∫
Cs,as\Ω

|P (x)|2

|x|4
dx. (9.6)

Using the spherical coordinates the last integral above can be written as

C

s4

∫ as

s

∫ h(r)

0

∫ 2π

0

(b0 + b1 sin θ cos φ + b2 sin θ sin φ + b3 cos θ)2 sinθ r2 dφdθdr

≥ C

s

∫ h(s)

0

(
2b2

0 + 2b2
3 cos2 θ + 4b0b3 cos θ + b2

1 sin2 θ + b2
2 sin2 θ

)
sinθ dθ

≥ C

s

(
cos θ

(
b2
0 +

b2
3

3
cos2 θ + b0b3 cos θ

)
+ (b2

1 + b2
2)
(
cos θ − cos3 θ

3

)) ∣∣∣∣0
h(s)

≥ C

s

(
b2
0 + b2

1 + b2
2 + b2

3

)
cos θ

∣∣∣∣0
h(s)

≥ C

s
h(s)2. (9.7)

Now one can combine (9.5)–(9.7) and let ε → 0 to obtain (9.3).
Therefore, the divergence of the integral in (9.2) implies that∫ c/a

0

inf
P∈Π1

CapP (Cs,as \ Ω, R3 \ {O}) ds = +∞, (9.8)

which, in turn, shows that the point O is 1-regular by Theorem 1.2.
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Conversely, we claim that there exists P ∈ Π1 such that for every s ∈ (0, c/a)

CapP (Cs,as \ Ω, R3 \ {O}) ≤ Cs−1h(s)2. (9.9)

Indeed, let us take

P (x) :=
1

2

(
1− x3

|x|

)
, x ∈ R3. (9.10)

Clearly, P ∈ Π1. Next, we choose a function U ∈ W̊ 2
2 (Cs/2,2as) that is given by P in a

neighborhood of Cs,as \Ω. To do this, let us introduce two cut-off functions, ζθ and ζr, such
that

ζθ ∈ C∞
0 (−1/2, 2) , ζθ = 1 on [0, 3/2]; ζr ∈ C∞

0 (1/2, 2a) , ζr = 1 on [3/4, 3a/2]. (9.11)

Then let

u(r, φ, θ) :=
1

2
(1− cos θ) ζθ

( θ

h(as)

)
ζr
(r

s

)
, (9.12)

so that

u(r, φ, θ) = 1 whenever 0 ≤ θ ≤ 3h(as)

2
and

3s

4
≤ r ≤ 3as

2
, (9.13)

and
u(r, φ, θ) = 0 whenever 2h(as) ≤ θ ≤ π or r 6∈

(s

2
, 2as

)
. (9.14)

Finally, let U := u ◦ κ, where κ is the change of coordinates in (2.2). Then∫
Cs/2,2as

|∆U(x)|2 dx = C

∫ 2as

s/2

∫ 2h(as)

0

∣∣∣∣ 1

r2
∂r(r

2∂ru) +
1

r2 sin θ
∂θ(sin θ ∂θu)

∣∣∣∣2 sin θ dθ r2 dr,

since u is independent of φ. A straightforward calculation shows that for r and θ as above∣∣∣∣ 1

r2
∂r(r

2∂ru) +
1

r2 sin θ
∂θ(sin θ ∂θu)

∣∣∣∣ ≤ C

s2
, (9.15)

and therefore, ∫
Cs/2,2as

|∆U(x)|2 dx ≤ Cs−1h(as)2 ≤ Cs−1h(s)2. (9.16)

The last inequality follows from the properties of the function h. Indeed, since h is nonde-

creasing h(ar) ≤ h(br) ≤ Ch(r) when a ≤ b. If a > b then h(ar) ≤ Cmh
(

a
bm r
)
≤ Cm+1h(r)

for m ≥ logb a− 1.
Finally, if the point O is 1-regular, then by Theorem 1.2 the integral in (1.10) diverges

for every P ∈ Π1 and therefore, by (9.9), the integral in (9.2) diverges. �

In order to state the next result, let us recall the definition of the harmonic capacity of
a compact set. For an open set Ω ⊂ R3 \ {O} and a compactum e ⊂ Ω

cap (e, Ω) := inf

{∫
Ω

(∇u(x))2 dx : u ∈ W̊ 2
1 (Ω), u = 1 in a neighborhood of e

}
, (9.17)

is a harmonic capacity of the set e relative to Ω. If Ω = R3 \ {0} then (9.17) coincides with
(1.5).
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Lemma 9.2 Let K be a compactum situated on the set

{x ∈ R3 : b0|x|+ b1x1 + b2x2 + b3x3 = 0}, bi ∈ R, i = 0, 1, 2, 3, (9.18)

such that O 6∈ K. If the harmonic capacity of K equals zero, then

CapP (K, R3 \ {0}) = 0 (9.19)

for

P (x) =
1√

b2
0 + b2

1 + b2
2 + b2

3

(
b0 + b1

x1

|x|
+ b2

x2

|x|
+ b3

x3

|x|

)
, x ∈ R3 \ {O}. (9.20)

In particular, Cap(K, R3 \ {0}) = 0.

Proof. By the assumptions of the theorem O 6∈ K. Therefore, there exist s > 0, a > 1
such that K ⊂ Cs,as. In the course of proof some constants will depend on s and a. That,
however, does not influence the result.

Since
cap(K, Cs/2,2as) ≈ cap(K, R3 \ {0}) = 0, (9.21)

for every ε > 0 there exists a compactum Kε with a smooth boundary contained in the set
(9.18) and such that

K ⊂ Kε ⊂ Cs/2,2as and cap(Kε, Cs/2,2as) < ε. (9.22)

Let u denote the harmonic potential of Kε, so that

u ∈ W̊ 1
2 (Cs/2,2as), u = 1 in Kε, ∆u = 0 in R3 \Kε,

∫
Cs/2,2as

|∇u(x)|2 dx < ε. (9.23)

Next, given α < 1 let

vα(x) =

{
α−4P (x)u2(x)(2α− u(x))2, if u(x) ≤ α,

P (x), if u(x) > α,
(9.24)

where x ∈ Cs/2,2as and P is defined by (9.20). Then vα ∈ W̊ 2
2 (Cs/2,2as) by (9.23) and vα = P

in a neighborhood of K. Therefore,

CapP (K, R3 \ {0}) ≈ CapP (K,Cs/2,2as) ≤
∫

Cs/2,2as

|∆vα(x)|2 dx

= α−8

∫
x: u(x)≤α

∣∣∣∆(P (x)u2(x)(2α− u(x))2
)∣∣∣2 dx +

∫
x: u(x)>α

|∆P (x)|2 dx. (9.25)

We take α = α(ε) < 1 (close to 1) such that the last term above is less than ε. In addition,
on the set {x : u(x) ≤ α}∣∣∣∆(u2(x)(2α− u(x))2

)∣∣∣ ≤ C|∇u|2,
∣∣∣∇P · ∇

(
u2(x)(2α− u(x))2

)∣∣∣ ≤ C|∇u|,∣∣∣∆P
(
u2(x)(2α− u(x))2

)∣∣∣ ≤ C|u|, (9.26)
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so that∫
x: u(x)≤α

∣∣∣∆(P (x)u2(x)(2α− u(x))2
)∣∣∣2 dx ≤ Cε + C

∫
x: u(x)≤α

|P (x)|2|∇u|4 dx, (9.27)

by (9.23).
It remains to estimate the last integral above. To do that, we use the Whitney decom-

position of the set Cs/2,2as \ Kε. Let us call the corresponding collection of balls {Bi}∞i=1,
then

∞⋃
i=1

Bi = Cs/2,2as \Kε,
∞∑
i=1

χBi
≤ C, r(Bi) ≈ dist

(
Bi, ∂(Cs/2,2as \Kε)

)
, (9.28)

where r(Bi) denotes the radius of Bi. Observe that

|u(x)| ≤ 1, |P (x)| ≤ Cri, if x ∈ Bi such that dist (Bi, ∂Cs/2,2as) ≥ dist (Bi, Kε),

|u(x)| ≤ Cri, |P (x)| ≤ C, if x ∈ Bi such that dist (Bi, ∂Cs/2,2as) ≤ dist (Bi, Kε).

Since u is harmonic in Cs/2,2as \Kε,

|∇u|2 ≤ C

r5
i

∫
Bi

|u(x)|2 dx. (9.29)

Therefore, |P ||∇u| ≤ C on Cs/2,2as \Kε and∫
Cs/2,2as

|P (x)|2|∇u|4 dx ≤
∫

Cs/2,2as

|∇u|2 dx < ε. (9.30)

Letting ε → 0, we finish the argument. �

Corollary 9.3 Let Ω be a domain in R3 such that O ∈ ∂Ω and the complement of Ω is a
compactum of zero harmonic capacity situated on the set (9.18). Then the point O is not
1-regular.

Proof. By Lemma 9.2 for the choice of P in (9.20)

CapP (Cs,as \ Ω, R3 \ {O}) ds = 0, (9.31)

for every s > 0, a > 1. One can see that such P does not depend on s and a, but only on
the initial cone containing the complement of Ω. Therefore,

inf
P∈Π1

∫ c

0

CapP (Cs,as \ Ω, R3 \ {O}) ds = 0, (9.32)

and hence O is not 1-regular by Theorem 1.2. �

Remark. The set defined by (9.18) is either a circular cone with the vertex at O or a plane
containing O. Indeed, the set (9.18) is formed by the rays originating at O and passing
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through the intersection of the plane b0 + b1x1 + b2x2 + b3x3 = 0 with the unit sphere. If this
plane passes through the origin (b0 = 0), it is actually the set (9.18). If it does not, then its
intersection with S2 is a circle giving rise to the corresponding circular cone.

Due to the particular form of elements in the space Π1 such sets play a special role for our
version of the biharmonic capacity and for 1-regularity. This observation is, in particular,
supported by Lemma 9.2 and the upcoming example.

We consider a domain whose complement consists of a set of points such that in each
dyadic spherical layer three of the points belong to a fixed circular cone, while the fourth
one does not. The result below shows that in this case the origin is 1-regular provided the
deviation of the fourth point is large enough in a certain sense. The details are as follows.

Lemma 9.4 Fix some a ≥ 4. Consider a domain Ω such that in some neighborhood of the
origin its complement consists of the set of points⋃

k

{
Ak

1 = (a−k, 0, α), Ak
2 = (a−k, π/2, α), Ak

3 = (a−k, π, α), Ak
4 = (a−k+1/2, 3π/2, βk)

}
,

(9.33)
where the points are represented in spherical coordinates (r, φ, θ), r ∈ (0, c) for some c > 0,
θ ∈ [0, π], φ ∈ [0, 2π), k ∈ N ∩ (1/2− loga c,∞). Assume, in addition, that

0 < α < π/2, 0 ≤ |βk − α| < α/2, ∀ k ∈ N ∩ (1/2− loga c,∞). (9.34)

Then ∫ c/a

0

inf
P∈Π1

CapP (Cs,as \ Ω, R3 \ {O}) ds ≥ C
∑

k

(βk − α)2, (9.35)

where C = C(α) > 0. In particular,

if
∑

k

(βk − α)2 = +∞ then O is 1-regular. (9.36)

Proof. To begin, let us observe that∫ c/a

0

Cap (Cs,as \ Ω, R3 \ {O}) ds ≥
∑

k

∫ a−k

a−k−1/2

Cap (Cs,as \ Ω, R3 \ {O}) ds

≥
∑

k

a−k min
s∈(a−k−1/2,a−k)

Cap (Cs,as \ Ω, R3 \ {O}). (9.37)

For every s ∈ (a−k−1/2, a−k) in the spherical layer Cs,as there are exactly four points that
belong to the complement of Ω, namely, Ak

i , i = 1, 2, 3, 4. We aim to show that for each
k ≥ 1/2− loga c

Cap (Cs,as \ Ω, R3 \ {O}) ≥ Cak(βk − α)2, (9.38)

provided s ∈ (a−k−1/2, a−k).
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Take some P ∈ Π1 and consider the distribution

T k(x) :=
4∑

i=1

P (Ak
i )δ(x− Ak

i ). (9.39)

Then for every u ∈ W̊ 2
2 (Cs/2,2as) such that u = P in a neighborhood of {Ak

i , i = 1, 2, 3, 4},
we have

〈T k, P 〉 =
4∑

i=1

P (Ak
i )

2. (9.40)

On the other hand, since T k is supported in the set {Ak
i , i = 1, 2, 3, 4},

〈T k, P 〉 = −〈∆E ∗ T k, u〉 = −〈E ∗ T k, ∆u〉, (9.41)

where E(x) = 1/(4π|x|) is the fundamental solution for the Laplacian. By the Cauchy-
Schwarz inequality

|〈T k, P 〉|2 ≤ ‖E ∗ T k‖2
L2(Cs/2,2as)

‖∆u‖2
L2(Cs/2,2as)

≤ Cs
4∑

i=1

P (Ak
i )

2 CapP (Cs,as \ Ω, Cs/2,2as). (9.42)

Therefore, combining (9.40)–(9.42) and taking the infimum in P , we obtain the estimate

Cap (Cs,as \ Ω, R3 \ {O}) ≥ Cak inf
P∈Π1

4∑
i=1

P (Ak
i )

2 = Cak inf
b∈R4: ‖b‖=1

b MM⊥ b⊥, (9.43)

where b = (b0, b1, b2, b3),

M =


1 1 1 1

sin α 0 − sin α 0
0 sin α 0 − sin βk

cos α cos α cos α cos βk

 (9.44)

and the superindex ⊥ denotes matrix transposition. Then the infimum in (9.43) is bounded
from below by the smallest eigenvalue of MM⊥. The characteristic equation of MM⊥ is

−λ4 + 8λ3 − 1

4

(
55− 22 cos(2α)− 3 cos(4α)− 8 cos(α− βk)− cos(2α− 2βk)− 2 cos(2βk)

−16 cos(α + βk)− 3 cos(2α + 2βk)
)
λ2 − 1

2
sin2 α

(
−4 cos(2α) + cos(4α) + 12 cos(α− βk)

−33 + cos(2α− 2βk) + 20 cos(α + βk) + 3 cos(2α + 2βk)
)
λ = 4 sin2 α(cos α− cos βk)

2.

By the Mean Value Theorem for the function arccos and our assumptions on α, βk there
exists C0(α) independent of βk such that for all k

|α− βk| ≤ C0(α)| cos α− cos βk|, (9.45)
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and therefore,
4 sin2 α(cos α− cos βk)

2 ≥ 4 sin2 α(C0(α))−2|α− βk|2. (9.46)

It follows that

λ ≥ sin2 α(C0(α))−2

100
|α− βk|2, (9.47)

because otherwise the left-hand side of (9.45) is strictly less than its right-hand side. Com-
bined with (9.43), this finishes the proof of (9.35). The statement (9.36) follows from (9.35)
and Theorem 1.2. �

Remark. Retain the conditions of Lemma 9.4 and observe that by our construction for every
s ∈ (0, c/a1/3) in the spherical layer Cs,a1/3s there are either exactly three points Ak

i , i = 1, 2, 3
for some k = k(s), or exactly one point Ak

4, k = k(s), or no points from the complement of
Ω. By Lemma 9.2 it follows that in either case

Cap (Cs,a1/3s \ Ω, R3 \ {O}) = 0 (9.48)

and hence, ∫ c/a1/3

0

inf
P∈Π1

CapP (Cs,a1/3s \ Ω, R3 \ {O}) ds = 0. (9.49)

At the same time, if
∑

k(α− βk)
2 diverges, then so does the integral in (9.35).

It follows that for the same domain Ω the convergence of the integral in (1.9) might
depend on the choice of a.

Alternatively, one can say that for the same a the convergence of the integral in (1.9)
might depend on the dilation of the domain. In particular, (1.9) can not be a necessary
condition for the 1-regularity since the concept of 1-regularity is dilation invariant.

Conversely, our proof of the first statement in Theorem 1.2 and Proposition 7.1 relies on
Proposition 5.4 which, in turn, follows from the Poincaré-type inequality (5.21). In fact, for
every s our choice of P , that allows to estimate the infimum under the integral sign in (1.9),
is dictated by the approximating constants in the Poincaré’s inequality on (s, as) (see the
proof of Lemma 5.3). Therefore, in our argument one can not make a uniform choice of P
for all s to substitute (1.9) with (1.10).

Corollary 9.5 The 1-irregularity is unstable under the affine transformation of coordinates.

Proof. The proof is based on Corollary 9.3 and Lemma 9.4. Indeed, given the assumptions of
Lemma 9.4, if βk = α for all k, then the complement of Ω is entirely contained in the circular
cone of aperture α with the vertex at the origin and hence, by virtue of Corollary 9.3, the
point O is not 1-regular.

However, if βk = α + ε for all k, then the series in (9.36) diverges for arbitrary small
ε > 0, which entails 1-regularity of O. �
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