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Abstract

The uniform asymptotic approximation of Green’s kernel for the transmission problem of antiplane shear
is obtained for domains with small inclusions. The remainder estimates are provided. Numerical simulations
are presented to illustrate the effectiveness of the approach.

1 Introduction

Our goal is to obtain a uniform asymptotic approximation of Green’s function for a transmission problem of
antiplane shear in a domain with small inclusions.

Exact solutions to singularly perturbed problems corresponding to bodies with defects are often unavailable.
For complicated geometries involved in problems of this kind, i.e. domains with multiple small perforations,
numerical algorithms may become incapable of reaching the required accuracy. Also, when the right-hand sides
of such boundary value problems are singular, numerical procedures can suffer from the same deficiencies. In
this case, asymptotic solutions to these problems are desirable.

The approximation of Green’s kernels for regularly perturbed problems, for the Laplace operator and the
biharmonic operator, was first studied by Hadamard in [1]. More recently, the question of uniformity for
the approximations of Green’s kernels for boundary value problems in domains with singularly and regularly
perturbed boundaries, was addressed in [9]. The uniform approximations in [9] were derived using the method
of compound asymptotic expansions.

The paper [7] contains the rigorous proofs and remainder estimates for uniform approximations of Green’s
kernels, given in [9], for —A in an n-dimensional domain (n > 2), with a single small rigid inclusion. Uniform
asymptotic formulae of Green’s functions for mixed problems of antiplane shear in domains with a small hole or
a crack, are discussed in detail in [8]. In [10], an extension of the theory developed in [7] is made to the case of
Green'’s tensors of vector elasticity, for an elastic body with a small inclusion. This was followed by [11], where
uniform asymptotics of Green’s kernels for planar and three-dimensional elasticity in bodies with multiple rigid
inclusions are given. The paper [11] also includes analysis of Green’s kernels and numerical simulations for
antiplane shear and plane strain.

In the present paper, the new feature of the problem tackled is that on the small inclusions we prescribe
transmission conditions (the continuity of tractions and displacements). The inclusions are assumed to be
occupied by materials which are different from that of the ambient medium. Compared to previous expositions
into the uniform approximation of Green’s kernels in [7, 8, 10], where the kernels are approximated in the bodies
containing small holes we also must approximate the Green’s kernel inside the inclusions. The analysis also
brings additional boundary layers when the point force is placed inside the inclusion.

Below, we illustrate one of the main results in this article, for the case when the domain has a single inclusion.
Let w. be a small planar inclusion, occupied by a material of shear modulus pj, containing the origin O and
which is perfectly bonded to the rest of the matrix Q. C R? whose shear modulus is puo. Here, € is a small
positive parameter characterising the normalized size of the inclusion. Consider the antiplane shear Green’s
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function N. for the transmission problem inside the perturbed domain 2. U w.. We also use N (Q), as the
Neumann function in the unperturbed domain (without the inclusion) and R(? as its regular part. We denote
by N the Green’s function for the transmission problem, in the unbounded domain with the scaled inclusion
at the origin. Also let us define the vector function D = (D;,D3)?, where the components Dj, j = 1,2 are the
dipole fields for the scaled inclusion in the unbounded domain.

As one of the results we state

Theorem The approzimation of Green’s function for the transmission problem of antiplane shear in Q. U
we C R2, is given by

N.(x,y) = NO(x,y) + N(e7 x,e7Ly) + (2mpo) Hloge L x — y|)

+eD(e71x) - VxRV (0,y) 4+ eD(ey) - Vy R (x,0) + O(?)

uniformly for x,y € Q. Uw,.

The structure of the article is as follows. In Section 2, we introduce the main notations that will be adopted
throughout the text and define Green’s function for the domain containing several inclusions. Section 3 contains
the description of model fields used to construct the uniform asymptotic approximations of the Green’s function.
In Section 4, we state and prove an estimate for solutions to model transmission problems in an unbounded
domain with an inclusion. Solutions to transmission problems in a domain with several small inclusions are
studied in Section 5. Results of these sections will aid us in deriving the remainder estimate present in the
generalization of approximation (1.1) to the case of multiple inclusions. Asymptotic properties of the boundary
layer fields, involving the regular part of Green’s function for the transmission problem, in the unbounded
domain with an inclusion are investigated in Section 6. Then, we consider the uniform approximation of
Green’s function for the transmission problem in the domain with small inclusions in Section 7, and give the
formal algorithm together with the remainder estimates. Finally, in Section 8, we demonstrate the effectiveness
of our approach and present the numerical simulations comparing the asymptotic formula in Section 7 with the
finite element calculations in COMSOL.

The asymptotic formulae obtained in the sequel are readily applicable to numerical simulations. As an
example, Figure 1 shows the comparison between an asymptotic approximation and COMSOL computation for
the modulus of the gradient of the regular part of Green’s function for the transmission problem in a domain
with a circular inclusion, for the case when the point force is applied outside the inclusion in a planar body.
This Figure represents the regular part of the displacement field produced by a point force inside a Cast Iron
disk containing an Aluminum inclusion: Fig. la, shows the computations obtained through the formula (1.1)
when y € €., while Fig. 1b corresponds to the numerical finite element solution produced in COMSOL. The
surface plots shown are very similar.

2 Main Notations

Let © be a subset of R?, with smooth boundary 0§ and compact closure Q. Also let w) c R?, have smooth
boundary dw) and compact closure @), whose complement in the infinite plane is C@U) = Rz\aﬂj), j =
1,...,M. Thesets w9, j =1,..., M, are assumed to contain the origin O, and the maximum distance between
0 and dw) is 1. Let wﬁj), be a subset of 2, with centre O(j), 1 <j < M. We assume that the minimum distance

between OU) and O k £ j, k =1,..., M and the minimum distance between O) and 9 is 1. We relate the

domain ng) to w\¥) via wéj) ={x:el(x— O(j)) € w(j)}7 j=1,..., M. The perturbed geometry is defined by

Q. =0N\U I wéj ), and we say that this domain is occupied by a material with shear modulus pp and the domain
wéj ) is occupied by a material with shear modulus puy;, where po,pr; > 0, 1 < j < M. In the subsequent
sections, along with x and y we will also use the scaled variables §; = ¢! (x — 0W)), n; = Yy — 0W)),

By xr we mean the characteristic function of the set T, that is

1, ifxeT,
0, otherwise.

xr(x) = {

Our goal is to obtain uniform asymptotics for the Green’s function N, of the transmission problem in | J ; wéj U



Modulus of the gradient of the analytical solution x 10" Modulus of the gradient of the numerical solution x10"

x10°

x10°

116

1.4

1.2

Figure 1: a) Modulus of the gradient of the regular part of the Green’s function, computed with the aid of
the asymptotic formula (1.1) when y € €., b) A finite element computation (produced in COMSOL) for the
modulus of the gradient of the regular part of the Green’s function for the transmission problem in a domain with
an inclusion. Here, we consider a circular cylinder of radius 30m containing a circular inclusion of radius 7m, the
shear modulus of the inclusion is y; = 2.6316 x 10'°Nm ™2 (an Aluminum inclusion), where the shear modulus
for the rest of the matrix is po = 5.6 x 101°Nm™2. The position of the unit point force is y = (10m, 10m),

which is quite close to the boundary of the inclusion.

., which is a solution of

poAN:(x,y) +d(x—y) =0, x€Q.,ye|JuPUQ., (2.1)
l

pr AxNe(x,y) +6(x—y) =0, x¢€ wW j=1,...,M,y € Uwg) U . (2.2)
1
The normal derivative of V. on the exterior boundary satisfies

ON, 1
€ - 0 | Jo® U, 2.
Ho 87’Lx (Xa y) |8Q| ) X € 0 Y € l We U ) ( 3)

where |09)| is the one-dimensional measure of the set 9€2; 9/9nx = n - Vy is the normal derivative, where n is
the unit outward normal. ‘

Assuming that the small inclusions wéj ), j =1,...,M are perfectly bonded to the matrix ., we write
transmission conditions across the interface 8w£j ) in the form

ON, ON,
Ho 8n€ (Xy}’){xeawgn = M, 873& }’)|xeawg>— ) (2.4)

X

Ne(%,9) | epois = Ne(6¥) | e »
forj=1,...,.Mandy €|, wgl) U Q¢; the notation 8w§j )% indicates the exterior or interior boundary of the set
e
The symmetry of N, i.e.
Ne(x,y) = Ne(y,x) ,
is guaranteed by the condition

N.(x,y)dSx =0. (2.5)
o0

The proof of symmetry of N., for this problem, is addressed below.



The symmetry of the Green’s function N,

Proposition 1 Green’s function N, for the transmission problem in UlZ\il wgl) U Q. satisfies

Ne(x,y) = Ne(y,x) . (2.6)
Proof. Let
NE(O)(X7 y) = N.(x,y), for x € Qg7y € Ui\il wél) U, , (2.7)
Ns(lj)(x, y) = N.(x,y), for x € wéj),y S Ul]\il wél) U, .

We apply Green’s formula for the functions NE(O) and NE(IJ')7 ji=1,...,M:

MO/Q {NE(O)(Z,X)AZNE(O)(Z,}/) fNE(O)(z,y)AzNE(O)(z,x)}dz

M
+ Z/”l /(l) {Néll)(z,X)AzNéll)(z,y) — Néll)(z7y)AzN§I’)(z,x)} dz
=1 we

ONL?) ONL?
— (0) ¢ _ nN(O) €
HO /dQ {NS (Z7X) on (Z,y) Ns (Z7y) on (Z,X)} dSz

z z

M (1) (0)
ON; ON;
+§ / {Néo)(%X) [ﬂn o (z,y) — po o (Z,y)]
:1 Zz Zz

oN oNL?
_Ne(ll)(z7y) [MIL%(ZaX) e on (Z,X) dSz ’

where the right-hand side is zero as a result of the transmission conditions (2.4), the exterior boundary condition
(2.3) and the normalization (2.5). Thus

0 = MO/ {Ng(o)(z,x)AzNéo)(z,y) — Néo)(z,y)AzNéo) (z,x)} dz
Qe
M
+D / . {Ngm(z, X)A NI (z,y) = N (2,y) AN (2, x)} dz . (2.8)
=1 We

The next step involves using the governing equations (2.1) and (2.2) along with the above definitions of NE(O)
and ]\/'E(Ij)7 j=1,....,.M. When x,y € Q., (2.8) gives

N9 (x,y) = N (y,x)

whereas if x € Q., y € wéj)

Ne(o)(x,y):NéIf)(y,x), ji=1,....,.M.
Similarly, for x € wéj ), y € ., we deduce

NE(I7)(X7Y):NE('O)(Y7X)7 j:17"'7M7
and if x,y € wéj)

Na(lj)(x,y):NE(Ij)(y,x), ji=1,....,.M.

Finally, with x € wéj), y € wgk), k # j, we have
NI (x,y) = N (y,x), 1<jk<M, k#j.

The above relations together with (2.7) lead to (2.6). O



3 Special solutions in model domains

The asymptotic algorithm uses special fields defined in model domains including the unperturbed set and the

exterior of a scaled inclusion.

1. The regular part R¢? of the Neumann function N in Q is defined as a solution of
poAxRWY (x,y) =0, x€Q,

OR®Y ) . 1
uoTnx(x,Y) = —%((%) log |x —y|) + o X €00,

where y € .

To guarantee the symmetry of R we impose the orthogonality condition

R (x,y)dSy, = — / log |x — y| dSx -
0

89 2mpo

The function N is related to RY by
N©® (x,y) = 7(27r,uo)*1 log|x —y| — R (x,y5) .

2. The next model field is Green’s function for the transmission problem in the domain CoU
., M. This function is denoted by N'¥) and, for n € Co¥) Uw), is subject to

HoAeNV(E.m) + (6 —m) =0, EeC,
n AN (& m) + 66 -m) =0, Eewl,
where the transmission conditions across the interface of the inclusion are given as
ONG) AN
ro=g, Ong (&m) |£eaw<a>+ = b One (‘Evn)|geaw<j>— )

N(] 5 n |£€8w(J)+ :N(])(g’n)|$€6w(J)— )
and at infinity we will prescribe the condition

NU (g, m) = —(2mpo) log €] + O(€]7Y),  as  [€] — 0.

In a similar way to Proposition 1, from the above problem, one can show that

NU (g m) =NV (n,¢),

i.e. NU) is symmetric.
Let the function N have the form

NI (Em) = xean (MNTD(En) + xun (MNTD(En),

where . (4,0)
NUO g,m) = —(2mpo) " log € —nl — hig” (&,m) ,

NUD (&) = —(2mpr,) " log € =l = hG (6,m) .

(3.2)

(3.4)

and here h%’o) and h%’” are the regular parts of N9 and NU-D) | j =1,..., M, respectively. Moreover,

we also set
h%vo,o)(€7 ) h(] 0O) (é, ) 7 for 5’7] c C(D(j) 7
h%,[,o)(€7 ) h(%O)(é, ) , for é’ c w(])7n c Cw(]) , and
h%f;ﬂ &mn) = h%;)(g’n) 7 for £ € C@@,n e wl) |
WG e m) =€), for&mewd.



Then, the above definitions for h%’o) and h%’I) lead to this representation for N7

, 1 ,
NOEn) = xeoo (EXxoawn (1) {— St log [€ — n| — P9 (¢, n)}
1 .
X0 (€)Xewon (m) {— 3 losl€ =l = e n)}
+Xcom (€)Xww (M) { Sy log [€ —n| — KO (e, n)}

X0 (€)Xwi) (M) { log € —n| — A", n)} .

B 2mpg,
The symmetry of N')| then implies the conditions

WO €m) = hGO O (m,€)  for gme Cal)

: : 1 (1 1 - :
h%’l’o) (&,m) = h%’o’”(n,g) + — { — } log|l€ —m| formne C@(J),é cw , and (3.6)
2 L pr;  po

W& m) =g (n.6) forgmewt)

3. We also make use of model solutions known as the dipole fields D,(Cj), k=1,2,7=1,..., M, which play
the role of the boundary layers in the asymptotic algorithm. Let DU) = (ng ), Dé] ))T7 where

DY (€) = xcom (§)PYV(E) + xwn (DY (E)
and the vector functions DU-0) DD solve the problem
noADU () =0, geCu,
MIjAgp(j’I)(f) =0, ¢e w9
The transmission conditions on the boundary of the inclusion w@) are

opU.D) oDw,0)

— 1o (&) = (1, — no)yn'? , on g, (3.7)

g

8n5 6n£

D:0) (&) = D(j»f)(g) , on dwl) |
where in (3.7), n() is the unit normal to w@). At infinity the vector function DW©) satisfies

DU =0(l¢]™h), as ¢ —o0. (3.8)

4. We introduce the function () which is a solution of
AP =0, geCa,
(D) =0, £ecow,

C9(€) = (2mpo) og €] + ¢ + O™, as  [€] — o0,

éi) is a constant.

where (



4 An estimate for solutions to transmission problems for antiplane
shear in unbounded domains

The next result plays an important role in the asymptotic algorithm. It will allow us to obtain estimates for
the boundary layer fields and derive the estimate for a solution of the transmission problem in a domain with
multiple inclusions.

Lemma 1 Let UY) be a solution of the transmission problem
HoAUW(€) =0, £eCa,
pp AUV (€ =0, Eewl,
UD(€)]¢conns = UV (©)]econin- -

oul) oUW 4
”OW(£)|5eaw<j>+ - /JIjW(ﬁ)]Eeaw(j)f =) (g),

U9 -0 as [€— o0,

where V) € Lo, (0wY)), d/0n is the normal derivative on the smooth boundary 0w, outward with respect to
(9 d
w9 an

/6 D ase =0, (4.1)

We also assume that

. o)
() B
/Bw(j) vrie) on (£)|€eaw<z‘>+d5€ =0,
where (1Y) is given as solution of Problem 4 of Section 3. Then

sup  {(|€]+ DTG} < const [P _ 0w - (4.2)
¢cCoDuw@

where the constant depends on uo, pr; and ow) forj=1,...,M.

Proof. We note that transmission problems are studied in detail in [2] and [3], in the context of boundary
integral equations and their solvability.

Let us first represent the solution UY) by two functions U©) and UU-D) | harmonic in the domains C@)
and w@), respectively. These functions satisfy

Ui =uh(g), ¢eow?,

U 3:0) ou D)

Ho—5— (&) —ur,—5 —(©) =97, £eow.

For the function UU9)| the condition
U0l g) -0 as [€]— o0, (4.3)

also holds.
Applying Green’s formula to the functions N'U) (see Problem 2, Section 3), U and UU!)| one obtains

U(J‘,O)(é) _ ; (J)N(j)(é,n)w(j)(n) Sy , (4.4)

for £ € CoY), and

vOnE) =~ [ NO(Eme sy (45)

for & € w0,



First, let |¢| > 2, then using the asymptotics for the function A'V) at infinity (see (3.3)), and the condition
(4.1), we deduce

(1+ €D (€)] < const (<1+|s|>loge|1 | s, +so<j>||L1<aw<j>>) < constll gl o)

w ()

Also by the Cauchy-Schwarz inequality and (4.4) (0
[UUO(&)] < comst [[9W]| 1, gty < const]|oD || puy, for &€ Bs\oW, (4.7)
where B = {£ : |§| < 3}.
Similarly the integral representation (4.5) gives
UUD(€)] < comst ||l (w0 < constl L _puw , for €e€wd . (48)
The combination of (4.6), (4.7) and (4.8), leads to (4.2).
O

As an immediate corollary of Lemma 1, we have an estimate for the dipole fields, introduced in Problem 3
of Section 3, associated with the scaled inclusion w@), j =1,..., M:

Lemma 2 For the dipole fields Dy), j=12,1=1,...,M, the estimate

sup  {(|€]+1D)DS?(€)[} < const |
EcCo(uw®)

holds, where the constant in the right-hand side can depend on po, i, and w®

5 An estimate for the maximum modulus of solutions to transmis-
sion problems for antiplane shear in a domain with several small
inclusions

Here we obtain an estimate for solutions to transmission problems for antiplane shear in domains with small
inclusions. The next lemma will be used in Section 7 incorporating the remainder estimates produced by the
approximations of Green’s function in a perforated domain.

Lemma 3 Let u be a function in Lo ( ;Zl wél) U Q) such that Vu is square integrable in a neighbourhood of

awé“, i=1,...,M. Also, let u be a solution of the transmission problem

rpoAu(x) =0, xeQ.,

wr,Au(x) =0, xewd i=1,....,M,

€

ou
poy-(x) =v(x), x€0, (5.1)
ou ou i
uo%(xﬂxeaw;w - Mh%(x)|xeawgi>— = (x),

U(X)’xeauéi)+ = u(x)’xeﬁwéi)7

where ¥ € Lo (092), gagi) c Loo(awéi)), for1 <i< M,

Y(x)dSx =0, / 0V (x)dSx =0,
a0 M



and wgi)(x) = 1@ (e (x—0W)), i =1,...,M. To provide uniqueness we also assume

/m w(x)dSx =0 .

Then there exists a positive constant A, independent of € and such that

ol st vy < A {1 iony + 2 s, Bl oo | 52)

Proof. a) The inverse operators to model problems in Q and CoW, j=1,...,M. Let us introduce the
operators ‘ ‘ .

N:¢yp—w and NU:pl) 40 (5.3)

which are the inverse operators of the problems
molAw(x) =0, xe€Q,

Ho U (x) = b(x), x €09, (5.4)

/ w(x)dSx =0,
o0

poMW(€) =0, ¢eCol,

and

u, Av(€) =0, €ewd,

v ) .
1o =5~ cconirs = 1,5 E)lecoun- = ¢V (€) (5.5)

”(j)(f)|geawm+ = U(j)(g)’geawu% )

v =0 as g — oo,
where 1) € Loo(09), ¢ € Loo(0w)), 5 =1,..., M, also

/ @ (€)dSe =0 and P(x)dSx = 0.
Ow (@) oN

In scaled coordinates §; = el (x — O(j)), 7 =1,..., M, the operator m&j) is defined by
(M l)(x) = (M) (E;)
where p%) (x) = e~1pW (e~ (x — O1))).
b) An estimate for solutions to the model Neumann problem in 2. Let N©) denote the Neumann function

(3.2) in Q.
Then an application of Green’s formula to N(?(x,y) and w(y) yields the representation for w

w(x) — @ (y x L , ,
() = [ NOyxu)as, + g [ wly)as, (56)

The solution w of the Neumann problem in 2 is subject to the orthogonality condition in problem (5.4), and
hence the last term on the right-hand side of (5.6) is zero, so that

w(x) = Ny, x)¢(y) dSy .
o9



From this we obtain the estimate
sup |w| < const sup | . (5.7)
Q o0

¢) The case of the homogeneous boundary condition on 9. When the right-hand side of the Neumann
condition on 99 in (5.1) is zero we look for a solution of the form

M
w =3 Mgl (Trm 1o Z g9 ) (5.8)
j=1

where g(] )4 is an unknown function defined on &uéj ) such that
Bw(@
and g(j)(ﬁj) = Egéj )(x). The function w; is harmonic inside Ul]‘il w® U ., and is continuous across the

boundaries of the small inclusions. On 012, u; satisfies

3u1
—(x)=0
po— - (%)
Computing the jump in tractions of u; on awé"”, we obtain
m Ouyq Ouy m
o™ (x x) = po— - (x ) xeowimt = Bin 5, X )| xecawtm- = g™ + (S ge)(x) .

where g. (x) = (9 (x),. .., g™ (x))7 and

M

m 0] 6‘
(59909 = (uo =) [ 20 W Y] oo = 51 (N (T 103 5 9) et
15
(5.9)
Let B("™) denote a disk centered at O™ and containing wé ), Using a local estimate for solutions of
Laplace’s equation, along with Lemma 1 and the definition of g above we obtain
o o
9 G) <a>}H < H ) nH
Han{ ; ms 9e Lm(awém)) - const Z m B(m))
1%j§M 1<3<M
< const Y 52||g§j>|\Loo(awg>) . (5.10)

j#m
1<5<M

Then, from the local estimate for harmonic functions, we can also assert the inequality

M
H %{N(Trasz po ; %(mg)g‘g))) }Hmewé’”))

const HN(TraQ MOZ an )g?)))HL (BOm)

" H (N g H
cons Z Lo (69)

IN

IN

const Z 2|\ ”Loo(awéj)) )
j=1

where in moving to the second inequality we used estimate (5.7), and then Lemma 1 brings us to the last
inequality.

10



Then, the preceding estimate and (5.9), (5.10) lead to

M
||S[£‘m)g€HLoc(6w£m)) S const 82 Z ||gé(:j)||Loo(aw£J))
j=1

Hence, from the smallness of Sém), we can write

ge = (I+ SE)_IQPE )
where g, (x) = (gél)(x), e ,ggM)(x))T, e(x) = (gagl)(x), e <p§M) (x))T, S. is a matrix whose rows are s 8D,
and
”gé]) HLOO(Bwéj)) < const 1g]1€3éXM ||50£:k) HLOO(Bwék)) . (511)

From (5.8), together with (5.7) and Lemma 1, we obtain

M

w0,y < comst D el a0 -
j=1

Now, this and (5.11) give

(k)
HulHLm(Ugl wéOUQE) < const € 1%%35\/1 ||<ps ”Loo(awék)) . (512)
d) The case of continuous tractions on &uéj), 7 =1,..., M. In this situation we look for the solution us
in the form
us =Nty +v. (5.13)

Then, v is a solution of (5.1) with the boundary conditions

MO%(X) =0, on 09,
and
U(X)|x€8w£j)+ - U(X)’xeawéjF
31) 81} 8Nw
“O%(X)‘xeawa - Mlja?(x)|xeaw§j>* = (1, — “O)aT(X)’xeang)

for 1 < j < M, where the right-hand sides of the above traction conditions on &ug ), j=1,...,M are self
balanced, so by part c) of the present proof

”UHLOO(U{ZI wOUaL) < const ¢ ér]lC;%xM || agI—nw(x)HLx(awém)
< const & max [IN[|; )
< const £[¥f| L o) -
This inequality, (5.7) and (5.13), give
luzll, _ya, w®ug.y < const 9]l on) - (5.14)
Finally, we obtain (5.2) through the combination of (5.12) and (5.14). O

11



6 An asymptotic approximation for the regular part of the Green’s
function AVU) at infinity

In this section, we shall prove a result which concerns the asymptotics of h%"O) and h%’l), j=1,..., M, (see
(3.4)), at infinity.

Lemma 4 Let |&| > 2. Then
a)
Wy (€, m) = DO () - Ve((2mpo) " log|€] 1) + O(I€] (Il + 1)) ,
form € CoW),
b)
P Em) = it = o) {(2m)  logl€] —m- Ve((2m) log €])}
~DD(m) - Ve((2muo) " log €] 7) + O(1€] 7).

formn € w9,

Proof. First we consider the asymptotic behaviour of the functions h(j 0.0 h(] Lo h(] 9D introduced in

Problem 2 of Section 3, in the neighbourhood of infinity. We show that for €| > 2

a)
WO (& m) = =DYUO) () - Ve((2mpo) " log [€]71) + O(1€[ 2 (Inl + 1)), (6.1)
for n € Col),
b)
WO (. €) = —DUD () - Ve((2mpo)  log €]71) + O(1€]72) . (6.2)
for n € w9,
c)
WO Em) = —(ug, = ugh{(2m) " loglé] — m - Ve((2m) log [€))}
~DUD () - Ve((2mpo) log €] 1) + O(l€72) . (6.3)
for n € wW).

1) Auziliary functions h%) and YU). Let us introduce the function h%) as
B (€ m) = xewo (MAF” (6:m) + xu (AT (Em) (6.4)
From Problem 2 of Section 3, when n € CoW) U w), h%) is a solution of the transmission problem

poAehY (€,m) =0, €eCo,

pr, Ak (€M) =0, €ew,

ohy 3h(j) (1, — po) (xcom (M) | Xow(m)) 0
M Gne (&M lecown- — fo—5 -~ (&M econorr =~ - ( + ) 6715(10@5 -nl),

Ko Ki;
_ ' (6.5)
h%) (£7n)|568w(j)+ = h%)(im)lgeawmf ) (6~6)
WD (Em) = —(45" — 15w (m)(2m) M log[El + O(EI™),  as €] — oo
We introduce one more auxiliary vector function T (&) = {T% (£)}2_,, defined by
1O (€)= £-D(g). (6.7)
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It solves the transmission problem
HoleTV(€) =0, geca,
nAYV(E) =0, gewt,

oY) oY@
Hi; Tng(f)keawmf = MOTng(f”Eanun ) (6.8)

T(j)(£)|§eaw(j)+ = T(j)(€)|§eaw(j)f )

TIE =€+ 0(€™), as €l — o0,
which is consistent with Problem 3 of Section 3. One can also represent YT, as

Y (&) = xcaw (E) TP (E) + xuw (E)TI(E) .

1) The asymptotics of h%,0,0) at infinity. For |€] > 2, n € CoY), we have from Lemma 2 in [6], that the

function h%,o,o) defined in (6.4), has the asymptotic representation

WO (€, m) = U (m) - Ve((2m) M logle] ) + T (€m) (6.9)

where the remainder r%’o’o) (&,n) satisfies

029 (&,m)| < const (1+|n|)~Hg[2  for |€] > 2, € CoD

The vector function CU:0)(n) = {Cl-(j’o) (m)}7_; is evaluated below.

Evaluation of C99)(n). Let By be a disk centered at the origin with a sufficiently large radius R. We apply
Green’s formula to A5 and TV in the domain Br\@®) U w)

0 = w0 ATP@adEn —iliemacrie} i
b, [ {TO©@2enPEm) -1 (€. maer? )} de
_ L AP PN o) o3
po /aBR {Tﬂ (€) e (&) = (& m) 75 —(€) ¢ S
+/(9w(j)
orWy oy

—h%)(ﬁan){uu e ©louo- — 1o <s>|awm+H dSe . (6.10)

oy oy

ng)(ﬁ) {Hlj 871]\; (&71)|aw<1)— — Mo One (5,77)|3w<j)+}

where while combining the integrals over OwWt and dwl)~ we have used the continuity conditions for the
functions hS\],) and TEJ ). respectively (see (6.6) and problem (6.8)). With the use of the transmission conditions
for TZ(»] ) and hg\],), when 1 € C@W)| this equality becomes

_ ) aLm ) 8T§j)
) () ey O ~
_T/m T (8) 5y ((2m) logl€ —ml) dSe (6.11)
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for n € Cw). The last integral, owing to (6.7), is equal to
10 (&) -2 ((2m) " log|€ — ) dS
T(8) 7 —((2m) 7 log € — ) dSe
) Ong

= 2 (2 ol — DDy 9 (or)- B
- /awm{&ans((%) log|¢ —nl) — D;’ (5)8%((2@ log |€ n|)}d5,E

= -1 N TN Y -1 _
= /awm{@ﬂ) log [€ 7l|ang D’ (f)ans((%') log € "7|)}ng, (6.12)

where n € Co1). Now, using the jump in tractions for the dipole fields, stated in Problem 3 of Section 3, we
can write

(11, = po) G ey 0 (o1 4
i | T € g ) ol i ds

o . L e api)
= — {(277) log |€ — 7| luzj e (&) — 1o e (&)

KO Jow)
; 0
(1, = 10D (€) 5 (27) logle ~ | ) e
13

Using the continuity of the displacements for the dipole fields (see Problem 3, Section 3), we write the above
right-hand side as

D)
[a2f} -1 ~19D; (5,1) 9 -1 —1
- 2 1 - —L (&) - D —((2 ] — ds
J1%6) /awm {( ™) logle — | Ong (€) =D () 8n§(( ™)~ logl€ — ™) £

(7:0)

oD , 9
- /aw<.7‘> {(2”)_1 log [€ — n|_1817n5(£) — D) (5)6715((27)_1 log [€ — n_l)} dSe .

Then, upon applying Green’s formula to ng ’O), Dij Din B R\@(j), w@) | respectively, with the fundamental
solution of —A, and using the definition of Y(), we obtain the above in the form

(4,0) -1 -1 aDz(j’O) (4,0) 9 -1 -1
PO ) [ (2m) Hogle — a1 —(€) - DY (€) 5 ((2m) loglé — | ) S
OBRr ng 3
where n € Co) and by (3.8) the integral over B decays as R — oo like O(|log R|/R). Therefore, we have
(11, — po) j 0 _ _ j
Buto) [ e (2 ogle — ) dse = DPO(n)
HO Ow(d) ng

for n € Cw). Equation (6.11), with substitution of the preceding equality, leads to

- () = o /8

) 8h%) L G) aTZ(j)
. {Tﬂ () Ine (&m) — hy'(€m) one (€) ¢ dSk . (6.13)

We now aim to determine the vector function C:9)(n) = {Ci(j’o)(n)}f:l in (6.9). Taking the limit R — oo in
(6.13) and using (6.9) (where h%’o’o) &,m) = hg\],) (&,m) for &,m € Co)), we have
%3

, . 0
-/ Vm) = lim puoCP(n)- /aB {gimwg(@w)—lmgwl))—vg«%)-llogm*)5%}dss

= ol (),

Thus, we have derived that

i,O
o)) = 2220
Ko
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hJOO)

which corresponds to the leading order term of the function stated in the current lemma in (6.1).

iii) The asymptotics of 91O at infinity. We have already shown that for || > 2, n € CoU)
hy @& m) = ~DU(m) - Ve((2mpo) " log €] 7) + g7 (6.m) - (6.14)

In order to deduce the leading order term of h(%»1:9) at infinity, we recall the relations (3.6). First, since h%’o’o)

is symmetric for £, 1 € Co) we have the above asymptotic representation also holds for h%’o’o)(n,ﬁ). Next
we allow 1 to approach the boundary of the inclusion w@). For 5 € dw) we have

DUO) () = DD (n) ,

Py .8 = ng " (0. €).

Therefore, allowing n € w0, for || > 2, we arrive at

1,0 ,0,1)
hy" O (n,€) = DU () - Ve((2mpo) " log || 1) + OV (€,m) | (6.15)
where r%’o’l) is the remainder term and subject to its smallness the leading order part of (6.2) has been formally

deduced.

Remainder estimate. Consider the function

r(&.m) = xeon MY € m) + xoo m)ry D € m)

which by (6.14) and (6.15) is

rPEmn) = xcow MG (0,8 + DI (n) - Ve((2muo) log €71}
X M{BT (0, €) + DID () - Ve((2mno) ' log €]}

Let |€| > 2 and write the problem for r%) with respect to i as follows

poAngrP(&m) =0, neca,

pr AnrP(€m) =0, new,
oryy) ory) (w1, —po) ¢ 0 -1
Hr; = By (£7n)|‘f]€3w(1)* Ho—g. Ty (£7n)|n68w(j)+ = T{fﬂg(@”) log |§ — )
9 -1
~ g (@7 Hog €D (6.16)

( j) ( j)
< N (&, 77)|7,eaw<1)+ ¢ N (&, )|neaw(y‘>— )

rAJ, &mn)— 0, as |n— .
We have that the right-hand side of (6.16) is self balanced and

(Mlj o) 0 -1 9 -1
R {M((zw) log |€ —n|) — a—n&((%) log Ié)}’ ;

< const |n||€]7% < const |€]72,

where n € 0w, |p| < 1 and |€| > 2. Now an application of Lemma 1, leads to the estimate for 7‘%)

[ (€ m)] < const |¢|~*(In] +1) !

for [&] > 2, n € Cwl) UwW),
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i) The asymptotics of h(] 9D We once again refer to (3.6), for the relation

} » 1 (1 1 » -
B0 ) = 18 0.6) — 5 { - L bogle —nl for g < Gt m e ).

For €| > 2, n € w), this can be rewritten as

O =) = {1 = o sl - Veltosle) + (g ) -

By combining this with (6.2) we obtain (6.3).
The proof of Lemma 4 is then completed by applying (3.5), (6.1) and (6.3). O

7 Uniform approximation of V. in a domain with multiple inclusions

The aim of the current section is to present the uniform asymptotic approximation for N, in a domain with
several inclusions.

Theorem 1 The approzimation of Green’s function for the transmission problem of antiplane shear in |J, wgl) U
Q. C R?, is given by

Ne(x,y) = NO(x,y) + Y N (E;,m;) + M(2rpo) " log(e ! x — y))
(7.1)

+EZ {D(J) v R(Q)(O(J) y) + D(j)(ﬂj) . VyR(Q)(x, 0(1’))} +0(?)

uniformly for x,y € |, wél) U Q..

Proof. Formal asymptotic algorithm. First, we give a plausible argument concerning the representation of
N.. We propose the function N, to be given in the form

M
Noxoy) = 5 ("fjé’” +yo m) log x| — Ra(x.y) (1.2

=1 L

where for y € U;\il wd U Qc, R. is a solution of

woAxR:(x,y) =0, x€Q., (7.3)
pr AxR(x,y) =0, xew® i=1...,M, (7.4)
M
OR. po [ xo.(y) X0 () dloglx —yl) 1
Jy) = -2 [ A2 S , € 0N, 7.5
Ho Ony () 27 1o + 1:21 L, Ony + |02 X (7.5)
and for i =1,..., M, R, satisfies the transmission conditions
M
IR IR pr, = po [ xe.(y) X0 (¥)\ d(log |x — yl)
; iy = — 2 e = 7.6
1 g (6 ¥) xepuo- = B0 = (63) | ceour 2 o l; i, o (70
Rs(xv y)|x€8w< )+ = Rg(X, }’)|xedw< )— - (77)
In the above problem we have that R. is subject to the orthogonality condition
M
1 ( xa.(y) X, (y) /
R.(x,y)dSx = —— = 4 . log |x — y| dSx . (7.8)
o ) 2m < ro ; M Ele) | |
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First order approximation for R.. If we allow y to be located inside one of the M inclusions, then we assume
y € wém), where m is fixed, 1 < m < M. We first rewrite the boundary conditions for R..

The boundary condition for R, when x € 990, y € Q. U wém), is equivalent to

OR. B 1 9loglx—yl) 1
Ho g, (xy) = XQE(Y){ o ome o9
po 0 1 1} 1 } 1 }
+X (m ——————|y— — —log|lx—y|+ —log|x — + = -
X, >(y){ o I H o glx -yl o glx—yl 0]

Using scaled variables we can also rewrite the transmission conditions (7.6) on 6w£q), q #m, as

OR. OR.

p1, — po 9(log €, —n,|)
qum(xa Y)’xeawg‘”* - MO%(XaY)‘xeawqu = —xa.(y)— ! :

2T o Onx

pr, — o 0 1 1 1
. B PO — - = )1 - —1 - } .
X, >(Y){ or s me MO) og|x —y|+ o og ¢, nql}

where y € 2. U wém). Finally, the transmission condition (7.6) on the m* inclusion becomes

OR. OR. i, o (xm () | Xt <Y>> 0(10g |€,, = 1,0)

—(x my— — o+ (X, my+ = .
Hlm anx( ’y>|xe‘9“£ ) 1o on, ( Y)’xeaw< " 2w Ho K1, Onx

x €

fory € Q. U wém) . We therefore have the representation

M
Ro(x,y) = xa. 0{ R (x,y) + 3 n§ (€my) |

k=1
(7.9)
X D{ RO y) + A Ema) + Y AE (€ } + Zelx,y)
éng

The construction of boundary layer terms. The function Z., given in (7.9), is harmonic for x € Ul]V:[1 wél) U,

y €Q.U wgm) and is continuous across the boundaries of the small inclusions. The normal derivative of Z. on
the exterior boundary is

o2 Mgy (£,0)
o5 = (x,y) = —poxe.(y) D —5— (&)

n n
k=1 Onx

3 1 1 1 m,I k,O
—HOX ,(m) (Y)R {% <MI - MO) log [x = y| + h{" (€, ) + Z hs )(fk,nk)} .

k#m
1<k<M

for x € 91, and the traction transmission conditions for Z. on the small inclusions are

07. 0z.
HI,, ainx (Xa y) ‘Xeawgm)* — MO ainx (Xa y) ‘Xeawém)+

= —(uzm—uo)(XQE(Y)+Xw§m>(y))a%{3(m(x,w+ > €}

x k#£m

1<k<M
and

dZ. 0Z. 9 [p@
qum(xv )| xcow@- — MOR(K R uo){stg (y)asz [R( '(x,y)

,0 0 r1 1 1
+ Z hg\]? )(fmnk)} + X, 0m (y)ﬁT [ﬂ ( - ) log |x —y]|

krq K,  HO
1<k<M
RO (x,y) + A € + Y A €|}
k#m
k#q
1<k<M
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where 1 <g< M,qg#mandy € Q.U wém). By expanding the first order derivatives of the logarithmic term
near x_cm (y), about y = O™ up to O(e?), in the exterior boundary condition and the traction condition on

(%J((I) q # m, we obtain

YA Mol o r1 /1 1
_ _ (L LN ek — o
oG =(x,y) = —poxa. kz s (€M) — HOX, ¢ )(Y){é)nx [27r (Mlm Mo) ( og [x — O]

(y=0™) - (x—0)
|x — O(m)|2

) + hg(fn’l)(émanm) + Z h‘g\]?O)(gkank)} + 0(62)} )

k#m
1<k<M
for x € 01, and

0Z, 0Z, 0
Ly g =(%,Y) | xepuo- — Ho 5 =(%,Y)|xeputo+ = —(11, = po) [XQE (Y)TM{R(Q)(X, y)

+ Z h%’o)(ﬁk,nk)} + X, (Y){% [% (,uj - :()) (log Ix — O™

k#q

1<k<M
(y —O0™) - (x —0tm™) m. T k,0
ot ) TRy I )+ 3 i €| 0 ]
k#m
k#q
1<k<M

where y € Q2. U wém). Next we apply Lemma 4, in order to rewrite the above boundary condition on 90X for Z.

as

07, M9 (eD*O) () x—O®
uoa = (x, y) = —MoXQE(Y)ZaTLx{ 27 110 '|x_0(k)|2

M k) (m,I) _ Olm)
O(Ze%ly — 0| + 5)_1)} + X, om (Y){ ~Hog [gp QM((;?M) : ‘;_ (())(m)|2
k=1 *

-1 —1 5D(k"o)(77k) x— 0" } 2
— =1 : 0 } :
+(ur, — Ho )loge + ’;n 2o x 00 +0(e?)
1<k<M

for x € 00, y € Q. U wﬁm). The same lemma in combination with the Taylor expansion about x = O™ of the
first order derivatives for the function RY leads to

07, 07,
Ko o = (%, Y)‘xeaw“'” uoa °(x, y)‘xeame

—(xa. (¥) + X om (V) (11, — 10)n™ - VRO, y) + O(e) , y € Quwl™

where n(™ is the unit outward normal to the inclusion we Slmllarly, on the ¢ inclusion, 1 < ¢ < M, q # m,
we derive
07, 07,
/’”q %(X’ y)’x€3w§q> Moa (X y”xGBW(Q)+

—(x0. (¥) + X om (V) (11, — po)n'@? - VR (OW,y) + O(e) , y e Q. uw™ .
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Then, we approximate Z. by

Z(xy) = —(xo.(¥) +x,m®) Y, {DHD(my) - VyRPD (x,0) + DW(¢,) - VRO (0W, y)}

k#m
1<k<M

—e{xa. D O(n,,) - Ty RO (x,007) + (xa (y) + X, o0 (W) D (E,) - VRO (00, )}

X, WD () - Vy RV (x,00) + (! — pg') log e} — re(x, ) - (7.10)

Combined formula for N.. The substitution of (7.9), (7.10) into (7.2), for y € Q. U wgm), yields

M
N(x,¥) = xa.(y) {(%uo)1 loglx —y| — RV (x,y) = > hiy? (€. mp)
k=1
—l—az {D®) (&) VxRD(OW y) + DE(n,). vV, R (x,o<k>)}}
+X o <y>{ — (2rpr,) og|x —y| - RO (x,y) = A (€mn) — D0 AN (&) (7.11)
ey

gt — gt (m) M loge +eDIM(E,,) - TR (O, y) + D™D (,,) - Vy R (x,00)

m

+e Z {DW(g,) -V Rm)(o(’“’,y)w““@(nk)-VyR<“><x,o<’“>>}+r5(x,y>.

1<k<M

Then, by the definitions of N N (™0) and N (™D this is equivalent to

M
N.(x,y) = xo.(y) {N(m(x )+ Y NED (&, m,) + M(2mp0) ™ og(e ™ x — y])

k=1
M
+e) {DPW(&) - VxR (0W), )+D(’“O’(nk)-VyR(Q)(x,0<k>)}}
k=1

+ZX o ( {N(Q)(X y) + NG (6]?17] Z N(k’o)(gkank) + ]\4(27WO)71 log(e ' x — yl)

k#j
1<k<M
M . .
+e Z D (g,) - VLR (OW y) + 6@(3-,1)(,”) . VyR(Q)(x, o)
k=1

+e Y DR (n,)  Vy RO (x, ())}—I—rg(x,y).

k#j
1<k<M

Remainder estimates for the approximation of N.. We represent 7. as

re(x,y) = xo. (y)Me(x, ) + Zx o ( X,¥) (7.12)
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where 91, and f)gj), j=1,..., M are defined below. In what follows, we estimate 9., and f)gj), j=1....M
in order to estimate r,.

)

Remainder estimate for the function M. (x,y). First, let y € Q.. According to (7.11), the function M. is a
solution of
/JOAxmts(Xy }’) = 07 X € QE )

pr, AM(x,y) =0, x€ wéi),i =1,....M,

and on the exterior contour is subject to

oD O)

oM.
Ho on (Xa = —Elo Z

+qu{

AV R(Q)(O(] y)

jO)

o )
(&;,m,) — DO >(nj)-%vyR<Q>(x,o<J>)}, x €00, (7.13)

with transmission conditions on awy) of the form

e P
Hi; a’er Y xeawgl)* Ho on

X

(X y) |x€3w< )+

aR(Q) ah(L
= (//LI.L - ,U/O)Tnx(an) + (IU/L - MO) Z an

JFi
1<5<M

ap(a) oDW) .
_EZ {M[ )|x€3w£i)7 o MO@T(s )|x63w( )+} : VXR(Q)(O(])’Y) ’

(&;,m;)

(4:0) OR® 50
(1, — uo)eZD 7 (m;) - Vy——(x,00) , (7.14)
j=1 x
ms(xa y)|x€8w( - = gﬁs(xaynxeaw( >+
for 1 <i < M, where y € (). and
M. (x,y)dSx =0. (7.15)
a0

Before estimating the boundary conditions we observe that

oM.
Sy =0, 1
| oG y)ds =0 (7.16)
oM. oM.
Lo (11 G 09 o = 10 G (590 ) =0, (7a7)

fori=1,..., M.

Estimation of the right-hand side of (7.13) on 9. Since x € 99, |x — OU)| > 1 for j = 1,..., M, and by
Lemma 2, the estimate

8D(J 0)

5#0‘
j=1

(EJ) R(Q)(O(j),y)’ < const €2,

holds for x € 99,y € Q.. Using Lemma 4a), one has for x € 99,

,O
ong” PO (. . p@ (5. 00
Ho 8 (537 77]) € ( ) 871 VyR (X7 )
ah%’o) eDEO(n) 9 ; x— 0O
n 'uO’ Ony (53‘777]‘ B 2T 1o . Tnx(b{—o(j)\?)’

< const 2x — OW|72(ly — 0| + )71 < const £3(|ly — OW)| + )71
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where we have also made use of the boundary condition (3.1) for R®) . The previous two inequalities then give

MO‘ %?E (x,y)‘ <const 2 x €Ny €N, . (7.18)

Estimate for the right-hand side of (7.14) on 8w§), i=1,...,M. The regular part R®?) of N is smooth
for x,y € ), and we can expand the first order derivatives of this function about the centre of the small inclusion

wgi) to obtain

OR® oD oD0) ;
‘(“L‘ — po) O (x,y)—¢ {/"Lli one (éi”xeawé“‘ — Mo O (&) xeawéi“} ’ VXR(Q)(O( )a}’)

= ‘(M[i — po)n' - (VR (x,y) — VXR(Q)(O(i),y))‘ <conste x€dwW yeq.. (7.19)

With the use of Lemma 2, we have

oDG0) oD:0) _
5’ > {Mhan(ﬁj”xeaw@ - uoan(ﬁjﬂxeaw;m} : VxR(Q)(O(”,y)‘ < const €%, (7.20)
ISJJ’#SZM

for x € 8w§i), y € ()., and the same lemma also gives

Mo IR , M 4 .
‘EZD(J’O)(nj) -Vy o (%, O(J))‘ < const 252(|y —0W |47t forxeduP yeQ.. (7.21)
i=1 x

Jj=1

Due to Lemma 4a),

onyy” ; .
‘ Z 8% ({,n)‘ < const Z E(ly—09 | +e)7 L, forxedw? yeq..

Jj#i Jj#i
1<G<M 1<G<M
Therefore, this estimate with (7.19), (7.20) and (7.21) lead to

oM. oM.
“u[’i Onyx (X’y)lxeawiiF T HO (x, y”xeawi”+

< const ¢, xeawéi),izl,...,M,yng.

Then, by Lemma 3, (7.15)—(7.18) and the preceding estimate, we obtain

M
M. (x,y)| < const €2, x € U w U, yeq. . (7.22)
1=1

Remainder estimate for hgj), j=1,...,M. Let y € wéj), where j is fixed, 1 < j < M. Then by (7.1), the

remainder term bgj ) solves _
poAxhY) (x,y) =0, xeQ.,

pr A (x,y) =0, xew® i=1...,M,

and satisfies on the exterior boundary

() (,1) (k,0)
N )= o {a/\/ Ons

D
o5 e (&5,m;) + anx(@WMO) log(e™"|x —yl)) 1;1 D (& M)
1<k<M

X

oD:0)
Ony

4 | B
(&) VxR (0D, y) + D00 (n;) -

Nx

Vy R (x,00)) (7.23)

ey [827(’“’0) (€,) - VeROD (0P y) 4 D*O)( ).iv RO O(j))} € 00
c (G x Y yn e Y X, X '
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Also, on the boundary of the i*" inclusion, f)gj) is subject to

MIiTnx(X»Y)Lang)f - MOTM(XJ)‘XGQMSH = (pur, — po) O (x,y)
ohy 0 1
(1, = o) > (01— 6) TG (€ me) = Six(2mpi0) ™ 5o (los(=~x — y1)))
1gk§JM
ON D) oDW) oDW)
—(1 _5“)87%(( jﬂ?j)} _g{ulianx(gj”xeawéi) —Moanx(5j)|x€3wg>+}'VR(Q)(O(J),Y)
D) 9 @ (% OU) (k.0) 9 @ (% O®
—e(pr, — po)PY I (n;) - =—Vy R (x,09)) —e(ur, — po) Y DHO(n,) - 7—Vy R (x,0)
K J 8nx K k;ﬁ anx
1<HEM

e

oDk oD )
—€ Z {,UfL W(ék”xeawéi)* - uo%(ﬁk)’xeaw(i)+} : va(Q) (O(k)7Y) ’

1<k<M

bgj) (Xa Y) |x€8w§i)7 = bfg‘j) (X7 Y) |x€c’9w§i)+ ’
fori=1,..., M, wherey € wéj) and
b9 (x,y)dSx = 0.
aQ
From this problem we can see

one
/3Q’uo anx (va)de =0,

opY) ap9)
/f)wéﬂ ('qu Onx (x, y)’x€8w§j>7 —HoG (x, Y)|xeaw§j>+ dSx =0,

fore=1,..., M.
Before estimating the discrepancies in the boundary conditions, we note for y € wég ), by Lemma 2

‘ Z DFEO) (n,) - aiVyR(Q)(x, O(k))‘ < const ¢,  holds for x € 09, ,
A Tx
15k1f§JM

whereas the same lemma in conjunction with Lemma 4a), leads to

Ohiy 2 (i
‘GT(Ek,nk) < const e“, forxe U Ow: U o .
1§ifng

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

Estimate of the right-hand side of (7.23) on 9. The definition of A'¥D) in Section 3 and the boundary

condition (3.1) for RV, give us
B , B - ‘ ,
po| 5= {NOD(E;:m;) + (2mpio) ™ log(e ™ fx — y]) + DU () - Ty RV (x,00) } |

0 1, _ i1
= po| 5 —{—(2m) M ur — 5" loglx — y| = h§ (€, m))

+e(2mpo) DY (n;) - (x — OV x — 0D |72} for x € 09,y € wl) .
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)

Using the asymptotics of hs\j, at infinity, as in Lemma 4b), we obtain

0 ; _
po| 5= {NOD(&;m;) + (2mpi0) log(e ™ x — y]) + DU () - Ty R (x,00))} |
< const g2, forxedQ,yewl . (7.30)

Then from Lemma 2 we have

cr0| 5o {DUOE,) - TRD (O ) + Y D) ROy}
x oy
1<k<M
< const €2, x€dNye ng) )
Therefore, this along with (7.28), (7.29) and (7.30) yields
one 2 ()
| B (x,y)‘ <const e*, x€INyecw . (7.31)

Estimate for the right-hand side of (7.24) on &ug), i=1,...,M. Consider first the situation when ¢ = j.
Since R is smooth for x,y € Q, we can take the Taylor expansion of its first order derivatives about x = Q)
to obtain

OR®Y oD oD .
(p1; = o) O (x,¥) {/”j m(ﬁj)‘xeawgﬂ— - Mom(ﬁ )‘xeaw(3)+} - VR (0 y)

g, — ’uOan(j) - VyR® (x,y) — n . VXR(Q)(O(j)’y)‘

< conste, x€dwyewl (7.32)

where the boundary condition (3.7) for the dipole fields of the inclusion 8w£i) was also used. Then, owing to
Lemma 2 for ¢ = j one has

; ) )
‘E(Mj —10)DY D (n;) - 5~ VyR®(x,00)

D(k 0) oD*.0)
€ Z { (& )|x68w(7) Noanx(gkﬂxeaww} - VxR(0W,y)
1<Ic<M
< conste, xE€ 8w§j),y € wéj) .
This and (7.28), (7.29), (7.32) lead to the estimate
6b(j) ab(j)
‘:U/Ij T;x(xv Y) ’xeawéj)* - MOGTE(Xv Y) ’xeaw(1>+

X

<conste, yewl. (7.33)

It remains to consider the case i # j. In this situation, we require Lemma 4b) to obtain

ONGD) ;! B , P ,
s, = ol| 25 —(€m,) + (o) 5o (log(e b = y1)) + <D () - 5Ty R x, 00)|
. 9 . 9 .
— _ @D (Y. I 2 -1 —_oWI—y_ (€) (4) 2
= elus, — ol P9 () - { 8nxvx((27wo) log b — 09 7) = -V, R (x,00) || + O()
< conste, xedwd yew iy, (7.34)

The boundary conditions for the dipole fields (3.7) give

IR oD oD ;
’(Mu - MO)THX(X,Y) —€ {N’Iianx(ﬁi)‘xeawgi) - MoTnx(E )| xcawt >+} - VxR (0! )»Y))

r, —uo|\n<“~{v R“”(x V-V <R (01, y)|
const e, x€dwW yecw i#j. (7.35)

IN A
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Then, Lemma 2 allows one to deduce

oD:0) oDU,O) _
T € 0 e € | SR 08y
oD(k,0) oD *k.0)
t Z {m"m(gk)‘xeawéi)_ﬂoanx(ﬁk)’xeawy)*}'VxR(Q)(O(k),y)
Py
o
1<k<M

< const €%, x¢€ awgi),y € ng),i #7.
Thus, from the preceding inequality and (7.28), (7.29), (7.34), (7.35), we have

onc onc

’/1’11W(X7y)|xeaw§i)— - MOW(X’y”XanéiH— S const g, y S Wéj)vl #] .
x x

We can conclude from this estimate, the conditions (7.25)—(7.27), inequalities (7.31), (7.33), and Lemma 3 that
M
‘hg)(x,y)‘ <conste, xXE€ Uwél) UQ.,y € wéj),j =1,....,M.
=1

Finally, using the above estimate for hgj)7 j=1,...,M and (7.22), combined with (7.12) we complete the proof.
O

8 Numerical simulations

In the current section, we implement the asymptotic formulae derived in Section 7 for Green’s function N, in
numerical simulations. The numerical computations are carried out for the regular part R, of Green’s function
in {J, wy) U €. for the transmission problem. In other words, let this regular part be given by the formula

R.(x.y) = —— (

M
L (e ) . o Xel? (Y)> log [x — y| - N.(x.y) . (8.1)

Ko = M

Then in accordance with the boundary value problem for N, given in Section 2, the function R, which we
choose to consider for our numerical schemes, is a solution of the problem (7.3)—(7.8).

8.1 Asymptotic formulae for R.

From formula (8.1) and Theorem 1, we can immediately state the asymptotic formulae for the regular part R,
that will be used in the examples below. When y € Q. we have from (7.1), that R. admits the asymptotic
representation

M
R-(x,y) = RO (x,y) + Y n{(€;.m;)
j=1

M
—e Z {’D(j)(ﬁj) . VXR(Q)(O(J')’ y) + pU,0) (m;) - vyR(Q) (x, O(j))} +0(?) .
j=1
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When y € wéj) where j is fixed, j = 1,..., M, R, has the form

Re(x,y) = ROxy) +h{ (g m)+ D V(€ m) + @m) (o' — prt) loge

k]

1<k<M

—_epUD) (m;) - VyRW(x,00)) — ¢ Z D*O) (1) - Vy R (x,07)

Before proceeding with examples where these formulae will be implemented, we first discuss the numerical

settings.

#J

1<k<M

M
—e Z D) (&) Vi RD(0OW y) + O(£?) .
p=1

8.2 Numerical settings: Description of the geometry and physical parameters

Let Q be a disk of radius 150m, with centre at the origin, and occupied by a material with shear modulus
po = 5.6 x 10'°Nm ™2, which is that of Cast Iron. We set the number of inclusions M = 6, and assume that

the wéj ), j=1,...,6, are circular. We summarize the data corresponding to the inclusions in Table 1.

’ Inclusion \ Centre \ Radius (m) \ Shear Modulus (x10™°Nm™~?) \ Material
w [ (-90m, 40m) 27 2.6316 Aluminum
w® | (-50m,-50m) 24 4.0741 Copper
w® | (-30m, 10m) 9 7.7519 Tron
w (20m, 70m) 19.5 7.5188 High Strength Alloy Steel
W (50m, Om) 22.5 8.0078 Steel AISI 4340
w® (70m, -80m) 15 9.0496 Nimonic Alloy 90

8.3 Model solutions used in the numerical simulations

Neumann’s function for the disk 2

In our examples, we need the Neumann function N for a disk of radius R (R = 150m for our demonstrations),
R2
(=gl

R9(x,y) = (2mpo) 'log|x —y| - N (x,y) .

which is given by

N(Q)(X, y)=—

and the regular part R(Y of this function is defined by the formula

The regular part of Green’s function for the transmission problem in a plane with an inclusion

at the origin

Now, we state the form of the regular part h%) of the Green’s function for the transmission problem in the
infinite plane with a circular inclusion at the origin of radius a;. The solution is constructed using the involution
The representation of this function, is dependent on the position of the

log <|£1|

procedure which is discussed in [5].

point 17;. When n,; € CwW)

1

1
2T

_ Kr; — Mo
2mpo pr; + po

log |x — y| —

25

1
— log

27 (o

[ —
’ |"7j

Table 1: Data for the inclusions wéj)7 j=1,...,6.

) for §; € Cawl) |




and
1w, —po

2mpo pr; + po

hION (g, m;) = (log|¢; —m,| ™" +log|n,]), & €wY.

For the case n; € w)

. 1 M1, — 1O 1 1 — (4
WD (g my) = g <M_10g 1€ —ml + Mologijl) , for g ecwl,
and
: Lpg; —po (1 [, a; 1 :
R0 En)=——--"2—"—|—log| —~ & — —-n,|| + —loga; | , for e wl) |
( 7 "73) o qu +,U/O qu g a; 5] |nJ|2nJ 1o g J EJ

The dipole fields for the circular inclusion in the infinite plane

Here, we give the vector function D) whose components are the dipole fields for the circular inclusion of radius
a; in the infinite plane, where

D(j)('fj) = XC@(j)(ﬁj)D(j’O)(gj) + me('fj)p(j’j) (&) -

We have )
. . — as &, .
DU gy = B — O 5 E; , for¢; e CoW,
and
DUD(¢.) = Msj , forg; ewd.
Hr1; + Ho
We recall ' .
T(])(éj) = 53‘ - D(j)(fj) .
Modulus of the gradient for the analytical solution x10™ Modulus of the gradient for the numerical solution x10™
x10™ ' 25 x10™ 25
3 : 3 .

Figure 2: a) Computations based on asymptotic formula (8.2) and b) Numerical solution for the absolute value
of the gradient of the regular part of Green’s function for the transmission problem. Here y = (—10m, —80m)
and the mesh contains 44784 elements. The plots are practically indistinguishable.
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Modulus of the gradient for the analytical solution x10™ Modulus of the gradient for the numerical solution x10™

14

14

x10 x10

Figure 3: a) Computations based on asymptotic formula (8.3) and b) Numerical solution for the absolute value
of the gradient of the regular part of Green’s function for the transmission problem. Here y = (60m,0m) and
lies in the Steel AISI 4340 inclusion. The mesh contains 44784 elements. There is once again a good similarity
between the surface plots.

8.4 Examples
The case of the force applied outside the inclusions

For our first example, we look at the case when y € ).. We therefore base our computations on the asymptotic
formula (8.2) when comparing with those of COMSOL. The coordinates of the point force are given as y =
(—10m, —80m). We plot the modulus of the gradient of the regular part R. in Figure 2a) according to the
analytical formulae (8.2). Figure 2b) is the same quantity computed using the method of finite elements in
COMSOL. Both figures are very similar, the maximum absolute error between these computations is 7.666 x
10716 occurring on the exterior boundary.

The case of the force positioned inside an inclusion

In the second example, we aim to compare the computations produced by formula (8.3) with those generated
by COMSOL. Now the point force is assumed to be situated at y = (60m, Om), in the inclusion w§5), containing
the Steel AISI 4340. Figure 3a), gives the surface plot for the modulus of the gradient of the regular part,
provided by formula (8.3). The numerical solution given in COMSOL is shown in Figure 3b). The maximum
absolute error here is 7.98 x 10716, which occurs on the boundary of the inclusion wél) . We conclude that the
asymptotic formulae and numerical computations are in a good agreement with each other.
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