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Abstract

We present uniform asymptotic approximations of Green’s kernels

for boundary value problems of elasticity in singularly perturbed do-

mains containing a small hole. We consider the cases of two and three

dimensions, for an isotropic Lamé operator and the Dirichlet bound-

ary conditions. The main feature of the asymptotic approximations

mentioned is their uniformity with respect to the independent spatial

variables. The formal asymptotic formulae are supplied with rigorous

derivations and the remainder estimates.
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1 Introduction

Singularly perturbed problems of elasticity occur in models of defects in
solids, damage mechanics and models of fracture. The knowledge of Green’s
kernels enables one to solve boundary value problems and estimate toughness
parameters of solids with defects for a general choice of displacement and
force terms in the boundary conditions and governing equations.

The papers [6, 7] provide uniform asymptotic approximations for Green’s
kernels for Laplace’s operator in domains with small holes, domains with
perturbed external boundaries, and different types of boundary conditions.
The asymptotic analysis is based on the method of compound asymptotic
expansions developed in [8], and the results include uniform asymptotic ap-
proximations for Green’s kernels supplied with the rigorous estimates of the
remainder terms.

The paper [10] deals with applications of the asymptotic approximations
of Green’s functions in domains with holes in analysis of eigenvalues of the
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corresponding spectral problems for the Laplacian. In particular, this is
linked to the study of the Lenz shift effect discussed in [3] and [11].

The main feature of the asymptotic approximations of [6, 7] is their uni-
formity with respect to the independent variables. We extend this theory to
the vector case of elasticity equations in two and three dimensions. Our aim
is to derive uniform asymptotic approximations for components of Green’s
tensor in a solid with a small hole, located at a finite distance from the ex-
terior boundary. The motivation for this article came from the asymptotic
formulae derived for the Laplacian, in [6].

The structure of the present article is as follows.
Section 2 gives an outline of governing equations and description of the

geometry of the singularly perturbed domain. Section 3 includes a result
concerning the estimates for the modulus of solutions to the Lamé equation
in a domain with a small hole. Section 4 presents one of the main results
related to the evaluation of Green’s tensor in three dimensions. This section
also introduces the notion of the elastic capacity matrix and furthermore
includes a detailed discussion of its properties. The case of a planar singu-
larly perturbed domain and construction of the corresponding Green’s tensor
for the operator of the Lamé system are considered in Section 5. We also
give corollaries, in Section 6, showing that under certain constraints on the
independent variables, the asymptotic formulae for Green’s matrices can be
simplified and represented via canonical model fields associated with either
unperturbed domain (without any holes) or an unbounded domain containing
a hole of finite size (boundary layer domain).

In what follows, Ωε is a bounded domain with a small hole, G is the
Green’s tensor for the unperturbed domain, g is the Green’s tensor for the
scaled unbounded domain with the finite hole and Γ is the fundamental
solution for the Lamé operator in three dimensions. The matrices H and
h are the regular parts of Green’s matrices G and g, which are given by
H = G−Γ, h = g−Γ. The matrix P is the capacitary potential for the hole
and matrix B represents the elastic capacity of the hole.

We prove the following asymptotic formula for the Green’s tensor:

Theorem 1 Green’s tensor Gε(x,y) for the Lamé operator in Ωε ⊂ R
3 ad-

mits the representation

Gε(x,y) = G(x,y) + ε−1g(ε−1x, ε−1y) − Γ(x,y) + P (ε−1x)H(O,y)

+H(x,O)P T (ε−1y) − P (ε−1x)H(O,O)P T (ε−1y)

−εH(x,O)BH(O,y) + O(ε2(min{|x|, |y|})−1) , (1)

uniformly with respect to x, y ∈ Ωε.
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We also obtain and prove a similar result for the case of a planar domain
with a small hole, this formula is given in Section 5.

2 Governing equations and main notations

We now give several notations adopted in the following text. Let Ω be a
bounded domain in R

n, n = 2, 3, with compact closure Ω̄ and smooth bound-
ary ∂Ω. By ω we denote a domain in R

n with smooth boundary ∂ω and
compact closure ω̄; its complement being Cω̄ = R

n\ω̄. We shall assume that
both Ω and ω contain the origin O as an interior point. It is also assumed
that the minimum distance between O and the points of ∂Ω is equal to 1.
In addition the maximum distance between O and the points of ∂Cω̄ will be
taken as 1. We introduce the set ωε = {x : ε−1x ∈ ω}, where ε is a small
positive parameter, and the open set Ωε = Ω\ω̄ε. The notation B% stands
for the open ball centered at O with radius %.

The main object of our study, Green’s tensor for the Lamé operator in
Ωε ⊂ R

n, n = 2, 3, will be denoted by Gε. The tensor Gε is a solution of

µ∆xGε(x,y)+(λ+µ)∇x(∇x·Gε(x,y))+δ(x−y)In = 0In , x,y ∈ Ωε , (2)

Gε(x,y) = 0In , x ∈ ∂Ωε,y ∈ Ωε , (3)

where In is the n × n identity matrix. An important property of this tensor
is the following symmetry relation

Gε(x,y) = GT
ε (y,x) . (4)

In the sequel, along with x and y, we shall use scaled variables ξ = ε−1x

and η = ε−1y.
By const we always mean different positive constants depending only on n,

λ and µ. The notation f = O(g) is equivalent to the inequality |f | ≤ const g.
Let σ(u) = [σij(u)]3i,j=1 represent the Cauchy stress tensor, which for an

isotropic solid with displacements u = {uk}
3
k=1 has entries of the form

σij(u) = λδijup,p + µ(ui,j + uj,i) , (5)

here and elsewhere in the text, the repeated are regarded as the indices of
summation, and Tn(u) = σij(u)nj are the tractions computed for displace-
ments u, where nj is the jth component of the unit outward normal.

Also e(u) = [eij(u)]3i,j=1 denotes the strain tensor, whose entries are given
by

eij(u) = 2−1(ui,j + uj,i) . (6)
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3 Estimates for the maximum modulus of so-

lutions of elasticity problems in domains

with small inclusions

In order to obtain the estimates for the remainders in the representations for
Gε in (1) for three dimensions, and that given in Section 5 for two dimensions,
we need an auxiliary result concerning an estimate for the maximum modulus
of solutions for Lamé system in domains with small holes. In what follows
we shall formulate and prove such a result.

Let u be the displacement vector which satisfies the Dirichlet boundary
value problem in the domain Ωε ⊂ R

n,

L (∂x)u(x) := µ∆u(x) + (λ + µ)∇(∇ · u(x)) = O , x ∈ Ωε , (7)

u(x) = ϕ(ε−1x) , x ∈ ∂ωε , (8)

u(x) = ψ(x) , x ∈ ∂Ω , (9)

where ∂x = ∂/∂x, O is the zero vector, and we assume that ϕ and ψ are
continuous vector functions.

In this section, we prove the following.

Lemma 1 There exists a unique solution u ∈ C(Ω̄ε) of problem (7) − (9)
which satisfies the estimate

max
Ω̄ε

|u(x)| ≤ const max{‖ϕ‖C(∂ωε) , ‖ψ‖C(∂Ω)} . (10)

We consider the cases when the dimension n is equal to 3 or 2.
The proof of the theorem involves auxiliary statements related to model

domains Ω and Cω̄ = R
n\ω̄.

3.1 The maximum principle in Ω

Let u solve the Dirichlet boundary value problem in Ω

L (∂x)u(x) = O , x ∈ Ω , (11)

u(x) = ψ(x) , x ∈ ∂Ω , (12)

where ψ is continuous on ∂Ω.
The following assertion is essentially due to Fichera [2], who proved its

analogue for then 3-dimensional case. The same argument works for the case
of a planar domain and is even simpler.
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Lemma 2 (Fichera’s maximum principle, see [2]) There exists a unique so-
lution u ∈ C(Ω̄) of problem (11), (12). This solution satisfies the estimate

‖u‖C(Ω̄) ≤ AΩ‖ψ‖C(∂Ω) , (13)

where AΩ is a constant coefficient.

3.2 The maximum principle in Cω̄

Let v(ξ) be a solution of the Dirichlet boundary value problem in the un-
bounded domain Cω̄:

L (∂ξ)v(ξ) = O , ξ ∈ Cω̄ , (14)

v(ξ) = ϕ(ξ) , ξ ∈ ∂ω , (15)

|v| → 0 as |ξ| → ∞ , (16)

when n = 3
For the two-dimensional case (n = 2), the formulation (14)–(16) has to

be supplied with the orthogonality conditions for the right-hand side ϕ:
∫

∂ω

ϕ(ξ) · Tn (∂ξ) ζ (j)(ξ) ds = 0 , j = 1, 2 . (17)

The vector functions ζ (j) are solutions of the model problem

L (∂ξ) ζ (j)(ξ) = O , ξ ∈ Cω̄ , (18)

ζ(j)(ξ) = O , ξ ∈ ∂Cω̄ , (19)

ζ(j)(ξ) ∼ −γ(j)(ξ,O) + ζ (∞,j) as |ξ| → ∞ , (20)

where γ(j) are the columns of the fundamental solution for the Lamé operator
in an infinite plane, ζ (∞,j) is a constant vector and Tn denotes the matrix
differential operator of tractions

Tn (∂ξ) ζ (j)(ξ) =

(

σ11(ζ
(j))n1 + σ12(ζ

(j))n2

σ12(ζ
(j))n2 + σ22(ζ

(j))n2

)

where n = (n1, n2) is the unit outward normal on ∂ω. We shall also use the
notation N for the 2 × 2 matrix function:

N(ξ) = {Tnζ(1)(ξ), Tnζ(2)(ξ)} . (21)

The following assertion results readily from Fichera’s maximum modulus
principle for a bounded domain [2], combined with the standard asymptotic
estimate for the solution at infinity.
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Lemma 3 There exists a unique solution in C(Cω̄) of the problem (14)−(16)
((14)–(17) for n = 2). This solution satisfies the estimate

sup
ξ∈Cω̄

{|ξ||u(ξ)|} ≤ ACω̄‖ϕ‖C(∂ω) .

3.3 The operator notations

We introduce the operators PΩ and PCω̄ in such a way that the solutions u,
v of problems (11), (12) and (14)−(16) are represented in the form

u = PΩ(ψ) , v = PCω̄(ϕ) . (22)

In the case of n = 2, we will also use the approximation πε of the capacitary
potential:

πε = D(log ε)G(x,O)

+PCω̄ε
(I2 − D(log ε) Tr∂ωε

G(x,O))

−PΩ(Tr∂ΩPCω̄ε
(I2 − D(log ε) Tr∂ωε

G(x,O))) ,

where D(log ε) is the 2 × 2 matrix defined by

D = −
1

K1

(

K2 log ε − ζ∞
22 + H22(O,O) ζ∞

12 − H12(O,O)
ζ∞
21 − H21(O,O) K2 log ε − ζ∞

11 + H11(O,O)

)

,

(23)
with

K1 = (K2 log ε − ζ∞
11 + H11(O,O)) (K2 log ε − ζ∞

22 + H22(O,O))

−(H12(O,O) − ζ∞
12 )(H21(O,O) − ζ∞

21 ) , (24)

K2 =
λ + 3µ

4πµ(λ + 2µ)
, (25)

and H = [Hij]
3
i,j=1 is the regular part of Green’s tensor for the domain Ω,

ζ∞ = [ζ∞
ij ]3i,j=1 = lim

|ξ|,|η|→∞
{γ(η,O) + g(ξ,η)} , (26)

where g is Green’s tensor for the unbounded domain Cω̄.
By direct substitution, we can verify that

L (∂x)πε(x) = 0I2 , x ∈ Ωε , (27)

πε(x) = 0I2 , x ∈ ∂Ω , (28)

πε(x) = I2 + O(ε) , x ∈ ∂ωε . (29)
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3.4 The proof of Lemma 1 for n = 2

First, consider the case when the homogeneous boundary condition is set on
∂Ω, so that

L (∂x)u(x) = O , x ∈ Ωε , (30)

u(x) = ϕ(ε−1x) , x ∈ ∂ωε , (31)

u(x) = O , x ∈ ∂Ω . (32)

We are looking for the solution in the form

u = PCω̄ε
(g − Ag) + πεAg

−PΩ(Tr∂ΩPCω̄ε
(g − Ag)) , (33)

where the constant vector Ag is determined by

Ag =

∫

∂ω

NT (ξ)g(ξ) dSξ , (34)

where the matrix N is the same as in (21). We note that

∫

∂ωε

‖N‖ dSx < C , (35)

where C is independent of ε and ‖N‖ is the norm of the matrix N.
Evaluating the trace of (33) on ∂ωε we obtain

ϕ = g + Sεg , (36)

where the operator Sε is defined by

Sεg = Tr∂ωε
(πε − I2)Ag

−Tr∂ωε
PΩ(T∂ΩPCω̄ε

(g − Ag)) .

By (34), (35) and (29)

‖Tr∂ωε
(πε − I2)Ag‖C(∂ωε) ≤ const ε‖g‖C(∂ωε) . (37)

Lemma 3 implies
|x| |PCω̄ε

(g − Ag)(x)| ≤ const ε , (38)

for all x ∈ Ωε.
Combining (37) and (38) we conclude

‖Sε‖C(∂ωε)→C(∂ωε) ≤ const ε . (39)
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It follows from (36) that g = (I + Sε)
−1ϕ, and then we deduce

‖g‖C(∂ωε) ≤ const ‖ϕ‖C(∂ωε) .

Owing to Lemmas 2 and 3 we obtain

max
Ω̄ε

|u| ≤ const ‖g‖C(∂ωε) ≤ const ‖ϕ‖C(∂ωε) . (40)

Second, we consider the case of the inhomogeneous boundary condition on
∂Ω

L (∂x)u(x) = O , x ∈ Ωε , (41)

u(x) = ψ(x) , x ∈ ∂Ω , (42)

u(x) = O , x ∈ ∂ωε . (43)

The solution is sought in the form

u = PΩψ + v , (44)

where the second term v is defined as a solution of the problem, which is
similar to (30)–(32), with the boundary condition on ∂ωε being replaced by

v(x) = −(Tr∂Fε
PΩψ)(x) , x ∈ ∂ωε .

According to the result of first part of the proof (40), we have

max
Ω̄ε

|v| ≤ const max
∂ωε

|Tr∂ωε
PΩψ|

≤ const ‖ψ‖C(∂Ω) . (45)

It follows from Lemma 2 that

max
Ω̄ε

|PΩψ| ≤ const ‖ψ‖C(∂Ω) . (46)

Combining (44), (45) and (46) we deduce

max
Ω̄ε

|u| ≤ const ‖ψ‖C(∂Ω) .

This completes the proof for the case n = 2.
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3.5 The proof of Lemma 1 for n = 3

First, we address the formulation (30)–(32), where Ωε is a domain in R
3, and

the inhomogeneous boundary condition is specified on ∂ωε.
The solution is sought in the form

u = PCω̄ε
g − PΩ(Tr∂ΩPCω̄ε

g) , (47)

with g being an unknown function. Evaluating the trace of (47) on ∂ωε we
obtain

ϕ = g + Sεg ,

where Sεg = −Tr∂ωε
PΩ(Tr∂ΩPCω̄ε

g).
Since ‖Tr∂ΩPCω̄ε

g‖C(∂Ω) ≤ Cε it follows from Lemma 2 that

‖Sε‖C(∂ωε)→C(∂ωε) ≤ const ε .

Hence
g = (I + Sε)

−1ϕ ,

and the following estimate holds

‖g‖C(∂ωε) ≤ const ‖ϕ‖C(∂ωε) .

Applying Lemmas 2 and 3 we conclude

max
Ω̄ε

|u| ≤ const ‖g‖C(∂ωε) ≤ const ‖ϕ‖C(∂ωε) .

The case when an inhomogeneous boundary condition is set on ∂Ω is treated
similarly to the proof of subsection 3.4.

The proof of the theorem is complete. �

4 Green’s tensor for a 3-dimensional domain

with a small hole

This part of the paper presents a uniform asymptotic approximation of the
Green’s tensor Gε(x,y) in a three-dimensional domain with a small hole,
as described in Section 2 (see (2) and (3)). Before formulating the asymp-
totic representation, we list model domains and associated model problems
required for the asymptotic algorithm.
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4.1 Green’s matrices for model domains in three di-

mensions

Let G(x,y) = [G(1)(x,y), G(2)(x,y), G(3)(x,y)] and g(ξ,η) = [g(1)(ξ,η),
g(2)(ξ,η), g(3)(ξ,η)] denote Green’s tensors for the Lamé operator

L := µ∆ + (λ + µ)∇(∇· ) , (48)

in the sets Ω and Cω̄ = R
3\ω̄, respectively. The tensor G solves the following

problem

µ∆xG(x,y)+(λ+µ)∇x(∇x ·G(x,y))+δ(x−y)I3 = 0I3 , x,y ∈ Ω , (49)

G(x,y) = 0I3 , x ∈ ∂Ω,y ∈ Ω , (50)

and the tensor g is solution of

µ∆ξg(ξ,η)+(λ+µ)∇ξ(∇ξ ·g(ξ,η))+ δ(ξ−η)I3 = 0I3 , ξ,η ∈ Cω̄ , (51)

g(ξ,η) = 0I3 , ξ ∈ ∂Cω̄,η ∈ Cω̄ , (52)

g(ξ,η) → 0I3 as |ξ| → ∞ . (53)

We represent G(x,y) and g(ξ,η) as

G(x,y) = Γ(x,y) − H(x,y) , (54)

and
g(ξ,η) = Γ(ξ,η) − h(ξ,η) , (55)

where Γ(x,y) = [Γij(x,y)], i, j = 1, 2, 3, is the fundamental solution of the
Lamé operator whose entries are given by

Γij(x,y) = (8πµ(λ+2µ)|x−y|)−1((λ+µ)(xi−yi)(xj−yj)|x−y|−2+(λ+3µ)δij) ,
(56)

and H, h are the regular parts of G, g respectively.

4.2 The elastic capacitary potential matrix

By P (ξ) = [P (1)(ξ), P (2)(ξ), P (3)(ξ)] we mean the elastic capacitary potential
matrix of the set ω, whose columns satisfy

µ∆ξP
(j)(ξ) + (λ + µ)∇ξ(∇ξ · P

(j)(ξ)) = O in Cω̄ , (57)

P (j)(ξ) = e(j) on ∂Cω̄ , (58)

P (j)(ξ) → O as |ξ| → ∞ , (59)

for j = 1, 2, 3, where e(j) is a basis vector, whose jth entry is equal to 1, and
all other entries are zero.
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Lemma 4 The columns P (j), j = 1, 2, 3, of the elastic capacitary potential
satisfy the inequality

sup
ξ∈Cω̄

{|ξ||P (j)(ξ)|} ≤ const . (60)

Proof. The proof follows directly from the maximum principle for un-
bounded domains (cf. Lemma 3). �

In the sequel, we will need the following lemma, which is a reformulation
of that by Kondratiev and Oleinik, in [4] (p. 78).

Lemma 5 Suppose the columns u(j)(ξ) of the matrix u(ξ) are solutions of

µ∆u(j)(ξ) + (λ + µ)∇(∇ · u(j)(ξ)) = O , in Cω̄ ,

and that |u(j)(ξ)| ≤ const (1 + |ξ|)k, k ≥ 0, for j = 1, 2, 3.
Then for |ξ| > 2

u(j)(ξ) = P
(j)
k (ξ) + Γ(ξ,O)C(j) + O(|ξ|−2) , (61)

where P
(j)
k (ξ) = {P

(j,k)
i (ξ)}3

i=1, P
(j,k)
i (ξ) are polynomials of order not greater

than k, C(j) = {C
(j)
i }3

i=1, where C
(j)
i are constants.

4.2.1 Properties of the elastic capacity matrix

Let B = [Bij], i, j = 1, 2, 3 be a constant matrix that we shall call the elastic
capacity matrix of the set ω. In the present subsection, we will discuss some
properties of the elastic capacity matrix. The aim of this subsection is to
show that upper and lower elastic capacity (obtained from the maximum
and minimum eigenvalues of B, respectively) are equivalent to electrostatic
capacity.

Throughout we will need the following Lemma related to the asymptotic
behaviour of P .

Lemma 6 If |ξ| ≥ 2, then for P (j) the following estimate holds

|P (j)(ξ) − BijΓ
(i)(ξ,O)| ≤ const |ξ|−2 , (62)

for j = 1, 2, 3, where Γ(i) are columns of the fundamental solution for the
Lamé operator and Bij are entries of the elastic capacity matrix B of the set
ω.
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Proof. By Lemma 4, it is sufficient to take P (ξ) = O(1), then from
Lemma 5, for |ξ| ≥ 2 the columns P (j)(ξ) can be written in the following
way

P (j)(ξ) = K(j) + Γ(ξ,O)C(j) + O(|ξ|−2) , (63)

where K(j) is vector independent of ξ,
Condition (59), implies K(j) ≡ O and taking C(j) = B(j) we obtain (62).

�

We also use the electrostatic potential P for the unbounded set Cω̄ with
electrostatic capacity cap ω, as a solution of the problem

∆ξP(ξ) = 0 , ξ ∈ Ωε , (64)

P(ξ) = 1 , ξ ∈ ∂ω , (65)

P(ξ) → 0 as |ξ| → ∞ . (66)

The electrostatic energy for a scalar function u in a domain T ⊂ R
n is

defined as

E(u, T ) =

∫

T

|∇u|2 dx . (67)

It is well known that for the function P, we have for the energy functional E
in Cω̄

E(P, Cω̄) =

∫

Cω̄

|∇P|2 dξ = cap ω . (68)

In contrast, the elastic energy functional for a vector u in the domain T
is given by

E (u, T ) = 2−1

∫

T

eij(u)σij(u) dx , (69)

also we define the elastic energy matrix E = [Eij]
3
i,j=3 for a matrix A in the

domain T with entries

Eij(A, T ) = 2−1

∫

T

est(A
(i))σst(A

(j)) dx , (70)

where A(i), i = 1, 2, 3 are the columns of the matrix A. Clearly, the diagonal
entries E11, E22 and E33 give the elastic energy for the vectors A(i), i = 1, 2, 3
respectively.

We shall show that the elastic energy matrix can be represented in terms
of the elastic capacity matrix B of the set ω, by considering the entries of
elastic energy matrix for the matrix function P , defined as a solution of
(57)–(59).
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Lemma 7 i) For the elastic capacitary potential P , we have

E(P (ξ), Cω̄) = 2−1B , (71)

where B is the elastic capacity matrix of the set ω and ii) this matrix is
symmetric.

Proof. i) We take a ball BR = {ξ : |ξ| < R} with sufficiently large radius
R. We consider the component Ejk of the elastic energy matrix in the domain
BR\ω̄ as follows

Ejk(P (ξ), BR\ω̄) = 2−1

∫

BR\ω̄

est(P
(j)(ξ))σst(P

(k)(ξ)) dSξ

= 2−1

∫

∂(BR\ω̄)

P (j)(ξ) · Tn(P (k)(ξ)) dSξ , (72)

where we have used Betti’s formula and the fact that the columns of P satisfy
the homogeneous Lamé equation. Noting the boundary condition (58), the
preceding equation may be written as

Ejk(P (ξ), BR\ω̄) = 2−1

{
∫

∂BR

P (j)(ξ) · Tn(P (k)(ξ)) dSξ

+

∫

∂ω

e(j) · Tn(P (k)(ξ)) dSξ

}

. (73)

Applying Betti’s formula once more to the vectors e(j) and P (k)(ξ), we have

Ejk(P (ξ), BR\ω̄) = 2−1

{
∫

∂BR

P (j)(ξ) · Tn(P (k)(ξ)) dSξ

−

∫

∂BR

e(j) · Tn(P (k)(ξ)) dSξ

}

, (74)

which holds for all R. Using the asymptotic representation for P given in
Lemma 6, we pass to the limit as R → ∞ yielding

Ejk(P (ξ), Cω̄) = −2−1 lim
R→∞

∫

∂BR

Brkσjp(Γ
(r)(ξ,O))np dSξ

= 2−1Bjk , (75)

where (75) has been obtained via Betti’s formula applied to the vectors e(j)

and Γ(r)(ξ,O) in BR. Thus we have proved relation (71).
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ii) Now we prove the symmetry of the matrix B. Again using Lemma 6,
we take the limit in (73) as R → ∞, then comparing to (75), we have

∫

∂ω

e(j) · Tn(P (k)(ξ)) dSξ = Bjk . (76)

Then, interchanging the indices k and j, and subtracting the result from
(76) gives

Bjk − Bkj =

∫

∂ω

{e(j) · Tn(P (k)(ξ)) − e(k) · Tn(P (j)(ξ))} dSξ . (77)

Recalling that on ∂ω we have P (j)(ξ) = e(j), for j = 1, 2, 3, we see that the
right-hand side is the result of application of the Betti formula to vectors
P (j)(ξ) and P (k)(ξ) in Cω̄. Namely in (77) we have

Bjk − Bkj =

∫

Cω̄

{P (j)(ξ) · L(P (k)(ξ)) − P (k)(ξ) · L(P (j)(ξ))} dSξ . (78)

Since the columns of P are solutions to the homogeneous Lamé equation the
right-hand side in (78) is zero and

Bjk = Bkj ,

i.e. the capacity matrix B is symmetric.
�

Next we prove that the elastic capacity matrix B represents a tensor.

Lemma 8 The elastic capacity matrix is a Cartesian tensor of rank 2.

Proof. Let l = [lmk]
3
m,k=1 be a arbitrary matrix of rotation and consider

the matrix P with columns P(m) = lmkP
(k), where P (k), k = 1, 2, 3, are

columns of the elastic capacitary potential. By definition of the vectors P (k),
the vector functions P(m) solve the problem

µ∆ξP
(m)(ξ) + (λ + µ)∇ξ(∇ξ · P

(m)(ξ)) = O in Cω̄ , (79)

P(m)(ξ) = (lT )(m) on ∂Cω̄ , (80)

P(m)(ξ) → O as |ξ| → ∞ . (81)

In a similar way to the proof of Lemma 6, the asymptotic representation for
P(m) is given as

P(m)(ξ) = Γ(ξ,O)B(m) + O(|ξ|−2) , (82)
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where B(m), m = 1, 2, 3 are the columns of the elastic capacity matrix of the
set ω in the rotated system, and for this we have

Emn(P(ξ), Cω̄) = 2−1Bmn , (83)

as in Lemma 7.
Also, by definition of P(m), the following representation holds

P(m)(ξ) = lmkΓ(ξ,O)B(k) + O(|ξ|−2) , (84)

obtained by using Lemma 6 for the columns of P .
Considering the entry Emn of the elastic energy matrix in the domain

BR\ω̄ and using the representation (84) and the same procedure as used in
the proof of (71), we obtain that

Emn(P(ξ), Cω̄) = 2−1lmqlnkBqk . (85)

Comparing (83), (85) we deduce that the elastic capacity matrix is a Carte-
sian tensor of rank 2. �

4.2.2 Upper and lower elastic capacity versus electrostatic capac-

ity

Let S denote set of vector functions u, such that

µ∆ξu(ξ) + (λ + µ)∇ξ(∇ξ · u(ξ)) = O in Cω̄ , (86)

u(ξ) = c on ∂Cω̄ , (87)

u(ξ) → O as |ξ| → ∞ , (88)

and for |ξ| > 2 has the asymptotic representation

u(ξ) = Γ(ξ,O)Bc + O(|ξ|−2) , (89)

where c = {cj}
3
j=1 is a constant vector with |c| = 1.

We define the lower elastic capacity, of the set Cω̄, to be

cap
elast

ω = inf
u∈S

c,|c|=1

E (u, Cω̄) , (90)

and upper elastic capacity as

capelastω = sup
c,|c|=1

inf
u,∈S

E (u, Cω̄) . (91)

The following Lemma shows that upper and lower elastic capacity are
equivalent to electrostatic capacity.
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Lemma 9 For the upper and lower capacities the following inequalities hold

capelastω ≤ k2 cap ω , (92)

k1 cap ω ≤ cap
elast

ω , (93)

where k1 = min{µ, λ + 2µ} and k2 = µ + |λ + µ|. (From which it follows

capelastω ≤ k3 cap
elast

ω , (94)

where k3 = k2/k1.)

In order that we prove the preceding Lemma, we shall need the following
auxiliary inequality

Lemma 10 For any vector function v in Cω̄, constant on ∂ω, the elastic
energy functional E satisfies the inequality

k1

∫

Cω̄

‖∇v‖2 dξ ≤ E (v, Cω̄) ≤ k2

∫

Cω̄

‖∇v‖2 dξ , (95)

where the constants k1, k2 are the best possible.

Proof. We take an arbitrary vector function v|∂ω = b, where b is a
constant vector, and consider the elastic energy for this in the domain Cω̄

E (v, Cω̄) = 2−1

∫

Cω̄

eij(v)σij(v) dξ . (96)

We may rewrite this in the following way

E (v, Cω̄) = µ

∫

Cω̄

‖∇v‖2 dξ + (λ + µ)

∫

Cω̄

(∇ · v)2 dξ . (97)

Extending v by b over the domain ω, we have using Parseval’s identity and
the Schwarz inequality,
∫

Cω̄

(∇ · v)2 dξ =

∫

R3

|F(∇ · v)|2 dν ≤

∫

R3

|ν|2|F(v)|2 dν =

∫

Cω̄

‖∇v‖2 dξ ,

(98)
where F is the Fourier transform and ν = (ν1, ν2, ν3) is the Fourier transform
variable.

Thus using (98) in (97) we deduce that

E (v, Cω̄) ≤ (µ + |λ + µ|)

∫

Cω̄

‖∇v‖2 dξ . (99)
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We now consider two cases. When λ + µ > 0, then it is clear from (97)
that

E (v, Cω̄) ≥ µ

∫

Cω̄

‖∇v‖2 dξ . (100)

Hence from (99) and (100) we have

µ

∫

Cω̄

‖∇v‖2 dξ ≤ E (v, Cω̄) ≤ (µ + |λ + µ|)

∫

Cω̄

‖∇v‖2 dξ . (101)

When λ + µ < 0, we obtain from (98)

(λ + µ)

∫

Cω̄

(∇ · v)2 dξ ≥ (λ + µ)

∫

Cω̄

‖∇v‖2 dξ , (102)

and so from (97) we obtain

(λ + 2µ)

∫

Cω̄

‖∇v‖2 dξ ≤ E (v, Cω̄) . (103)

Therefore, from (99) and (103) we have

(λ + 2µ)

∫

Cω̄

‖∇v‖2 dξ ≤ E (v, Cω̄) ≤ (µ + |λ + µ|)

∫

Cω̄

‖∇v‖2 dξ . (104)

Combining (101) and (104) to cover both cases we obtain (95). �

Now we are in a position to prove Lemma 9.

Proof of Lemma 9. We first take u ∈ S, and consider the elastic energy
for this vector function in the domain BR\ω̄. Repeating the same procedure
as in the proof (71) we obtain for the vector u, that

E (u, Cω̄) = 2−1(c, Bc) . (105)

Let α be an eigenvalue of the matrix B and c the corresponding eigenvector,
i.e.

Bc = αc , where |c| = 1 . (106)

From (106), we obtain that α = (c, Bc), this means that for (105), we have

E (u, Cω̄) = 2−1α . (107)

Moreover, by the definition of upper and lower elastic capacity (90) we have
that upper and lower elastic capacity are the maximum, minimum eigenval-
ues, respectively, of the elastic capacity matrix B.
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We shall obtain the inequality (92) first. Let the vector u(1) be sought
in the form u(1) = P(ξ)c where P is the electrostatic potential. Considering
the Dirichlet integral for u(1) in Cω̄, we obtain

∫

Cω̄

‖∇u(1)‖2 dξ =
3

∑

j=1

∫

Cω̄

c2
j |∇P|2 dξ = cap ω , (108)

since the function P minimises the electrostatic energy functional and |c| = 1.
Applying now the upper inequality of (95) of Lemma 10 to the vector function
u(1) we have

inf
u∈S

E (u, Cω̄) ≤ E (u(1), Cω̄) ≤ k2 cap ω . (109)

Then taking the supremum on the left hand side with respect to c, with
|c| = 1 to arrive at

capelastω ≤ k2 cap ω , (110)

which is (92) proved.
Next, we take a vector function u(2) ∈ S, with boundary condition u(2) =

c(2) on Cω̄ that minimises the elastic energy in u and c. Applying the lower
inequality of (95) to u(2), we have

k1

∫

Cω̄

‖∇u(2)‖2 dξ ≤ cap
elast

ω . (111)

However the vector u(2) is not a minimizer of the Dirichlet integral (we have
seen that u(1) is such a vector). Thus

k1 cap ω = k1

∫

Cω̄

‖∇u(1)‖2 dξ ≤ k1

∫

Cω̄

‖∇u(2)‖2 dξ ≤ cap
elast

ω , (112)

completing the proof of (93).
Combining inequalities (92) and (93), we arrive at the proof of (94). �

Hence from Lemma 9 we have the elastic capacity and the electrostatic
capacity are equivalent.

4.3 Asymptotic estimates for the regular part h of

Green’s tensor in an unbounded domain

We now give an auxiliary result concerning an asymptotic estimate for the
tensor h, which we shall make use of in the algorithm.
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Lemma 11 For all η ∈ Cω̄ and ξ with |ξ| > 2 the estimate holds

|h(j)(ξ,η) − Γ(ξ,O)P T (j)(η)| ≤ const |ξ|−2|η|−1 , (113)

where j = 1, 2, 3.

Proof. From the definition of h(ξ,η) in (55), the columns of h(ξ,η) satisfy

µ∆ξh
(j)(ξ,η) + (λ + µ)∇ξ(∇ξ · h

(j)(ξ,η)) = O ξ,η ∈ Cω̄ , (114)

h(j)(ξ,η) = Γ(j)(ξ,η) , ξ ∈ ∂Cω̄ and η ∈ Cω̄ , (115)

h(j)(ξ,η) → O as |ξ| → ∞ and η ∈ Cω̄ , (116)

for j = 1, 2, 3.
From Lemma 5, we see that g(i)(ξ,η), i = 1, 2, 3 for sufficiently large |ξ|

can be approximated by a linear combination of columns of the fundamental
solution as follows

|ξ|(g(i)(ξ,η) − Cji(η)Γ(j)(ξ,O))
|ξ|→∞
−−−−→ O . (117)

We now apply Betti’s formula to tensors g(k)(ξ,η) and e(l) − P (l)(ξ),
k, l = 1, 2, 3, in the domain BR\ω̄ where BR = {ξ : |ξ| < R} is a ball with
sufficiently large radius R. Recalling P (j)(ξ) = e(j) and g(k)(ξ,η) = O when
ξ ∈ ∂Cω̄, we have

∫

BR\ω̄

eij(g
(k)(ξ,η))σij(P

(l)(ξ)) dξ

= Pkl(η) − δkl −

∫

∂BR

(δil − Pil(ξ))σij(g
(k)(ξ,η))nj dSξ , (118)

and
∫

BR\ω̄

eij(g
(k)(ξ,η))σij(P

(l)(ξ)) dξ =

∫

∂BR

gik(ξ,η)σij(P
(l)(ξ))nj dSξ ,

(119)
for k, l = 1, 2, 3.

Then from (118), (119) we have

δkl − Pkl(η) = −

∫

∂BR

{

(δil − Pil(ξ))σij(g
(k)(ξ,η))nj

+gik(ξ,η)σij(P
(l)(ξ))nj

}

dSξ . (120)
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Using the asymptotic representation for g given in (117) and that for P given
in Lemma 6, we take the limit in (120) as R → ∞ and obtain

δkl − Pkl(η) = − lim
R→∞

∫

∂BR

Crk(η)σlj(Γ
(r)(ξ,O))nj dSξ . (121)

Computing the above integral, by applying integration by parts to e(l) and
Γ(r)(ξ,O) in BR, yields

δkl − Pkl(η) = Clk(η) , (122)

or equivalently in the form of matrices

I3 − P T (η) = C(η) . (123)

Let |ξ| > 2. Then for η ∈ ∂Cω̄

|h(j)(ξ,η) − Γ(ξ,O)P T (j)(η)| = |h(j)(ξ,η) − Γ(j)(ξ,O)|

= |Γ(j)(ξ,η) − Γ(j)(ξ,O)| ≤ const |η||ξ|−2 ≤ const |ξ|−2 , (124)

here we have used that for η ∈ ∂Cω̄, |η| ≤ 1. By Lemma 1 for functions
satisfying the Lamé equation in η, we have from (124) that

|h(j)(ξ,η) − Γ(ξ,O)P T (j)(η)| ≤ const |ξ|−2|η|−1 , (125)

for η ∈ Cω̄ and |ξ| > 2. �

4.4 A uniform asymptotic formula for Green’s function

Gε in three dimensions

Now we present the main result concerning the uniform approximation of
Green’s tensor Gε in the case of 3-dimensions.

Theorem 1 Green’s tensor Gε(x,y) for the Lamé operator in Ωε ⊂ R
3 ad-

mits the representation

Gε(x,y) = G(x,y) + ε−1g(ε−1x, ε−1y) − Γ(x,y) + P (ε−1x)H(O,y)

+H(x,O)P T (ε−1y) − P (ε−1x)H(O,O)P T (ε−1y)

−εH(x,O)BH(O,y) + O(ε2(min{|x|, |y|})−1) , (126)

uniformly with respect to x, y ∈ Ωε.
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As in [6], we present a formal argument concerning the structure of Gε(x,y).
Let Gε be represented in the form

Gε(x,y) = Γ(x,y) − Hε(x,y) − hε(x,y) , (127)

where the columns of Hε(x,y) = [H
(j)
ε (x,y)], hε(x,y) = [h

(j)
ε (x,y)], j =

1, 2, 3, satisfy the Dirichlet problems

µ∆xH
(j)
ε (x,y) + (λ + µ)∇x(∇x · H

(j)
ε (x,y)) = O , x,y ∈ Ωε ,

H(j)
ε (x,y) = Γ(j)(x,y) , x ∈ ∂Ω,y ∈ Ωε ,

H(j)
ε (x,y) = O , x ∈ ∂Cω̄ε,y ∈ Ωε ,

and

µ∆xh
(j)
ε (x,y) + (λ + µ)∇x(∇x · h

(j)
ε (x,y)) = O , x,y ∈ Ωε ,

h(j)
ε (x,y) = Γ(j)(x,y) , x ∈ ∂Cω̄ε,y ∈ Ωε (128)

h(j)
ε (x,y) = O , x ∈ ∂Ω,y ∈ Ωε .

From (127), it is enough to approximate the columns of Hε and hε, to
obtain the asymptotic formula for Gε.

Approximation of Hε(x,y). Consider Hε(x,y) − H(x,y), which satisfies
the homogeneous Lamé equation and has zero boundary value when x ∈
∂Ω,y ∈ Ωε. When x ∈ ∂Cω̄ε, the leading part of Hε(x,y)−H(x,y) is given
by −H(O,y). We extend −H(O,y) onto Cω̄ε to a tensor that satisfies the
homogeneous Lamé equation in variable x, in the form −P (ε−1x)H(O,y),
whose leading order part is −εΓ(x,O)BH(O,y) for x ∈ ∂Ω,y ∈ Ωε. Thus

Hε(x,y) − H(x,y) = −P (ε−1x)H(O,y) + εH(x,O)BH(O,y)

+Hε(x,y) , x,y ∈ Ωε , (129)

where Hε(x,y) is the remainder term produced by this approximation.

Approximation of hε(x,y). Using the definition of h and (128) of hε, we
have

hε(x,y) − ε−1h(ε−1x, ε−1y) = O for x ∈ ∂Cω̄ε . (130)

Then from Lemma 11, we have

hε(x,y) − ε−1h(ε−1x, ε−1y) = −Γ(x,O)P T (η) + O(ε2(|x|2|y|)−1) ,

for x ∈ ∂Ω,y ∈ Ωε. The tensor that satisfies the homogeneous Lamé equation
in x and has boundary data Γ(x,O)P T (η) when x ∈ ∂Ω is

H(x,O)P T (η) .
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Thus, we have

hε(x,y)−ε−1h(ε−1x, ε−1y) = −H(x,O)P T (η)+χε(x,y) for x ∈ ∂Ω,y ∈ Ωε ,

where χε(x,y) is the remainder. For x ∈ ∂Cω̄ε, χε(x,y) = H(x,O)P T (η).
Since the components of H(x,O) are smooth for x, y ∈ Ω, we may approx-
imate the latter by H(O,O)P T (η). However this tensor is not necessarily
small. Making an extension of H(O,O)P T (η) to a tensor which satisfies the
homogeneous Lamé equation for x ∈ Cω̄ε, and is small for x ∈ ∂Ω,y ∈ Ωε,
we have

χε(x,y) = P (ε−1x)H(O,O)P T (ε−1y) + hε(x,y) ,

where hε(x,y) is the new remainder. Hence we may now assume the asymp-
totic representation

hε(x,y) − ε−1h(ε−1x, ε−1y) = −H(x,O)P T (ε−1y)

+P (ε−1x)H(O,O)P T (ε−1y)

+hε(x,y) , (131)

for x,y ∈ Ωε.

Combined formula. Combining (131) and (129) in (127), yields

Gε(x,y) = Γ(x,y) − H(x,y) + P (ε−1x)H(O,y)

−εH(x,O)BH(O,y) − ε−1h(ε−1x, ε−1y)

+H(x,O)P T (ε−1y) − P (ε−1x)H(O,O)P T (ε−1y)

+Rε(x,y) , (132)

where Rε(x,y) is the sum of the remainders Hε(x,y) and hε(x,y), which we
shall estimate. Recalling the definition of G and g from (54) and (55), the
preceding expression is equivalent to

Gε(x,y) = G(x,y) + ε−1g(ε−1x, ε−1y) − Γ(x,y)

+P (ε−1x)H(O,y) + H(x,O)P T (ε−1y)

−P (ε−1x)H(O,O)P T (ε−1y) − εH(x,O)BH(O,y)

+Rε(x,y) . (133)

Next we give a rigorous proof of (126).

4.4.1 Proof of Theorem 1

The columns of Rε(x,y) solve the problem
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µ∆xR
(j)
ε (x,y) + (λ + µ)∇x(∇x · R

(j)
ε (x,y)) = O x,y ∈ Ωε , (134)

R(j)
ε (x,y) = ε−1h(j)(ε−1x, ε−1y) − H(x,O)P T (j)(ε−1y)

−P (ε−1x)H(j)(O,y) + P (ε−1x)H(O,O)P T (j)(ε−1y)

+εH(x,O)BH (j)(O,y) , x ∈ ∂Ω,y ∈ Ωε , (135)

R(j)
ε (x,y) = H (j)(x,y) − H (j)(O,y) − H(x,O)P T (j)(ε−1y)

+H(O,O)P T (j)(ε−1y) + εH(x,O)BH (j)(O,y) ,

x ∈ ∂ωε,y ∈ Ωε . (136)

Both H (j)(x,O) and H (j)(O,y) are columns of H (see (54)), and H (j)(x,O)
is bounded on ∂Ω. They are also bounded for x ∈ ∂ωε, y ∈ Ωε. The term
εH(x,O)BH (j)(O,y) is bounded by const ε in (135) and (136). Since the
components of H(x,y) are smooth for x,y ∈ Ω and by Lemma 4 the entries
of the tensor P (ξ) are bounded, from (136) we have

|H(j)(x,y)−H (j)(O,y)− (H(x,O)−H(O,O))P T (j)(η)| ≤ const ε , (137)

for x ∈ ∂ωε,y ∈ Ωε. Thus when x ∈ ∂ωε and y ∈ Ωε

|R(j)
ε (x,y)| ≤ const ε ,

for j = 1, 2, 3.
Next we estimate |R

(j)
ε (x,y)| when x ∈ ∂Ω,y ∈ Ωε. By Lemma 4, the

columns of capacitary potential satisfy the following inequality

|P (j)(ε−1x)| ≤ const ε|x|−1 , j = 1, 2, 3, for x ∈ Ωε . (138)

Now, (62) of Lemma 6 and the definition of H(x,y) imply

|εH(x,O)BH (j)(O,y) − P (ε−1x)H(j)(O,y)|

= |(Γ(ε−1x,O)B − P (ε−1x))H (j)(O,y)| ≤ const ε2 , (139)

for x ∈ ∂Ω, y ∈ Ωε. We also have, using Lemma 11 and (138), the following
estimate

|ε−1h(j)(ε−1x, ε−1y) − H(x,O)P T (j)(ε−1y)|

= ε−1|h(j)(ε−1x, ε−1y) − Γ(ξ,O)P T (j)(ε−1y)|

≤ const ε2|x|−2|y|−1 ≤ const ε2|y|−1 , x ∈ ∂Ω,y ∈ Ωε , (140)
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where we have used the estimate (113) and for x ∈ ∂Ω, |x| ≥ 1. Combining
(138), (139) and (140) in (135) we obtain

|R(j)
ε (x,y)| ≤ const ε2|y|−1 for x ∈ ∂Ω,y ∈ Ωε , (141)

for j = 1, 2, 3.
Therefore, by Lemma 1, we have

|R(j)
ε (x,y)| ≤ const max

{

ε2|x|−1 , ε2|y|−1
}

, (142)

for j = 1, 2, 3, and x,y ∈ Ωε. Thus,

|R(j)
ε (x,y)| ≤ const ε2(min{|x|, |y|})−1 . (143)

The proof is complete. �

5 Green’s tensor for a planar domain with a

small hole

Now we present the uniform approximation of the tensor Gε(x,y) for the
case of a planar domain with a small hole, formulated in Section 2. We once
again introduce model domains and governing equations needed for the study
related to this case.

5.1 Green’s kernels for model domains in two dimen-

sions

Let G(x,y) = [G(1)(x,y), G(2)(x,y)] and g(ξ,η) = [g(1)(ξ,η), g(2)(ξ,η)] de-
note Green’s tensor for the Lamé operator in the bounded domain Ω and
Cω̄ = R

2\ω̄ respectively. The tensor G is a solution the following problem

µ∆xG(x,y)+(λ+µ)∇x(∇x ·G(x,y))+δ(x−y)I2 = 0I2 , x,y ∈ Ω , (144)

G(x,y) = 0I2 , x ∈ ∂Ω,y ∈ Ω , (145)

and the tensor g solves

µ∆ξg(ξ,η)+(λ+µ)∇ξ(∇ξ ·g(ξ,η))+δ(ξ−η)I2 = 0I2 , ξ,η ∈ Cω̄ , (146)

g(ξ,η) = 0I2 , ξ ∈ ∂Cω̄,η ∈ Cω̄ , (147)

|g(j)(ξ,η)| is bounded as |ξ| → ∞ ,η ∈ Cω̄ for j = 1, 2 . (148)
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We represent G(x,y) as

G(x,y) = γ(x,y) − H(x,y) , (149)

and g(ξ,η) as
g(ξ,η) = γ(ξ,η) − h(ξ,η) , (150)

where H and h are the regular parts of G and g respectively, and γ(x,y) =
[γij(x,y)]2i,j=1, is the fundamental solution of the Lamé operator in two di-
mensions with components

γij(x,y) = (λ + 3µ)(4πµ(λ + 2µ))−1(− log |x − y|δij

+(λ + µ)(λ + 3µ)−1(xi − yi)(xj − yj)|x − y|−2) , (151)

for i, j = 1, 2. We introduce the tensor ζ as

ζ(η) = lim
|ξ|→∞

g(ξ,η) , (152)

and the constant matrix

ζ∞ = lim
|η|→∞

{ζ(η) + γ(η,O)} , (153)

where it will be shown that ζ∞ is a symmetric matrix.

5.2 Auxiliary properties of the regular part h of Green’s

tensor for an unbounded planar domain and the

tensor ζ

In the present subsection, we shall formulate and prove an asymptotic rep-
resentation for the regular part h of Green’s tensor g, in the unbounded
domain. For this we shall need the following Lemma which is the two dimen-
sional analog of Lemma 5.

Lemma 12 Suppose the columns u(j)(ξ) of the matrix u(ξ) are solutions of

µ∆u(j)(ξ) + (λ + µ)∇(∇ · u(j)(ξ)) = O , in Cω̄ ,

and that |u(j)(ξ)| ≤ const (1 + |ξ|)k, k ≥ 0, for j = 1, 2.
Then for |ξ| > 2

u(j)(ξ) = P
(j)
k (ξ) + γ(ξ,O)C(j) + O(|ξ|−1) , (154)

where P
(j)
k (ξ) = {P

(j,k)
i (ξ)}2

i=1, P
(j,k)
i (ξ) are polynomials of order not greater

than k, C(j) = {C
(j)
i }2

i=1, where C
(j)
i are constants.
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We now formulate a result related to the approximation of the regular
part of Green’s tensor g needed for our algorithm.

Lemma 13 Let |ξ| > 2, η ∈ Cω̄. Then the columns of the regular part
h(j)(ξ,η) of Green’s tensor in Cω̄ admit the asymptotic representation

h(j)(ξ,η) = γ(j)(ξ,O) − ζ (j)(η) + O(|ξ|−1) . (155)

Proof. By definition of g (cf. (146)–(148)), the columns h(j) of its regular
part satisfies

µ∆ξh
(j)(ξ,η) + (λ + µ)∇ξ(∇ξ · h

(j)(ξ,η)) = O , ξ,η ∈ Cω̄ , (156)

h(j)(ξ,η) = γ(j)(ξ,η) , ξ ∈ ∂Cω̄,η ∈ Cω̄ , (157)

and by (152)

h(j)(ξ,η) ∼ γ(j)(ξ,O) − ζ (j)(η) , as |ξ| → ∞,η ∈ Cω̄ , (158)

for j = 1, 2.
Setting U (j)(ξ,η) = h(j)(ξ,η) − γ(j)(ξ,O), we have that U (j) solves

µ∆ξU
(j)(ξ,η) + (λ + µ)∇ξ(∇ξ · U

(j)(ξ,η)) = O , ξ,η ∈ Cω̄ , (159)

U (j)(ξ,η) = γ(j)(ξ,η) − γ(j)(ξ,O) , ξ ∈ ∂Cω̄,η ∈ Cω̄ , (160)

and by (152)

U (j)(ξ,η) ∼ −ζ (j)(η) , as |ξ| → ∞,η ∈ Cω̄ . (161)

Consulting Lemma 12, we see that for |ξ| > 2 the following representation
for U (j) holds

U (j)(ξ,η) = K(j) + γ(ξ,O)C(j) + O(|ξ|−1) . (162)

where K(j) and C(j) are vector functions of η only.
Then in order that condition (161) be satisfied we must take K (j) =

−ζ (j)(η) and C(j) = O. Thus, recalling the definition of U (j), we obtain
(155). �

We also have the following asymptotic representation of the tensor ζ.

Lemma 14 For |ξ| > 2, the following representation for ζ (j), j = 1, 2, holds

ζ(j)(ξ) = −γ(j)(ξ,O) + ζ (∞,j) + O(|ξ|−1) . (163)
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Proof. The columns ζ (j)(ξ) are solutions of

µ∆ζ(j)(ξ) + (λ + µ)∇(∇ · ζ (j)(ξ)) = O , ξ ∈ Cω̄ , (164)

ζ(j)(ξ) = O , ξ ∈ ∂Cω̄ , (165)

ζ(j)(ξ) ∼ −γ(j)(ξ,O) + ζ (∞,j) as |ξ| → ∞ , (166)

for j = 1, 2, where ζ (∞,j) are the columns of ζ∞ and the preceding boundary
value problem is consistent with (152), (153).

Setting U (j) = ζ (j)(ξ) + γ(j)(ξ,O), and in the same way as in the proof
of the previous lemma, we deduce (163). �

We also have the following property of the matrix function ζ.

Lemma 15 The tensor ζ(η) is symmetric.

Proof. We begin by applying the Betti formula to the vectors −ζ (k)(ξ)
and g(l)(ξ,η) (noting that ζ (k)(ξ) is a solution of the homogeneous Lamé
equation), in the domain BR(O)\ω̄ for sufficiently large R, so that we obtain

−

∫

BR\ω̄

ζ(k)(ξ) · Lg(l)(ξ,η) dξ =

∫

∂(BR\ω̄)

{−ζ (k)(ξ) · Tn(g(l)(ξ,η))

+g(l)(ξ,η) · Tn(ζ (k)(ξ))} dSξ . (167)

Now using the definition of g and the fact that ζ (k)(ξ) = O and g(l)(ξ,η) = O

on ∂Cω̄, we have from the preceding equation

ζlk(η) =

∫

∂BR

{−ζ (k)(ξ) · Tn(g(l)(ξ,η)) + g(l)(ξ,η) · Tn(ζ (k)(ξ))} dSξ , (168)

which holds for all R. Using the asymptotic representation for ζ (j) and that
for h(j) given in Lemmas 13 and 14 respectively, j = 1, 2, we take the limit
in (168) as R tends to infinity and obtain

ζlk(η) = − lim
R→∞

∫

∂BR

ζ(l)(η) · Tn(γ(k)(ξ,O)) dSξ . (169)

Computing the above integral, by applying Betti’s formula to the vectors
ζ(l)(η) and γ(k)(ξ,O) in BR, gives

ζlk(η) = ζkl(η) . (170)

Hence from (170) we have the tensor ζ(η) is symmetric.
�

It also follows from this Lemma and the definition of the constant matrix
ζ∞, (cf. (153)), that this matrix is also symmetric.
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5.3 A uniform asymptotic approximation of an elastic

capacitary potential matrix

Let Pε(x) = [P
(1)
ε (x), P

(2)
ε (x)] denote the elastic capacitary potential of the

set ωε, whose columns are a solution of the following problem

µ∆P (j)
ε (x) + (λ + µ)∇(∇ · P (j)

ε (x)) = O, x ∈ Ωε , (171)

P (j)
ε (x) = O , x ∈ ∂Ω , (172)

P (j)
ε (x) = e(j) , x ∈ ∂Cω̄ε , (173)

for j = 1, 2.

Lemma 16 The asymptotic approximation of Pε(x) is given by the formula

Pε(x) = (G(x,O) − ζ(ξ) − γ(ξ,O) + ζ∞)D + p(x) , (174)

where D is the matrix given by (23) − (25) and p(x) = [p(1)(x), p(2)(x)] is
such that

|p(j)(x)| ≤ const ε(log ε)−1, j = 1, 2 , (175)

uniformly with respect to x ∈ Ωε.

Proof. Let ε → 0, then Ωε → Ω\{O}. In this limit domain, it is suitable

to approximate the columns P
(j)
ε (x) of the elastic capacitary potential, by

V (j)(x), which solves the boundary value problem

µ∆V (j)(x) + (λ + µ)∇(∇ · V (j)(x)) + δ(x)e(j) = O, x ∈ Ω\{O} , (176)

V (j)(x) = O , x ∈ ∂Ω , (177)

for j = 1, 2. Let V (j)(x) be sought in the form

V (j)(x) = D1jG
(1)(x,O) + D2jG

(2)(x,O) , j = 1, 2 . (178)

The representation of V (j)(x) by (178) does not satisfy the boundary condi-
tions on ∂Cω̄ε. Therefore, we construct a boundary layer M (j)(ξ), which is
a solution of

µ∆M (j)(ξ) + (λ + µ)∇(∇ · M (j)(ξ)) = O, ξ ∈ Cω̄ , (179)

M (j)(ξ) = e(j) − D1jG
(1)(x,O) − D2jG

(2)(x,O) , ξ ∈ ∂ω , (180)

M (j)(ξ) → O as |ξ| → ∞ , (181)

for j = 1, 2.
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Since ωε is a small void, we may rewrite the boundary condition (180) for
M (j)(ξ) by considering G(j)(x,O), j = 1, 2 as follows. Using

G(j)(x,O) = γ(j)(x,O) − H (j)(x,O) , j = 1, 2 , (182)

where γ(j) is the jth column of {γij}
2
i=1 and the fact the components of

H(j)(x,O) are smooth functions for x, y ∈ Ω, on ∂Cω̄ε we may expand
these about O, to give

G(j)(x,O) = −K2 log ε e(j) + γ(j)(ξ,O) − H (j)(O,O)

+O(ε) , j = 1, 2 . (183)

Then using (183) we have from (180)

M (j)(ξ) = e(j) + D1j

(

K2 log ε e(1) − γ(1)(ξ,O) + H (1)(O,O)
)

+D2j

(

K2 log ε e(2) − γ(2)(ξ,O) + H (2)(O,O)
)

+O(ε) , (184)

for ξ ∈ ∂ω, where K2 is the constant given in (25).
The tensors ζ (j)(ξ) satisfy (164)–(166). Setting

ζ̊(j)(ξ) = ζ (j)(ξ) + γ(j)(ξ,O) − ζ (∞,j) , j = 1, 2 , (185)

we have that ζ̊(j)(ξ) satisfies

µ∆ζ̊(j)(ξ) + (λ + µ)∇(∇ · ζ̊(j)(ξ)) = O, ξ ∈ Cω̄ , (186)

ζ̊(j)(ξ) = γ(j)(ξ,O) − ζ (∞,j) , ξ ∈ ∂Cω̄ , (187)

ζ̊(j)(ξ) → O as |ξ| → ∞ , (188)

for j = 1, 2.
Substituting the boundary condition (187), for ζ̊(j)(ξ) on ∂Cω̄, into (184)

we have

M (j)(ξ) = e(j) + D1j

(

K2 log ε e(1) − (ζ̊(1)(ξ) + ζ (∞,1)) + H (1)(O,O)
)

+D2j

(

K2 log ε e(2) − (ζ̊(2)(ξ) + ζ (∞,2)) + H (2)(O,O)
)

+O(ε) , (189)

for ξ ∈ ∂Cω̄. The boundary layer M (j)(ξ) is sought in the form

M (j)(ξ) = −D1j ζ̊
(1)(ξ) − D2j ζ̊

(2)(ξ) + W (j)(ξ) , j = 1, 2 , (190)
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where W (j)(ξ) is a solution of

µ∆W (j)(ξ) + (λ + µ)∇(∇ · W (j)(ξ)) = O, ξ ∈ Cω̄ , (191)

W (j)(ξ) = e(j) + D1j

(

K2 log ε e(1) − ζ (∞,1) + H(1)(O,O)
)

+D2j

(

K2 log ε e(2) − ζ (∞,2) + H(2)(O,O)
)

, (192)

for ξ ∈ ∂Cω̄, and
W (j)(ξ) → O as |ξ| → ∞ . (193)

In order that we satisfy the condition (193) we must choose Dij, i, j = 1, 2
as follows,

D = [D(1), D(2)] = −A−1 , (194)

where A = [Aij], whose entries are given by

Aij = K2 log ε δij − ζ∞
ij + Hij(O,O) , i, j = 1, 2 . (195)

Choosing D as in (194) we have from (191)–(193), W (j)(ξ) ≡ O, j = 1, 2,
and the form of the constant matrix D (given by (23)–(25)) has been proved.

Combining (178) and (190) in

P (j)
ε (x) = V (j)(x) + M (j)(ξ) + p(j)(x) ,

where p(j)(x) is the remainder term, we have (174).

5.3.1 Estimating the remainder term

The remainder p(x) = [p(1)(x), p(2)(x)] satisfies

µ∆p(x) + (λ + µ)∇(∇ · p(x)) = 0I2 , x ∈ Ωε , (196)

p(x) = (ζ(ξ) + γ(ξ,O) − ζ∞)D , x ∈ ∂Ω , (197)

p(x) = I2 − (−K2 log εI2 + ζ∞ − H(x,O))D , x ∈ ∂Cω̄ε . (198)

For the boundary condition on ∂Cω̄ε, using (194) and (195)

p(x) = (H(x,O) − H(O,O))D , x ∈ ∂Cω̄ε . (199)

Since the components of H(x,O) are smooth for x, y ∈ Ω

H(x,O) − H(O,O) = O(ε) , as x ∈ ∂Cω̄ε .

Next we consider the matrix D. Comparing to (24) we have K−1
1 = (det A)−1,

is of O(log−2 ε), from which we see D = O((log ε)−1). Thus we have the right-
hand side of (198) is O(ε(log ε)−1).
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Using Lemma 14, we have

ζ(ξ) + γ(ξ,O) − ζ∞ = O(ε) , for x ∈ ∂Ω , (200)

and therefore again we have the right-hand side of (197) is O(ε(log ε)−1).
Thus by the Lemma 1 we have

p(x) = O(ε(log ε)−1) for x ∈ Ωε .

�

5.4 A uniform asymptotic formula for Green’s function

Gε in two dimensions

We are now in a position to formulate and prove our result concerning the
uniform approximation of the tensor Gε for the case of two dimensions.

Theorem 2 Green’s tensor Gε for the Lamé operator in Ωε ⊂ R
2 admits the

representation

Gε(x,y) = G(x,y) + g(ξ,η) − γ(ξ,η)

+Pε(x)AP T
ε (y) − ζ(η) − ζ(ξ) + ζ∞ + O(ε) , (201)

which is uniform with respect to (x,y) ∈ Ωε × Ωε.

Proof. Let Gε be given by

Gε(x,y) = γ(x,y) − Hε(x,y) − hε(x,y) , (202)

where the columns of Hε(x,y) and hε(x,y) are solutions of the boundary
value problems

µ∆xH
(j)
ε (x,y) + (λ + µ)∇x(∇x · H

(j)
ε (x,y)) = O , x,y ∈ Ωε , (203)

H(j)
ε (x,y) = γ(j)(x,y) , x ∈ ∂Ω,y ∈ Ωε , (204)

H(j)
ε (x,y) = O , x ∈ ∂ωε,y ∈ Ωε , (205)

and

µ∆xh
(j)
ε (x,y) + (λ + µ)∇x(∇x · h

(j)
ε (x,y)) = O , x,y ∈ Ωε , (206)

h(j)
ε (x,y) = O , x ∈ ∂Ω,y ∈ Ωε , (207)
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h(j)
ε (x,y) = γ(j)(x,y) , x ∈ ∂ωε,y ∈ Ωε , (208)

for j = 1, 2.

The approximation of Hε(x,y). Let H
(j)
ε (x,y) be represented in the form

H(j)
ε (x,y) = S1j(y, log ε)G(1)(x,O) + S2j(y, log ε)G(2)(x,O)

+H(j)(x,y) + R(j)
ε (x,y, log ε) , (209)

where Sij(y, log ε), i, j = 1, 2 are to be determined. In (209), the term

R
(j)
ε (x,y, log ε) satisfies the boundary value problem

µ∆xR
(j)
ε (x,y, log ε)+(λ+µ)∇x(∇x·R

(j)
ε (x,y, log ε)) = O ,x,y ∈ Ωε , (210)

R(j)
ε (x,y, log ε) = O , x ∈ ∂Ω,y ∈ Ωε , (211)

R(j)
ε (x,y, log ε) = −S1jG

(1)(x,O) − S2jG
(2)(x,O) − H (j)(x,y) ,

x ∈ ∂Cω̄ε,y ∈ Ωε , (212)

and is approximated by R(j)(ξ,y, log ε), which is a solution of

µ∆ξR
(j)(ξ,y, log ε) + (λ + µ)∇ξ(∇ξ ·R

(j)(ξ,y, log ε)) = O , ξ ∈ Cω̄ , (213)

R(j)(ξ,y, log ε) = S1j

(

K2 log ε e(1) − γ(1)(ξ,O) + H (1)(O,O)
)

+S2j

(

K2 log ε e(2) − γ(2)(ξ,O) + H (2)(O,O)
)

−H (j)(O,y) , ξ ∈ ∂Cω̄ , (214)

R(j)(ξ,y, log ε) → O as |ξ| → ∞ , (215)

where y ∈ Ωε. We represent the solution of (213), (214) and (215) as

R(j)(ξ,y, log ε) = S1j

(

K2 log ε e(1) − γ(1)(ξ,O) + H (1)(O,O) − ζ (1)(ξ)
)

+S2j

(

K2 log ε e(2) − γ(2)(ξ,O) + H (2)(O,O) − ζ (2)(ξ)
)

−H (j)(O,y) . (216)

Now, using the boundary condition (166) of ζ(ξ), in (216), we deduce that
in order that (215) be satisfied we must choose the columns of S as follows

S(y, log ε) = [S(1)(y, log ε), S(2)(y, log ε)] = −DH(O,y) , (217)

where the entries of D are given by (23)–(25).
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Combining (217), (214) and (209), we have

H(j)
ε (x,y) = S1jG

(1)(x,O) + S2jG
(2)(x,O)

+S1j

(

K2 log ε e(1) − γ(1)(ξ,O) + H (1)(O,O) − ζ (1)(ξ)
)

+S2j

(

K2 log ε e(2) − γ(2)(ξ,O) + H (2)(O,O) − ζ (2)(ξ)
)

−H (j)(O,y) + H (j)(x,y) + H(j)
ε (x,y)

= −Pε(x)H (j)(O,y) + H (j)(x,y) + H(j)
ε (x,y) . (218)

Here H
(j)
ε (x,y) satisfies

µ∆xH
(j)
ε (x,y) + (λ + µ)∇x(∇x · H

(j)
ε (x,y)) = O , x,y ∈ Ωε , (219)

H(j)
ε (x,y) = H (j)(O,y) − H (j)(x,y) , x ∈ ∂Cω̄ε ,y ∈ Ωε , (220)

H(j)
ε (x,y) = O , x ∈ ∂Ω ,y ∈ Ωε , (221)

where the right-hand side of the boundary condition (220) is O(ε), uniformly
with respect to x ∈ ∂Cω̄ε and y ∈ Ωε.

Using Lemma 1 we obtain Hε(x,y)= O(ε) for x,y ∈ Ωε.

The approximation of hε(x,y). Now we shall proceed to approximate hε.
The columns of hε(x,y) satisfy the homogeneous Dirichlet condition on ∂Ω
and for x ∈ ∂Cω̄ε we rewrite the boundary condition (208) as

h(j)
ε (x,y) = −K2 log ε e(j) + γ(j)(ξ,η) , x ∈ ∂Cω̄ε ,y ∈ Ωε .

Let h
(j)
ε (x,y) be sought in the form

h(j)
ε (x,y) = −K2 log ε e(j) + h(j)(ξ,η) + χ(j)

ε (x,y) , (222)

where the vector field χ
(j)
ε (x,y) satisfies

µ∆χ(j)
ε (x,y) + (λ + µ)∇(∇ · χ(j)

ε (x,y)) = O , x,y ∈ Ωε , (223)

χ(j)
ε (x,y) = O , x ∈ ∂Cω̄ε,y ∈ Ωε , (224)

χ(j)
ε (x,y) = K2 log ε e(j) − h(j)(ξ,η) , x ∈ ∂Ω,y ∈ Ωε . (225)

Using Lemma 13, we rewrite (225) as

χ(j)
ε (x,y) = −γ(j)(x,O) + ζ (j)(η) + O(ε) , x ∈ ∂Ω,y ∈ Ωε . (226)

From the definition of H(x,y) and the elastic capacitary potential we write

χ
(j)
ε (x,y) as

χ(j)
ε (x,y) = −H (j)(x,O)+(I2−Pε(x))ζ (j)(η)+h(j)

ε (x,y) ,x,y ∈ Ωε , (227)
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where h
(j)
ε (x,y) satisfies the homogeneous Lamé equation; by Lemma 13 is

O(ε) for x ∈ ∂Ω, y ∈ Ωε and

h(j)
ε (x,y) = H (j)(x,O) = H (j)(O,O) + O(ε) , (228)

for x ∈ ∂Cω̄ε, y ∈ Ωε. Therefore, using the elastic capacitary potential,
Pε(x), we write

h(j)
ε (x,y) = Pε(x)H (j)(O,O) + O(ε) , (229)

which is uniform with respect to x,y ∈ Ωε, by Lemma 1.
Collecting now (227), (229) in (222) we have

h(j)
ε (x,y) = h(j)(ξ,η) − K2 log ε e(j)

−H (j)(x,O) + (I2 − Pε(x))ζ (j)(η)

+Pε(x)H (j)(O,O) + O(ε) . (230)

Combined formula. Substituting (218), (230) in (202) we have the columns
of Green’s tensor for the domain Ωε

G(j)
ε (x,y) = γ(j)(x,y) − H (j)(x,y) − h(j)(ξ,η)

+K2 log ε e(j) + H(j)(x,O) − ζ (j)(η)

−Pε(x)(H (j)(O,O) − ζ (j)(η) − H (j)(O,y)) + O(ε)

= γ(j)(x,y) − H (j)(x,y) − h(j)(ξ,η) + K2 log ε e(j)

+(I2 − Pε(x))(H (j)(O,O) − ζ (j)(η) − H (j)(O,y))

+H(j)(x,O) + H (j)(O,y) − H (j)(O,O) + O(ε) . (231)

Using the relation

H(O,O) − ζ(η) − H(O,y) = A(I2 − P T
ε (y)) , (232)

obtained from the leading part of Pε, we have

G(j)
ε (x,y) = γ(j)(x,y) − H (j)(x,y) − h(j)(ξ,η)

+K2 log ε e(j) + (I2 − Pε(x))A(e(j) − P T (j)
ε (y))

+H(j)(x,O) + H (j)(O,y) − H (j)(O,O) + O(ε)

= γ(j)(x,y) − H (j)(x,y) − h(j)(ξ,η)

+Pε(x)AP T (j)
ε (y) − ζ (j)(η) − ζ (j)(ξ)

+ζ (∞,j) + O(ε) , (233)

which is (201). The proof is complete.
�
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6 Simplified asymptotic formulae subject to

constraints on independent variables

It is now of interest to see how the asymptotic formulae obtained in The-
orems 1 and 2, simplify under constraints on the points x, y ∈ Ωε, where
Ωε ⊂ R

n, n = 2, 3. We consider two situations, the first is when these points
are outside a small neighborhood of the hole, the second is when the points
are in the vicinity of the hole.

We now consider the case of three dimensions.

Corollary 1 a) Let x and y be points of Ωε ⊂ R
3, such that

min{|x|, |y|} > 2ε . (234)

Then Gε(x,y) admits the representation

Gε(x,y) = G(x,y) − εG(x,O)BG(O,y) + O(ε2(|x||y|min{|x|, |y|})−1) .
(235)

b) If max{|x|, |y|} < 1/2, then

Gε(x,y) = ε−1g(ε−1x, ε−1y) − (I3 − P (ε−1x))H(O,O)(I3 − P T (ε−1y))

+O(max{|x|, |y|}) . (236)

Both (235) and (236) are uniform with respect to x,y ∈ Ωε.

Proof. a) We may rewrite (126) as follows

Gε(x,y) = G(x,y) − ε−1h(ε−1x, ε−1y)

+P (ε−1x)H(O,y) + H(x,O)P T (ε−1y)

−P (ε−1x)H(O,O)P T (ε−1y) − εH(x,O)BH(O,y)

+O
(

ε2(min{|x|, |y|})−1
)

. (237)

From Lemma 4, we have for |x| > 2 ε

P (ε−1x) = εΓ(x,O)B + O
(

ε2|x|−2
)

. (238)

Also, by Lemma 11 we have

ε−1h(ε−1x, ε−1y) = ε−1Γ(ε−1x,O)P T (ε−1y) + O
(

ε2(|x|2|y|)−1
)

= ε−1Γ(ε−1x,O)BΓ(ε−1y,O)

+O
(

ε2(|x||y|min{|x|, |y|})−1
)

(239)
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By substitution of (238) and (239) into (237) we have

Gε(x,y) = G(x,y) − ε−1Γ(ε−1x,O)BΓ(ε−1y,O)

+εΓ(x,O)BH(O,y) + εH(x,O)BΓ(y,O)

−εH(x,O)BH(O,y)

+O(ε2(|x||y|min{|x|, |y|})−1) , (240)

which is equivalent to

Gε(x,y) = G(x,y) − Γ(ε−1x,O)BG(O,y)

+εH(x,O)BG(O,y)

+O
(

ε2(|x||y|min{|x|, |y|})−1
)

, (241)

which is equivalent to (235).
b) Since the components of H(x,y) are smooth for x, y ∈ Ω, in the

vicinity of (O,O) in Ωε × Ωε we may rewrite (126) as

Gε(x,y) = ε−1g(ε−1x, ε−1y) − H(O,O)

+(H(O,O) + O(|x|))P T (ε−1y) + P (ε−1x)(H(O,O) + O(|y|))

−P (ε−1x)H(O,O)P T (ε−1y) + O(max{|x|, |y|}) , (242)

from which (236) follows.
�

Next we shall simplify the asymptotic formula given in (201) for the case
of two dimensions under the same conditions on the points x and y.

Corollary 2 a) Let x,y ∈ Ωε ⊂ R
2 such that

min{|x|, |y|} > 2ε . (243)

Then

Gε(x,y) = G(x,y) − G(x,O)DG(O,y) + O(ε(min{|x|, |y|})−1) . (244)

b) If max{|x|, |y|} < 1/2, then

Gε(x,y) = g(ξ,η) − ζ(ξ)Dζ(η) + O(max{|x|, |y|}) . (245)

Both (244) and (245) are uniform with respect to ε and (x,y) ∈ Ωε × Ωε.
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Proof. a) By Lemma 13,

h(ξ,η) = γ(ξ,O) − ζ(η) + O(|ξ|−1) . (246)

Also from (166),

ζ(ξ) = −γ(ξ,O) + ζ∞ + O(|ξ|−1) as |ξ| → ∞ . (247)

Substituting (247) into (174) we obtain

Pε(x) =
(

G(x,O) + O
(

ε|x|−1
))

D . (248)

Combining (246), (247) and (248) in (201), we have

Gε(x,y) = G(x,y)− (G(x,O) + O(ε−1|x|))D(G(O,y)+ O(ε−1|y|)) + O(ε) ,
(249)

from which we obtain (244).

b) Rewriting formula (232) in the form

Pε(x) = I2 − (H(O,O) − ζ(ξ) − H(x,O))A−1 , (250)

and substituting this into (201) for Gε, we have

Gε(x,y) = g(ξ,η) − H(x,y)

−(H(O,O) − ζ(ξ) − H(x,O))D(H(O,O)− ζ(η) − H(O,y))

+H(x,O) + H(O,y) − H(O,O) + O(ε) . (251)

Using the fact that the components of H(x,y) are smooth for x, y ∈ Ω,
in the vicinity of the origin we have from (251)

G(x,y) = g(ξ,η) − (O(|x|) − ζ(ξ))D(O(|y|)− ζ(η)) + O(max{|x|, |y|}) .
(252)

Since from (247), ζ(ξ) = O (log(ε−1|x|)) we have

G(x,y) = g(ξ,η) − ζ(ξ)Dζ(η) + O(max{|x|, |y|}) . (253)

�
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